RANDOM COMPACT SETS RELATED TO THE KAKEYA PROBLEM

RALPH ALEXANDER

ABSTRACT. A B-set is defined to be a compact planar set of zero measure which contains a translate of any line segment lying in a disk of diameter one. A construction is given which associates a unique compact planar set with each sequence in a closed interval, and it is shown that for almost all such sequences a B-set is obtained. The construction depends on the measure properties of certain perfect linear sets. Several related problems of a subtler nature are also considered.

1. Introduction. Long ago Besicovitch [1] gave his famous example of a compact planar set of measure zero which contains a translate of every line segment lying in a disk of diameter one. For convenience we will call such a set a B-set. Although the original construction of Besicovitch was rather complicated, there have been a number of elegant simplifications, especially for the construction of sets of measure ϵ containing the required line segments. The idea of Schoenberg discussed in [3] is particularly successful.

In this article we give a simple probabilistic method for generating a large family of *B*-sets. We only need elementary results about the measure of certain linear sets, and a rudimentary knowledge of random sequences.

There are a number of subtle questions which do arise, however. We are able to deal with several of these by appealing to a deep theorem of Besicovitch [2] concerning planar sets of finite Carathéodory length.

2. The measure of certain linear sets. Let a, b and x_1 lie in the interval [0, 2/3]. Consider the three closed intervals [a, a + 1/3], [b, b + 1/3], and $[x_1, x_1 + 1/3]$. Let $K(x_1)$ denote this collection of intervals, and let $T(x_1)$ denote their union.

We will form the collection $K(x_1, x_2)$, consisting of nine intervals of length 1/9, as follows: For each member [y, y + 1/3] in $K(x_1)$, there is precisely one affine transformation τ of the line such that $\tau(0) = y$ and $\tau(1) = y + 1/3$. The images under τ of the three intervals in $K(x_2)$ will be three intervals of length 1/9 lying in [y, y + 1/3]. Applying this construction to each of the three intervals in $K(x_1)$ yields the nine intervals in $K(x_1, x_2)$.

Received by the editors October 14, 1974.

AMS (MOS) subject classifications (1970). Primary 28A75.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-flopperight © 1975, American Mathematical Society

Inductively, if a, b, x_1, \ldots, x_n are numbers in [0, 2/3], $K(x_1, \ldots, x_n)$ will consist of 3^n intervals of length 3^{-n} . For each interval $[y, y + 3^{-n+1}]$ in $K(x_1, \ldots, x_{n-1})$, there will be an affine transformation τ such that $\tau(0) = y$ and $\tau(1) = y + 3^{-n+1}$. The images of the three intervals in $K(x_n)$ will be three intervals in $[y, y + 3^{-n+1}]$. Thus we obtain the 3^n intervals in $K(x_1, \ldots, x_n)$. $T(x_1, \ldots, x_n)$ will denote the union of these intervals, and $l(x_1, \ldots, x_n)$ will denote the linear measure of this union. Clearly, $T(x_1, \ldots, x_n) \in T(x_1, \ldots, x_{n-1})$ so that $l(x_1, \ldots, x_n) \leq l(x_1, \ldots, x_{n-1})$.

If a, b, x_1, x_2, \ldots is a sequence in [0, 2/3], we define $T(x_1, x_2, \ldots)$ to be $\bigcap_n T(x_1, \ldots, x_n)$ and $l(x_1, x_2, \ldots)$ to be the measure of $T(x_1, x_2, \ldots)$. We note that when a = 0 and b = 2/3, $T(1/3, 1/3, \ldots)$ is the entire unit interval, while $T(0, 0, \ldots)$ is the usual Cantor set. We also observe that if $x_1, x_2 = \cdots = x_n = a$, then $l(x_1, \ldots, x_n) \leq (2/3)^n$, since $T(x_1, \ldots, x_n)$ can be expressed as the union of 2^n intervals of length 3^{-n} .

Lemma 1. Let a, b, x_1, x_2, \ldots be a sequence in [0, 2/3]. Then for any positive integers m, n we have the inequalities

(1)
$$l(x_1, x_2, \ldots) < l(x_{m+1}, x_{m+2}, \ldots) \leq l(x_{m+1}, \ldots, x_{m+n}).$$

Proof. It is clear from the definitions that $l(x_{m+1}, x_{m+2}, ...) \leq l(x_{m+1}, ..., x_{m+n})$. We note that $T(x_1, x_2, ...)$ is the union of 3^m similar images of $T(x_{m+1}, x_{m+2}, ...)$ and the ratio of similarity is 3^{-m} for each image. The inequality $l(x_1, x_2, ...) \leq l(x_{m+1}, x_{m+2}, ...)$ follows at once.

Lemma 2. Let a and b be numbers in the interval [0, 2/3]. The function $l(x_1, \ldots, x_n)$ from $[0, 2/3]^n$ to the interval [0, 1] is continuous.

The lemma is obviously true and we omit a proof. Questions concerning the modulus of continuity of l seem difficult, however.

Proposition 1. Almost all sequences x_1, x_2, \ldots in [0, 2/3] have the property that given any a and b in [0, 2/3], then $l(x_1, x_2, \ldots) = 0$.

Proof. It follows from the classical results of E. Borel and others that given any positive number δ and positive integer n, almost all sequences in [0, 2/3] have the property that for any number a in [0, 2/3], the inequality $|x_i - a| < \delta$ will be satisfied for at least n successive values of i. (See [4, Problem 5, p. 197].)

Now by Lemma 2 there is a δ such that if $|x_i - a| < \delta$ for i = m + 1, ..., m + n, then $l(x_{m+1}, \ldots, x_{m+n}) < (2/3)^n + \epsilon$. However, it follows from inequality (1) that $l(x_1, x_2, \ldots) < (2/3)^n + \epsilon$. Since *n* can be arbitrarily large, $l(x_1, x_2, \ldots) = 0$. This concludes the proof.

 proof for Proposition 1 makes it clear that for any a and b in [0, 2/3], $l(x_1, x_2, ...) = 0$.

The value of $l(x_1, x_2, ...)$ for a specified sequence is generally impossible to determine. Using a devious argument, which will be outlined later, we are able to state the following nonelementary result.

Proposition 2. Let a and b be numbers in the interval [0, 2/3]. For almost all x in [0, 2/3], l(x, x, ...) = 0.

3. A planar construction. We now do some analogous constructions in the plane. Let x_1 be a number in [0, 2/3]. By $K^*(x_1)$ we denote the set of three closed parallelograms whose vertices in clockwise order are (0, 0), (2/3, 1), (1, 1), (1/3, 0); (2/3, 0), (0, 1), (1/3, 1), (1, 0); $(x_1, 0)$, $(x_1, 1)$, $(x_1 + 1/3, 1)$, $(x_1 + 1/3, 0)$. $T^*(x_1)$ will denote the union of these three parallelograms.

If *I* denotes the unit square (0, 0), (0, 1), (1, 1), (1, 0) and *P* is one of the parallelograms in $K^*(x_1)$, then there is a unique affine transformation τ of the plane which sends the vertices of *I* to the corresponding vertices of *P* in the given order. The set $K^*(x_1, x_2)$ will consist of nine parallelograms of area 1/9 which are the images of the members of $K^*(x_2)$ under the three τ 's associated with $K^*(x_1)$.

In general, $K^*(x_1, \ldots, x_n)$ will consist of 3^n parallelograms of area 3^{-n} . For each of the 3^{n-1} parallelograms P in $K^*(x_1, \ldots, x_{n-1})$ there is an affine τ taking I to P with proper vertices corresponding. The set $K^*(x_1, \ldots, x_n)$ consists of the various images of the members of $K^*(x_n)$ under these transformations. We let $T^*(x_1, \ldots, x_n)$ denote the union of the members of $K^*(x_1, \ldots, x_n)$ and let $l^*(x_1, \ldots, x_n)$ denote the planar measure of this union.

If x_1, x_2, \ldots is a sequence in [0, 2/3], we define $T^*(x_1, x_2, \ldots)$ and $l^*(x_1, x_2, \ldots)$ analogously to their linear counterparts. Also, let $T'(x_1, x_2, \ldots)$ be the planar set obtained by rotating $T^*(x_1, x_2, \ldots)$ through a positive angle of $\pi/2$ about (1/2, 1/2), the center of I.

Lemma 3. If x_1, x_2, \ldots is any sequence in [0, 2/3], the planar set $T^*(x_1, x_2, \ldots) \cup T'(x_1, x_2, \ldots)$ contains a translate of any line segment lying in the unit square I.

Proof. Let L be a line segment in I. Let us suppose that the line determined by L and the x-axis determine an angle (measured from axis to line) in the interval $[\pi/4, 3\pi/4]$. We may assume that L joins a point on the top edge of I to a point on the bottom edge. It is easy to see that at least one P in $K^*(x_1)$ contains a translate of L. Because affine transformations preserve parallelism, it is seen that $T^*(x_1, \ldots, x_n)$ will also contain a translate of L. By standard Licenseargentine musicipation entry of L.

If L and the x-axis determine an angle in $[-\pi/4, \pi/4]$, then $T'(x_1, x_2, ...)$ will contain a translate of L. This completes the proof.

Proposition 3. For almost all sequences x_1, x_2, \ldots in [0, 2/3] the planar set $T^*(x_1, x_2, \ldots) \cup T'(x_1, x_2, \ldots)$ is a B-set.

Proof. For $0 \le t \le 1$ let L_t be the horizontal line segment joining the points (0, t) and (1, t). We observe that the y-section of $T^*(x_1, x_2, ...)$ determined by L_t is of the form $T(x_1, x_2, ...)$ where a = (2/3)t and b = (2/3)(1-t). The sequence $x_1, x_2, ...$ remains unchanged. Thus for almost all sequences $x_1, x_2, ...$ every y-section of $T^*(x_1, x_2, ...)$ has linear measure zero. The result follows at once.

We now state a much deeper result corresponding to Proposition 2.

Proposition 4. If x is any number in [0, 2/3], except 1/3, then $l^*(x, x, ...) = 0$, $l^*(1/3, 1/3, ...) = 1/2$.

4. Outline of proofs for Propositions 2 and 4. Our next lemma shows that in studying the behaviour of l(x, x, ...) we need only consider the case a = 0 and b = 2/3.

Lemma 4. Let a, b and x be numbers in the interval [0, 2/3]. Then T(x, x, ...) is similar to T(x', x', ...) where a = 0 and b = 2/3.

Proof. We note that the set T(x, x, ...) is the union of three similar images of itself, the ratio of similarity being 1/3. Call these images T_1 , T_2 and T_3 , and let y_1, y_2 and y_3 be their respective least members. We may assume that $y_1 \le y_2 \le y_3$. If z is the largest member of T(x, x, ...), then there is a unique affine transformation τ such that $\tau(y_1) = 0$ and $\tau(z) = 1$. It follows that $\tau(y_3) = 2/3$; we define $x' = \tau(y_2)$. It is apparent that $\tau(T(x, x, ...)) = T(x', x', ...)$.

If $a \le x \le b$, we can see that $y_1 = 3a/2$, $y_2 = x + y_1/3$, $y_3 = b + y_1/3$, z = 1 - 3(1 - b)/2. It is interesting to observe that if $i \ne j$, $T_i \cap T_j$ has linear measure zero even though T(x, x, ...) may not. From this point on we will always assume that a = 0 and b = 2/3.

Our proofs of Propositions 2 and 4 depend on the projections of a planar set E which we now define. Let E_0 be an equilateral triangle of side one. The collection E_1 will consist of the three homothets of E_0 of side 1/3 obtained by dilations of ratio 1/3 centered at each of the three vertices of E_0 . We obtain E_2 , a collection of nine equilateral triangles of side 1/9, by performing dilations of ratio 1/3 centered at each vertex of each member of E_1 so that a member of E_1 gives rise to three triangles in E_2 . We proceed inductively, and, in general, E_n will consist of 3^n equilateral triangles of side 3^{-n} . Let $E = \bigcap E_n$.

License or copyright restrictions may apply to redistribution, see https://www.ams.org/ournal-terms-oruse f planar sets of finite

418

length, it is easy to see that E is an irregular set of Carathéodory length 1. The fundamental theorem of Besicovitch [2] assures that the almost all directions θ , the linear orthogonal projection E_{θ} of E possesses zero linear measure.

For each θ , E_{θ} is similar to T(x, x, ...) for a suitable x. In fact, we need only consider certain θ -intervals of length $\pi/6$ to be assured that for each x a similar image $E_{\theta(x)}$ occurs. Furthermore, it is clear that x and $\theta(x)$ are related in an absolutely bicontinuous manner over any θ -interval in which the mapping $x \to \theta(x)$ is one to one. It follows that l(x, x, ...) = 0 for almost all x in [0, 2/3].

Proposition 4 is established in a similar manner by relating the ysections of $T^*(x, x, ...)$, $0 \le y \le 1$, to $\theta^*(y)$ where $E_{\theta^*(y)}$ is similar to the y-section of $T^*(x, x, ...)$. This can easily be done in every case, except x = 1/3, to show that $l^*(x, x, ...) = 0$. When x = 1/3, the mapping $y \rightarrow \theta^*(y)$ is constant. In fact each y-section is similar to [0, 1]. The set $T^*(1/3, 1/3, ...)$ consists of the two triangles with vertices (0, 1), (1, 1), (1/2, 1/2) and (0, 0), (1, 0), (1/2, 1/2).

We admit that the method of proof outlined above is somewhat artificial and does not readily generalize to constructions involving more than three intervals. We hope that a direct proof of Proposition 2 can be found which will tell precisely for which x it is true that l(x, x, ...) = 0.

REFERENCES

1. A. S. Besicovitch, On Kakeya's problem and a similar one, Math. Z. 27 (1928), 312-320.

2. ____, On the fundamental geometrical properties of linearly measurable plane sets of points. III, Math. Ann. 116 (1939), 349-357.

3. ____, The Kakeya problem, Amer. Math. Monthly 70 (1973), 697-706.

4. William Feller, An introduction to probability theory and its applications. Vol. I, 2nd ed., Wiley, New York, 1957. MR 19, 466.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS, URBANA, ILLINOIS, 61801