RANDOM COMPACT SETS RELATED TO THE KAKEYA PROBLEM

RALPH ALEXANDER

ABSTRACT. A B-set is defined to be a compact planar set of zero measure which contains a translate of any line segment lying in a disk of diameter one. A construction is given which associates a unique compact planar set with each sequence in a closed interval, and it is shown that for almost all such sequences a B oset is obtained. The construction depends on the measure properties of certain perfect linear sets. Several related problems of a subtler nature are also considered.

1. Introduction. Long ago Besicovitch [1] gave his famous example of a compact planar set of measure zero which contains a translate of every line segment lying in a disk of diameter one. For convenience we will call such a set a B-set. Although the original construction of Besicovitch was rather complicated, there have been a number of elegant simplifications, especially for the construction of sets of measure ϵ containing the required line segments. The idea of Schoenberg discussed in [3] is particularly successful.

In this article we give a simple probabilistic method for generating a large family of B-sets. We only need elementary results about the measure of certain linear sets, and a rudimentary knowledge of random sequences.

There are a number of subtle questions which do arise, however. We are able to deal with several of these by appealing to a deep theorem of Besicovitch [2] concerning planar sets of finite Carathéodory length.
2. The measure of certain linear sets. Let a, b and x_{1} lie in the interval $[0,2 / 3]$. Consider the three closed intervals $[a, a+1 / 3],[b, b+$ $1 / 3]$, and $\left[x_{1}, x_{1}+1 / 3\right]$. Let $K\left(x_{1}\right)$ denote this collection of intervals, and let $T\left(x_{1}\right)$ denote their union.

We will form the collection $K\left(x_{1}, x_{2}\right)$, consisting of nine intervals of length $1 / 9$, as follows: For each member $[y, y+1 / 3]$ in $K\left(x_{1}\right)$, there is precisely one affine transformation τ of the line such that $\tau(0)=y$ and $\tau(1)=y+1 / 3$. The images under τ of the three intervals in $K\left(x_{2}\right)$ will be three intervals of length $1 / 9$ lying in $[y, y+1 / 3]$. Applying this construction to each of the three intervals in $K\left(x_{1}\right)$ yields the nine intervals in $K\left(x_{1}, x_{2}\right)$.

Received by the editors October 14, 1974.
AMS (MOS) subject classifications (1970). Primary 28A75.

Inductively, if $a, b, x_{1}, \ldots, x_{n}$ are numbers in $[0,2 / 3], K\left(x_{1}, \ldots, x_{n}\right)$ will consist of 3^{n} intervals of length 3^{-n}. For each interval $\left[y, y+3^{-n^{n}+1}\right]$ in $K\left(x_{1}, \ldots, x_{n-1}\right)$, there will be an affine transformation τ such that $\tau(0)=y$ and $\tau(1)=y+3^{-n+1}$. The images of the three intervals in $K\left(x_{n}\right)$ will be three intervals in $\left[y, y+3^{-n+1}\right]$. Thus we obtain the 3^{n} intervals in $K\left(x_{1}, \ldots, x_{n}\right) . T\left(x_{1}, \ldots, x_{n}\right)$ will denote the union of these intervals, and $l\left(x_{1}, \ldots, x_{n}\right)$ will denote the linear measure of this union. Clearly, $T\left(x_{1}, \ldots, x_{n}\right) \subset T\left(x_{1}, \ldots, x_{n-1}\right)$ so that $l\left(x_{1}, \ldots, x_{n}\right) \leq l\left(x_{1}, \ldots, x_{n-1}\right)$.

If $a, b, x_{1}, x_{2}, \ldots$ is a sequence in $[0,2 / 3]$, we define $T\left(x_{1}, x_{2}, \ldots\right)$ to be $\bigcap_{n} T\left(x_{1}, \ldots, x_{n}\right)$ and $l\left(x_{1}, x_{2}, \ldots\right)$ to be the measure of $T\left(x_{1}, x_{2}, \ldots\right)$. We note that when $a=0$ and $b=2 / 3, T(1 / 3,1 / 3, \ldots)$ is the entire unit interval, while $T(0,0, \ldots)$ is the usual Cantor set. We also observe that if $x_{1}, x_{2}=\cdots=x_{n}=a$, then $l\left(x_{1}, \ldots, x_{n}\right) \leq(2 / 3)^{n}$, since $T\left(x_{1}, \ldots, x_{n}\right)$ can be expressed as the union of 2^{n} intervals of length 3^{-n}.

Lemma 1. Let $a, b, x_{1}, x_{2}, \ldots$ be a sequence in $[0,2 / 3]$. Then for any positive integers m, n we have the inequalities

$$
\begin{equation*}
l\left(x_{1}, x_{2}, \ldots\right)<l\left(x_{m+1}, x_{m+2}, \ldots\right) \leq l\left(x_{m+1}, \ldots, x_{m+n}\right) . \tag{1}
\end{equation*}
$$

Proof. It is clear from the definitions that $l\left(x_{m+1}, x_{m+2}, \ldots\right) \leq$ $l\left(x_{m+1}, \ldots, x_{m+n}\right)$. We note that $T\left(x_{1}, x_{2}, \ldots\right)$ is the union of 3^{m} similar images of $T\left(x_{m+1}, x_{m+2}, \ldots\right)$ and the ratio of similarity is 3^{-m} for each image. The inequality $l\left(x_{1}, x_{2}, \ldots\right) \leq l\left(x_{m+1}, x_{m+2}, \ldots\right)$ follows at once.

Lemma ?. Let a and b be numbers in the interval $[0,2 / 3]$. The function $l\left(x_{1}, \ldots, x_{n}\right)$ from $[0,2 / 3]^{n}$ to the interval $[0,1]$ is continuous.

The lemma is obviously true and we omit a proof. Questions concerning the modulus of continuity of l seem difficult, however.

Proposition 1. Almost all sequences x_{1}, x_{2}, \ldots in $[0,2 / 3]$ bave the property that given any a and b in $[0,2 / 3]$, then $l\left(x_{1}, x_{2}, \ldots\right)=0$.

Proof. It follows from the classical results of E. Borel and others that given any positive number δ and positive integer n, almost all sequences in $[0,2 / 3]$ have the property that for any number a in $[0,2 / 3]$, the inequality $\left|x_{i}-a\right|<\delta$ will be satisfied for at least n successive values of i. (See [4, Problem 5, p. 1971.)

Now by Lemma 2 there is a δ such that if $\left|x_{i}-a\right|<\delta$ for $i=m+1$, $\ldots, m+n$, then $l\left(x_{m+1}, \ldots, x_{m+n}\right)<(2 / 3)^{n}+\epsilon$. However, it follows from inequality (1) that $l\left(x_{1}, x_{2}, \ldots\right)<(2 / 3)^{n}+\epsilon$. Since n can be arbitrarily large, $l\left(x_{1}, x_{2}, \ldots\right)=0$. This concludes the proof.

We remark that "good"' sequences are easy to find. For example, we

proof for Proposition 1 makes it clear that for any a and b in $[0,2 / 3]$, $l\left(x_{1}, x_{2}, \ldots\right)=0$.

The value of $l\left(x_{1}, x_{2}, \ldots\right)$ for a specified sequence is generally impossible to determine. Using a devious argument, which will be outlined later, we are able to state the following nonelementary result.

Proposition 2. Let a and b be numbers in the interval [0, 2/3]. For almost all x in $\lceil 0,2 / 3\rceil, l(x, x, \ldots)=0$.
3. A planar construction. We now do some analogous constructions in the plane. Let x_{1} be a number in $[0,2 / 3]$. By $K^{*}\left(x_{1}\right)$ we denote the set of three closed parallelograms whose vertices in clockwise order are (0,0), $(2 / 3,1),(1,1),(1 / 3,0) ;(2 / 3,0),(0,1),(1 / 3,1),(1,0) ;\left(x_{1}, 0\right),\left(x_{1}, 1\right)$, $\left(x_{1}+1 / 3,1\right),\left(x_{1}+1 / 3,0\right) . T^{*}\left(x_{1}\right)$ will denote the union of these three parallelograms.

If I denotes the unit square $(0,0),(0,1),(1,1),(1,0)$ and P is one of the parallelograms in $K^{*}\left(x_{1}\right)$, then there is a unique affine transformation τ of the plane which sends the vertices of I to the corresponding vertices of P in the given order. The set $K^{*}\left(x_{1}, x_{2}\right)$ will consist of nine parallelograms of area $1 / 9$ which are the images of the members of $K^{*}\left(x_{2}\right)$ under the three τ 's associated with $K^{*}\left(x_{1}\right)$.

In general, $K^{*}\left(x_{1}, \ldots, x_{n}\right)$ will consist of 3^{n} parallelograms of area 3^{-n}. For each of the 3^{n-1} parallelograms P in $K^{*}\left(x_{1}, \ldots, x_{n-1}\right)$ there is an affine τ taking I to P with proper vertices corresponding. The set $K^{*}\left(x_{1}, \ldots, x_{n}\right)$ consists of the various images of the members of $K^{*}\left(x_{n}\right)$ under these transformations. We let $T^{*}\left(x_{1}, \ldots, x_{n}\right)$ denote the union of the members of $K^{*}\left(x_{1}, \ldots, x_{n}\right)$ and let $l^{*}\left(x_{1}, \ldots, x_{n}\right)$ denote the planar measure of this union.

If x_{1}, x_{2}, \ldots is a sequence in $[0,2 / 3]$, we define $T^{*}\left(x_{1}, x_{2}, \ldots\right)$ and $l^{*}\left(x_{1}, x_{2}, \ldots\right)$ analogously to their linear counterparts. Also, let $T^{\prime}\left(x_{1}, x_{2}, \ldots\right)$ be the planar set obtained by rotating $T^{*}\left(x_{1}, x_{2}, \ldots\right)$ through a positive angle of $\pi / 2$ about $(1 / 2,1 / 2)$, the center of I.

Lemma 3. If x_{1}, x_{2}, \ldots is any sequence in $[0,2 / 3]$, the planar set $T^{*}\left(x_{1}, x_{2}, \ldots\right) \cup T^{\prime}\left(x_{1}, x_{2}, \ldots\right)$ contains a translate of any line segment lying in the unit square I.

Proof. Let L be a line segment in I. Let us suppose that the line determined by L and the x-axis determine an angle (measured from axis to line) in the interval $[\pi / 4,3 \pi / 4]$. We may assume that L joins a point on the top edge of I to a point on the bottom edge. It is easy to see that at least one P in $K^{*}\left(x_{1}\right)$ contains a translate of L. Because affine transformations preserve parallelism, it is seen that $T^{*}\left(x_{1}, \ldots, x_{n}\right)$ will also contain a translate of L. By standard

If L and the x-axis determine an angle in $[-\pi / 4, \pi / 4]$, then $T^{\prime}\left(x_{1}, x_{2}, \ldots\right)$ will contain a translate of L. This completes the proof.

Proposition 3. For almost all sequences x_{1}, x_{2}, \ldots in $[0,2 / 3]$ the planar set $T^{*}\left(x_{1}, x_{2}, \ldots\right) \cup T^{\prime}\left(x_{1}, x_{2}, \ldots\right)$ is a B-set.

Proof. For $0 \leq t \leq 1$ let L_{t} be the horizontal line segment joining the points $(0, t)$ and $(1, t)$. We observe that the y-section of $T^{*}\left(x_{1}, x_{2}, \ldots\right)$ determined by L_{t} is of the form $T\left(x_{1}, x_{2}, \ldots\right)$ where $a=(2 / 3) t$ and $b=$ $(2 / 3)(1-t)$. The sequence x_{1}, x_{2}, \ldots remains unchanged. Thus for almost all sequences x_{1}, x_{2}, \ldots every y-section of $T^{*}\left(x_{1}, x_{2}, \ldots\right)$ has linear measure zero. The result follows at once.

We now state a much deeper result corresponding to Proposition 2.
Proposition 4. If x is any number in $[0,2 / 3]$, except $1 / 3$, then $l^{*}(x, x, \ldots)=0, l^{*}(1 / 3,1 / 3, \ldots)=1 / 2$.
4. Outline of proofs for Propositions 2 and 4. Our next lemma shows that in studying the behaviour of $l(x, x, \ldots)$ we need only consider the case $a=0$ and $b=2 / 3$.

Lemma 4. Let a, b and x be numbers in the interval $[0,2 / 3]$. Then $T(x, x, \ldots)$ is similar to $T\left(x^{\prime}, x^{\prime}, \ldots\right)$ where $a=0$ and $b=2 / 3$.

Proof. We note that the set $T(x, x, \ldots)$ is the union of three similar images of itself, the ratio of similarity being $1 / 3$. Call these images T_{1}, T_{2} and T_{3}, and let y_{1}, y_{2} and y_{3} be their respective least members. We may assume that $y_{1} \leq y_{2} \leq y_{3}$. If z is the largest member of $T(x, x, \ldots)$, then there is a unique affine transformation τ such that $\tau\left(y_{1}\right)=0$ and $\tau(z)=1$. It follows that $\tau\left(y_{3}\right)=2 / 3$; we define $x^{\prime}=\tau\left(y_{2}\right)$. It is apparent that $\tau(T(x, x, \ldots))=T\left(x^{\prime}, x^{\prime}, \ldots\right)$.

If $a \leq x \leq b$, we can see that $y_{1}=3 a / 2, y_{2}=x+y_{1} / 3, y_{3}=b+y_{1} / 3, z=1-$ $3(1-b) / 2$. It is interesting to observe that if $i \neq j, T_{i} \cap T_{j}$ has linear measure zero even though $T(x, x, \ldots)$ may not. From this point on we will always assume that $a=0$ and $b=2 / 3$.

Our proofs of Propositions 2 and 4 depend on the projections of a planar set E which we now define. Let E_{0} be an equilateral triangle of side one. The collection E_{1} will consist of the three homothets of E_{0} of side $1 / 3$ obtained by dilations of ratio $1 / 3$ centered at each of the three vertices of E_{0}. We obtain E_{2}, a collection of nine equilateral triangles of side $1 / 9$, by performing dilations of ratio $1 / 3$ centered at each vertex of each member of E_{1} so that a member of E_{1} gives rise to three triangles in E_{2}. We proceed inductively, and, in general, E_{n} will consist of 3^{n} equilateral triangles of side 3^{-n}. Let $E=\bigcap E_{n}$.
length, it is easy to see that E is an irregular set of Carathéodory length 1 . The fundamental theorem of Besicovitch [2] assures that the almost all directions θ, the linear orthogonal projection E_{θ} of E possesses zero linear measure.

For each θ, E_{θ} is similar to $T(x, x, \ldots)$ for a suitable x. In fact, we need only consider certain θ-intervals of length $\pi / 6$ to be assured that for each x a similar image $E_{\theta(x)}$ occurs. Furthermore, it is clear that x and $\theta(x)$ are related in an absolutely bicontinuous manner over any θ-interval in which the mapping $x \rightarrow \theta(x)$ is one to one. It follows that $l(x, x, \ldots)=0$ for almost all x in [0,2/3].

Proposition 4 is established in a similar manner by relating the y sections of $T^{*}(x, x, \ldots), 0 \leq y \leq 1$, to $\theta^{*}(y)$ where $E_{\theta^{*}(y)}$ is similar to the y-section of $T^{*}(x, x, \ldots)$. This can easily be done in every case, except $x=1 / 3$, to show that $l^{*}(x, x, \ldots)=0$. When $x=1 / 3$, the mapping $y \rightarrow \theta^{*}(y)$ is constant. In fact each y-section is similar to $[0,1]$. The set $T^{*}(1 / 3,1 / 3, \ldots)$ consists of the two triangles with vertices $(0,1),(1,1),(1 / 2,1 / 2)$ and $(0,0),(1,0),(1 / 2,1 / 2)$.

We admit that the method of proof outlined above is somewhat artificial and does not readily generalize to constructions involving more than three intervals. We hope that a direct proof of Proposition 2 can be found which will tell precisely for which x it is true that $l(x, x, \ldots)=0$.

REFERENCES

1. A. S. Besicovitch, On Kakeya's problem and a similar one, Math. Z. 27 (1928), 312-320.
2. -, On the fundamental geometrical properties of linearly measurable plane sets of points. III, Math. Ann. 116 (1939), 349-357.
3. - The Kakeya problem, Amer. Math. Monthly 70 (1973), 697-706.
4. William Feller, An introduction to probability theory and its applications. Vol. I, 2nd ed., Wiley, New York, 1957. MR 19, $466 \cdot$

DEP ARTMENT OF MATHEM ATICS, UNIVERSITY OF ILLINOIS, URBANA, ILLINOIS, 61801

