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RANDOM COMPACT SETS RELATED TO
THE KAKEYA PROBLEM

RALPH ALEXANDER

ABSTRACT. A B-set is defined to be a compact planar set of zero
measure which contains a translate of any line segment lying in a disk of
diameter one. A construction is given which associates a unique compact
planar set with each sequence in a closed interval, and it is shown that for
almost all such sequences a B-set is obtained. The construction depends
on the measure properties of certain perfect linear sets. Several related

problems of a subtler nature are also considered.

1. Introduction. Long ago Besicovitch [1] gave his famous example of
a compact planar set of measure zero which contains a translate of every
line segment lying in a disk of diameter one. For convenience we will call
such a set a B-set. Although the original construction of Besicovitch was
rather complicated, there have been a number of elegant simplifications,
especially for the construction of sets of measure € containing the required
line segments. The idea of Schoenberg discussed in [3] is particularly
successful.

In this article we give a simple probabilistic method for generating a
large family of B-sets. We only need elementary results about the measure
of certain linear sets, and a rudimentary knowledge of random sequences.

There are a number of subtle questions which do arise, however. We
are able to deal with several of these by appealing to a deep theorem of

Besicovitch [2] concerning planar sets of finite Carathéodory length.

2. The measure of certain linear sets. Let a, b and x, lie in the
interval [0, 2/3]. Consider the three closed intervals la, a+1/3],[b, b+
1/3], and [xl, Xy + 1/3]. Let K(xl) denote this collection of intervals, and
let T(x,) denote their union.

We will form the collection K(xl, xz), consisting of nine intervals of
length 1/9, as follows: For each member [y, y + 1/3] in K(xl), there is
precisely one affine transformation 7 of the line such that 7(0) = y and
7(1) = y + 1/3. The images under 7 of the three intervals in K(xz) will be
three intervals of length 1/9 lying in [y, y + 1/3]. Applying this construc-
tion to each of the three intervals in K(xl) yields the nine intervals in
K(xl, xz).
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Inductively, if a, b, x|, ..., x  are numbers in (o, 2/31, K(x ), ... ,xn)
will consist of 3" intervals of length 3™7". For each interval [y, y + 377"1]
in K(xl, ceey X 1), there will be an affine transformation 7 such that
7(0) =y and7(1) = y + 377"}, The images of the three intervals in K(x,)
will be three intervals in [y, y + 3-7*1], Thus we obtain the 3" intervals
in K(xl, ceey xn). T(xl, cen, xn) will denote the union of these intervals,
and l(xl, vy xn) will denote the linear measure of this union. Clearly,
T(xp, e, x)) C Ty, o, x, 1) sothat Kxp,.en,x)) Uy, x ).

If a, b, x|, x,,... is a sequence in [0, 2/3), we define T(xl, Koy )
to be nn T(x1 e ,xn) and l(x1 T .) to be the measure of T(xl, Xoyeo D
We note that when a =0 and b= 2/3, T(1/3,1/3,...) is the entire unit
interval, while T(0, 0,...) is the usual Cantor set. We also observe that
if x;,x,=++-=x_=a, then l(xl,.. . ,xn) <(2/3), since T(xy, ... ,xn) can

be expressed as the union of 2” intervals of length 37",
Lemma 1. Let a, b, x|, x,,... be a sequence in [0, 2/3). Then for any
positive integers m, n we have the inequalities

1) O R G O N B (U S

Proof. It is clear from the definitions that x , X RS

mtl mt2? -
l(xm+l, ceey X +n\ We note that T(x, Xpyee .)is the union of 3™ similar
images of T(x 41, % 45« .) and the ratio of similarity is 37" for each

image. The inequality fx, x,,...) </x o, x ,,,...) follows at once.

Lemma 2. Let a and b be numbers in the interval [0, 2/3). The func-

tion Z(xl, v ,xn) from [0, 2/31" to the interval [0, 1] is continuous.

The lemma is obviously true and we omit a proof. Questions concerning

the modulus of continuity of / seem difficult, however.

Proposition 1. Almost all sequences x;, Xy, ... in [0, 2/3] have the
property that given any a and b in lo, 2/3), then l(xl, Xoyeo N =0,

Proof. It follows from the classical results of E. Borel and others that
given any positive number 8 and positive integer n, almost all sequences
in [0, 2/3] have the property that for any number a in [0, 2/3]. the ine-
quality ixi - @} <& will be satisfied for at least » successive values of i
(See 4, Problem 5, p. 1971.)

Now by Lemma 2 there is a 8 such that if |xl. —u| <0 for i=m= 1,
...,m+n, then Z(xmﬂ e xm+n) < (2/3)" + ¢. However, it follows from
inequality (1) that Z(xl, Xgyoo N < (2/3)" + ¢. Since n can be arbitrarily
large, /(.\’1 ,X,,...)=0. This concludes the proof.

We remark that *‘good’’ sequences are easy to find. For example, we
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proof for Proposition 1 makes it clear that for any 4 and b in [0, 2/3],
Kxpy xy,...) =0.

The value of /(x, x,,.. .) for a specified sequence is generally im-
possible to determine. Using a devious argument, which will be outlined

later, we are able to state the following nonelementary result.

Proposition 2. Let a and b be numbers in the interval [0, 2/3].
For almost all x in [0, 2/3], Kx, x,...) = 0.

3. A planar construction. We now do some analogous constructions in
the plane. Let x; be a number in (o, 2/3]. By K*(xl) we denote the set of
three closed parallelograms whose vertices in clockwise order are (0, 0),
(2/3, 1), (1, 1), (1/3, 0); (2/3, 0), (0, ), (1/3, 1), (1, 0); (x,, 0), (x;, 1),
(x; +1/3, 1), (x; +1/3, 0). T*(xl) will denote the union of these three
parallelograms.

If I denotes the unit square (0, 0), (0, 1), (1, 1), (1, 0) and P is one of
the parallelograms in K*(xl), then there is a unique affine transformation
7 of the plane which sends the vertices of I to the corresponding vertices
of P in the given order. The set K*(x1 , x,) will consist of nine parallelo-
grams of area 1/9 which are the images of the members of K*(xz) under the
three 7’s associated with K*(xl).

In general, K*(xl, cees xn\ will consist of 3" parallelograms of area
37", For each of the 3"~ ! parallelograms P in K*(xl, ..., % ) there is
an affine 7 taking | to P with proper vertices corresponding. The set

K (xl, v ,xn) consists of the various images of the members of K (xn)

under these transformations. We let T*(XI’ e, xn) denote the union of the
members of K*(xI yo+.»% ) and let I*(x1 ,-++,%_ ) denote the planar measure
of this union.

If x;, x,,... is a sequence in [0, 2/3], we define T*(xl, Xyyuo .) and
Z*(xl, xz,...) analogously to their linear counterparts. Also, let

T’(xl s %y,...) be the planar set obtained by rotating T*(xl NESIN
through a positive angle of 7#/2 about (1/2, 1/2), the center of I.

Lemma 3. If x|, x,,... is any sequence in [0, 2/31, the planar set
T*(Xl, Koy D u Tl(xl, Xy ) contains a translate of any line segment

lying in the unit square I.

Proof. Let L be a line segment in I. Let us suppose that the line
determined by L and the x-axis determine an angle (measured from axis to
line) in the interval [7/4, 37/4). We may assume that L joins a point on the top
edge of I to a point on the bottom edge. It is easy to see that at least one P in
K*(XI) contains a translate of L. Because affine transformations preserve parallel-

. o . Sk . .
ism, it is seen that T (xl, ey xn) will also contain a translate of L. By standard
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If L and the x-axis determine an angle in [-7/4, /4], then

T'(xl, Xypos .) will contain a translate of L. This completes the proof.

Proposition 3. For almost all sequences Xy Xoyeno in [0, 2/3] the

planar set T*(xx, Xy Ju T'(xl, X_,...) is a B-set.

2’
Proof. For 0 <7< 1 let L, be the horizontal line segment joining the

.
2
determined by L, is of the form T(xl, Xoye .) where a=(2/3)¢t and b =
(2/3)(1 - #). The sequence XX

points (0, t) and (1, t). We observe that the y-section of T*(xl, x

R remains unchanged. Thus for almost
. * .

all sequences X1y X, ... every y-section of T (xl, Xopee .) has linear

measure zero. The result follows at once.

We now state a much deeper result corresponding to Proposition 2.

Proposition 1. If x is any number in [0, 2/3], except 1/3, then
(x, x,...) =0, I"(1/3, 1/3,...) = 1/2.

4. Outline of proofs for Propositions 2 and 4. Our next lemma shows
that in studying the behaviour of /(x, x,...) we need only consider the case
a=0 and b=2/3.

Lemma 4. Let a, b and x be numbers in the interval [0, 2/3). Then
T(x, x,...) is similar to T(x', x',...) where a=0 and b= 2/3.

Proof. We note that the set T(x, x,...) is the union of three similar
images of itself, the ratio of similarity being 1/3. Call these images T,

T, and T3, and let y,, y, and Y3 be their respective least members. We
may assume that Yy < Y, < Y3 If z is the largest member of T(x, x,...),
then there is a unique affine transformation 7 such that r(y 1) =0 and

7(z) = 1. It follows that 7(y3) = 2/3; we define x' = T(yz)' It is apparent
that 7(T(x,x,...)) = T(x', x'» -+ 2.

If a<x<b, wecanseethaty, =3a/2,y,=x+y,/3,y;=b+y/3,z=1~
3(1 - b)/2. It is interesting to observe that if i £ j, T, NT, has linear
measure zero even though T(x, x,...) may not. From this point on we will
always assume that @ =0 and b = 2/3.

Our proofs of Propositions 2 and 4 depend on the projections of a planar
set E which we now define. Let £ be an equilateral triangle of side one.
The collection E1 will consist of the three homothets of E0 of side 1/3
obtained by dilations of ratio 1/3 centered at each of the three vertices of
EO’ We obtain Ez’ a collection of nine equilateral triangles of side 1/9, by
performing dilations of ratio 1/3 centered at each vertex of each member of
E | sothat a member of E  gives rise to three triangles in E . We proceed
inductively, and, in general, E, will consist of 3" equilateral triangles of
side 37", Let E = nEn.
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length, it is easy to see that E is an irregular set of Carathéodory length 1.
The fundamental theorem of Besicovitch [2] assures that the almost all direc-
tions @, the linear orthogonal projection E, of E possesses zero linear
measure.

For each 6, E, is similar to T(x, x,...) for a suitable x. In fact, we
need only consider certain @-intervals of length 7/G to be assured that for

each x a similar image E occurs. Furthermore, it is clear that x and

0(x) are related in an abso?flzly bicontinuous manner over any (-interval in
which the mapping x — #(x) is one to one. It follows that Nx, x,...)=0
for almost all x in [0, 2/3].

Proposition 4 is established in a similar manner by relating the y-
sections of T*(x, x,...), 0 <y<1, to 0*(y) where EG*(y) is similar to
the y-section of T*(x, x,...). This can easily be done in every case, except
x = 1/3, to show that /*(x, x,...) = 0. When x = 1/3, the mapping y _.0*()/)
is constant. In fact each y-section is similar to [0, 1]. The set T*(1/3, 1/3,...)
consists of the two triangles with vertices (0, 1), (1, 1), (1/2, 1/2) and
(0, 0), (1, 0), (1/2,1/2).

We admit that the method of proof outlined above is somewhat artificial
and does not readily generalize to constructions involving more than three
intervals. We hope that a direct proof of Proposition 2 can be found which

will tell precisely for which x it is true that lx, xy...) =0.
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