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RANDOM COMPACT SETS RELATED TO

THE KAKEYA PROBLEM

RALPH ALEXANDER

ABSTRACT.   A B-set is defined to be a compact planar set of zero

measure which contains a translate of any line segment lying in a disk   of

diameter one.  A construction is given which associates a unique compact

planar set with each sequence in a closed interval, and it is shown that for

almost all such sequences a 5=set is obtained.  The construction depends

on the measure properties of certain perfect linear sets.  Several related

problems of a subtler nature  are also considered.

1. Introduction.  Long ago Besicovitch [l] gave his famous example of

a compact planar set of measure zero which contains a translate of every

line segment lying in a disk of diameter one.  For convenience we will call

such a set a B-set.   Although the original construction of Besicovitch was

rather complicated, there have been a number of elegant simplifications,

especially for the construction of sets of measure  f containing the required

line segments.  The idea of Schoenberg discussed in [3] is particularly

successful.

In this article we give a simple probabilistic method for generating a

large family of B-sets.   We only need elementary results about the measure

of certain linear sets, and a rudimentary knowledge of random sequences.

There are a number of subtle questions which do arise, however.  We

are able to deal with several of these by appealing to a deep theorem of

Besicovitch [2] concerning planar sets of finite Carathe'odory length.

2. The measure of certain linear sets.  Let  a,  b and x.   lie in the

interval  [0, 2/3]-  Consider the three closed intervals  {a,  a + 1/3], [b, b +

1/3],  and [x^ Xj + 1/3].  Let  K(xj) denote this collection of intervals, and

let  T(x.) denote their union.

We will form the collection  Kix., xA,  consisting of nine intervals of

length 1/9, as follows:   For each member [y, y + 1/3] in  Kix J,  there is

precisely one affine transformation r of the line such that r(0) = y and

r(l) = y + 1/3.  The images under  t of the three intervals in  KixA will be

three intervals of length 1/9  lying in  [y, y + 1/3]-  Applying this construc-

tion to each of the three intervals in  Kix A yields the nine intervals in

K(xj, xj.
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Inductively, it a, b, x,,..., x    ate numbers in [0, 2/3],  K(x,, . . . , x )
i n ' In

will consist of 3" intervals of length   3~".  For each interval  [y, y + 3~"+1]

in   KUj, . . . , x  _ j),  there will be an affine transformation   r such that

r(0) = y and r(l) = y + 3~"     .  The images of the three intervals in  K(x )

will be three intervals in  [y, y + 3~" + 1].  Thus we obtain the   3"  intervals

in  K(xj,. . . ,xn).   T(xj,...,x )  will denote the union of these intervals,

and  l(x  , . . . , .x ) will denote the linear measure of this union.  Clearly,

r(xj,.. . ,xn) C T(xj.xn_1) so that Z(xj,... ,xj < /(xp ... ,xn_x).

If a, b, Xj, x2,... is a sequence in  [0, 2/31,  we define  T(xj, x2, . . .)

to be II    T(xj, . . . , x  ) and /(xj, x2,. . .)  to be the measure of T(x , x    .. .).

We note that when  a = 0  and  A =  2/3,   T(l/3, 1/3, . . .)   is the entire unit

interval, while  T(0, 0, . . .)  is the usual Cantor set.  We also observe that

if x,, x2 = • • • = x    = a,   then /(xj,... ,x ) < (2/3)",  since 7"(*j,...,x ) can

be expressed as the union of 2"   intervals of length  3~".

Lemma 1.   Let a, b,  x., x       . . be a sequence in [0, 2/3l-   Then for any

positive integers m, ra  we have the inequalities

(I) Kxv x2, ...)<. l(xmn, xm+v...)<l(xm+v ... , xm^).

Proot.   It is clear from the definitions that  l(x    .,, x    .,,...)<
777 + 1 '     m +2 ' —

^(x    ., , . . . , x    ,   ).  We note that  T(x,, x~,... )is the union of 3m   similar
772 + I ' 772 +77 I '        Z '

images of T(x   +,, x   +2, . ..)  and the ratio of similarity is  3"m  for each

image. The inequality   l(x. , x2 ,...)< /(x   +J, x   +2,...)   follows at once.

Lemma 2.   Let a and b  be numbers in the interval [0, 2/3].  TAe func-

tion  l(x., ... ,x ) /ro/w  [0, 2/3]"  io /*A<? interval [0, l]  zs continuous.

The lemma is obviously true and we omit a proof.  Questions concerning

the modulus of continuity of  / seem difficult, however.

Proposition 1.  Almost all sequences x, , x.,...   z'ra  [0, 2/3] Aa^e t*At?

property that given any a  and b  in  [0, 2/3], then  l(x., x2, . . .) = 0.

Proof.   It follows from the classical results of  E. Borel and others that

given any positive number 8  and positive integer ra ,   almost all sequences

in [0, 2/3]  have the property that for any number a  in  [0, 2/3], the ine-

quality   |x. - a\ < 8 will be satisfied for at least ra  successive values of i.

(See [4, Problem 5, p. 197].)

Now by Lemma 2 there is a  8  such that if  \x. - a\ < 8  tot  i = m + 1,

... ,m + 11,  then  l(x   +1, . . . ,xm+ ) < (2/3)" + (■  However, it follows from

inequality (1) that  /(xj, x2, . . .) < (2/3)" + (•  Since ra  can be arbitrarily

large,   l(x. , x, ,...) = 0.  This concludes the proof.

We remark that "good" sequences are easy to find.   For example, we

could choose x.   to be the fractional part of (2/3)^S'      l/j).  The method ofLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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proof for Proposition 1 makes it clear that for any  a  and b in  10, 2/3],

/(xj, x2,...) = 0.

The value of lix., x . . A tor a specified sequence is generally im-

possible to determine. Using a devious argument, which will be outlined

later, we are able to state the following nonelementary result.

Proposition 2.   Let a and b  be numbers  in  the interval   [0,   2/31 -

For almost all x in \0, 2/3], lix, x, ...") = 0.

3. A planar construction.  We now do some analogous constructions in

the plane.   Let Xj   be a number in [0, 2/3].   By   K ixA we denote the set of

three closed parallelograms whose vertices in clockwise order are  (0, 0),

(2/3, 1),   (1, 1), (1/3, 0); (2/3, 0), (0, 1), (1/3, 1), (1, 0); (x1; 0), (x^ 1),

(xj   + 1/3, 1), (Xj  f 1/3, 0).  T (x^ will denote the union of these three

parallelograms.

If /  denotes the unit square  (0, 0), (0,  1), (1,  1), (1, 0)  and  P  is one of

the parallelograms in  K (xj,  then there is a unique affine transformation

t of the plane which sends the vertices of /  to the corresponding vertices

of P  in the given order.   The set  K (xj, xA will consist of nine parallelo-

grams of area 1,9  which are the images of the members of  K ix A under the

three r's  associated with   K ixA.

In general,   K ix, ,. . . , x  )  will consist of 3"  parallelograms of area

3"".   For each of the  3""     parallelograms  P   in  K  (x,,...,x  _,) there is

an affine r taking  I  to  P  with proper vertices  corresponding.   The set

K ix, , . . . , x  )  consists of the various images of the members of  K (x )
1 77 ° 77

under these transformations.  We let  T  (x     . . . ,x  )  denote the union of the

members of  K  ix  , . . . , x )  and let  / (x}, . . . , x  )  denote the planar measure

of this union.

If x., x,, ...   is a sequence in  [0, 2/3],  we define  T  (xj, x2, . . .) and

/ (x., x     . . .)    analogously  to  their  linear   counterparts.    Also,   let

T(x.,x_,...)  be the planar   set obtained by  rotating  7" (x., x-, . . .)

through a positive angle of 7r/2   about  (l/2, 1/2),   the  center of  /.

Lemma .3. // x1, x . . is any sequence in [0, 2/3l, the planar set

T ix. , x2, . . .) u T ix , x . . A contains a translate of any line segment

lying in the unit square I.

Proof.   Let  L  be a line segment in  /.  Let us suppose that the line

determined by   L  and the  x-axis determine an angle (measured from axis to

line) in the interval [77/4, 3/7/4]. We may assume that L joins a point on the top

edge of / to a point on the bottom edge.  It is easy to see that at least one P in

K*(x.) contains a translate of L.   Because affine transformations preserve parallel-

ism, it is seen that T (x., ... , x ) will also contain a translate of L. By standard

arguments, the compact set   T  (x  , x2, . . .) will contain a translate of  L.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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If L   and the  x-axis determine an angle in [—77/4, tt/4].  then

T (x  , x , . . .)  will contain a translate of  L.   This completes the proof.

Proposition 3.   For almost all sequences x  , x , ...   in [0, 2/3]  the

planar set  T (x     x  , . . .) u T (x  , x  , . . .)  is a B-set.

Proof.   For 0 < t < 1  let  L    be the horizontal line segment joining the

points (0, t) and (1, t).  We observe that the y-section of  T (x  , x  , . . .)

determined by  L    is of the form   T(x  , x  , . . .) where  a= (2/3)/  and  b =

(2/3)(l - t).  The sequence  x  , x  ,...  remains unchanged.  Thus for almost

all sequences  x  , x  , ...   every y-section of  T (x , x ,. . .) has linear

measure zero.  The result follows at once.

We now state a much deeper result corresponding to Proposition 2.

Proposition 4.  // x  is any number in [0, 2/3L   except 1/3,  then

l*(x, *,...) = 0, l*(l/3, 1/3,-..)= 1/2.

4. Outline of proofs for Propositions 2 and 4. Our next lemma shows

that in studying the behaviour of  l(x, x, . . .) we need only consider the case

a = 0  and  b = 2/3.

Lemma 4.  Let  a,   b  and x  be numbers in the interval [0, 2/3].   Then

T(x, x,. . .) is similar to  T(x', x', . . .)  where a = 0  and b - 2/3-

Proof.  We note that the set   T(x, x,. . .) is the union of three similar

images of itself, the ratio of similarity being l/3-  Call these images   T   ,

T    and   T  ,  and let  y ., y     and  y    be their respective least members.  We

may assume that y    < y    < y   .  If  z is the largest member of  T(x, x, . . .),

then there is a unique affine transformation  r such that r(y .) = 0 and

t(z) = 1.  It follows that  r(yA) = 2/3;   we define x' = r(y_,).  It is apparent

that  t(T(x,x, ...))= T(x', x',.- •)•

If a < x < b, we can see that y. - 3a/2, y2 = x + y,/3, y, = A + yj/3, z = 1 -

3(l - A)/2.  It is interesting to observe that if  i 4=- /, 7*. C\T.  has linear

measure zero even though   T(x, x, .. .) may not.   From this point on we will

always assume that a = 0  and  A = 2/3-

Our proofs of Propositions 2 and 4 depend on the projections of a planar

set  F which we now define.  Let  £     be an equilateral triangle of side one.

The collection  E    will consist of the three homothets of  E     of  side    l/3

obtained by dilations of ratio   1/3  centered at each of the three vertices of

E  .  We obtain  E  ,  a collection of nine equilateral triangles of side   1/9,  by

performing dilations of ratio   1/3  centered at each vertex of each member of

F     so that a member of   E    gives rise to three triangles in  E  .  We proceed

inductively, and, in general,   E    will consist of 3"  equilateral triangles of

side  3""-  Let   £= f|£n.

For those familiar with Besicovitch's theory of planar sets of finiteLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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length, it is easy to see that  E is an irregular set of Caratheodory length 1.

The fundamental theorem of Besicovitch  [2] assures that the almost all direc-

tions  0, the linear orthogonal projection  E„  of E possesses zero linear

measure.

For each  0,  Ea is similar to  T(x, x, . . .) for a suitable x.   In fact, we

need only consider certain ^-intervals of length  77/6 to be assured that for

each  x a  similar image   Ea,      occurs.  Furthermore, it is clear that  x and

dix) are related in an absolutely bicontinuous manner over any (9-interval in

which the mapping  x —> $ix) is one to one.  It follows that  lix, x, . . A = 0

for almost all  x in  [0, 2/3]-

Proposition 4 is established in a similar manner by relating the y-

sections of  T (x, x, . . .), 0 < y < 1,  to  Q (y)  where   E^        is similar to

the y-section of T ix, x, . . .).  This can easily be done in every case, except

x = l/3,  to show that  /  (x, x,. . .) = 0.  When x = 1/3,  the mapping y —, 0 (y)

is constant.  In fact each y-section is similar to [0, l]. The set T (l/3, 1/3,...)

consists of the two triangles with vertices  (0, 1),  (1, 1), (1/2, 1/2) and

(0,0), (1,0), (1/2,1/2).

We admit that the method of proof outlined above is somewhat artificial

and does not readily generalize to constructions involving more than three

intervals.  We hope that a direct proof of Proposition 2 can be found which

will tell precisely for which  x  it is true that  lix, x,. . .) — 0.
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