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Abstract— One of the main performance issues for consensus
protocols is the convergence speed. In this paper, we focus on the
convergence behavior of discrete-time consensus protocols over
large-scale sensor networks with uniformly random deploy-
ment, which are modelled as Poisson random graphs. Instead of
using the random rewiring procedure, we introduce a determin-
istic principle to locate certain “chosen nodes” in the network
and add “virtual” shortcuts among them so that the number
of iterations to achieve average consensus drops dramatically.
Simulation results are presented to verify the efficiency of this
approach. Moreover, a random consensus protocol is proposed,
in which virtual shortcuts are implemented by random routes.

Index Terms— Random consensus protocol, small-world ef-
fect, distributed algorithms, convergence speed, random deploy-
ment, sensor network.

I. INTRODUCTION

Recently, consensus seeking in networked multi-agent

systems has been extensively studied by many researchers

from different disciplines. Starting from the Vicsek’s model

for self-driven particles [1], Jadbabaie et al. give a theo-

retical explanation based on the stochastic matrix theory in

[2]. Olfati-Saber and Murray [3] propose a continuous-time

consensus protocol and show that this protocol achieves the

average consensus for a balanced directed graph. Other cases

for consensus seeking are discussed, such as [4], [5], [6], just

to name a few. Consensus protocols are quickly employed in

many applications, such as coordination control [7], peer-to-

peer networks [8], distributed Kalman filters [9], swarming

and flocking [10], and oscillators synchronization [11].

The convergence speed of consensus protocols has been

identified as an important performance issue, which is de-

termined by the topology of the network and local weights.

According to [3], the convergence speed of the continuous-

time consensus protocol is bounded by the algebraic con-

nectivity, which is the second smallest eigenvalue of the

Laplacian matrix. An explicit formula is given in [12] to

show that the algebraic connectivity of a regular lattice

converges to zero as the size of the lattice goes to infinity,

which means that the consensus protocol needs infinite time

to converge. Another work is reported in [13] where the

concept of “effective resistance” for lattice graphs is used to

bound the convergence rate. A multi-hop consensus protocol

is proposed in [14] so that, without physically changing the
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topology, the convergence speed is improved by systemat-

ically using multi-hop paths in the network. However, this

method only moderates the problem. Inspired by the idea

of “small-world networks” [15], the author of [16] claims

that, with the same large number of nodes, a small-world

network has a much bigger algebraic connectivity than a

regular lattice. Another type of networks, Ramanujan graphs

[17], are also discussed in a recent work [12] since they

express very quick convergence behaviors due to their special

topologies. A recent survey on consensus problems and

small-world networks is given in [18]. On the choice of

local weights, [19] treats a discrete-time consensus process

as an optimal linear iteration problem and shows that the

convergence speed can be increased by finding the optimal

local weights when the global structure of the network is

known beforehand.

One potential application for consensus protocols is data

fusion in sensor networks. In order to monitor an interesting

area, a large number of small but “smart” sensors may be

deployed randomly to collect data such as sound, motion,

temperature, etc. Any two sensors may set up a wireless

communication link whenever the distance between them is

shorter than a certain range. Also, the number of links that

one sensor can have is limited. Issues on deployment method,

data collection, optimal coverage, and energy consumption

has been extensively studied during the last several years

[20], [21], [22], [23], [24]. Certain communication links

will inevitably become the bottleneck for data fusion if a

centralized approach is used. On the other hand, decentral-

ized approach, such as a consensus protocol, is criticized

due to its long processing time. In this paper, we focus

on consensus convergence behavior for a large-scale sensor

network with random deployment. Assume the topology is

an undirected graph. Instead of using the random rewiring

procedure, we add small amount of “virtual” links among

certain “chosen nodes” as “shortcuts” to join geographically

remote parts to one another. More importantly, we give out

a principle to locate those chosen nodes only based on the

local information and pre-defined parameters, such as the

sensor density. A random consensus protocol is proposed to

implement those shortcuts by random routes in the network.

We claim that the iteration number to achieve a certain

accuracy for the average consensus becomes incredibly small

for large scale networks if we choose nodes and shortcuts

based on this principle.

The remainder of this paper is organized as follows:

In Section II, consensus behaviors for large size sensor

networks with uniformly random deployment are formulated.

We then propose a deterministic principle to locate chosen
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Fig. 1. Sensor networks with random deployment. From left to right, 200 nodes, 500 nodes, and 1000 nodes

nodes in the network so that adding virtual links among them

can significantly improve the convergence speed. Section

IV is devoted for a random consensus protocol, in which

those virtual links are implemented in the existing network.

Examples and simulation results are also provided. Finally,

conclusions and future work are summarized in Section V.

II. AVERAGE CONSENSUS OVER SENSOR NETWORKS

WITH RANDOM DEPLOYMENT

Most practical deployment methods for large scale sensor

networks are “random, or at best, can be controlled with

coarse granularity” [24]. Suppose there is a sufficient large

2-D square area Ω ∈ R2 where R2 denotes a two-dimension

Euclidian space. We randomly place N sensors inside Ω
and the distribution is uniform. If the distance between any

two sensors is shorter than R, a wireless link is set up

between them. Figure 1 shows the topologies of three sensor

networks.

Suppose the size of the square area is L2. Since the

deployment is uniformly random, the probability that there

exists a link between any two sensors is

p =
πR2

L2
. (1)

except those nodes who are close to the boundary. We

assume that the average sensor density is constant and the

communication range R is preset. Then the average number

of links that each sensor has is a constant

E[d] = λ = Np = N
πR2

L2
. (2)

According to [25], the degree distribution for the network

can be approximated by a Poisson distribution scaled by N
when N → ∞. In other words, the probability of any node

to have degree k is

p(k) =
e−λλk

k!
, (3)

and the degree distribution is N · p(k). Figure 2 shows the

degree distribution of a network with 1000 nodes. Please

note, since nodes near the boundary have less links, the

degree distribution is skew to left a little comparing with

the one generated by the Poisson distribution.

Poisson random graphs have been studied by mathe-

maticians and physicists since long time ago [26]. Many
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Fig. 2. Degree distribution in sensor networks with 1000 nodes. Red bar:
number of nodes with the same degree. Blue curve: Poisson distribution.

interesting properties are identified in the limit of large graph

size. For a good review, please refer to [25]. It has been

noticed that, when the average degree is bigger than 1, all

nodes are joined together in a single “giant component” with

high probability. In other words, if E[d] > 1, the topology

will most likely be connected. Networks in Figure 1 also

verify this property. Thus, we may use consensus protocols

to calculate the average value of the data collected by the

network.

There are at least two types of discrete-time consensus

protocols reported in the literature [2], [8]. One is directly

derived from the continuous-time consensus protocol. Let

xi(k) denotes the state of node i at time k and N (i) denotes

the set of neighbors. The consensus protocol is represented

by

xi(k) = xi(k − 1) − γ
∑

j∈N (i)

(xi(k − 1) − xj(k − 1)) (4)

where γ is the step size. The consensus process is presented

by

X(k) = X(k − 1) − γLX(k − 1) (5)

where X = [x1, · · · , xn]′ and L is the Laplacian matrix

of the network. This protocol solves the average consensus

problem for a connected graph as long as γ is strictly less

than the inverse of twice the largest eigenvalue of L. An
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Fig. 3. Convergence behaviors with discrete-time consensus protocols. Blue curve: state of each node. Red line: average value of initial states.

sufficient condition is given in [8] as

0 < γ <
1

2dmax
(6)

where dmax is the maximum node degree.

Another discrete-time consensus protocol is represented

by

xi(k) =
xi(k − 1) +

∑

j∈N (i) xj(k − 1)

1 + di
(7)

where di is the degree of node i, and the consensus process

is presented by

X(k) = W ·X(k− 1) = (I + D)−1(I + A) ·X(k− 1) (8)

where I is the identity matrix, D = diag[d1, · · · , dN ], and A
is the adjacency matrix. It cannot guarantee to converge to

the average value since W may not be symmetric. However,

for large scale Poisson random graphs, most of the nodes

have close degrees and this protocol still converges to a very

good approximation of the average value. Figure 3 shows the

consensus processes with the protocol (7) for two networks

with 100 and 1000 nodes, respectively. For the network with

100 nodes, the average value is 9.65 and the consensus

process reaches 9.63 ± 0.01 after 150 iterations. For the

network with 1000 nodes, the average value is 10.08 and the

consensus process reaches 10.11±0.08 after 500 iterations. It

also indicates that the converge speed, in terms of the number

of iterations, becomes larger as the network becomes bigger.

From now on, we use Equation (7) as the local updating rule

for the consensus seeking due to its simplicity.

III. DETERMINISTIC APPROACH FOR SMALL-WORLD

EFFECT

According to Equation (8), if we want X(k) converges to

the average vector

X̄ =
1

N
11

T · X(0),

it must be true that

lim
k→∞

W k =
11

T

n
(9)

where 1 denotes a vector with all ones and proper dimen-

sions, and X(0) is the initial condition. Thus, the asymptotic

convergence factor is define by

r(W ) = sup
X(0) 6=X̄

lim
k→∞

(‖X(k) − X̄‖2

‖X(0) − X̄‖2

)1/k

(10)

and the convergence time t(W ), in terms of iteration steps,

is given by

t(W ) = −1/ log(r(W )). (11)

Moreover, [19] shows that

r(W ) = ρ(W −
11

T

n
) (12)

if Equation (9) holds, where ρ(·) denotes the spectral radius

of a matrix. We use t(W ) to indicate the convergence rate

in the rest of this paper.

When we keep the sensor density constant, the shape

of degree distribution p(k) is determined by E[d] and N .

However, the convergence time t(W ) increases quickly when

the network expands. First curve in Figure 6 shows some

simulation results about t(W ) where we increase the number

of sensors while keeping λ constant.

One challenge for consensus seeking in large scale net-

works is how to keep the convergence time scalable. Ma-

nipulating the network topology is a possible approach. In

the literature, there exists at least two methods to change

a regular lattice to a small-world graph. One is called the

random rewiring procedure, which randomly takes a small

fraction of the existing links and moves one end of each link

to a new location chosen uniformly at random from other

nodes. Another method is adding a small amount of shortcuts

randomly into the network [27], [28]. Those two methods

have been proved to provide the similar “small-world effect”

[15], which dramatically improve the speed of information

propagation over the network. We choose the second method

here because we believe that it is more suitable for real sensor

networks with random deployment.

The first question for adding shortcuts into the network is

how to locate certain nodes, we call them chosen nodes, so

that links are added among them as shortcuts. We are looking

for a completely decentralized principle so that, as long as the
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Fig. 4. Sensors’ locations: from left to right, sensors with more than 25 links, sensors with 18 links, and sensors with less than 10 links .

sensor network is deployed, each sensor can automatically

determine if it is a chosen node or not only based on local

information. The local information we use here is the degree,

i.e., how many links a node has after the deployment.

Figure 2 shows the degree distribution of a sensor network

with 1000 nodes, which is a Poisson distribution scaled by

N . Figure 4 shows the locations of sensors with certain

degree. It is surprising to see that nodes with high degree

are highly clustered. Their locations are close and most of

them are already connected with each other. Thus, adding

links among them may not improve the convergence time.

For those nodes with low degree, they are more likely located

along the boundary and are not good choices either. For

those nodes with medium degree, i.e., the expected degree

E[d], they happen to be good candidates since their locations

evenly cover the whole interesting area.

Fig. 5. Network topology with shortcuts: black lines are local communi-
cation links, red lines are shortcuts.

The second question is how many shortcuts we should

add. The number of nodes whose degree equals to λ can be

approximated by

M ≈ round
(

N ·
e−λ · λλ

λ!

)

(13)

where the function round(·) rounds the input to the nearest

integer. Thus, M ∝ N . We randomly choose a small fraction

of all possible links among those chosen nodes as shortcuts

and test the convergence time. The number of shortcuts is

1/2 · β · M(M − 1) where 0 < β ≤ 1. Figure 5 shows the

topology of a network with 1000 nodes and 250 shortcuts,

which is about β = 8% of all possible shortcuts. Figure

6 shows how the convergence time t(W ) changes with

different amount of shortcuts when N increases. It is true

that, by properly choosing β, the trend of increase for t(W )
may be stopped and even reversed. According to Figure 6,

we can make t(W ) less than 50 iterations for a network

up to 5000 nodes. Also, when the network is large, adding

more shortcuts is not necessary better than adding less. For

example, for a network with 5000 nodes, β = 5% shortcuts

do a better job than β = 50% shortcuts since the small-

world effect is attenuated by too many nearby chosen nodes.

This indicates that the number of shortcuts should not be

proportional to the network size.
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Fig. 6. Convergence time vs. network size with shortcuts.

Thus, given a sensor network with random deployment

and the expected degree E[d] = λ, the principle for chosen

nodes is simple and can be implement using Algorithm 1.

Each sensor sets up links with its nearby neighbors, compares

its degree with E[d], and identifies itself as a chosen node if

they are equivalent. Then they should try to connect to and

exchange information with other chosen nodes over those

shortcuts.
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IV. RANDOM CONSENSUS PROTOCOL FOR SENSOR

NETWORKS

In this section, we present a random consensus protocol,

which includes state updating and random routing. Besides

the packets each sensor directly sends to its neighbors, we

define a new packet type as the “shortcut packet”. Shortcut

packets are generated only by chosen nodes. If a node is not

a chosen one, it passes any shortcut packet it receives to its

neighbors randomly. Using this mechanism, shortcuts among

chosen nodes are implemented.

Algorithm 1 Locating chosen nodes

Require: di, E[d]
Ensure: Chosen flag = 1 if this node is a chosen node

1: Chosen flag ⇐ 0;

2: if di = E[d] then

3: Chosen flag ⇐ 1;

4: end if

Algorithm 2 explains this protocol in detail. We assume

that it runs on each sensor synchronously. There are a few

input parameters: degree di, average degree for the network

E[d], chosen flag generated by Algorithm 1, the number of

shortcut packets m that a chosen node should generate, and

the initial value of hop counter n. Expected degree E[d]
is calculated by Equation (2). Degree di and chosen flag

are determined right after the network is deployed. The

value of m determines how many shortcut packets a chosen

node generates in each iteration. The value of n denotes the

number of hops a shortcut packet must be transmitted before

it is discarded by other chosen nodes. How to choose the best

n is still under investigation, but it should be proportional to

the average geodesic path length, which is O(log(N)) in a

Poisson random graph [25]. There are two possibilities that

a shortcut packet is perished: it may stop being transmitted

when it reaches another chosen nodes after it has been passed

longer than n hops, or it can be discarded when it is too old.

A delay threshold is used to judge if a shortcut packet is too

old. A typical choice is 2n.

Figure 7 shows simulation results on a network with 200
nodes that are randomly deployed. For the random consensus

protocol, we set parameters as E[d] = 18, m = 30, and

n = 6. Comparing with the deterministic consensus protocol

and the case where 80% virtual shortcuts are added, it is clear

that the random consensus protocol effectively improves the

convergence speed for average consensus seeking.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we demonstrate that, for large scale sensor

networks with random deployment, a small amount of short-

cuts can dramatically change the convergence behavior for

consensus seeking. Based on the local information and preset

parameters, we claim that nodes with the medium degree

are good choices among whom shortcuts should be added.

A random consensus protocol is proposed in which shortcut

packets are transmitted along random routes in the network.
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Fig. 7. Simulation result. Top: using the deterministic consensus protocol.
Middle: adding 80% virtual shortcuts. Bottom: using the random consensus
protocol.

Only the chosen nodes can generate shortcut packets, which

either die out when they are old or are stopped by other

chosen nodes. Simulation results verify the efficiency of this

protocol.

Future work includes a quantitatively analysis on the

consensus process in Poisson random graphs with random

protocol. Also, It should be interesting to identify the optimal

value of β and its scalability properties.
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Algorithm 2 Random consensus protocol

Require: di, E[d], Chosen flag, m, n
Ensure: xi is updated based on neighbors (and shortcuts).

Suppose there are L shortcut packets are received from

neighbors. Each shortcut packet has three parts: last node

id, hop counter, and value p.

1: sum ⇐ 0;

2: for j = 0 to di do

3: sum ⇐ sum + xj ;

4: end for

5: c ⇐ 0

6: if Chosen flag 6= 1 then

7: for l = 0 to L do

8: if Packet is too old then

9: Discard it;

10: else

11: if hop counter 6= 0 then

12: hop counter ⇐ hop counter − 1;

13: end if

14: sum ⇐ sum + p;

15: c ⇐ c + 1
16: Random pick one neighbor except the last node

id;

17: Send p to it with new hop counter and id ⇐ i;
18: end if

19: end for

20: xi ⇐ (sum + xi)/(di + c + 1);
21: send xi to its neighbors;

22: else {Is a chosen node}

23: for l = 0 to L do

24: if Packet is too old or created by itself then

25: Discard it;

26: else if hop counter 6= 0 then

27: hop counter ⇐ hop counter − 1;

28: Random pick one neighbor except j;

29: Send p to it with new hop counter and id ⇐ i;
30: else

31: sum ⇐ sum + p;

32: c ⇐ c + 1
33: end if

34: end for

35: xi ⇐ (sum + xi)/(di + c + 1);
36: send xi to its neighbors;

{Randomly generate the same shortcut packet m
times}

37: for i = 0 to m do

38: Random pick one neighbor;

39: Send xi to it as a shortcut packet with id ⇐ i,
hop counter ⇐ n, and value p = xi

40: end for

41: end if
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