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Now the human emotions can be recognized from speech signals usingmachine learningmethods; however, they are challenged by
the lower recognition accuracies in real applications due to lack of the rich representation ability. Deep belief networks (DBN) can
automatically discover the multiple levels of representations in speech signals. To make full of its advantages, this paper presents an
ensemble of random deep belief networks (RDBN) method for speech emotion recognition. It �rstly extracts the low level features
of the input speech signal and then applies them to construct lots of random subspaces. Each random subspace is then provided for
DBN to yield the higher level features as the input of the classi�er to output an emotion label. All outputted emotion labels are then
fused through the majority voting to decide the �nal emotion label for the input speech signal.�e conducted experimental results
on benchmark speech emotion databases show that RDBN has better accuracy than the compared methods for speech emotion
recognition.

1. Introduction

Emotions accompany human being in the life everywhere
and every moment [1]. �ey can be recognized and com-
municated through speech signals that constitute 38% of the
whole communicated emotions [2]. �is is why speech emo-
tion recognition (SER) has been recently emphasized that
automatically classi�es the emotional state of a speaker from
speech signals into one of several basic emotions [3, 4]. SER
has been applied to deal with the issues in many �elds. For
example, it can be applied to design a medical robot that pro-
vides the better health-care services for patients by continu-
ously monitoring the patients’ emotional state [5] and pro-
vides diagnostic suggestions for therapists [6]. SER can be
implemented through machine learning methods that is
composed of both speech feature extraction and classi�ca-
tion. �e speech feature extraction is a key issue for all
classi�cationmethods to obtain better generalization [7].�e
extracted features should minimize the distances between
samples with the same emotion class and maximize the
distances between samples with the dierent emotion classes
[8]. If the features are not well de�ned, the best classi�er
could have di�culty in reaching the good performance. Most

typical features are prede�ned by hand-engineered ones,
including newly proposed nonlinear dynamic features [3].
�ey have achieved the great success in speci�c �elds where
the small speech training data can be available only. However,
these features perform inconsistently on dierent emotion
recognition tasks [9]. �ey are in lower level so as to make
themselves di�cult to extract and organize the discriminative
features from the speech signals. As a matter of fact, it is not
clear which speech features are most powerful in distinguish-
ing emotions [2, 9]. �ey are easily in�uenced by speakers,
speaking styles, sentences, and speaking rates, because these
factors directly aect the extracted speech features such as
pitch and energy contours [5]. Besides, they are not easily
tuned for the newly coming speech signals. Speech emotions
tend to have overlapping features, making it di�cult to
�nd the correct classi�cation boundaries. To deal with these
issues, deep learning methods can be considered that can
automatically discover the multiple levels of representations
in speech signals. For example, it utilizes the higher level
features to represent the more abstract concepts [10]. �is is
the reason that they succeed in breaking most of the world
records of the recognition tasks. Among deep learning meth-
ods, deep belief network (DBN) is the most representative
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one [11, 12]. It applies the unsupervised learning algorithms
such as auto-encoders and sparse coding to learn higher
level feature representations from the unlabeled data [13]. It
has produced the state-of-the-art results on recognition and
classi�cation tasks [10]. On the other hand, typical classi�-
cation methods used for speech emotion recognition include
hiddenMarkovmodel (HMM) [14], GaussianMixtureModel
(GMM) [15], arti�cial neural networks such as recurrent neu-
ral network (RNN) [16], support vector machine (SVM) [17,
18], and the fuzzy cognitivemap network [19].�esemethods
are confronted with the complicated decision boundary of
the classi�cation. In such case, the ensemble learning can
be applied that can learn any nonlinear boundary through
appropriately combining the simple classi�ers. It has poten-
tial ability to greatly reduce over�tting problems, to decrease
the risk of a single classi�er, and to obtain better performance
than its single classi�ers [20]. �e usual ensemble classi�ers
are boost-based, bagging-based approaches [21], random
subspace [22], and so forth. Some of them have been applied
to perform speech emotion recognition but still fail to reach
the performance as expected. For example, it seems that
random forest andAdaboostDThave the bad eect for speech
emotion classi�cation [23]. �e possible reason is that the
diversity of the base classi�ers is not guaranteed [24]. As
to random subspace, the classi�ers trained with dierent
features should have certain diversity inherently. However,
this assumption is not always true. For instance, there are
two dierent features sets, but the classi�ers trained by the
two features sets may have the similar classi�cation results,
leading to no rich diversity between them [24]. To ensure the
diversity among base classi�ers, the features in random sub-
space should be further abstracted from dierent viewpoints
using DBN. �erefore, this paper presents a novel random
deep belief network (RDBN) method for speech emotion
recognition, which is composed of the random subspace,
DBN, and SVM within the framework of ensemble learning.
Here the random subspacemethod is applied, as it is the usual
way to create the base classi�ers for the ensemble. Second,
it creates lots of dierent subspaces. Each subspace can be
directly fed into DBN to generate the high level features for
SVM to create better classi�er. All these classi�ers could be of
the diversity for the ensemble.

In the reminder of this paper, Section 2 introduces
the related work. �e section introduces the deep belief
networks, while the new approach is presented in Section 4.
�e experimental results with the analysis are presented in
Section 5. Section 6 gives the conclusions and discusses the
future works.

2. Related Work

�ere are lots of classi�ers that can be combined to recognize
the speech emotion. For example, both random forest and
kernel factory are combined [23]. Both asymmetric simple
partial least squares and SVM are combined [25]. �e ran-
dom forest, support vector machine, Naive Bayes, multilayer
perception, �-nearest neighbors, and logistic regression are
combined [26]. �e neural network, decision tree, SVM, and
KNN are combined [27]. Dierent from these methods, the
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Figure 1: Structure of deep belief network.

classi�ers to be combined can be generated from the same
classi�cation method [17]. For example, ensemble methods
can be constructed through subspaces [28]. �ese ensemble
methods do not apply DBN to learn the abstract features.

DBN has been applied to extract emotional features in
speech signal automatically [29, 30] and to extract emotional
features of multimodal signals (face, body gesture, voice, and
physiological signals) [31]. To nicely deal with the important
challenges such as distinct emotions, low quality recording,
and independent aective states, DBN is combined with
Fractional Calculus to extract discriminative features [32].
Besides, multitask learning is applied to leverage activation
and valence information for acoustic emotion recognition
usingDBN framework [33].However, in thesemethods,DBN
are not applied within the ensemble learning framework.

�e ensemble of DBN has been used for other tasks such
as objects tracking [34] and facial expression recognition [11].
However, these methods do not apply random subspace and
are not for speech emotion recognition. Recently, DBN have
been combined to recognize the emotions from audiovisual
signals [35, 36] and video [37]. However, they do not combine
random subspace, DBN, and SVM for speech emotion
recognition in the framework of ensemble learning.

3. Deep Belief Networks

DBN is composed of many RBMs in the stacking way so that
it has the strong ability to learn high level representations
bene�cial for speech emotion recognition. It can be trained
e�ciently by the greedy layer-wise way. As shown as Figure 1,
it begins with training the �rst RBM on the training data.�e
output of the �rst RBM is used as the input of the second
RBM. Similarly, the third RBM is trained on the output of
the secondRBM.�rough this way, a deep hierarchicalmodel
can be constructed that learns features from low level features
to obtain the high level representation.�e features extracted
by DBN can serve as input to a supervised learning method
such as SVM.
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Figure 2: Structure of the standard RBM.

Given the training data, RBM can be trained by adjusting
RBM parameters to make the probability distribution repre-
sented by RBM �t for the training data as well as possible.
A�er successful learning, RBM provides a closed-form rep-
resentation of the distribution underlying the training data.
From a structural viewpoint, RBM can be regarded as a type
of Markov random �eld that is composed of a visible and
a hidden layer, shown as Figure 2, where there are links
between the hidden and visible elements but links between
two elements in the same layer are not permitted. �e visible
layer V represents observable data where each visible element
refers to one feature of the input data. �e hidden layer ℎ
aims to �nd dependencies between observed variables. ���
indicates theweight between the visible unit V� and the hidden
unit ℎ�. �e joint probability distribution of (V, ℎ) is given by
the Gibbs distribution:

� (V, ℎ) = �−�(V,ℎ)∑
V,ℎ �−�(V,ℎ) , (1)

where the energy function is de�ned as

� (V, ℎ) = −( �∑
�=1

�∑
�=1
(ℎ� ∗ V� ∗ ���) + �∑

�=1
(�� ∗ V�)

+ �∑
�=1
(�� ∗ ℎ�)) .

(2)

�e involved parameters can be determined through learning
from the training data using stochastic gradient ascent
method. �e details can be found in [38].

4. Random Deep Belief Networks for Ensemble

DBN is helpful to extract good speech features, but it requires
the considerable skill and rich experience for human to select
the optimal values for the related parameters. �e tuning of
these parameters is especially expensive. Besides, DBN still
applies the stochastic gradient descent method to �ne the
parameters. �is is hard to be scaled to the very deep neural
network due to the “vanishing gradients” problem [9, 39].
�is method does not guarantee to �nd the parameters that
de�ne a global minimum of the error function, but just a
local minimum. It could easily be sure that there is a set of
parameters that perform the best but this method cannot
�nd out them. To deal with the issue, the ensemble learning
framework is applied where the optimal parameters are not
required.

Extract speech features 

Emotion label of input speech signal

Fusion

Speech signal
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DBN1 DBN2 DBNM
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Figure 3: Framework of RDBN for speech emotion recognition,
illustrating themethod to create the base classi�ers for the ensemble
through random subspace, DBN, and SVM, where the majority
voting is applied to perform the fusion.

Currently there are three kinds of ensemble learning
applied to recognize speech emotion well. One is to train
the base classi�ers directly on the high dimensional feature
vectors, where the base classi�ers are confronted with the
curse of dimensionality, leading to the fact that the ensemble
classi�er cannot signi�cantly improve the eect of speech
emotion recognition. To solve the problem, random subspace
is applied to train the base classi�ers for ensemble, where
the same classi�cation method is used. However, random
subspace may not ensure providing a good description
for an aspect of the speech signal and in turn aects the
performance of ensemble classi�er. �is is because each
subspace is composed of lower-level features. In such case,
random subspaces need to be further proceeded by DBN.
Based on the discussed factors above, this section presents an
eective method for speech emotion recognition by combin-
ing random subspace, DBN, and SVM within the framework
of ensemble learning. �e framework of RDBN is shown as
Figure 3. Its input is the speech signal and output is the emo-
tion label of the input speech signal. RDBN �rst extracts the
features from the input speech signals using the method dis-
cussed in the next subsection, which are then applied to create
lots of random subspaces ��. Each �� is then input DBN�
to create more abstract features for the classi�er SVM�. In
this way, there,� classi�ers can be created for the ensemble.
�ey work independently and their outputs are then fused by
the majority voting. RDBN, summarized as Algorithm 1, is
composed of the training stage and the testing stage. In the
training stage, the speech features are extracted for all training
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Input. Training speech signals� = {(�1, �1), . . . , (��, ��)}, the ensemble size�, and the input speech signal �
Output.�e emotion label �
Training Stage

(1) Extract the features for each speech signal in��
V
= {(V1, �1), . . . , (V�, ��)} where V� is the feature vector of ��

(2) Create random subspaces �� (1 ≤ � ≤ �) from�V
(3) Create deep belief networks DBN� from ���� → DBN�
(4) Create the base classi�ers SVM� for the ensemble

DBN� → SVM�
Testing Stage

(5) Extract the features for the speech signal � : � → V

(6) Create� random subspaces from V : V→ �� (1 ≤ � ≤ �)
(7) Input each random subspace �� into DBN��� → DBN�
(8) Take the output of each DBN� as the input of SVM�

DBN� → SVM�
(9) Assign the emotion label � for � by the majority voting, where � is the Boolean function � = argmin�� ∑	�=1 �(SVM� == ��)

Algorithm 1: RDBN.

speech signals, and then a set of base classi�ers are created for
the ensemble. In the testing stage, it takes the same method
to extract features for the testing speech signal and then is fed
up to all base classi�ers. Subsequently, the majority voting is
applied to make fusion, as it is simple but eective.

4.1. Feature Extraction. Most speech emotion recognition
methods o�en use several approaches to extract features and
then combine them, as the combined features can greatly
enhance the eect of speech emotion recognition. In our
approach, spectral features, prosodic features, and HuSWF
(Hu Moments for Weighted Spectral Features) are combined
[40]. �e spectral features contain LPCC (Linear Predictor
Cepstral Coe�cients) [14], ZCPA (Zero Crossings with Peak
Amplitudes) [41], and PLP (Perceptual Linear Predictive)
[42]. Prosodic features are o�en used together with spec-
tral features in speech emotion recognition, as they have
good supplement eectiveness. In our approach, features of
INTERSPEECH 2010 are used [43], as it contains most useful
prosodic features.�is feature set can be obtained by the tool-
box OpenSmile [44]. HuSWF results from HuMoments that
have been widely used as the basic features [40]. It is investi-
gated thatHuMoments have good ability to extract the dier-
ences among the emotions and can reduce the changes intro-
duced by the sentences, the speakers, and the speaking styles.

A�er extracting features from a speech signal, they are
transformed to a feature vector using the feature statistics
methods. A larger number of global statistical functions
can be used, where the used statistical functions are mean,
std, max, min, kurtosis, skewness, and median, as they are
the most used ones in speech emotion recognition [40].
�ese feature vectors are then applied to create the random
subspace �� as input to DBN�.
4.2. Base Classi�ers. RDBN involves in the design of the base
classi�ers and themethods for combining classi�ers. As SVM
is extensively used for speech emotion recognition [17, 18],

having advantages over GMM and HMM in the global
optimality and the excellent data-dependent generalization
bounds, RDBN selects it as the classi�cationmethod to create
the base classi�ers. �e diversity among the base classi�ers
for ensemble learning is a key issue in performance [20].
DBN is selected here to generate the variants of the input
speech emotion features so as to enhance the generalization.
�erefore, in our approach, random subspace, DBN, and
SVM are applied to create the base classi�ers.

5. Experiments and Validation

Experiments are conducted to validate our approach on
benchmark databases that have been widely used elsewhere
for SER. Some results of state-of-the-art approaches related
to our approach are also compared.

5.1. Speech Emotion Databases. To validate RDBN, exper-
iments are conducted on four speech databases. Berlin
emotional speech database in German (EMODB) [45] is one
of themost popular databases used for speech emotion recog-
nition.�is database contains 7 emotion classes.�e number
of each class is distributed as follows: anger (127), anxiety fear
(69), boredom (81), disgust (46), happiness (71), neutral (79),
and sadness (62). Surrey Audio-Visual Expressed Emotion
Database (SAVEE) [46] is an English database that consists
of recordings from 4 male actors in 7 dierent emotions. �e
numbers of emotion categories are distributed as anger (60),
disgust (60), fear (60), happiness (60), sadness (60), surprise
(60), and neutral (120). Speech Emotion Database of Institute
of Automation Chinese Academy of Sciences (CASIA) [47] is
a Chinese database that consists of recordings from 4 actors
in 6 dierent emotions. �e numbers of speech �les for each
emotion category are anger (200), fear (200), happiness (200),
sadness (200), surprise (200), and neutral (200). FAU AIBO
Emotion Corpus [48] consists of spontaneous recordings on
German children interacting with a pet robot. �e database
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is composed of 9959 chunks for training and 8,257 chunks
for testing. It has �ve emotion categories. �e percentage of
training data from each category is as follows: anger (8.8%),
emphatic (21%), neutral (56.1%), positive (6.8%), and rest
(7.2%). Obviously, the distribution of the �ve classes is highly
unbalanced.

5.2. Performance Evaluation Criteria. As FAU database has
independent training data and testing data, they are applied
directly. However, EMODB, SAVEE, and CASIA do not
provide training data and testing data in advance, so that
two experimental strategies are used. �ey are speaker-
independent (SI) and speaker-dependent (SD) [42]. In SI
strategy, for each fold, all utterances from one of the speakers
are used for the testing data and the utterances of the
remaining speakers are used as the training data. In SD
strategy, all utterances of each emotion are randomly divided
into �ve equal parts, among which four parts are taken as the
training data and the remaining one is taken as the testing
data.�is procedure is repeated by ten times, and the average
classi�cation results across all trials were computed. �e
weighted accuracy (WA) and unweighted accuracy (UA) are
employed to evaluate the approaches [40, 49]. WA is the total
number of correctly classi�ed testing samples of all classes
averaged by the total number of testing samples. UA is the
sum of all class accuracies divided by the number of classes,
without considering the number of instances per class.

5.3. Analysis of RDBN. RDBN involves in the number of
features as a parameter for each random subspace. It also
depends on the ensemble size that is the number of individual
classi�ers for the ensemble. Generally, an ensemble method
can become overtrained when the ensemble size is too large,
but a smaller ensemble size always cannot reach the expected
accuracy. However, the optimal values for them cannot be
easily determined through theoretical analysis. �ey have
to be tried by experiments. In experiments, the number of
features varies as follows: 50, 150, 250, . . . , 1500. �e random
subspace method is applied to create 40 classi�ers through
training on the databases with the given number of features.
A�er that, for each given number of features, the ensemble
size varies as follows: 10, 15, 20, . . . , 30. �e classi�ers with
each ensemble size are randomly selected from the previously
created classi�ers to build RDBN, which is then applied to
perform classi�cation. �is procedure repeats ten times and
then the average accuracy is computed. On the other hand,
RDBN has other parameters that are also selected through
experiments. In experiments, DBN takes the single layer,
RBM has 80 neurons, the learning rate is 0.001, BP neural
network learning rate is 0.08, the value of DropoutFraction
is 0.1, and SVM with RBF kernel is applied. In experiments,
SI method is applied. It can be observed from Figure 4 that
when the number of features is 1350 and the ensemble size
is 20, RDBN obtains the best accuracy 82.32% on EMODB
database.

�e results on CASIA database are shown as Figure 5.
When the number of features varies from 50 to 350, RDBN
have better accuracy. A�er that, the accuracy declines heavily
along with the increase of the number of features. On this
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Figure 4: Accuracies (WA) vary with the number of features for
each ensemble size on EMODB, aiming to �nd the optimal ensemble
size and the number of features for RDBN on this database.
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Figure 5:Accuracies (WA) varywith the number of features for each
ensemble size on CASIA, aiming to �nd the optimal ensemble size
and the number of features for RDBN on this database.

database, RDBN obtains the best accuracy 48.5% when the
feature number is 50 and the ensemble size is 20.

It can be observed from Figure 6 on SAVEE database that
when the number of features is 950 and the ensemble size is
30, RDBN obtains the best accuracy 53.6%.

In RDBN, SVM with RBF kernel (RBF-SVM) is selected
to attach DBN. To validate the selection, the other classi�ers
are also applied to attach DBN and then make comparison
through experiments, where the number of features and the
ensemble sizes on each database take the same values as deter-
mined above. �e compared classi�ers are SVM with linear
kernel (L-SVM), SOFTMAX, and KNN. It can be observed
from Table 1 that RBF-SVM performs best on all databases,
better than L-SVM, SOFTMAX, and KNN by 2.89%, 1.45%,
and 2.22% on EMODB, respectively, by 2.08%, 2.17%, and
4% on CASIA, respectively, and by 6.6%, 2.95%, and 4.04%
on SAVEE, respectively. �ese experimental results illustrate
that it is reasonable for RDBN to choose RBF-SVM as the
classi�er to attach DBN.
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Figure 6: Accuracies (WA) vary with the number of features for
each ensemble size on SAVEE, aiming to �nd the optimal ensemble
size and the number of features for RDBN on this database.

Table 1: Accuracies of dierent classi�ers attached to DBN.

RBF-SVM L-SVM SOFTMAX KNN

EMODB 82.32 79.43 80.87 80.10

CASIA 48.50 46.42 46.33 44.50

SAVEE 53.60 47.00 50.65 49.46

5.4. Performance of RDBN on EMODB, CASIA, and SAVEE.
In order to further analyze the generalization ability of
RDBN, the confusion matrixes of experimental results on
EMODB, CASIA, and SAVEE are obtained by the averaging
ten experimental results, where seven emotions are con-
sidered: anger, disgust, fear, happy, sadness, surprise, and
neutral. In confusionmatrix, the rowmeans the true emotion
classes while the column indicates the predicted emotion
classes. It can be observed from Table 2 that, on EMODB,
RDBN performs best on the sadness emotion with accuracy
up to 96.16% and performs well on angry, indicating that
the negative emotion can be recognized nicely by RDBN. To
our surprise, the happy emotion cannot be nicely recognized
whose accuracy is only 59.17%. From Table 3, it can be
concluded on CASIA that our method performs recognition
well on angry and sad emotions. Particularly, its performance
on angry emotion reaches up to 72.5%. On the other hand, it
has poor eects on the recognition of both fear and surprise
emotions with accuracy down to 33%. On SAVEE, it can
be observed from Table 4 that RDBN performs better on
the happy, neutral, and surprise emotion. It is surprising
that recognition of the neutral emotion achieves accuracy of
74.08%, while the eect on angry and sadness is poor with
the accuracy about 44%. �ese experimental results indicate
that on the whole RDBN can be applied to recognize the
negative emotions. But the conclusion is not consistent on all
three databases. �is is because the samples distributions of
dierent emotions on all three databases are not the same.

5.5. Compared Methods on EMODB, CASIA, and SAVEE. To
further validate RDBN, many methods are compared on the

Table 2: Confusion matrix of RDBN on EMODB, illustrating the
ability of RDBN on each emotion class.

EmotionHappy Neutral Angry Sadness Fear Surprise Disgust

Happy 59.17 0.00 28.15 0.00 3.66 0.00 9.01

Neutral 1.27 92.14 0.00 0.00 1.27 5.33 0.00

Angry 8.13 0.00 88.64 0.00 0.87 0.00 2.36

Sadness 0.00 0.32 0.00 96.16 0.00 3.52 0.00

Fear 8.70 4.20 4.80 1.45 75.06 0.00 5.80

Surprise 0.62 11.10 0.00 6.17 0.86 79.40 1.85

Disgust 15.87 2.17 2.17 2.17 2.39 2.17 73.05

Table 3: Confusion matrix of RDBN on CASIA, illustrating the
ability of RDBN on each emotion class.

Emotion Angry Fear Happy Neutral Sadness Surprise

Angry 72.50 2.00 12.00 2.50 0.50 10.50

Fear 5.00 33.00 3.50 6.50 42.50 9.50

Happy 11.00 3.50 57.50 6.50 13.00 8.50

Neutral 4.50 9.50 32.50 35.50 12.50 5.50

Sadness 0.50 24.00 5.00 6.00 59.50 5.00

Surprise 17.50 18.00 17.00 6.50 8.00 33.00

Table 4: Confusion matrix of RDBN on SAVEE, illustrating the
ability of RDBN on each emotion class.

Emotion Angry Disgust Fear Happy Neutral Sadness Surprise

Angry 44.00 26.67 4.67 18.33 4.67 0.00 1.67

Disgust 8.00 44.17 1.67 0.00 30.50 7.33 8.33

Fear 2.33 11.17 31.17 20.17 13.50 2.67 19.00

Happy 9.67 6.33 14.00 59.00 3.33 0.00 7.67

Neutral 0.00 24.42 0.42 0.00 74.08 1.08 0.00

Sadness 3.33 24.00 0.00 0.00 28.33 44.33 0.00

Surprise 0.00 8.67 11.50 14.33 9.83 1.67 54.00

speech emotion databases. �ey are the original DBN with
one layer (SLDBN), DBN with two layers (DLDBN), and
DBN with three layers (TLDBN). Both KNN and SVM are
also compared, as they are o�en applied on speech emotion
recognition [3, 22]. Additionally, the best base classi�er of
RDBN, denoted as BASE, is also compared. All classi�ers
based on DBN have the same parameters as that of RDBN. In
the experiments, SI is used. All other parameters are deter-
mined through tenfold cross-validation. �e experimental
results are shown in Table 5. It can be concluded that RDBN
obviously outperforms the other classi�ers on all databases.
It has the accuracies on EMODB, CASIA, and SAVEE
higher than BASE by 2.71%, 12.33%, and 9.02%, respectively,
indicating that the ensemble learning is eective. On the
other hand, SLDBN signi�cantly outperforms DLDBN and
TLDBN on three databases.

For example, it is better than DLDBN by 9.48%, 10%, and
23.18% on EMODB, CASIA, and SAVEE, respectively. �e
reason is that the layers of deep belief network depend on
the size of the training database whereas used databases are



Computational Intelligence and Neuroscience 7

Table 5: Accuracies (WA) of the compared methods on three
databases, illustrating the superiority of RDBN to the other meth-
ods.

L-SVM KNN SLDBN DLDBN TLDBN RDBN BASE

EMODB 81.19 70.74 72.84 53.85 24.59 82.32 79.61

CASIA 42.08 34.33 38.50 29.50 18.25 48.50 36.17

SAVEE 46.25 43.13 30.42 20.62 25.00 53.60 44.58
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Figure 7:Accuracies (WA) varywith the number of features for each
ensemble size on FAUdatabase, aiming to �nd the optimal ensemble
size and the number of features for RDBN on this database.

smaller, not enough to train the classi�er well. Finally, RDBN
obtains the accuracies higher than L-SVM by 1.13%, 6.42%,
and 7.35%, respectively, on three databases. It is also higher
than KNN by 11.58%, 14.17%, and 10.47%, respectively, on
three databases.

5.6. Performance of RDBN on FAU. FAU diers from
EMODB, CASIA, and SAVEE in that it has dierent speech
emotion labels such as anger, stress, positive, neutral, and
others. Secondly, FAU is constructed by two school children.
�e speech signal data fromone school is taken as the training
database, while the other is taken as the testing database. Both
databases are distributed unevenly, requiring that the training
database must be balanced such as by downsamplingmethod
[4].

Downsampling reduces the size of the majority class to
the size of the minority class. As the testing database is
unbalanced, if WA is still taken as the performance criteria,
the classi�er performs well on the class types with the large
number of samples and bad on the ones with the small
number of samples, leading to the good recognition results
in terms of WA. However, this conclusion would be biased.
Hence instead ofWA, UA is applied to evaluate RDBN, where
its optimal parameters are determined in advance through
experiments. It can be concluded from Figure 7 that when
the number of features is 950 and the ensemble size is 20,
RDBN obtains the best recognition accuracy with 42.2%.
Using optimal parameters, all methods are compared on FAU
database.�e experimental results are shown inTable 6. It can

Table 6: Accuracies (UA%) of the compared methods on FAU
database, illustrating the superiority of RDBN to the other methods.

L-SVM KNN SLDBN DLDBN TLDBN RDBN BASE

FAU 37.37 35.70 40.52 30.50 30.10 42.20 39.10

be concluded that RDBN performs best among all methods,
better than the second one SLDBN by 1.68%.

Furthermore the accuracy decreases along with the num-
ber of layers from single to three, illustrating that the database
has not enough samples. Secondly, RDBN outperforms BASE
by 3.1%, illustrating that the ensemble learning is de�nitely
superior to its single classi�er. Finally, RDBN has certain
advantages in speech emotion recognition over the classical
methods, higher than L-SVM by 4.83% and KNN by 6.5%.

It can be concluded from the above experimental results
that RDBN consistently outperforms DBN, SVM, and KNN
for speech emotion recognition. It is also seen that all
approaches do not obtain the much nice performance on the
databases. �e main reason is that the training database for
our approach is not large enough to contain all kinds of sam-
ples, as there is a strong demand for more labelled speech sig-
nals in order to better understand human emotions and the
way they are expressed. Unfortunately, emotion databases are
typically small due to the manual process of annotating them
with emotional labels. �ese problems can be solved using
semisupervised learning methods in the future work [50].

6. Conclusion and Future Work

�is paper presents a random deep belief network (RDBN)
ensemble method for speech emotion recognition. It has the
following advantages. Firstly, it has the ability to overcome
the curse of dimensionality problem due to random subspace
used. Secondly, it has the potential ability to obtain better per-
formance when the larger training databases can be available,
as it applies the deep belief network on random subspaces.
�irdly, it takes SVM as the base classi�er which can output
the probability of a testing sample belonging to each emotion
instead of the concrete emotion label. �is makes RDBN
able to better deal with the uncertainty information in the
fusion of the base classi�ers. Finally, RDBN is based on the
ensemble learning so that it can perform the complicated
recognition tasks. However, our approach is still challenged
by the lower accuracies on the speech emotion databases.
�is possibly results from the smaller training databases and
the poor diversity. In the future, the larger speech emotion
database will be constructed to train RDBN, as RDBN can be
nicely scaled to the larger data with the better performance.
On the other hand, the diversity of the ensemble has not
been considered here, which will be emphasized to further
enhance the performance of our approach.
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