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Abstract

We prove that the binary classifiers of bit strings generated by random wide deep
neural networks with ReLU activation function are biased towards simple functions.
The simplicity is captured by the following two properties. For any given input
bit string, the average Hamming distance of the closest input bit string with a

different classification is at least
√

n/(2π lnn), where n is the length of the string.
Moreover, if the bits of the initial string are flipped randomly, the average number
of flips required to change the classification grows linearly with n. These results
are confirmed by numerical experiments on deep neural networks with two hidden
layers, and settle the conjecture stating that random deep neural networks are biased
towards simple functions. This conjecture was proposed and numerically explored
in [Valle Pérez et al., ICLR 2019] to explain the unreasonably good generalization
properties of deep learning algorithms. The probability distribution of the functions
generated by random deep neural networks is a good choice for the prior probability
distribution in the PAC-Bayesian generalization bounds. Our results constitute
a fundamental step forward in the characterization of this distribution, therefore
contributing to the understanding of the generalization properties of deep learning
algorithms.

1 Introduction

The field of deep learning provides a broad family of algorithms to fit an unknown target function via
a deep neural network and is having an enormous success in the fields of computer vision, machine
learning and artificial intelligence [1–5]. The input of a deep learning algorithm is a training set,
which is a set of inputs of the target function together with the corresponding outputs. The goal of the
learning algorithm is to determine the parameters of the deep neural network that best reproduces the
training set.

Deep learning algorithms generalize well when trained on real-world data [6]: the deep neural
networks that they generate usually reproduce the target function even for inputs that are not part of
the training set and do not suffer from over-fitting even if the number of parameters of the network is
larger than the number of elements of the training set [7–10]. A thorough theoretical understanding
of this unreasonable effectiveness is still lacking. The bounds to the generalization error of learning
algorithms are proven in the probably approximately correct (PAC) learning framework [11]. Most of
these bounds depend on complexity measures such as the Vapnik-Chervonenkis dimension [12,13] or
the Rademacher complexity [14, 15] which are based on the worst-case analysis and are not sufficient
to explain the observed effectiveness since they become void when the number of parameters is
larger than the number of training samples [10, 16–21]. A complementary approach is provided
by the PAC-Bayesian generalization bounds [19, 22–25], which apply to nondeterministic learning
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algorithms. These bounds depend on the Kullback-Leibler divergence [26] between the probability
distribution of the function generated by the learning algorithm given the training set and an arbitrary
prior probability distribution that is not allowed to depend on the training set: the smaller the
divergence, the better the generalization properties of the algorithm. Making the right choice for the
prior distribution is fundamental to obtain a nontrivial generalization bound.

A good choice for the prior distribution is the probability distribution of the functions generated
by deep neural networks with randomly initialized weights [27]. Understanding this distribution is
therefore necessary to understand the generalization properties of deep learning algorithms. PAC-
Bayesian generalization bounds with this prior distribution led to the proposal that the unreasonable
effectiveness of deep learning algorithms arises from the fact that the functions generated by a random
deep neural network are biased towards simple functions [27–29]. Since real-world functions are
usually simple [30, 31], among all the functions that are compatible with a training set made of
real-world data, the simple ones are more likely to be close to the target function. The conjectured
bias towards simple functions has been numerically explored in [27], which considered binary
classifications of bit strings and showed that binary classifiers with a small Lempel-Ziv complexity
[32] are more likely to be generated by a random deep neural network than binary classifiers with a
large Lempel-Ziv complexity. However, a rigorous proof of this bias is still lacking.

1.1 Our contribution

We prove that random deep neural networks are biased towards simple functions, in the sense that
a typical function generated is insensitive to large changes in the input. We consider random deep
neural networks with Rectified Linear Unit (ReLU) activation function and weights and biases drawn
from independent Gaussian probability distributions, and we employ such networks to implement
binary classifiers of bit strings. Our main results are the following:

• We prove that for n≫ 1, where n is the length of the string, for any given input bit string
the average Hamming distance of the closest bit string with a different classification is at

least
√

n/(2π lnn) (Theorem 1), where the Hamming distance between two bit strings is
the number of different bits.

• We prove that, if the bits of the initial string are randomly flipped, the average number of
bit flips required to change the classification grows linearly with n (Theorem 2). From
a heuristic argument, we find that the average required number of bit flips is at least n/4
(subsection 3.3), and simulations on deep neural networks with two hidden layers indicate a
scaling of approximately n/3.

By contrast, for a random binary classifier drawn from the uniform distribution over all the possible
binary classifiers of strings of n ≫ 1 bits, the average Hamming distance of the closest bit string
with a different classification is one, and the average number of random bit flips required to change
the classification is two. Therefore, our result identifies a fundamental qualitative difference between
a typical binary classifier generated by a random deep neural network and a uniformly random binary
classifier.

The result proves that the binary classifiers generated by random deep neural networks are simple
and identifies the classifiers that are likely to be generated as the ones with the property that a large
number of bits need to be flipped in order to change the classification. While all the classifiers with
this property have a low Kolmogorov complexity1, the converse is not true. For example, the parity
function has a small Kolmogorov complexity, but it is sufficient to flip just one bit of the input to
change the classification, hence our result implies that it occurs with a probability exponentially small
in n. Similarly, our results explain why [27] found that the look-up tables for the functions generated
by random deep networks are typically highly compressible using the LZW algorithm [35], which
identifies statistical regularities, but not all functions with highly compressible look-up tables are
likely to be generated.

The proofs of Theorems 1 and 2 are based on the approximation of random deep neural networks as
Gaussian processes, which becomes exact in the limit of infinite width [36–47]. The crucial property
of random deep neural networks captured by this approximation is that the outputs generated by

1The Kolmogorov complexity of a function is the length of the shortest program that implements the function
on a Turing machine [26, 33, 34].
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inputs whose Hamming distance grows sub-linearly with n become perfectly correlated in the limit
n→ ∞. These strong correlations are the reason why a large number of input bits need to be flipped
in order to change the classification. The proof of Theorem 2 also exploits the theory of stochastic
processes, and in particular the Kolmogorov continuity theorem [48]. We stress that for activation
functions other than the ReLU, the scaling with n of both the Hamming distance of the closest bit
string with a different classification and the number of random bit flips necessary to change the
classification remain the same. However, the prefactor can change and can be exponentially small in
the number of hidden layers.

We validate all the theoretical results with numerical experiments on deep neural networks with ReLU

activation function and two hidden layers. The experiments confirm the scalings Θ(
√

n/ lnn) and
Θ(n) for the Hamming distance of the closest string with a different classification and for the average

random flips required to change the classification, respectively. The theoretical pre-factor 1/
√
2π

for the closest string with a different classification is confirmed within an extremely small error of
1.5%. The heuristic argument that pre-factor for the random flips is greater than 1/4 is confirmed
by numerics which indicate that the pre-factor is approximately 0.33. Moreover, we explore the
Hamming distance to the closest bit string with a different classification on deep neural networks
trained on the MNIST database [49] of hand-written digits. The experiments show that the scaling

Θ(
√

n/ lnn) survives after the training of the network and that the distance of a training or test
picture from the closest classification boundary is strongly correlated with its classification accuracy,
i.e., the correctly classified pictures are further from the boundary than the incorrectly classified ones.

1.2 Further related works

The properties of deep neural networks with randomly initialized weights have been the subject of
intensive studies [38–42, 50–52]. The relation between generalization and simplicity for Boolean
function was explored in [53], where the authors provide numerical evidence that the generalization
error is correlated with a complexity measure that they define. Ref. [10] explores the generalization
properties of deep neural networks trained on partially random data, and finds that the generalization
error correlates with the amount of randomness in the data. Based on this result, Ref. [28,54] proposed
that the stochastic gradient descent employed to train the network is more likely to find the simpler
functions that match the training set rather than the more complex ones. However, further studies [29]
suggested that stochastic gradient descent is not sufficient to justify the observed generalization. The
idea of a bias towards simple patterns has been applied to learning theory through the concepts of
minimum description length [55], Blumer algorithms [56, 57] and universal induction [34]. Ref. [58]
proved that the generalization error grows with the Kolmogorov complexity of the target function if
the learning algorithm returns the function that has the lowest Kolmogorov complexity among all
the functions compatible with the training set. The relation between generalization and complexity
has been further investigated in [30, 59]. The complexity of the functions generated by a deep neural
networks has also been studied from the perspective of the number of linear regions [60–62] and of
the curvature of the classification boundaries [41]. We note that the results proved here — viz., that
the functions generated by random deep networks are insensitive to large changes in their inputs —
implies that such functions should be simple with respect to all the measures of complexity above, but
the converse is not true: not all simple functions are likely to be generated by random deep networks.

2 Setup and Gaussian process approximation

We consider a feed-forward deep neural network with L hidden layers, activation function τ , input
in R

n and output in R. The most common choice for τ is the ReLU activation function τ(x) =
max(0, x). We stress that Theorems 1 and 2 do not rely on this assumption and hold for any activation
function. For any x ∈ R

n and l = 2, . . . , L+ 1, the network is recursively defined by

φ(1)(x) =W (1)x+ b(1) , φ(l)(x) =W (l) τ
(

φ(l−1)(x)
)

+ b(l) , (1)

where φ(l)(x), b(l) ∈ R
nl , W (l) is an nl × nl−1 real matrix, n0 = n and nL+1 = 1. We put for

simplicity φ = φ(L+1), and we define ψ(x) = sign (φ(x)) for any x ∈ R
n. The function ψ is a

binary classifier on the set of the strings of n bits identified with the set {−1, 1}n ⊂ R
n, where

the classification of the string x ∈ {−1, 1}n is ψ(x) ∈ {−1, 1}. We choose this representation of
the bit strings since any x ∈ {−1, 1}n has ‖x‖2 = n, and the covariance of the Gaussian process
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approximating the deep neural network has a significantly simpler expression if all the inputs have the
same norm. Moreover, having the inputs lying on a sphere is a common assumption in the machine
learning literature [63].

We draw each entry of each W (l) and of each b(l) from independent Gaussian distributions with zero
mean and variances σ2

w/nl−1 and σ2
b , respectively. We employ the Gaussian process approximation

of [41, 42], which consists in assuming that for any l and any x, y ∈ R
n, the joint probability

distribution of φ(l)(x) and φ(l)(y) is Gaussian, and φ
(l)
i (x) is independent from φ

(l)
j (y) for any

i 6= j. This approximation is exact for l = 1 and holds for any l in the limit n1, . . . , nL → ∞
[39]. Indeed, φ

(l)
i (x) is the sum of b

(l)
i , which has a Gaussian distribution, with the nl−1 terms

{W (l)
ij τ(φ

(l−1)
j (x))}nl−1

j=1 which are iid from the inductive hypothesis. Therefore if nl−1 ≫ 1, from

the central limit theorem φ
(l)
i (x) has a Gaussian distribution. We notice that for finite width, the

outputs of the intermediate layers have a sub-Weibull distribution [64]. Our experiments in section 4
show agreement with the Gaussian approximation starting from n & 100.

In the Gaussian process approximation, for any x, y with ‖x‖2 = ‖y‖2 = n, the joint probability
distribution of φ(x) and φ(y) is Gaussian with zero mean and covariance that depends on x, y and n
only through x · y/n:

E (φ(x)) = 0 , E (φ(x)φ(y)) = QF
(

x·y
n

)

, ‖x‖2 = ‖y‖2 = n . (2)

Analogously, φ(x) is a Gaussian process with zero average and covariance given by the kernel

K(x, y) = QF
(

x·y
n

)

. Here Q > 0 is a suitable constant and F : [−1, 1] → R is a suitable function
that depend on τ , L, σw and σb, but not on n, x nor y. We have introduced the constant Q because it
will be useful to have F satisfy F (1) = 1. We provide the expression of Q and F in terms of τ , L,
σw and σb in the supplementary material, where we also prove that for the ReLU activation function
t ≤ F (t) ≤ 1.

The correlations between outputs of the network generated by close inputs are captured by the
behavior of F (t) for t→ 1. If F (t) stays close to 1 as t departs from 1, then the outputs generated by
close inputs are almost perfectly correlated and have the same classification with probability close to
one. On the contrary, if F (t) drops quickly, the correlations decay and there is a nonzero probability
that close inputs have different classifications. In the supplementary material we prove that for the
ReLU activation function we have 0 < F ′(1) ≤ 1 and for t→ 1,

F (t) = 1− F ′(1) (1− t) +O
(

(1− t)
3

2

)

, (3)

implying strong short-distance correlations.

3 Theoretical results

3.1 Closest bit string with a different classification

Our first main result is the following Theorem 1, which states that for n ≫ 1, for any given input
bit string of a random deep neural network as in section 2 the average Hamming distance of the

closest input bit string with a different classification is
√

n/(2πF ′(1) lnn). The proof is in the
supplementary material.

Theorem 1 (closest string with a different classification). For any n ∈ N, let φ : {−1, 1}n → R be

the output of a random deep neural network as in section 2. Let a > 0 and let hn = ⌊a
√

n/ lnn⌋,
where ⌊t⌋ denotes the integer part of t ≥ 0. Let us fix x ∈ {−1, 1}n and z > 0, and let Nn(a, z) be
the average number of input bit strings y ∈ {−1, 1}n with Hamming distance hn from x and with a
different classification from x, conditioned on φ(x) =

√
Qz:

Nn(a, z) = E

(

# {y ∈ {−1, 1}n : h(x, y) = hn , φ(y) < 0}
∣

∣

∣
φ(x) =

√

Qz
)

. (4)

Here h(x, y) is the Hamming distance between x and y and we recall that Q = E(φ(x)2). Then, for
n→ ∞

lnNn(a, z) =
a

2

√
n lnn

(

1− z2

4F ′(1)a2
+

ln lnn
a2

lnn
+O

(

1
4
√
n lnn

)

)

. (5)
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In particular,

lim
n→∞

Nn(a, z) = 0 for a <
z

2
√

F ′(1)
, lim

n→∞
Nn(a, z) = ∞ for a ≥ z

2
√

F ′(1)
. (6)

Theorem 1 tells us that, if n≫ 1, for any input bit string x ∈ {−1, 1}n, with very high probability
all the input bit strings y ∈ {−1, 1}n with Hamming distance from x lower than

h∗n(x) =
|φ(x)|

2
√

QF ′(1)

√

n

lnn
(7)

have the same classification as x, i.e., φ(y) has the same sign as φ(x). Moreover, the number of input
bit strings y with Hamming distance from x higher than h∗n(x) and with a different classification than x
is exponentially large in n. Therefore, with very high probability the Hamming distance from x of the

closest bit string with a different classification is approximately h∗n(x). Since E(|φ(x)|) =
√

2Q/π,
the average Hamming distance of the closest string with a different classification is

E (h∗n(x)) =

√

n

2πF ′(1) lnn
≥
√

n

2π lnn
, (8)

where the last inequality holds for the ReLU activation function and follows since in this case
F ′(1) ≤ 1.

Remark 1. While Theorem 1 holds for any activation function, the property F ′(1) ≤ 1 may not hold
for activation functions different from the ReLU. For example, in the case of tanh there are values
of σw and σb such that F ′(1) grows exponentially with L [41]. In this case, the Hamming distance

of the closest string with a different classification still scales as
√

n/ lnn, but the prefactor can be
exponentially small in L. Therefore with the tanh activation function, for finite values of L and n,

F ′(1) may become comparable with
√

n/ lnn and significantly affect the Hamming distance.

3.2 Random bit flips

Let us now consider the problem of the average number of bits that are needed to flip in order to
change the classification of a given bit string. We consider a random sequence of input bit strings

{x(0), . . . , x(n)} ⊂ {−1, 1}n, where at the i-th step x(i) is generated flipping a random bit of x(i−1)

that has not been already flipped in the previous steps. Any sequence as above is geodesic, i.e.,

h(x(i), x(j)) = |i − j| for any i, j = 0, . . . , n. The following Theorem 2 states that the average

Hamming distance from x(0) of the closest string of the sequence with a different classification is
proportional to n. The proof is in the supplementary material.

Theorem 2 (random bit flips). For any n ∈ N, let φ : {−1, 1}n → R be the output of a random deep

neural network as in section 2, and let {x(0), . . . , x(n)} ⊂ {−1, 1}n be a geodesic sequence of bit
strings. Let hn be the expected value of the minimum number of steps required to reach a bit string
with a different classification from x(0):

hn = E

(

min
{

min
{

1 ≤ i ≤ n : φ(x(0))φ(x(i)) < 0
}

, n
})

. (9)

Then, there exists a constant t0 > 0 which depends only on F such that hn ≥ n t0 for any n ∈ N.

Remark 2. Since the entry of the kernel (2) associated to two inputs lying on the sphere is a function
of their squared Euclidean distance, which coincides with the Hamming distance in the case of bit
strings, Theorems 1 and 2 may be generalized to continuous inputs on the sphere by replacing the
Hamming distance with the squared Euclidean distance.

3.3 Heuristic argument

For a better understanding of Theorems 1 and 2, we provide a simple heuristic argument to their
validity. The crucial observation is that, if one bit of the input is flipped, the change in φ is Θ(1/

√
n).

Indeed, let x, y ∈ {−1, 1}n with h(x, y) = 1. From (2), φ(y)− φ(x) is a Gaussian random variable
with zero average and variance

E
(

(φ(y)− φ(x))2
)

= 2Q
(

1− F
(

1− 2
n

))

≃ 4QF ′(1)/n . (10)
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Figure 1: (a) Average Hamming distance to the nearest differently classified input string versus the
number of input neurons for the neural network. The Hamming distance to the nearest differently

classified string scales as
√

n/(2π lnn). with respect to the number of input neurons. Left: the
results of the simulations clearly show the importance of the lnn term in the scaling. Right: the
empirically calculated value 0.405 for the pre-factor a is close to the theoretically predicted value

of 1/
√
2π. Each data point is the average of 1000 different calculations of the Hamming distance

for randomly sampled bit strings. Each calculation was performed on a randomly generated neural
network. Further technical details for the design of the neural networks are given in subsection 4.4.
(b) The linear relationship between |φ(x)| and h∗n(x) is consistent across neural networks of different
sizes. To calculate the average distance at values of |φ(x)| within an interval, data was averaged
across equally spaced bins of 0.25 for values of |φ(x)|. Averages for each bin are plotted at the
midpoint of the bin. Points are only shown if there are at least 10 samples within the bin.

For any i, at the i-th step of the sequence of bit strings of subsection 3.2, φ changes by the Gaussian

random variable φ(x(i)) − φ(x(i+1)), which from (10) has zero mean and variance 4QF ′(1)/n.
Assuming that the changes are independent, after h steps φ changes by a Gaussian random variable

with zero mean and variance 4hQF ′(1)/n. Recalling that E(φ(x(0))2) = Q and that F ′(1) ≤ 1 for
the ReLU activation function, approximately h ≈ n/(4F ′(1)) ≥ n/4 steps are needed in order to
flip the sign of φ and hence the classification.

Let us now consider the problem of the closest bit string with a different classification from a given
bit string x. For any bit string y at Hamming distance one from x, φ(y) − φ(x) is a Gaussian
random variable with zero mean and variance 4QF ′(1)/n. We assume that these random variables
are independent, and recall that the minimum among n iid normal Gaussian random variables

scales as
√
2 lnn [65]. There are n bit strings y at Hamming distance one from x, therefore

the minimum over these y of φ(y) − φ(x) is approximately −
√

8QF ′(1) lnn/n. This is the
maximum amount by which we can decrease φ flipping one bit of the input. Iterating the procedure,

the maximum amount by which we can decrease φ flipping h bits is h
√

8QF ′(1) lnn/n. Since

E(φ(x(0))2) = Q, the minimum number of bit flips required to flip the sign of φ is approximately

h ≈
√

n/(8F ′(1) lnn) ≥
√

n/(8 lnn), where the last inequality holds for the ReLU activation

function. The pre-factor 1/
√
8 ≃ 0.354 obtained with the heuristic proof above is very close to the

exact pre-factor 1/
√
2π ≃ 0.399 obtained with the formal proof in (8).

4 Experiments

4.1 Closest bit string with a different classification

To confirm experimentally the findings of Theorem 1, Hamming distances to the closest bit string with
a different classification were calculated for randomly generated neural networks with parameters
sampled from normal distributions (see subsection 4.4). This distance was calculated using a greedy
search algorithm (Figure 1a). In this algorithm, the search for a differently classified bit string
progressed in steps, where in each step, the most significant bit was flipped. This bit corresponded
to the one that produced the largest change towards zero in the value of the output neuron when
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flipped. To ensure that this algorithm accurately calculated Hamming distances, we compared the
results of the greedy search algorithm to those from an exact search which exhaustively searched all
bit strings at specified Hamming distances for smaller networks where this exact search method was
computationally feasible. Comparisons between the two algorithms in Table 1 of the supplementary
material show that outcomes from the greedy search algorithm were consistent with those from the

exact search algorithm. The results from the greedy search method confirm the
√

n/ lnn scaling

of the average Hamming distance starting from n & 100. The value of the pre-factor 1/
√
2π is also

confirmed with the high precision of 1.5%. Figure 1b empirically validates the linear relationship
between the value of the output neuron |φ(x)| and the Hamming distance to bit strings with different
classification h∗n(x) expressed by (7). This linear relationship was consistent with all neural networks
empirically tested in our analysis. Intuitively, |φ(x)| is an indication of the confidence in classification.
The linear relationship shown here implies that as the value of |φ(x)| grows, the confidence of the
classification of an input strengthens, increasing the distance from that input to boundaries of different
classifications.

4.2 Random bit flips

Figure 2 confirms the findings of Theorem 2, namely that the expected number of random bit flips
required to reach a bit string with a different classification scales linearly with the number of input
neurons. The pre-factor found by simulation is 0.33, slightly above the lower bound of 0.25 estimated
from the heuristic argument. Our results show that, though the Hamming distance to the nearest

classification boundary scales on average at a rate of
√

n/ lnn, the distance to a random boundary
scales linearly and more rapidly.
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Figure 2: The average number of random bit flips
required to reach a bit string with different classi-
fication scales linearly with the number of input
neurons. Each point is averaged across a sample
of 1000 neural networks, where the Hamming dis-
tances to differently classified bit strings for each
network are tested at a single random input bit
string.

4.3 Analysis of MNIST data

Our theoretical results hold for random, untrained deep neural networks. It is an interesting question
whether trained deep neural networks exhibit similar properties for the Hamming distances to
classification boundaries. Clearly some trained networks will not: a network that has been trained to
return as output the final bit of the input string has Hamming distance one to the nearest classification
boundary. For networks that are trained to classify noisy data, however, we expect the trained networks
to exhibit relatively large Hamming distances to the nearest classification boundary. Moreover, if
a ‘typical’ network can perform the noisy classification task, then we expect training to guide the
weights to a nearby typical network that does the job, for the simple reason that networks that exhibit

Θ(
√

n/ lnn) distance to the nearest boundary and an average distance of Θ(n) to a boundary under
random bit flips have much higher prior probabilities than atypical networks.

To determine if our results hold for models trained on real-world data, we trained 2-layer fully-
connected neural networks to categorize whether hand-drawn digits taken from the MNIST database
[66] are even or odd. Images of hand drawn digits were converted from their 2-dimensional format
(28 by 28 pixels) into a 1-dimensional vector of 784 binary inputs. The starting 8 bit pixel values were
converted to binary format by determining whether the pixel value was above or below a threshold of
25. Networks were trained to determine whether the hand-drawn digit was odd or even. All networks

7



Train Set Test Set Random Bits
0

2

4

6

8

10

Av
er

ag
e 

H
am

m
in

g 
di

st
an

ce
 to

 n
ea

re
st

di
ffe

re
nt

ly
 c

la
ss

ifi
ed

 b
it 

st
rin

g

Expected Avg. Distance: 4.33

(a)

TRAIN rET TESTrET RAN D OM �ITS

0 50

|Φ(x)|

0 50

|Φ(x)|

0 50

|Φ(x)|

0

5

10

15

20

A
v
e
ra
g
e
 H
a
m
m
in
g
 d
is
ta
n
c
e
 t
o
 n
e
a
re
s
t

d
if
fe
re
n
tl
y
 c
la
s
s
if
ie
d
 b
it
 s
tr
in
g

0 50

|Φ(x)|

slope = 0.15

slope = 0.20
slope = 0.20

(b)

Figure 3: (a) Average Hamming distance to the nearest differently classified input bit string for
MNIST trained models calculated using the greedy search method. The average distance calculated
for random bits is close to the expected value of approximately 4.33. Further technical details for the
design of the neural networks are given in subsection 4.4.
(b) The linear relationship between |φ(x)| and h∗n(x) is consistent for networks trained on MNIST
data. To calculate the average distance at values of |φ(x)| within an interval, data was averaged across
equally spaced bins of 2.5 for values of |φ(x)|. Averages for each bin are plotted at the midpoint of
the bin. Points are only shown if there are at least 25 samples within the bin.

followed the design described in subsection 4.4. 400 Networks were trained for 20 epochs using the
Adam optimizer [67]; average test set accuracy of 98.8% was achieved.

For these trained networks, Hamming distances to the nearest bit string with a different classification
were calculated using the greedy search method outlined in subsection 4.1. These Hamming distances
were evaluated for three types of bit strings: bit strings taken from the training set, bit strings taken
from the test set, and randomly sampled bit strings where each bit has equal probability of 0 and
1. For the randomly sampled bit strings, the average minimum Hamming distance to a differently

classified bit string is very close to the expected theoretical value of
√

n/(2π lnn) (Figure 3a). By
contrast, for bit strings taken from the test and training set, the minimum Hamming distances to a
classification boundary were on average much higher than that for random bits, as should be expected:
training increases the distance from the data points to the boundary of their respective classification
regions and makes the network more robust to errors when classifying real-world data compared with
classifying random bit strings.

Furthermore, even for trained networks, a linear relationship is still observed between the absolute
value of the output neuron (prior to normalization by a sigmoid activation) and the average Hamming
distance to the nearest differently classified bit string (Figure 3b). Here, the slope of the linear
relationship is larger for test and training set data, consistent with the expectation that training should
extend the Hamming distance to classification boundaries for patterns of data found in the training
set.

Finally, we have explored the correlation between the distance of a training or test picture from the
closest classification boundary with its classification accuracy. Figure 4 shows that the incorrectly
classified pictures tend to be significantly closer to the classification boundary than the correctly
classified ones: the average distances are 1.42 and 10.61, respectively, for the training set, and
2.30 and 10.47, respectively, for the test set. Therefore, our results show that the distance to the
closest classification boundary is empirically correlated with the classification accuracy and with the
generalization properties of the deep neural network.

4.4 Experimental apparatus and structure of neural networks

Weights for all neural networks are initialized according to a normal distribution with zero mean
and variance equal to 2/nin, where nin is the number of input units in the weight tensor. No bias
term is included in the neural networks. All networks consist of two fully connected hidden layers,

8



Test Set Training Set

0 5 10 15 20 25 30 35
Distance

0 5 10 15 20 25 30 35
Distance

0%
20%

40%

60%

%
 o

f T
ot

al

0%
20%

40%

60%

%
 o

f T
ot

al

avg avg

avg avg

correctly classified
incorrectly classified

Figure 4: Histogram counting instances
of correctly and incorrectly classified
MNIST pictures shows that trained neu-
ral networks are far more likely to mis-
classify points closer to a classification
boundary for both the training and test
sets. Results are aggregated across 20
different trained neural networks trained
to classify whether digits are even or odd.
Networks are trained for 10 epochs using
the Adam optimizer.

each with n neurons (equal to number of input neurons) and activation function set to the commonly
used Rectified Linear Unit (ReLU). All networks contain a single output neuron with no activation
function. In the notation of section 2, this choice corresponds to σ2

w = 2, σ2
b = 0, n0 = n1 = n2 = n

and n3 = 1, and implies F ′(1) = 1. Simulations were run using the python package Keras with a
backend of TensorFlow [68].

5 Conclusions

We have proved that the binary classifiers of strings of n≫ 1 bits generated by wide random deep
neural networks with ReLU activation function are simple. The simplicity is captured by the following
two properties. First, for any given input bit string the average Hamming distance of the closest input

bit string with a different classification is at least
√

n/(2π lnn). Second, if the bits of the original
string are randomly flipped, the average number of bit flips needed to change the classification is
at least n/4. For activation functions other than the ReLU both scalings remain the same, but the
prefactor can change and can be exponentially small in the number of hidden layers.

The striking consequence of our result is that the binary classifiers of strings of n≫ 1 bits generated
by a random deep neural network lie with very high probability in a subset which is an exponentially
small fraction of all the possible binary classifiers. Indeed, for a uniformly random binary classifier,
the average Hamming distance of the closest input bit string with a different classification is one, and
the average number of bit flips required to change the classification is two. Our result constitutes
a fundamental step forward in the characterization of the probability distribution of the functions
generated by random deep neural networks, which is employed as prior distribution in the PAC-
Bayesian generalization bounds. Therefore, our result can contribute to the understanding of the
generalization properties of deep learning algorithms.

Our analysis of the MNIST data suggests that, for certain types of problems, the property that many
bits need to be flipped in order to change the classification survives after training the network. Both
our theoretical results and our experiments are completely consistent to the empirical findings in
the context of adversarial perturbations [69–74], where the existence of inputs that are close to a
correctly classified input but have the wrong classification is explored. As expected, our results show
that as the size of the input grows, the average number of bits needed to be flipped to change the
classification increases in absolute terms but decreases as a percentage of the total number of bits.
An extension of our theoretical results to trained deep neural networks would provide a fundamental
robustness result of deep neural networks with respect to adversarial perturbations, and will be the
subject of future work.

Moreover, our experiments on MNIST show that the distance of a picture to the closest classification
boundary is correlated with its classification accuracy and thus with the generalization properties of
deep neural networks, and confirm that exploring the properties of this distance is a promising route
towards proving the unreasonably good generalization properties of deep neural networks.

Finally, the simplicity bias proven in this paper might shed new light on the unexpected empirical
property of deep learning algorithms that the optimization over the network parameters does not
suffer from bad local minima, despite the huge number of parameters and the non-convexity of the
function to be optimized [75–79].
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