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We consider the random-design nonparametric regression model with long-range dependent errors that

may also depend on the independent and identically distributed explanatory variables. Disclosing a

smoothing dichotomy, we show that the ®nite-dimensional distributions of the Nadaraya±Watson

kernel estimator of the regression function converge either to those of a degenerate process with

completely dependent marginals or to those of a Gaussian white-noise process. The ®rst case occurs

when the bandwidths are large enough in a speci®ed sense to allow long-range dependence to prevail.

The second case is for bandwidths that are small in the given sense, when both the required norming

sequence and the limiting process are the same as if the errors were independent. This conclusion is

also derived for all bandwidths if the errors are short-range dependent. The borderline situation results

in a limiting convolution of the two cases. The main results contrast with previous ®ndings for

deterministic-design regression.
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1. Introduction

Let X1, X2, . . . be independent and identically distributed d-dimensional random vectors,

d 2 N, and Z1, Z2, . . . be real random variables such that the two sequences fX ig1i�1 and

fZig1i�1 are independent. Set (Z, X ) � (Z1, X1), so that Z and X are independent, and

suppose that for E � G(Z, X ) we have E(EjX ) � 0 almost surely, where G: R1�d 7! R is a

Borel-measurable function. Let Y be a real random variable with a ®nite mean, jointly

distributed with X. We consider the problem of estimating the regression function g(x) �
E(Y jX � x), x 2 Rd , using the (1� d)-dimensional observable sequence f(Yi, X i)g1i�1, given

by

Yi � g(X i)� Ei, where Ei � G(Zi, X i), i � 1, 2, . . . , (1:1)

under the assumption that X has a density function f with respect to the Lebesgue measure

on Rd and that the sequence fZig1i�1 of latent variables is a stationary Gaussian process with

zero mean and unit variance such that, for some 0 ,á, 1,
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r(i) � E(Z1 Zi�1) � L(i)

iá
, i � 1, 2, . . . , (1:2)

where L: [1, 1) 7! R is an eventually positive function, slowly varying at in®nity.

Condition (1.2) implies that the sequence fZig1i�1 exhibits long-range dependence in the

sense that the lagged autocovariances r(:) are not summable. Long-range dependence may

describe better than customary types of weak dependence the behaviour of many empirical

time series encountered, for example, in geophysics and econometric studies (Beran 1992,

1994; Robinson 1994). However, such a dependence structure of the data may have

signi®cant effects on the properties of statistical estimators. This is in contrast with the

typical situation of weakly dependent observations, in which estimators behave basically the

same way as with independent observations. In particular, Dobrushin and Major (1979) and

Taqqu (1979) have shown that the partial sum of n long-range dependent variables requires

a norming different from the usual n1=2 to have a non-degenerate asymptotic law and,

moreover, this law may not be normal.

We estimate g at the ®xed points x1, . . . , xl 2 Rd for some l 2 N when the sample

(Y1, X1), . . . , (Yn, X n) is available. Speci®cally, we investigate the asymptotic distribution

of kernel estimators of the vector (g(x1), . . . , g(xl)) and show that, if the amount of

smoothing is large in a speci®ed sense, meaning that the weighted average in (2.1) below is

taken over many observations, then the effect of dependence prevails in determining the

form of the asymptotic law. This is described in Theorem 1 in which the required norming

sequence does not further depend on the amount of smoothing. In the opposite case of

Theorem 2, when the amount of smoothing is small in the given sense, the estimators

behave asymptotically as if Z1, Z2, . . . were independent. Thus, depending on the size of

the smoothing parameter, the marginals of the asymptotic law are either completely

dependent or independent. The borderline case of the smoothing dichotomy found is shown

in Theorem 3 to result in a convolution of the limiting distributions in the two main cases.

The observed dichotomy is explained by a simple probabilistic fact. Namely, let

momentarily Ei � Zi, i � 1, 2, . . . , and consider an independent array X ni of row-wise

independent and identically distributed random variables with E(X ni) � ìn and

var(X ni) � ó 2
n, i � 1, . . . , n. Put Sn �

Pn
i�1 X niEi. Then Sn � ìn

Pn
i�1 Zi �Pn

i�1(X ni ÿ ìn)Zi �: S9n � S 0n. By Karamata's theorem var(S9n) � Cì2
n L(n)n2ÿá for some

constant C . 0 and var(S 0n) � nó 2
n. So, the asymptotic distribution of Sn is determined

either by S9n or by S 0n, depending on whether ì2
n L(n)n2ÿá � o(nó 2

n) or

nó 2
n � o(ì2

n L(n)n2ÿá). Theorems 1 and 2 convert this variance dichotomy into the

smoothing dichotomy when X ni � K(xÿ X i=bn), i � 1, . . . , n, for a suitable kernel

function K and a bandwidth sequence bn. Because of the local character of X ni, the

reasoning remains valid for the general case Ei � G(Zi, X i), i � 1, 2, . . . , under

appropriate natural conditions.

Some analogous phenomena were discussed for smoothing operations performed on long-

range dependent observations for density estimation. Hall and Hart (1990a) observed that

the mean integrated squared error of kernel estimators of a density from a long-range

dependent in®nite-order moving-average sequence incorporating a small bandwidth is

asymptotically equivalent to the mean integrated squared error of the same kernel estimator
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based on the same number of independent observations drawn from the same marginal

density. Ho (1996) has shown that the asymptotic law of a kernel estimator of a density

from long-range dependent observations depends on the amount of smoothing involved; see

also CsoÈrgoÍ and Mielniczuk (1995a) for the effect of long-range dependence with large

bandwidths. For the related problem of the bandwidth choice in long- and short-range

dependent cases see Hall et al. (1995b).

Theorem 1� is an analogue of Theorem 1 for fX ig1i�1 satisfying certain weak

dependence conditions in the special case when G(z, x) � G(z) for all (z, x) 2 R1�d . For

linear regression this situation received investigation in depth by Koul (1992); see also

Robinson and Hidalgo (1997) and many of their references for related work.

Theorem 2� derives the same conclusion as Theorem 2, by essentially the same proof,

for all bandwidths (as in the corresponding statement with independent errors) when the

errors in (1.1) are short-range dependent. This parallels Theorem 2 of CsoÈrgoÍ and

Mielniczuk (1995c) for ®xed-design regression with short-range dependent errors.

The present form of the errors in (1.1) was ®rst considered by Cheng and Robinson

(1994), who deal with the estimation of certain moment-type functionals. It allows for the

dependence between the error Ei and the variable X i. The nature of this is a compromise

between the restrictive assumption that fEig1i�1 is independent from fX ig1i�1 and a general

untractable assumption of dependence without an underlying structure. Furthermore, the

assumed form of the errors turns out to yield, for speci®c functions G, models frequently

considered in the statistical literature. For example, with h:, :i as the inner product in Rd ,

the censored regression model, introduced by Tobin (1958),

Yi � hb, X ii � Wi, if hb, X ii � Wi . 0,

0, otherwise,

�
i � 1, 2, . . . , (1:3)

where b 2 Rd is a ®xed unknown vector to be estimated and Wi � R(Zi) for some function

R: R 7! R, is easily seen to be a special case of (1.1). As Cheng and Robinson (1994)

pointed out, if S denotes the distribution function of W � R(Z) and If:g is the indicator

function, we have g(x) � hb, xi[1ÿ S(ÿhb, xi)]� �1ÿhb,xi w dS(w) and G(z, x) � fhb, xi �
R(z)gIfR(z) .ÿhb, xig ÿ g(x), (z, x) 2 R1�d if E(jR(Z)j) ,1.

In the univariate case (d � 1), a model parallel to (1.1) is regression with a deterministic

design and long-range dependent errors in which the sequence fX ig1i�1 is replaced by a

predetermined triangular array of partition points of an interval. The linear case has been

investigated by Koul and Mukherjee (1993) and Giraitis et al. (1994). For a general g such

a model was considered by Hall and Hart (1990b) and CsoÈrgoÍ and Mielniczuk (1995b,d)

when Ei � G(Zi), i 2 N. In particular, CsoÈrgoÍ and Mielniczuk (1995d) determined the

asymptotic distribution of kernel estimators of g. It turns out that regression estimators

behave very differently in the two models; this is discussed brie¯y in Section 3. The

problem of bandwidth choice in this setting is considered by Hall et al. (1995a).

It is natural to conjecture that suitable versions of the smoothing dichotomy will hold for

other forms of long-range dependent errors, such as (functions of) non-Gaussian moving

averages, and for other techniques of smoothing, different from the kernel method.
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2. Results and discussion

Let K0 be a univariate probability density and, for x � (x1, . . . , xd) 2 Rd, de®ne

K(x) � K0(x1) . . . K0(xd). Putting x=b � (x1=b, . . . , xd=b) for b . 0, we consider the

Nadaraya (1964)±Watson (1964) estimate of g(x):

ĝ n(x) �

Xn

i�1

K
xÿ X i

bn

� �
Yi

Xn

i�1

K
xÿ X i

bn

� � , x 2 Rd , (2:1)

where bn . 0 is a sequence of deterministic bandwidths tending to zero. Let

H j(z) � (ÿ1) j eÿz2=2 d j eÿz2=2=dz j, z 2 R, denote the jth Hermite polynomial,

j � 0, 1, 2, . . . , and j the standard normal density. If EfG2(Z, x)g,1 and

EfG(Z, x)g � 0 for some x 2 Rd , the function G(:, x) admits an L 2(R, j) Fourier±

Hermite expansion:

G(z, x) �
X1

j�m(x)

c j(x)

j!
H j(z), z 2 R, (2:2)

where the integer m(x) � minf j: c j(x) 6� 0g 2 N is called the Hermite rank of G(:, x). Let

x1, . . . , xl be different ®xed points in Rd . Along with the conditions in the ®rst paragraph of

the introduction, we assume throughout that for m � m(x j�) � minfm(x1), . . . , m(xl)g 2 N

we have má, 1. This is the familiar condition of Taqqu (1975) for the long-range

dependence of the sequence fG(Zi, x j�)g1i�1, under which it follows from results of

Dobrushin and Major (1979) and Taqqu (1979) that

amn

n

Xn

k�1

G(Z k , x1), . . . ,
Xn

k�1

G(Z k , xl)

 !
!D Y�m

m!
(cm(x1), . . . , cm(xl)), (2:3)

provided that the ®rst two conditions in C4 below hold, where

amn � (1ÿ má)(2ÿ má)

2m!

� �1=2
nmá=2

Lm=2(n)

and, understanding all convergence relations as n!1 unless otherwise speci®ed, !D denotes

convergence in distribution, while Y�m denotes the value at t � 1 of a Hermite process of

rank m, given by Taqqu (1979) for each argument t 2 [0, 1] as a multiple Wiener±ItoÃ

integral, so that E(Y�m) � 0 and Ef(Y�m)2g � 1 for all m 2 N. The random variable Y�1 is

normal, but Y�2 , Y�3 , . . . are not normally distributed.

We consider two situations that are opposite to each other and are determined by the

relative strength of dependence with respect to the amount of smoothing, in which both the

order of the norming constants and the limiting law are different for the estimator ĝ n. The

case of Theorem 1 is determined by having nmáLÿm(n) � o(nbd
n) in condition (2.5) below.

Setting r(0) � 1, by Karamata's theorem together with Mehler's classical formula

212 S. CsoÈrgoÍ and J. Mielniczuk



EfH n(Zi)H m(Z j)g � m!r m(jiÿ jj)änm, n, m � 0, 1, 2, . . .; i, j 2 N, (2:4)

where änm stands for Kronecker's symbol, an equivalent form of the condition is

(nbd
n)ÿ1 � o[varfPn

i�1G(Zi, x j�)=ng]. Here (nbd
n)ÿ1 is asymptotically proportional to

varfĝ n(x j�)g when the errors E1, E2, . . . in (1.1) are independent and identically distributed.

Hence under (2.5) such a variance will be dominated by the variance of the sample mean of

the errors in the present model (1.1). Since our L is ultimately positive, when d � 1 the ®rst

condition in (2.5) is the same as in Ho (1996) for density estimation. The case of Theorem 2

is determined by the reverse condition nbd
n � ofnmáLÿm(n)g � o(a2

mn).

Introducing the deviations ÄG
n (x) � E([

�fG(Z, x)ÿ G(Z, s)gKb n
(xÿ s) f (s) ds]2) �

Ef[E(fG(Z, x)ÿ G(Z, X )gKb n
(xÿ X )jZ)]2g and letting |x| be the Euclidean length of

x 2 Rd , the regularity conditions that are used in Theorem 1 are the following.

C1: K0 is a symmetric bounded probability density such that K0(x) � 0 for x =2 [ÿ1, 1].

C2: g is twice continuously differentiable in a neighbourhood of x j, j � 1, . . . , l.

C3: f (x j) . 0 and f is continuously differentiable in a neighbourhood of x j, j � 1, . . . , l.

C4: EfG(Z, x j)g � 0, EfG2(Z, x j)g. 0 and the function EfG2(Z, :)g is bounded in a

neighbourhood of x j, j � 1, . . . , l.

C5: min1< j< l minfm(x): jxÿ x jj < Eg � m for some E. 0 and max1< j< lÄ
G
n (x j)! 0.

While Theorem 2 does not require the ®rst part of C5, it does require stronger forms of

the smoothness conditions in the second part of C5 and in C3. Putting

jG9(z, x)j �
Xd

k�1

���� @G(z, x)

@xk

���� and jG 0(z, x)j �
Xd

j�1

Xd

k�1

���� @2G(z, x)

@xj@xk

����
for each z 2 R and x � (x1, . . . , xd) 2 Rd, these conditions are the following.

C6: f (x j) . 0 and f is twice differentiable in a neighbourhood of x j, j � 1, . . . , l.

C7: for each z 2 R outside of a set of Lebesgue measure zero, the function G(z, :) is

twice differentiable in a neighbourhood of x j such that E[supfjG9(Z, x)j2:

jxÿ x jj < E jg] ,1 and E[supfjG 0(Z, x)j: jxÿ x jj < E jg] ,1 for some E j . 0,

j � 1, . . . , l.

Now we can state the two main results of the paper for `̀ large'' and `̀ small'' bandwidths.

Theorem 1. Suppose that ám , 1 and conditions C1ÿC5 hold. If

nmáLÿm(n) � o(nbd
n) and the sequence fnbd�4

n g1n�1 is bounded, (2:5)

then

amn(ĝ n(x1)ÿ g(x1), . . . , ĝ n(xl)ÿ g(xl))!D Y�m
m!

(cm(x1), . . . , cm(xl)): (2:6)

Set k2 � � K2(u) du � (
� 1

ÿ1
K2

0(u) du)d and ó 2(x j) � k2 E(G2(Z, x j))= f (x j). Noting that

EfG2(Z, x j)g � E(E2jX � x j) � E(fY ÿ g(X )g2jX � x j), j � 1, . . . , l, we see that the

limiting distribution below is the same as if Z1, Z2, . . . were independent.
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Theorem 2. Suppose that ám , 1 and that C1, C2, C4, C6 and C7 hold. If

nbd
n � ofnmáLÿm(n)g, nbd

n !1 and nbd�4
n ! 0, (2:7)

then

(nbd
n)1=2(ĝ n(x1)ÿ g(x1), . . . , ĝ n(xl)ÿ g(xl))!D (ó (x1)N1, . . . , ó (xl)Nl), (2:8)

where N1, . . . , N l are independent standard normal random variables.

The borderline case between `̀ large'' and `̀ small'' bandwidths is described in the

following theorem, resulting in an asymptotic convolution of the two main cases.

Theorem 3. Suppose that ám , 1 and that C1, C2, C4, C6 and C7 hold. If

nbd
n

a2
mn

! C2
b for some constant 0 , Cb ,1 and nbd�4

n ! 0,

then

(nbd
n)1=2(ĝ n(x1)ÿ g(x1), . . . , ĝ n(xl)ÿ g(xl))

!D Cbcm(xl)
Y�m
m!
� ó (xl)N1, . . . , Cbcm(xl)

Y�m
m!
� ó (xl)Nl

� �
,

where N1, . . . , Nl are standard normal and Y�m is as in Theorem 1 such that the l � 1

random variables Y�m, N1, . . . , N l are independent.

The condition nbd�4
n ! 0 in (2.7) is the familiar condition for eliminating the bias; this

is what also brings in the derivatives in C2 and C7. (See Schuster (1972) for d � 1, whose

result for independent and identically distributed errors is routinely extended for a general

d.) The essence of the restrictions on the bandwidth sequence is most easily illustrated if we

consider the sequence bn � C=nä for some constants C . 0 and ä. 0. Then condition (2.5)

of Theorem 1 is satis®ed if 1=(d � 4) < ä,(1ÿ má)=d, so that we must have

má, 4=(d � 4) to give room for ä. Condition (2.7) of Theorem 2 is satis®ed whenever

maxf(1ÿ má)=d, 1=(d � 4)g, ä, 1=d.

Conditions C4, C5 and C7 are satis®ed if, for instance, G(z, x) � G1(z)G2(x), z 2 R,

x 2 Rd , for some Borel functions G1 and G2 such that EfG1(Z)g � 0, 0 , EfG2
1(Z)g,1,

G2(x j) 6� 0, so that cm(x j) � cmG2(x j) 6� 0, j� 1, . . . , l, where the constant cm is the ®rst

non-zero coef®cient of the Hermite expansion of G1, and G2 satis®es the corresponding

smoothness conditions. Here the ®rst condition in C5 is empty and the second holds if G2

is continuous in a neighbourhood of x j, while condition C7 holds if G2 is twice

differentiable in a neighbourhood of x j, j � 1, . . . , l.

Since limb#0 E([supfjG(Z, x)ÿ G(Z, y)j: jxÿ yj < bg]2) � 0 implies ÄG
n (x)! 0 in

general, the latter condition is satis®ed for all x 2 Rd in the Tobin model (1.3) if

EfR2(Z)g,1 and C2 holds, while C2 is satis®ed if R(Z) has a continuously differentiable

density. Since EfG(Z, x)g � 0 for all x 2 Rd , Theorem 1 becomes applicable for this
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model provided that the design variables satisfy C3 and that the ®rst part of C5 is satis®ed.

Of course, this part of C5 is trivial in general if m � m(x j�) � 1. Now, m(x) � 1 for some

x 2 Rd for the Tobin model if and only if c1(x) � EfG(Z, x)H1(Z)g ��
fz:R(z) .ÿhb,xigfhb, xi � R(z)gzj(z) dz 6� 0. It is not too dif®cult to see that this holds

whenever R(:) is a non-constant monotone function such that R(z) .ÿhb, xi for at least one

z 2 R. Condition C7 of Theorem 2 is also satis®ed if EfR2(Z)g,1 and the Lebesgue

measure of the set fz: R(z) � ÿhb, x jig is zero for all j � 1, . . . , l.

The remaining discussion for long-range dependent errors is for the special case when

G(z, x) � G(z), (z, x) 2 R1�d , so that (1.1) reduces to

Yi � g(X i)� Ei � g(X i)� G(Zi), i � 1, 2, . . . , (2:9)

for some Borel function G 2 L 2(R, ö) such that EfG(Z)g � 0. Let c j, j � 1, . . . , denote

the coef®cients in the Fourier±Hermite expansion of G and m denote its Hermite rank. The

next result is an analogue of Theorem 1 and shows that (2.6) still holds true in the model

(2.9) for some weakly dependent identically distributed explanatory variables X1, X2, . . .
with density f. We suppose that the Lebesgue density f i, j(x, y) of (X i, X j) exists for all i,

j 2 N, i 6� j, and consider weak dependence in terms of conditions imposed on the functions

pi, j(x, y) � f i, j(x, y)ÿ f (x) f (y) and their ®rst and second partial derivatives. For

x � (x1, . . . , xd), y � (y1, . . . , yd) 2 Rd and b . 0, introduce

p9i, j(x, y) �
X

1<k,n<d

���� @ pi, j(x, y)

@xk

����� ���� @ pi, j(x, y)

@ yn

����
 !

,

p 0i, j(x, y) �
X

1<k,n<d

X
u,v�0,1,2
u�v�2

���� @2 pi, j(x, y)

@xu
k @ yv

n

����,
Pn(x) �

X
1<i 6� j<n

pi, j(x, x), P9n,b(x) �
X

1<i 6� j<n

sup
jsj,j tj<b

j p9i, j(x� s, x� t)j,

P 0n,b(x) � max
1<i6� j<n

sup
jsj,j tj<b

j p 0i, j(x� s, x� t)j

and Qn(x) �P1<i 6� j<njpi, j(x, x)j jr(j jÿ ij)jm. Weak dependence of the type considered here

was entertained by Rosenblatt (1970) and Castellana and Leadbetter (1986) for one-

dimensional stationary sequences in the context of density estimation.

Theorem 1�. Suppose that the modelling assumption (2.9) and conditions C1ÿC4 and (2.5)

hold. If, furthermore,

P9n,b n
(x j) � O (n2), P 0n,b n

(x j) � o(bÿ2
n ),

Pn(x j) � o(n2) and Qn(x j) � ofn2ÿmáLm(n)g
(2:10)

for all j � 1, . . . , l, then we have (2.6) with cm(x j) replaced by cm.

The sum de®ning Qn is O fn2ÿmáLm(n)g if the factors j pi, j(x, x)j are all absent from it.
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Then it is easy to see, for example, that, if the sequence X1, X2, . . . is stationary and

p1,i�1(x j, x j) � O (iÿâ) for some â. 0 as i!1 for all j � 1, . . . , l, then the third and the

fourth conditions in (2.10) are satis®ed.

Finally, we return to the general model (1.1). The observation before the statement of

Theorem 2 suggests that the conclusion should hold, for all fbng such that nbd
n !1 and

nbd�4
n ! 0, when the errors E1, E2, . . . in (1.1) are short-range dependent. With the Hermite

rank m as de®ned between (2.2) and (2.3), this means that the covariances r(i) � E(Z1 Zi�1)

satisfy
P1

i�1jr(i)jm ,1 instead of (1.2). Provided that r(n)! 0 the last condition is

equivalent to EfG2(Z1, x j)g � 2
P1

i�1EfG(Z1, x j)G(Zi�1, x j)g,1, j � 1, . . . , l; see

Lemma 5 of Giraitis and Surgailis (1985).

Theorem 2�. Suppose that
P1

i�1jr(i)jm ,1 and that conditions C1, C2, C4, C6 and C7

hold. If nbd
n !1 and nbd�4

n ! 0, then we have (2.8).

Although the sources of the arising asymptotic normality are completely different,

Theorem 2� is a natural analogue of Theorem 2 in CsoÈrgoÍ and Mielniczuk (1995c) for

deterministic-design regression with short-range dependent errors.

We note in passing that the dichotomous conclusions of Theorems 1 and 2, manifesting

either asymptotic independence or full linear dependence, suggest a heuristically appealing

data-driven choice of a bandwidth b̂n in situations when the statistician has reason to

believe that the d-dimensional random explanatory variables X1, . . . , X n are independent or

weakly dependent and, at the same time, suspects possible long-range dependence in the

errors. Brie¯y, test successively for the independence of the variables ĝ n(x1), . . . , ĝ n(xl), for

example through some suitable bootstrap replicas, to ®nd the largest bn � b�n at which

independence is not rejected at a given level of signi®cance, and proceed to ®nd by the

many existing methods a suitable b̂n < b�n as if the errors were independent.

3. Deterministic and random design: a comparative discussion

For d � 1, the deterministic-design regression model

Y
(n)
i � g

i

n

� �
� G(Zi,n), i � 1, . . . , n, (3:1)

was considered by Hall and Hart (1990b) and CsoÈrgoÍ and Mielniczuk (1995d), where

fZi,ngn
i�1 satis®es (1.2) for every n. Here the random explanatory variables are replaced by

the grid 1=n, . . . , (nÿ 1)=n and G(z, x) � G(z), (z, x) 2 R2. The difference between the

asymptotic behaviours of similar estimators for deterministic and random regression becomes

particularly striking for long-range dependent errors. For a heuristic reason, note that

estimation of a local functional of the conditional distribution P(Y < :jX � x) involves

concomitants of the X i or the grid points falling in a neighbourhood of x. If the design is

deterministic, these concomitants form a block of consecutive observations. In contrast, if the

design is random, they are randomly chosen from the Y sequence. Consequently, the

dependence between the observations on which estimation is based is larger in the
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deterministic case. Therefore, one expects greater variability of the estimators for

deterministic designs in comparison to that with random designs.

Quantitative support of this intuition follows from Theorems 1 and 2 for the special

model (2.9) and from Theorem 2 of CsoÈrgoÍ and Mielniczuk (1995d). Namely, the latter

result shows that under (3.1) the correct norming factor for the Priestley±Chao regression

estimator ~gn(x) � (nbn)ÿ1
Pn

i�1 K([xÿ i=n]=bn)Yi to get a non-degenerate asymptotic

distribution is a�mn � (nbn)má=2=Lm=2(nbn). (As shown by CsoÈrgoÍ and Mielniczuk (1995c),

the norming factor for ~gn(:) is the classical (nbn)1=2 when the array of errors in (3.1) is

short-range dependent.) The same result holds for the exact analogue of the Nadaraya±

Watson estimator ĝ n in (2.1) for the model (3.1), i.e. for the estimator

ĝ n(x) � ~g n(x)[(nbn)ÿ1
Pn

i�1 K([xÿ i=n]=bn)]ÿ1. Since bn ! 0 and nbn !1, it is easy to

see that for the norming factor amn in Theorem 1 we have a�mn � o(amn) as well as

a�mn � of(nbn)1=2g under the conditions of Theorem 2. These facts completely con®rm the

intuition described above. Moreover, since the bias of the Nadaraya±Watson estimator is of

the same order under both deterministic and random designs, this remark suggests that

random design with the uniform density f on [0, 1] should be superior to the deterministic

design in (3.1) from the point of view of mean squared errors.

4. Proofs

Let !P denote convergence in probability, put Kb(x) � bÿd K(x=b) for any b . 0, and

introduce ĥn(x) � nÿ1
Pn

i�1 Kb n
(xÿ X i)Yi and f̂ n(x) � nÿ1

Pn
i�1 Kb n

(xÿ X i), so that

ĝ n(x) � ĥn(x)=f̂ n(x) for all x 2 Rd in (2.1).

Proof of Theorem 1. Since bn ! 0 and, by the ®rst of the two conditions assumed in (2.5),

nbd
n !1, note ®rst that f̂ n(x j)!P f (x j), j � 1, . . . , l, under C1 and C3 (Devroye and

Wagner 1979). Hence, by the vector form of Slutsky's theorem it clearly suf®ces to prove that

amn(ĥn(x1)ÿ g(x1)f̂ n(x1), . . . , ĥn(xl)ÿ g(xl)f̂ n(xl)) converges in distribution to

Y�m(cm(x1) f (x1), . . . , cm(xl) f (xl))=m!. This will follow from (2.3) once we show that

H�n (x j) � ĥn(x j)ÿ g(x j)f̂ n(x j) � f (x j)

n

Xn

i�1

G(Zi, x j)� oP

1

amn

� �
(4:1)

for every j � 1, . . . , l. For the rest of the proof, x denotes any one of x1, . . . , xl.

Write H�n (x) � ĥn(x)ÿ g(x)f̂ n(x) � I n(x)� Jn(x), where

I n(x) � 1

n

Xn

i�1

fYi ÿ g(X i)gKb n
(xÿ X i) and Jn(x) � 1

n

Xn

i�1

fg(X i)ÿ g(x)gKb n
(xÿ X i):

First we verify that, under conditions C2 and C3,

EfJ 2
n(x)g � O (b4

n � nÿ1b2ÿd
n ): (4:2)

We have EfJ 2
n(x)g � An(x)� Bn(x), where, after changing variables also in Bn(x),
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An(x) � 1

n

�
f (s)fg(s)ÿ g(x)g2 K2

b n
(xÿ s) ds

� 1

nbd
n

�
f (xÿ bnu)fg(xÿ bnu)ÿ g(x)g2 K2(u) du

and

Bn(x) � n(nÿ 1)

n2

�
f (xÿ bnu)fg(xÿ bnu)ÿ g(x)gK(u) du

� �2

: (4:3)

Taking the one- and two-term Taylor expansions of f (xÿ ubn) and g(xÿ ubn)ÿ g(x),

respectively, about x, we see by C1ÿC3 that Bn(x) � O (b4
n). Similarly, we get

An(x) � O (b2ÿd
n =n), establishing (4.2). Hence by the second condition in (2.5) it follows

that Jn(x) � O Pf(nbd
n)ÿ1=2g, and thus Jn(x) � oP(aÿ1

mn) by the ®rst condition in (2.5).

Next, we de®ne Win(x) � E(Ei Kb n
(xÿ X i)jZi) �

�
G(Zi, s)Kbn

(xÿ s) f (s) ds and claim

that

Ä(1)
n (x) � E I n(x)ÿ 1

n

Xn

i�1

Win(x)

 !2
8<:

9=; � 1

n2
E

Xn

i�1

Uin(x)

 !2
8<:

9=; � O
1

nbd
n

 !
, (4:4)

where Uin(x) � Ei Kb n
(xÿ X i)ÿ Win(x). Indeed, putting Wn(x) � E(EKbn

(xÿ X )jZ), by the

conditional independence of Uin(x) and U jn(x) given Zi and Z j, we have

Ä(1)
n (x) � 1

n
E[fEKb n

(xÿ X )ÿ Wn(x)g2] � 1

n
E[E(fEKb n

(xÿ X )ÿ Wn(x)g2jZ)]

<
1

n

�
EfG2(Z, s)gK2

bn
(xÿ s) f (s) ds:

Hence (4.4) follows by C1, C4 and that f is bounded near x by C3. Thus, by the ®rst

condition in (2.5), Ä(1)
n (x) � o(aÿ2

mn), whence I n(x)ÿ nÿ1
Pn

i�1Win(x) � oP(aÿ1
mn).

Finally, for x � x1, . . . , xl and f n(x) � Eff̂ n(x)g � � f (s)Kb n
(xÿ s) ds we show that

Ä(2)
n (x) � E

1

n

Xn

i�1

Win(x)ÿ f n(x)

n

Xn

i�1

G(Zi, x)

 !2
8<:

9=; � o(aÿ2
mn): (4:5)

Since f n(x)! f (x) by conditions C1 and C3 and amn

Pn
i�1G(Zi, x)=n � O P(1) by (2.3), this

then implies (4.1) and hence the theorem.

Setting vkn(x) � �fck(x)ÿ ck(s)gKb n
(xÿ s) f (s) ds, k 2 N, and using (2.2), (2.4),

bn ! 0, C1 and C5, so that m(s) > m if s is close enough to x, for all large n we get
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Ä(2)
n (x) � 1

n2
E

Xn

i�1

�
fG(Zi, x)ÿ G(Zi, s)gKb n

(xÿ s) f (s) ds

 !2
8<:

9=;
� 1

n2
E

Xn

i�1

X1
k�m

H k(Zi)

�
ck(x)ÿ ck(s)

k!
Kb n

(xÿ s) f (s) ds

 !2
8<:

9=;
� 1

n2

X
1<i, j<n

X1
k�m

r k(jiÿ jj)
k!

v2
kn(x)

<
1

n2

X1
k�0

v2
kn(x)

k!

X
1<i, j<n

jr(jiÿ jj)jm

� E

�
fG(Z, x)ÿ G(Z, s)gKbn

(xÿ s) f (s) ds

� �2
( )

1

n2

X
1<i, j<n

jr(jiÿ jj)jm

by the Parseval equality. Hence the second condition in C5 yields Ä(2)
n (x) �

ÄG
n (x)O fnÿmáLm(n)g � ofnÿmáLm(n)g, which is (4.5). u

Proof of Theorem 1�. Since, with f n � E( f̂ n) as in (4.5), f n(x j)! f (x j) by C1 and C3 and

since, as we point out at the end of the proof, f̂ n(x j)ÿ f n(x j)!P 0, j � 1, . . . , l, we may

follow the outline of the proof of Theorem 1. Again, x is any one of x1, . . . , xl.

To establish (4.2), we now have EfJ 2
n(x)g � An(x)� B�n (x), where B�n (x) �

Bn(x)� Cn(x) with Bn(x) � O (b4
n) as in (4.3) and Cn(x) de®ned by the formula

1

n2

X
1<i6� j<n

�
pi, j(xÿ bnu, xÿ bnv)fg(xÿ bnu)ÿ g(x)gfg(xÿ bnv)ÿ g(x)gK(u)K(v) du dv:

Hence a two-term expansion of g about x and a one-term expansion of pi, j about (x, x) yield

by C1, C2, C3 and the ®rst condition in (2.10) that Cn(x) � O (b4
n), giving (4.2). Since now

Win(x) � Ei f n(x) � G(Zi) f n(x), i 2 N, the last step of the proof of Theorem 1 is vacuous,

and it suf®ces to establish that Ä(1)
n (x) � o(aÿ2

mn) directly for the present G. Elementary

calculation shows that

Ä(1)
n (x) � E(E2)

n
varfKb n

(xÿ X )g � 1

n2

X
1<i6� j<n

E(EiE j) pi, j(x, x)

� 1

n2

X
1<i 6� j<n

E(EiE j)

�
fpi, j(xÿ bnu, xÿ bnv)ÿ pi, j(x, x)gK(u)K(v) du dv:

Since the ®rst term is o(aÿ2
mn) by C3 and (2.5) and since jE(E1E1�k)j � jr(k)jmf1� o(1)g as

k !1 and
P

1<i 6� j<njE(EiE j)j � O fn2ÿmáLm(n)g, we see by a two-term expansion of the

pi, j about (x, x) that Ä(1)
n (x) � o(aÿ2

mn), as desired, in view of (2.10).
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Finally, note that, if all the factors involving E are replaced by 1, then Ä(1)
n (x) becomes

varff̂ n(x)g and is o(1) by (2.10). Thus, consistency of f̂ n(x) follows. u

Proof of Theorem 2. Fix any u1, . . . , ul 2 R such that u2
1 � � � � � u2

l . 0. Let

v1 � u1=ó�, . . . , v l � ul=ó�, where ó 2� �
P l

j�1u2
jó

2( j) with ó ( j) � f (x j)ó (x j). The

beginning of the proof of Theorem 1 can be followed by the consistency of f̂ n(x j),

j � 1, . . . , l, and, by (4.2), the third condition in (2.7) and the CrameÂr±Wold device it

suf®ces to prove that

Sn � (nbd
n)1=2

n

Xn

k�1

Vnk(X k)!D Z,

where Vnk(x) �P l
j�1v jG(Z k , x)Kb n

(x j ÿ x), x 2 Rd , k 2 N.

Introducing the random variables ìn � E(SnjZ1, . . . , Z n) and ó 2
n �

bd
ns2

n=n � var(SnjZ1, . . . , Z n), this will follow by Slutsky's theorem if we show that

ìn!P 0 and ó 2
n!

P
1, (4:6)

together with (Sn ÿ ìn)=ó n!D Z. By the moment convergence theorem this, in turn, follows

if we show that ön(t) � Qn
k�1

�
expfitsÿ1

n X nk(x)g f (x) dx!P exp(ÿt2=2) for each ®xed

t 6� 0, where i is the imaginary unit and X nk(x) � Vnk(x)ÿ � Vnk(s) f (s) ds. Since�
X nk(x) f (x) dx � 0, k � 1, . . . , n, and

Pn
k�1

�
X 2

nk(x) f (x) dx � s2
n for all n 2 N, the last

convergence relation follows if sÿ2
n

Pn
k�1

�
fx:jX nk (x)j>EsngX

2
nk(x) f (x) dx!P 0 for each E. 0.

This random Lindeberg condition is satis®ed, once (4.6) is proved, if we show that

Ln(E) � bd
n

n

Xn

k�1

�
fx:(bd

n)1=2jX nk (x)j>En1=2g
X 2

nk(x) f (x) dx!P 0 for each E. 0: (4:7)

The proof of (4.6) is partially based on the ergodic theorem. Since the sequence fZ kg1k�1

is ergodic and hence the transformed sequences fh p, j(Z k)g1k�1 are also ergodic, where

h1, j(z) � jG(z, x j)j, h2, j(z) � G2(z, x j), h3, j(z) � jG9(z, x j)j, h4, j(z) � supfjG 0(z, x)j:
jxÿ x jj < E jg and h5, j(z) � supfjG9(z, x)j2: jxÿ x jj < E jg for some E j . 0, z 2 R, by C4

and C7 it implies that

1

n

Xn

k�1

h p, j(Z k)! Efh p, j(Z)g almost surely for p � 1, . . . , 5 and j � 1, . . . , l: (4:8)

To prove (4.6), set E jn(z) � �fG(z, x j ÿ bns) f (x j ÿ bns)ÿ G(z, x j) f (x j)gK(s) ds and

ç jn(z) � � G2(z, x j ÿ bns) f (x j ÿ bns)K2(s) dsÿ G2(z, x j) f (x j)k2, and note that by expand-

ing G, in its vector variable, and f about x j and using elementary inequalities, conditions

C1, C6 and (4.8), as applied with p � 1, 3, 4 for the ®rst conclusion and p � 2, 5 for the

second, yield

max
1< j< l

1

n

Xn

k�1

jE jn(Z k)j � O (b2
n) and max

1< j< l

1

n

Xn

k�1

jç jn(Z k)j � O (bn) (4:9)

almost surely. First we consider the statement ìn!P 0. We have
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ìn � (nbd
n)1=2

n

Xn

k�1

Xl

j�1

v j

�
G(Z k , x) f (x)Kb n

(x j ÿ x) dx

�
Xl

j�1

v j f (x j)
(nbd

n)1=2

amn

amn

n

Xn

k�1

G(Z k , x j)� (nbd
n)1=2

n

Xl

j�1

v j

Xn

k�1

E jn(Z k)

�: ì(1)
n � ì(2)

n :

(4:10)

Thus, by (4.9) and the third condition in (2.7), ì(2)
n � O f(nbd�4

n )1=2g � o(1) almost surely,

while ì(1)
n !

P
0 by (2.3) and the ®rst condition in (2.7). Similarly, by simple calculation, by the

second relation in (4.9) and by (4.8) with p � 2,

ó 2
n �

k2

n

Xn

k�1

Xl

j�1

v2
j G

2(Z k , x j) f (x j)� O (bn � bd
n)! 1

ó 2�
Xl

j�1

u2
jó

2( j) � 1 almost surely.

Finally, to prove (4.7), put Rn(x) � [x1 ÿ bn, x1 � bn] 3 � � � 3 [xd ÿ bn, xd � bn] for

x � (x1, . . . , xd) 2 Rd . Using the convexity of the square function twice and setting

I
jE
nk(x) � I

bd
n

(nbd
n)1=2

jv jG(Z k , x)Kb n
(x j ÿ x)j�

Xl

j�1

����v j

�
G(Z k , s)Kb n

(x j ÿ s) f (s) ds

����
0@ 1A> E

8<:
9=;

for x 2 Rd, for all n large enough we obtain Ln(E) < 2lfL�n (E)� W�ng, where

W�n �
bd

n

n

Xn

k�1

Xl

j�1

v2
j

�
Rn(x j)

G(Z k , s)Kb n
(x j ÿ s) f (s) ds

 !2

� O (bd
n � bd�2

n � bd�4
n ) � o(1)

almost surely and

L�n (E) � bd
n

n

Xn

k�1

Xl

j�1

v2
j

�
Rn(x j)

I
jE
nk(x)G2(Z k , x)K2

bn
(x j ÿ x) f (x) dx

� 1

n

Xn

k�1

Xl

j�1

v2
j

�
[ÿ1,1]d

I
jE
nk(x j ÿ bnu)G2(Z k , x j ÿ bnu) f (x j ÿ bnu)K2(u) du:

Introducing h j(z) � jv jj supfjG(z, x)j: jxÿ x jj < E jg and g j(z) � v2
j supfG2(z, x):jxÿ x jj

< E jg, z 2 R, where the E j . 0 are those in C7, j � 1, . . . , l, and

h(z; x) �
Xl

j�1

C j g j(z)I K�h j(z)�
Xl

i�1

Ci hi(z) > x

 !
, z 2 R, x . 0,

where K� � supfK(u): u 2 [ÿ1, 1]dg,1 and C j � supf f (x): jxÿ x jj < E jg,1,

j � 1, . . . , l, it is now easy to see that for all n large enough,

Ln(E) < 2lk2 1

n

Xn

k�1

h(Z k ; E(nbd
n)1=2)� 2lW�n :
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Now ®x any x . 0 and by the second condition in (2.7) choose n so large that nbd
n > x2.

Then Ln(E) < 2lk2 nÿ1
Pn

k�1 h(Z k ; Ex)� 2lW�n . Hence, by a ®nal application of the ergodic

theorem, lim supn!1 Ln(E) < 2lk2Efh(Z; Ex)g almost surely for all E. 0 and x . 0. SinceP l
j�1CjE(gj(Z)) ,1 by C7, we have Efh(Z; Ex)g # 0 as x!1. Whence

limn!1 Ln(E) � 0 almost surely for each E. 0. u

Proof of Theorem 2�. Long-range dependence and the ®rst condition in (2.7) are used in the

proof of Theorem 2 only at one single (but crucial) place, namely when showing that the ®rst

term ì(1)
n of the conditional bias ìn in (4.10) is negligible. The entire proof is otherwise valid

for any stationary Gaussian sequence fZkg1k�1 under the rest of the conditions. Setting
~Sn(x j) �

Pn
k�1G(Z k , x j)=n1=2, we have

Ef(ì(1)
n )2g � bd

n

X
1< j,k<1

v jvk f (x j) f (xk)Ef~Sn(x j)~Sn(xk)g < bd
n l
Xl

j�1

v2
j f 2(x j)Ef~S2

n(x j)g:

Since Ef~S2
n(x j)g < EfG2(Z, x j)g � 2

P1
k�1jEfG(Z1, x j)G(Z1�k , x j)gj and, using (2.4) and

the present short-range condition, the second term of this bound is not greater than

2EfG2(Z, x j)g
P1

k�1jr(k)jm ,1, we see that Ef(ì(1)
n )2g � O (bb

n). u

Proof of Theorem 3. An inspection of the proof of Theorem 2, with a basic point emphasized

in the proof of Theorem 2�, shows that, if we set

I�n (x) � (nbd
n)1=2

f (x)
In(x)ÿ ì�n (x) � (nbd

n)1=2

nf (x)

Xn

k�1

G(Zk , X k)Kbn
(xÿ X k)ÿ ì�n (x),

where

ì�n (x) � ì(1)
n (x)

f (x)
� (nbd

n)1=2

n

Xn

k�1

G(Zk , x), x 2 Rd ,

then the asymptotic distribution is determined by the relation

(nbd
n)1=2(ĝ n(x1)ÿ g(x1), . . . , ĝ n(xl)ÿ g(xl)) � (I�n (x1)� ì�n (x1), . . . , I�n (xl)� ì�n (xl))

� oP(1):

This holds under the conditions of Theorem 3, using only the implication that nbd
n !1 of

the `̀ borderline'' condition (nbd
n)1=2=amn ! Cb, where, putting x � (x1, . . . , xl), we have

I�n (x) � (I�n (x1), . . . , I�n (xl))!D (ó (x1)N1, . . . , ó (xl)Nl) and, in fact, with h:, :i l as the inner

product in R l,

ö�n (s; x) � E(eihs, I�n (x)i l jZ1, . . . , Z n)!P
Yl

j�1

eÿó
2(x j)s2

j=2 �: öx(s) (4:11)

for all s � (s1, . . . , sl) 2 R l. The present `̀ borderline'' condition implies by (2.3) that
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ì�n (x)!D Cb

Y�m
m!

(cm(x1), . . . , cm(xl)): (4:12)

Denoting the characteristic function of the last limit by øx(:), since the random variable

ì�n (x) is measurable with respect to the ó-algebra generated by Z1, . . . , Zn, for the 2l-

dimensional random vector (I�n (x), ì�n (x)) we obtain

E(eih(s, t),( I�n (x),ì�n (x))i2 l ) � E(ö�n (s; x) eih t,ì�n (x)i l )! öx(s)øx(t)

for all s, t 2 R l, where the convergence results from (4.10), (4.11) and an application of the

moment convergence theorem. This implies the desired conclusion. u
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