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Abstract

This paper uses the concept of the triad census first introduced by Holland

and Leinhardt, and describes several distributions on directed graphs.

Methods are presented for calculating the mean and the covariance matrix of

the triad census for the unifonn distribution that conditions on the number

of choices made by each individual in the social network. Several complex

distributions on digraphs are approximated, and an application of these

methods to a sociogram is given.
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1. Introduction

This paper discusses some recently developed methods for the analysis

of social networks. The directed graph, or more briefly "digraph'T, a set

of "nodes" or "paints" and a set of directed "lines" or "edges" connecting

pairs of nodes, is the basic mathematical concept in this paper.

This paper utilizes concepts of graph theory which have been found

useful in discussing social networks. Recently, many structural models of

social science have adopted the graph theory notation. These concepts will

be introduced as needed in this paper, without going into a full exposition.

Those readers unfamiliar with these ideas will find Harary, Norman, and

Cartwright (1985) a valuable reference.

In a digraph, node i. and node j are connected with a directed line

running from i to j, if and only if person i chooses person j according to

the sociometric choice criterion employed. Note that the d.igraph defined

here is a "binary" directed graph. The "strengths" attached to individual

choices are irrelevant. A binary digraph does not allow signed choices

(each line is designated +1 or -1) or multiple choices (each line receives

a value). It is also iortant to note that a directed line from node i to

node j does not rule out the possibility of a directed line from node j to

node i.

The central analytical tool in this presentation is the triad census,

introduced by Holland E Leinhardt (1970). The main interest in this paper

is the random directed. graph distribution obtained as a result of condition-

ing on the number of choices made by each person. Under this distribution,

all social networks which have exactly the specified number of choices for

each person are equally likely.
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Sections 3 and L of this paper are devoted to brief discussions of

various random directed graph distributions and the triad census. Section

5 shows how to calculate the first two nnnents of the triad census under

the digraph distribution mentioned above. An example of a social network

is given in section 6, and then analyzed with the distribution.

2. Notation and Definitions

Let g denote the number of members in the group. Order the individuals

in the group from 1 to g in an arbitrary manner. Define the (gxg) sociomatnix

as a representation of a labeled binary directed graph. (A different order-

ing of the individuals produces a sociomatrix which differs from ) by a simul-

taneous row-column permutation.) The notation i -* j imples that in the digraph

there is a directed line from node i to node j. Let the (i,j) entry of X be

defined as follows:

X _{lifiJ
0, otherwise.

Self-choices are not allowed; consequently, the diagonal elements of X,

i 1,2,... ,g, remain empty, or conveniently are set to zero.
R'o sets of quantities associated with X are of particular interest to

the investigator of the group. The outdegree of node i, written X5, is the

nunber of lines in the digraph originating at node i. The indegree of node j,

written X1, is the number of lines in the digraph tenninating at node 5. The

row sums and column sums, respectively, of the sociomatrix give the outdegree

and indegree of each node. These two sets of quantities {X+} and {X+5} may

be calculated as follows:

E N.. ; il, 2, ..., g

and
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E X.. ; jl, 2, ..., g.

In a group of size g, the rnther of choices made by each person and the

niriber of choices rece:i.ved by each person, the outdegree and inde'ee,

respectively, take a value between 0 and (g-l).

A mutual relationship between person i and person j exists when i j
and j • i in the digraph. The mutual bond is denoted by i j. In the

sociorratrix N, this situation occurs when l and x..rl. An asyimietnic

relationship occurs if and only if i j or j i but there is no mutual

relationship present. A null relationship between i and j occurs if there

is neither a mutual nor an asyretric bond between these persons. Let N,

A, and. N, respectively, be the niinber of mutual, asyimietric, and null

relationships in the group.

It is possible to represent each of these three relationships graphi-

cally. These representations of pairs of nodes are conunonly referred to as

dyads. Each pair of points, and the lines connecting then, are isomorphic

to one of these three representations; consequently, the three dyad types

are often referred to as isorrorphism classes. The classes are named null,

asynirnetric, and mutual to correspond to the sociological concepts. Figure

2-1 illustrates the dyad types.

Null

• Asynvnetric

•( >• Mutual
Figure 2-1: The three Isoncrphism classes for Digraphs with g2 (i.e., the

Dyad Types). Figure taken from Holland and Leinhardt (1976).
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Now consider all possible isorrorphism classes of triples of points,

or triads. By enuneration, it is easy to show that there are 16 classes.

These are illustrated in Figure 2.2. The naming convention employed in

the figure was introduced by Holland and Leinhardt (1970), and uses the

nuther of mutual, asy7nnetnic, and null dyads within each triad as its

basis.

In a digraph with g nodes, there are () triads formed by selecting

each triple of nodes and all lines connecting them. Suppose each of these

tria.ds is examined in turn, and the isomorphism class of each recorded.

Let Tu denote the nuiriber of triads of type u Cu ranges over the 16 triad

types shown in Figure 2-2). The triad census T is the 16 component vector

defined by

T z CT003, T012, .., T300).

Adhering to an established convention, the ordering of the components of T

is as follows:

003, 012, 102, 021D, O2lU, 0210, 11113, lllU

030T, 0300, 201, 12013, l2OlJ, 1200, 210, 300. (2.1)

The trailing letters U, C, D, and T stand for, respectively, up, cyclic,

down, and transitive. The triad census is discussed in more detail in

section 4.

3. Random Digraph Distributions

In this section several distributions on digraphs are described.

Simple distributions are presented first, followed by conditional uniform

distributions of increasing complexity. The probability mass functions .
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Figire 2.2: The 16 Isonerphism Classes for di'aphs with gz3 (i.e., the
Thiad Types). Thiad naming convention: first digitnuither of mutual
dyads; second digitrnui±er of asvrretric dyad; thinl gitnuither of null
dyads; trailing letters firther differentiate anong triad types.
taken from Holland and Leinhait (1976).

003/
012

I. •fr/ •t\ A
102 02W 021U 021C

__ __ A A•c>. • ->. • >.
hID tHu 0301 030C'

_ A A A•c S •4->S •t-S S-C )S
201 120D 120U 120C

A
210

a

S-c-->.
300



—6—

defined here are. not used in latter sections of this paper; however, a

review of the distributions will enable the reader to better understand

the calculation in section 5 of the first two moments of the triad

census.

Define Dg as the set of all labeled binary directed graphs on g

nodes. A sociornatrix X will denote the random digraph generated by the

distribution of interest. A possible value of X will be denoted by x,

with elements x1. Most of. the distributions will be described in terms

of X, whose elements are X...
1]

Some of the material presented in this section is bon'owed from

Holland (1972).

A. Simple Distributions on

Dg nay be considered a finite set with 2g-uj elements. The uniform

distribution, U, on Dg with probability mass function

fXx} - (2g(g-l))-l for all x , (3.1)

considers all elements of Dg as equally likely. It is perhaps simpler

to describe the as independent, Bernoulli random variables with

1/2 ; ij
P{X..=l}

ij (3.2)

A digraph is easily simulated under this distribution using (3.2).

The uniform distribution may be generalized to a family of Bernoulli

distributions on Dg Specifically, let

ij
P{X..zl}

(3.3)

where 0 S c 1. This distribution permits some directed lines in the

digraph to have greater probabilities of being present than other lines.

If
Prl/2

for all if, then U is obtained. After specifying the full set
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of p.., these distributions are also easily simulated using uniform

pseudo-random numbers.

Several classes of uniform distributions on digraphs can be formed

by conditioning U on certain functions of X fixed at specific values.

Let r E x., the total number of directed lines in the digraph.
3_J

J

Define the random variable C as the number of lines in the random

sociomatrix X. The simplest conditional uniform distribution conditions

on the random variable C.

The U C z is the conditional uniform distribution which gives

equal probability to all digraphs with C lines and zero probability to

the elements of Dg with C It has probability mass function

if xC
P{Xx) = * C )

0 , othenqise. (3.)

For computer simulation, it is more informative to consider Uf Cx÷÷

as allocating C directed lines at random to the g(g-l) possible edges

without replacement.

B. The UJIL4N Distribution

The U Mm, Ama, N=n distribution is the conditional uniform distribu-

tion which puts equal probability on all digraphs in Dg with Nm mutual,

Ama asymmetric, and Nm null dyads. Note that unless m+a+n(), the

subset of digraphs of Dg with the given values of N, A, and N will be

empty. The U MAN distribution has been popularized by Holland and Leinhardt.

It provides a large aiicunt of conditioning, and calculations are made more

• easily than under other conditional distributions.

To find the probability mass function of X under U MAN, number the

•() pairs of nodes in the digraph from 1 to (). Choose in of these numbers
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.
at random and without replacement. Mutual dyads are assigned to the m

pairs of nodes corresponding to the chosen numbers. From the remaining

(g)_ numbers, select a nujrfbers also at random and without replacement

as asymnetnic dyads. The direction of each of these asymneiric dyads

is decided randomly (e.g., by tossing a fair coin). The remaining pairs

whose numbers have not been chosen, are assigned null dyads. Thus UJ MAN

is given by I

1 / () -l
x1 rj ,

2
; if Mzm, Ma, Nn'2 m. a! n!

A

0 ; otherwise. (3.5)

This distribution will be compared to the irore complex uniform conditional

distributions on digraphs in section 3-E.

C. The U {X.} distribution

The IJ {X. rr. } distribution is the uniform distribution conditional1+ 1.

on a fixed set of outdegrees. Equal weight: is given to al.l d.igraphs in

Dr with X1=r1, X2rr2,..., X . Each r. may take on all integerg g
values between 0 arid (g-l). Sociometric interpersonal preference data may

be collected under either a "fixed choice" cr a "free choice" procedure.

In a fixed choice experiinent, the investigator may instruct each member in

the group to "Name your four best friends in the group". If each group

member fully cooperates then the outdegree of each node is fixed at a

specific value. A free choice experhnent places no restrictions on the

number of individuals chosen by each group member. In either situation,

the UI {X.÷} distribution is very useful in calculations because it allows

the investigator to "control' for the outdegree of each node. This outdegree

adjustment removes the effects of the procedure used to gather the data.
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The U fX1+rr} distribution has probability mass function

—1

11(g-l) jf x. Zr. for all i,
.17. 1+1/1 1

L o otherwise. (3.6)

uJ {X+} may be generated by regarding each row of X as stocl-iastically

independent. If denotes the th row of X, then r ones are distributed

at random and without replacement to the (g-l) ssib1e locations in

(remember X..rO). When all the r are ecual to a fixed value, r, (3.6)

simplifies to

I
-l -g

) ; if x1÷zr, i1, 2, ..., g

P{Xx} z
0 ; ptherwise. (3.7)

D. The UI{X+.} distribution

The U {X÷.zc.) distribution is identical to the UI {X.} distribution

excelit that the conditioning is on the set of indegrees of X. The probabi-

lity mass function of is

( -l
ill g—l

) ; if x.rc. for all j

I
P{Xrx}

LU ; otherwise. (3.8)

This distribution may be simulated in a manner similar to U fX.} by regard-

ing the columns of X as stochastically independent. Conditioning on the set

of indegrees of the digraph is not as useful as conditioning on the outdegrees;

however, using the calculations of the means and variances of the triad

census developed in section 5 of this paper, the UI {X+ } distribution is

helpful in approximating rrore complex conditional uniform distributions.
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E. Complex Conditional Distributions

There are several highly important conditional unifom distributions

that are so complex that no simple way exists for generating random digraphs

with these distributions. This section briefly discusses several of these.

The U{X1},{X÷.} distribution simultaneously conditions on both the

indegrees and the outdegrees of the digraph. All digraphs with the speci-

fied values of {X.} and {X. } are equally J.i]cely. This distribution is

extremely important in sociometric data analysis, since it controls for both

the choices made by each group member and choices received. Ford and

FuTherson (1962) give necessary and sufficient conditions for the existence

of at least one element in Dg with the specified outdegrees and indegrees.

Unfortunately, no one has been able to develop a sophisticated technqiue to

simulate this distribution.

Also worth noting is the U N, {X1} distribution.. Since E C

and C-.2M = A, this distribution also controls tile total number of choices

made and the number of asignetric choices. Little is known about

even though it is important.

Perhaps the most important distribution in sociometric data analysis

is the UM,{X.},{X.} distribution. Its value derives from the fact that

it controls for choices-made, choices-received, and mutuality. As with

UjM,{X+}, and U{X+} {X+} there is no sophisticated way to generate

random sociomatrices under this distribution.

To reiterate, there are many possible distributions on Dg• At the

present time, only a few of these distributions are fully understood. The

UIMAN distribution was chosen by Holland and Leinhardt (1970) because it

best approximated the UN,{X+}, fX.} distribution. Unfortunately, it does
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not control for either the set of indegrees or outdegrees in the digraph.

The attitude taken in this paper is that although UI MAN is the most complex

uniform distribution in use at present, sociometric data analysis should

not overlook the information to be gained from considering the

UI{X.} and distributions.

4. The Thiad Census

The triad census has been effectively used in the analysis of socio-

metric data, reducing the entire socionatrix X to a set of 16 surruary

statistics. In sections B and C, sunmiarizing some of the earlier work of

Holland and Leinhardt, various aspects of the triad census are discussed.

A. Naming Conventions

The U MAN distribution has been the only distribution employed for

computing the first and second moments of the triad census. Holland and

Leinhardt (1971), Davis (1970), and Davis and Leinhardt (1972) have used

the first 2 moments of the triad census for testing structural hypothesis

concerning social networks. Consequently, the convention for labeling the

16 components of the triad census utilized in Figure 2.2 is well established

in the literature, but impractical in the discussion of the UI {X+} distribu-

tion. The labels should corrniunicate the outdegree of each node in the triad,

rather the number of mutual, asyimetric and null dyads. Figure 4.1 illustrates

the 16 isomorphism classes for 3-subgraphs with both the UIMAN and UI{x+}

designations. The trailing letters in the figure, N, A, C, and T, respectively,

stand for mutual, asyninetric, cyclic and transitive.

So as not to confuse the reader familiar with the UIMAN naming convention,

the UI {X1÷} labeling scheme will not be employed in this paper. However, a

Icowledge of this new scheme will aid in the interpretation of the calcula-

tions in section 5.
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Figure 4.1: The 16 isorrorphisin classes for 3-subgraphswithUtX÷} labeling.
The label directly under each triad is defined by the number of rnutuals,
asymnetric, and null dyads in the triad (see Figure 2.2). The label in
parentheses is based on the outdegree of each node in the triad: first
digit nunber of nodes with outdegree equal to 2; second digit = number
of nodes with outdeee equal to 1; third digit number of nodes with
outdegree equal to 0; trailing letters further differentiate triad types.

•
003
(f6)

012
(012)

IS. •/\ •/\ A
102 0210 021U 021C

(02111) (102) (021A) (021C)

_ _ A A)-• • >5.
1110 tHU 0301 030C'
(03011) (DIM) (fliT) (030C)

/ IN. A A
.-c >-. •c—> •—e S-C )rS

201 120D 120U 120C

(32011) (120A) (201) (12(X)

A
210
(210)
e

300
(300)
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B. Linear Combinations of the Thiad Census

Many quantities can be determined by ta]d.ng linear combinations of

the 16 triad frequencies of T. Suppose 2. is a vector with 16 elements.

A linear combination of T will he denoted

9,' T I 2. T
-. - u u (4.1)

where the subscript u runs over the 16 triad types enumerated in (2.1).

Denote the variance of the {X. } by and the variance of theout
tX .} by where

+3 in

ut z (l/g) I (X -

and

= (l/g) (X . -
in

J

Among the quantities calculable from T are g, N, A, N, C and S?, and

S2t the variances of the indegrees and outdegrees of the digraph. To

compute g, recall that there are () triads in a digraph with g nodes.

Therefore, if i'e(l,l,. . .,l), then

e T I
Tu

= () (4.2)
U

and g may be found by finding the single real root of the cubic equation

[(g) - T 0]
3 u

u

Holland and L6inflardt (1976) discuss in detail the calculations

involved in finding the values of M, A, N, C, S and ut from the triad

census. These details will not be reproduced here. Table (4.1) presents

the various 2. vectors needed to calculate these quantities, and the last

row of the table gives I 2. T for each vector.u uu
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Table 1t.1: Selected WeitLeg VecLors,

.

TRIAD
1YP m a n o bU U U U OUt,u

003 1 0 0 3 0 0 0

012 1 0 1 2 1 0 0

102 1 1 0 2 2 0 0

02113 1 0 2 1 2 0 1

021U 1 0 2 1 2 1 0

021C 1 0 2 1 2 0 0

11113 1 1 1 1 3 1 0

hiD 1 1 1 1 3 0 1

030T 1 0 3 0 3 1 1

0300 1 0 3 0 3 0 0

201 1 2 0 1 4 1 1

12013 1 1 2 0 4 2 1

1201J 1 1 2 0 4 1. 2

120C 1 1 2 0 4 1 1

210 1 2 1 0 5 2 2

300 1 3 0 0 6 3 3

Y9UTU (g) (g-2)M (g-2)A (g-2)N (g-2)O B

.
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The vectors B. and B shown in the last two coluims of Table (l+.l),..out
are used to calculate and Holland and Leinhardt (1976) provein out

(21g) S B. T — XC—1) (L.3)in in,U-U

and

s2 (2/g) S B T - 5(V-l) (4.L)out u OUt,U u

where XC/grx÷÷/g, the average number of choices per group member. Since

C can be expressed as a linear combination of triad frequencies, so can X.

Thus and 2 are easily calculated using linear combinations of T.in out

C. Testing Structural Hypothesis

Perhaps the nrst inportant use of the triad census is testing

propositions about local structure in a sociornatrix. Holland and

Leinhardt originally proposed the triad census to test the proposition

that interpersonal choices tended to transitive; i.e., if person

i chooses person j and person j chooses person k, then person i should
choose person k. In their 1970 paper, the following triads were classified

as "intransitive": 02lC, 030C, 1llD, 111IJ, 120C, 201, and 210. The

occurrence of any of these 7 triad types indicated that the group violated

the transitivity hypothesis, since each of these triads had at least one

intransitivity. Holland and Leinhardt developed a ireasure, r( 2i, which

was used as a "transitivity index".

They define t(9,) as follows:

VT— Vp
-

T (.5)
where L is the weighting vector that counts the number of intransitive

triads, and T and are the mean and covariance matrix of T as computed
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using the U NAN distribution. A computer simulation showed that for

large g, r ( i) was approximately distributed as a standard Gaussian random

variable.

Holland and Leinhardt (1978) generalize this procedure so that any

structural hypothesis may he tested. The triads that will inviolate

the hypothesis in question merely need to be discovered, and the cones-

ponding weighting vector found. Mazur' s (1971) proposition concerning

"close friends disagreeing" is discussed and TCQ) for this hypothesis is

computed for 408 sociomatrices.

5. Moments of a Thiad Census

In this section the means, variances, and covariances of the triad

census of a random digraph are given, assuming that the digraph is dis-

tributed according to the U {X+} distribution. Also discussed are the

formulas for the above quantities assuming that the digraph follows the

U (Xi. } distribution. The section concludes with a consideration of the

moments of a linear combination of the triad census under a general dis-

tribution, and the development of a method useful in approximating the moments

of the triad census under the unifcrm conditional distributions mentioned

in Section 3 as too difficult to work with.

A. Notation and Few 1rivations

There are () triads in a digraph with g nodes. Let K and L be sub-

scripts that refer to the () distinct triads of a given digraph. The

letters u and v will refer to two of the 16 isomorphism classes of the

triad census, discussed in Section 4—A. This section concludes with the

formula to be used in section C for calculating the variances and covariarices

of the 16 triad types.
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Define the indicator variables T (u) as follows:
K

T Cu) - (1 if triad K is of isomorphism class u (5 lK 0 otherwise.

the number of triads of isomorphism class u is found by sunning TK(u)

over all possible triads:

T ) Tx(u) . (5.2)
K

Notation is also needed for the varJcus probabilities that arise

in the calculations given here. Define

PK(U) P{triad K is of type u} = P{TK(u)
= l} (5.3)

and

p(u,v)
= R(triad K is of type u and triad L is of type v}

- (5.4)
PTK(u) 1 and TAv) = 1)

Fonnula (5 . 4) is a joint prohabilitv involving triads K and L.

Consider the number of nodes that: triads K and L have in corrnon. i.et

niither of nodes that IC and L have in conunon. (5.5)

Obviously, I1LI takes on the values 0, 1, 2, and 3. If YMLr0,

the two triads are disjoint, and if KflL3, triads K and L are

identical. Let

p(u,v) PTK(u) 1, TL(v) = 1, and }L j)
(5.6)

j = 0, 1, 2, 3.
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For a fixed u and v, the four probabilities defined in (5.6) for vary-

ing j provide a decomposition of the joint probability (5.4) as follows:

P(u,v) = p0(u,v) + p(u,v) + pe,v) + p(u,v). (5.7)

Formula (5.7) is important for calculations involving variances and coven-

ances.

B. Expressions for Means, Variances, and Covariances

Holland and Leinhardt (1976) give formulae for the first two moments

of the triad census under a general disfribution using the average values

of Py(U) p(u,v), p(u,v), p(u,v) and p(u,v). The ments
also be given in terms of summations, which defines the U {X+ distribution

more easily. Theorems 1 and 2 given in this paper are equivalent to Corollary

1 presented in Section 5.A of Holland and Leinhardt (1976). .
Theorem 1: Assuming that a random digraph i3 generated by some random

digraph distribution, the first mernent of T is given by:

E(Tu) E p/u).
K

1oof: Note, by (5.2), that

E(T ) E( T/u)) r E(TK(u)).u K K

Since T/u) is an indicator variable, it follows that

E(T ) : E(TK(u)) E PK(u). Q.E.D.u K K

Define s the covaniance matrix of the 16 components of the triad

census. The (u,v) element of T is denoted ccT(u,v). For Theorem 2, let

denote a sunrnation over all pairs of triads with j nodes in coimrn,

KflUjrj

where j 0, 1, 2, or 3.
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Theorem 2: With the same assumptions as in Theorem 1, the (16x16) covari—

ance matrix T' of' the triad census has representative terms:

aT(uu) E -

jrO MLj 1<

a (u,v) p(u,v) -
T

:5=0 KflLj
KIJ K K

Proof: a (u,v) is the covariance between T , and T . Since T and TT u. v U V

are, sums of indicator variables, the proof of this theorem is straight-

forward, and will not be given here. The reader is referred to

Theorem 1 in Holland and Leinhardt (1976) for an analogous proof. Q.E.D.

From these theorems, the quantities that must be computed to find

EE(T003, E(T021), . .. , E(T30)]1 and

are:

p<(u) ; (5.8)
K

p(u,v), for all u,v (5.9)

IKflL0

E for all u,v (5.10)

KnLI=l

p2(u,v), for all u,v (5.11)

11L(=2

and

p(u,v), for all u,v (5.12)

Note tt if uv, p(u,v) reduces to PK(u) and if uv, p(u,v)r0.
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0. Derivations of Probabilities Under UI 0<. }
_________________________________ 1+

A random digraph with the UI MAN distribution is characterized by

certain properties that greatly simplify the calculation of the quantities

(5.8)-(5.12). Consider the triad 030T illustrated in Figure 5.la.

The 3 nodes of this triad have been Labeled, in a clockwise manner

beginning at the lower left vertex, node I., node j, and node Ic. Note

the same triad 03 OT in Figure 5. lb where the nodes j arid Ic have been

interchanged. Under the UI MAN distribution, the only relevant features

of this triad, arid in fact all triads, are the numbers of null, asymmetric,

and mutual dya.ds. Thus, the two triads in Figures 5. la and 5. lb while

distinct by a permutation of the labels attached to the nodes, are considered

identical by the UI MAN distribution. The U MAN distribution on a digraph

is "homogeneous" in the sense that it is invariant under permutations

of the labels given to the nodes.

Now, consider the outdegree of each node in the two triads shown in

Figure 5.1. The two triads have one node with the same outdegree (node i).

In the top triad, node j has outdegree 0 and node Ic, outdegree 1. In

the bottom triad, node j has outdegree 1 end node Ic has outdegree 0.

These triads, under UI fxi. }, are obviously not invariant under permutations.

In general, the outdegree of each node changes with a rearrangement of the

node labels.

Due to the lack of homogeneity of a digraph under UI {X+} it is

necessary to examine every triad, and every pair of triads with 0, 1, and

2 nodes in common, to compute each term of the sums (5.8) - (5.11). This

is in stark contrast to the same calculations under UI MAN given by Holland

arid Leinhardt (1974). With the UINAN distribution, the probabilities

defined in (5.3) •and (5.6) do not depend on Kbr L. so that
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Figure 5.1: Triad 030T as illustration of a homogeneous digraph.

node j

node node k

Figure 5.la

node k

node i •—_> • node. j

Figure 5db
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pK(u) a p(u) P{triad involving nodes 1, 2, 3 is of type u} (5.13)

and

p(u,v) a p(u,v), for jtO, 1, and 2. (5.l')

Finally, under IJK4N,

(0) (1)
p (u,v) p (u,v) (5.15)

A relationship which does not hold under U {X}.

To illustrate the calculations of pK(u), p(u,v), p(u,v), and

(u , v) under the U {X.) distribution on digraphs, some additional

notation will be needed. Let the ordered triple (i,j,k) refer to the nodes

in triad K, and the triple (i,m,n) refer to the nodes in triad L.

First consider the quantities p(u) needed to compute E(T11). Define

the variable 0.0K) as the outdegree of node in triad K. Obviously, C.(K) S
equals either 0, 1, or 2. Let c.(K) equal the actual value of 0(K). The

variables (K) and Ck(K) are defined in a sinilar way. When no confusion

may arise, the triad in parentheses of CJK) and C.(K) will be dropped.

Let

r P{C.zc., Ckzck}
(5.16)

For a fixed (i,j,k), the possible values of [c,c.c1K] form a 3x3x3 array

of probabilities, with one dimension each for H'
and There are ()

such three dimensional tables. It will be convenient to abbreviate

[c(K) ,c. (K) ck(K)J as [c.,c. '°k1K

It is not difficult to compute. Ec.c.cK]. Specifically,

.
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72 \ g-3 •\\ /2 :tg_3 '\ 2 ;g-3

[c,c ] r
ci;\XçC

(5 17)

i I j._.•

Where X. is a shorthand notation for X±, the outdegree of node i in the

digraph. If c. should exceed (or C. exceed or exceed (5.17)

is identically zern. The notation E [cc.cK]K will refer the sunniation
K 1

of the cells over all () three dimensional tables. These 27

quantities, formed by collapsing all the () tables into one table, will

be used to calculate the 16 components of

An example will illustrate this calculation. Consider the triad 021G.

With a fixed triple of nodes (i,j,k), there are three ways that this triad

nay be "oriented", as shown in Figure 5.2.

Examination of the three orientations arid the outdegree of each node

within each orientation yields the following expression for

E(T ) r [1,0,1] + E [1,1,01 + E [0,1,1] . (5.18)

Table 5.1 gives the expected values of the 16 isarcrphisn classes.

Consid p (u,v), the joh probabilities of triad K and triad L

assuning IKtLI0. Triads K and L are disjoint; thus

Y p(u,v) p (u) p Cv) E p (u) F pL(v) (5.19)
KnEIZO K L K L K K

L

KALIZO L4K

The quantities [c.c ck]K used to calculate the expected values of the

triad census are also employed in the calculation of the probabilities

p(u,v).
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.
Figure 5.2: The 3 possible orientations of triad 021U.
The outdegree of each node in the triad is given in
parentheses next to the node.

Orientation 1. (0)
J

(l)is •k(l)

Orientation 2. (1)

.
(1) i • —. •k (0)

Orientation 3. (1)

/.
(0) i . (—-——————.k (1)

.
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Table 5.1: Expected Values of Triad Census under
UICX1+).Sums are over all possible triads.

Triad Expected Value

003
Z{[0,O,o]K}

012 (2[l00] + 2COl0]x + 2[OOl]x}
102 E{[ll0JK + [l0l]K + [0l1]K}
021D E{[20O] + + EOO2JK}

021U fEll0]K + [l01JK + [OllJ}
0210 E{2[110] + 2[l0,1]K + 2[oii]}
.111W

Z{6[111]K}

lilu U[21oJK + [2o,1JK + [l2oJK + + [021]K +
E012JK}

030T {C210] + [2Ol]K + [l2,0]K + [l02]K + {021JK + [012]K)
0300 2[111J}
201 E{[2,1,l]x + [121]K + [ll2]}
120D E{C21,lJ + [12,1]x + [l1,2]K}
120U f[22o]K + [202]x + [o22]}
1200 (2[2l1] + 2c12,1]x + 2[l1,2]K}
210 {2[221]K + 2[212] + 2[l2,2]K}
300 {[222,J}



—26—

(1) (2)
The canputations of p (u,v) and p (u,v) are quite involved and

will he discussed only briefly here. The (l6xl6) tables of p(u,v)
KoLirl

and p(u,v) will not be presented he in order to save space.

IFflLH2

First consider the probabilities p(u,v). Node k will be designated as

the comrton node. Triad L contains nodes (k,L,rn). Let

r
P{ckrcX, C1rc., C.rc., Czrc, mtcm} (6.20)

C., C., C, arñC are defined identically as in (5.16), while Ck takes on

the values 0, 1, 2, 3, and 4. (There are five variables within the brackets

in fonnula (5.20) because node k is coimtn to both triads K and L; con-

sequently, there are five nodes, not six, to consider.) There are g(1)(3)
distinct 5x3x3x3x3 arrays of the probabilities. By "suntng"

all of these five dimensional arrays there remain '405 quantities necessary

in the calculation of E p (u,v). The notation
jKiLjl jlllL[zl

will refer to the sumiation of the cells over all tables. The

value of IIck,cI ,c1 ,o ,c] is also a product of hypergeoinetric probabilities

smiler to (5.17).
An example will help to illustrate. Figure (5.3) shows all 9 possible

orientations of triad 120D and triad O2lU with one node (node k) in common.

Table (5.2) lists all the orientations, and the outdegree of each node in

each orientation.

E1om Table (5.2), after rearranging the orientations to have decreasing

values for C , E p(l20D, O2lU) is as follows:
k
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Figure 5.3: The 9 Orientations of Triads 1201) and 021U
with one node in cczniinn.

I i j i

A A•
2, m £ m in

Orientation 1 Orientation 2 Orientation 3

•

__ Ls.£ in m £ In

Orientation 4 Orientation 5 Orientation B

I i I i I• •

NI N
k •"\ I

2,•

Orientation 7 Orientation 8 Orientation 9
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Table 5.2: The outdeee of each node of the 9 orientations of
Tniads 1 20D and 021U with one node in oomon.

Orientation C C. C. C C____— .L a
1 2 1 1 1 1

2 3 0 1 1 1

3 3 1 0 1 1

1 1 1 1 2

5 2 0 1 3 2

5 2 1 0 1 2

7 1 1 1 2 1

8 2 0 1 2 1

9 2 1 0 2 1

.



p1(12OD, 120U)
KL!=1 IKL!=l

[3olllJKL + [2,ll,l,1J1Q +

+ [2,l,o,l,2] +

+ [20ll2]}Q +

+ [l,l,l,l,2])

The remaining probabilities involving -two 'ä'iads with one node in colmon

are found in a similar way,

Lastly, consider the probabilities p(u,v), the joint probabilities

of triads K and L with 2 nodes in ccacn. Nodes j and k are the cormcn

nodes, so that triad L contains nodes (j,k,t). Let

[c.cic.,c]
r P(C.zc., C=ck. C.rc., C1rc} (5.22)

where and C equal 0, 1, or 2, and C5 and C, take on the values

0, 1, 2 or 3. There are (g) (g-2) distinct 14x4x3x3 arrays of these

probabilities. As before, by summing all of these four dimensional arrays,
the 144 quantities used to calculate E (u,v) are found. The notation

KflLr2

will be used here to indicate the sullunation.

Also note that

= c)C-c.)
(g—l\rx.J )

:2 ,g-3
'X.-c.

3-i

_xi
Again, an example is helpful. Figure (5. 't) illustrates the 6 possible

positions for the triads 102 and 111U with nodes 5 and k in coinnon.

—29—

(5.21)

[a.

i3 '\ (g—4 %

ig-l'
Xk/

:2 'Jg-3

(5.23)
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Figure 5.4: The S orientations of Thiads 102 and 111U
with two nodes in coxunon.

1 1

.

j . C

1)7k

j

sç.___4sk

Orientation 1 Orientation 2

.2
£

Orjentation 3 Orientation 4

j.. S

i
S

is

Orientation 5 Orientation S

1

V
.
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Recording the outde'ee of each node as in Table (5.2) results in

the following:

p(102, lllU) r E {[2,i,0,0] + [2,0,l,2] +
KflL!2 KnLI2

(5.24)

[l,2,0,o], + 2[lll2]}Q + [0,2 ,l,2J}

The calculation of and FT under U have been written in FORTRMT

code. The calculations performed in Section 6 were done on the TROLL interactive

computing system, maintained by the Computer Research Center for Economics and

Management Science of the National Bureau of Economic Research.

11 Moments of a Triad Census under

Once the machinery necessary for finding T and T assuming the

U CX.) distribution has been developed, it is quite simple to determine

the same first two xicments under the U CX. } distribution. Take the set

of indegrees of the digraph which are to be regarded as fixed, and assume

that this set of g numbers is actually a set of outdegrees of the digraph.

With the above assumption, three pairs of the 16 isonorphism classes

will have to be interchanged. The other 10 triads are invariant under this

forced reversal of all directed lines. The three pairs are

O2lD and 021U,

111D and lllU, (5.25)

120D and 120U,

i.e. all the "downs" become "ups" arid vice versa. Thus, if and

are calculated under U! CX1) by assuming the set of indegrees to be

the conditioning set of outdegrees, only several pairs of rows of

and several rows and columns of ZT need to be switched. These rows
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(of or rows and columns (of are as follows:

Row 4 (and Column 4 of ET) interchanged with

Row 5 (and Column Sof

Row 7 (and Column 7 of itcrid with
Row 8 (and Column 8 of

and

Row 12 (and Column 12 of intercang with
Row 13 (and Column 13 of

E. Moments of a Linear Combination of a Thiad Census

After and T have been computed with either the UMAN, u{x.},

or random digraph distributions, it is very sinpie to calculate the

moments of any linear combination of T. If. UT and s'T are any two linear

combinations of the triad census, then

ECQ'T) -
Up,, (5.26)

Var(L'T) (5.27)

Cov(UT, stT) s . (5.28)

Holland and Leinhardt (1974) suggest a "partial conditioningt' scheme

using a set of linear combinations as an approximation to one of the more

complex conditional uniform distributions mentioned in Section 3. They

reason that T has an approximate multivariate Gaussian distribution, because

T is a sum of "loosely correlated indicator variables". It is a well known .
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result that if T N(i.x ) and LT is a vector of linear combinations

of the elerrnts of T, then

E(TLT r Lt) ZLT(ua?)Tl L (t- p) (5.29)

and

Cov(TILT r Lt) Z_ZLI(LELiy. LE . (5.30)

Now that we know how to computer and j.i exactly under ul CX.÷}, (5.29) and

(5.30) will give an approximation to and computed under UI{X.÷}, {X.} and

UIM, {X.÷), {X÷.}. For instance, if we condition on the vector m shown in

column 2 of Table ('4.1), we obtain an approximation to E arid p computed under

UjM, (X÷}. Also, if we apply the above formulas to and u computed under

ul{x.÷i and let L be the vector B. defined in column S ofTable (14.1), we

obtain an approximation to UI {X.}, {X+}. Unfortunately, the approximation
nay be poor as we are actually conditioning on the linear combination used

to compute S, and not on the set of indegrees themselves. However, I

believe that calculations with the U {X.) distribution will be quite important

in sociometric data analysis, because of the "handle" that it gives in

approximating the more complex distributions via (5.29) and (5.30).
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.
6. Example

The data analyzed in this section were taken from Mcxinney (1948). Thenty-

nine individuals in a ninth-grade classroom were asked to "Express your)

attitude toward serving in a discussion groUp with the other members of

the class." Each student rated his/her cohorts with an acceptance, indifference,

or rejection. The (10 x 10) sociornatrix in Table 6.1 represents the "acceptances"

made by the subgroup consisting of the first ten students. I have chosen to

iore rejections, or negative choices, and treat them as indifferences, or

null choices.

In the table, a mutual relationship between person i and person j is

characterized by a M in the (i,j) and (j,i) cells. M. = denotes the

number of mutual relationships involving person i. A. and A . are, respec-

tively, the niriber of asyirunetric choices made by person i and the number of

choices received by person i. Figure 6.1 displays the data in the fort of a

sociograin.

The sociogram displays the canplex structure of this group. Persons 1, 2, 7,

and 10 form a pure M-clique. Person 6 receives S unreciprocated choices, while

person 3 makes 5 unreciprocated choices. Person 1 appears to be the individual

with the mast acquaintances in the group. Examining the individual choices

sheds little light on the group structure; however, choices 4±1, 10±9 and

105 seen out of place because of the configuration of the sociogram.

For this sociomatrix, I found the triad census and computed T and

under UMAN and TJ{X÷}. Using these two pairs of moments and the formulas

(5.29) arid (5.30), I obtained approximations to the conditional distributions

UM, {X.} and UM, {X}, {X.}. By partially conditioning IJI MAN on the

vector gout (column 7 of Table 4.1) and partially conditioning U {Xi.}
on the

vector in (column 2 of Table 4.1), I obtained the distributions which I will
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Table 6.1: Socicznatrjx Derived from Choices Made in a
Ninth-Grade Classroom (see McXinney (1948)).

SIUDENT

1 2 3 4 5 6 7 8 9 10
X1÷ N1 A.

4 1 NO 0 MOO 0 0 3 2 1

T 1001 1000 0 3 0 3

U 6 0 0 0 MO DM0 0 2 2 0

D
7 N MO 001 00 M 14 3 1

F 8 0 0 0 0 ON 0 0 N 2 2 0

• N Ml 0 0 0 0 0 1— 0 3 1 2

T 10 N M 0 O11MM1 - 7 '4 3

X. 7 60 '4 1 7 14 4 2 5 40+J

N. 4 14 0 2 0 2 3 2 1 14

A. 3 2 0 2 1 5 1 2 1 1
.3
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.
Figin'e 6.1: Socioam derived from choices made in a runth—grade classroom

(see McKinney (1948)).

.
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denote UI pout and UI (X.1J, rn respectively. These two distributions

are approximations to UI M, { }. I next obtained the approximate distribu-

tions UI MAN, B. by partially conditioning UI MAN on the vectors pout
and B (columns 6 and 7 of Table 4.1), and UI{X1÷}, B., rn by partially

conditioning uf {X.) on the vectors B. arid rr. UIMAN, Pout' ! and
uJ{x.}, B., in are approximations to the distributions UIM, {X.}, {X.}.
Table 6.2 presents the triad census and the expected value of the triad

census under these 6 distributions.

This triad census has large numbers of 012, 0210, and 111U Priads.

This indicates that the group has a considerable number of asyrrunetric relation-

ships. The lack of 0300 triads is also of interest because the number of 0210

and 111U triads, each with two—thirds of a complete "cycle", would suggest the

opposite. The abundance of asyirmetric choices and 012 and 0210 triads can be

easily seen by examining the sociograsn in Figure 6.1. The small group size

aids in drawing conclusions from this figure. (As g increases, so does the

complexity of the group' s sociograin, and the triad census becomes more import-

ant in understanding group structure.)

An examination of the expected values reveals that the partial condition-

ing slightly reduces the differences between the census and its expected values.

The distributions based on uJ MAN have expected values which fit the data more

closely, in that the absolute differences between the expected and observed

quantities are smaller than those found using distributions based on Uj
{X1÷}.

It also appears that the differences between UI MAN and UI {X+} decrease when

examining T computed under UIMAN,
pout,

§ and UI{X.+}, B., in (note the
changes in and MO30T over distributions).
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I tested the structural hypotheses of transitivity and intransitivity

by computing r (s.) for th of these hypotheses using the six random digraph

distributions and the & vectors given in Holland and Leinhardt (1976).

Table 6.3 presents these results.

The T values decrease as I partially condition UI MAN, and increase as

I partially condition UI{X.+}. This may be due to the previously mentioned

fact that T computed under the approxiirate distributions based on UI MAN

provide a better "fit" to the observed triad census.

The example demonstrates the phenorlEnon that different conditional

distributions may produce differing T and T An investigator using the
triad census to test structural hypotheses should compute the relevant r ( L)

under a variety of distributions, and then seek an explanation for the apparent

differences or similarities of the r values.
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7. Suirirary

Figure 7.1 sunlnarizes the relationships of the random digraph distributions

and the partially conditioned digraph distributions studied in this paper.
With the addition of the UJ IX) distribution, the network becomes quite
intricate. Note that the digraph distribution network is ordered so that

as one moves from the bottom to the top of the figure, the amount of condi-

tioning in each distribution increases. I have purposely left out the dis—

tributions based on UI (X+1 } in order that the network remain comprehensible.

This paper has introduced two random directed graph distributions and

has given the methods needed to compute the first two moments of these dis-

tributions. Individuals interested in the analysis of social networks now

have powerful mathematical tools at their disposal to aid in their analyses.
The example discussed in Section 8 demonstrates some of these. These methods

show how statistical analyses can be applied to a specific field of study in
the social sciences.



Figure 7.1: Network of Random Digraph Distributions
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