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xiii





Abstract

This dissertation introduces a new methodology for the analysis of spatial fields of
object data (such as scalar, functional or constrained data) possibly distributed
over complex domains. We combine the approaches of Object Oriented Data
Analysis and classical geostatistic in the framework of Object Oriented Spatial
Statistics. The method we propose enables one to jointly handle both data and
domain complexities (e.g., very large size or geographical constraints), through a
non-parametric approach which allows avoiding strong distributional assumptions.
As a key element of innovation, we propose to perform repeated Random Domain
Decompositions (RDDs), each defining a set of homogeneous sub-regions where
to perform simple, independent weak local analyses, under stationarity assump-
tion. The latter local analyses are then aggregated into a final strong analysis. In
this broad framework, the possible complexity of the domain can be taken into
account by defining its partitions on the basis of a non-Euclidean metric, which
allows to properly represent the adjacency relationships among the data over the
domain. To account for the domain complexity, we propose to use a metric based
on a graph, which is defined by a triangulation of the domain (e.g., Delaunay
triangulation).
As an insightful illustration of the potential of the methodology, we consider the
analysis and spatial prediction (Kriging) of data distributed over estuaries. An
estuary is a non-convex and very irregularly shaped region where the narrow areas
of land between adjacent tributaries act as barriers for many aquatic variables.
Here, the method we propose is used for the study of the dissolved oxygen de-
pletion problem in the Chesapeake Bay, an important estuary in the United States.

Keywords: non-stationarity, object-oriented spatial statistics, variogram, Krig-
ing, kernel function, Delaunay triangulation, non-Euclidean metric, estuarine sys-
tem.
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Sommario

Questa tesi introduce una nuova metodologia per l’analisi di campi spaziali di dati-
oggetto (e.g., dati funzionali o vincolati) distribuiti su domini complessi. Il pre-
sente lavoro combina gli approcci della Analisi di Dati Orientata agli Oggetti (Ob-
ject Oriented Data Analysis) con quelli tipici della Geostatistica, nel contesto della
Statistica Spaziale Orientata agli Oggetti (Object Oriented Spatial Statistics). Il
metodo proposto permette di gestire contemporaneamente eventuali complessità
del dato e del dominio di osservazione, attraverso un approccio non parametrico
che consente di evitare la formulazione di forti assunzioni distribuzionali. Come
elemento chiave di innovazione, è qui proposto un metodo basato su partizioni
aleatorie del dominio (Random Domain Decompositions, RDDs). Ogni realiz-
zazione di tali partizioni definisce un insieme di regioni omogenee all’interno delle
quali è possibile eseguire analisi semplici e indipendenti, fondate sull’ipotesi di
stazionarietà locale del fenomeno. Tali analisi locali sono poi aggregate con lo
scopo di fornire un risultato globale. In questo contesto generale, le possibili com-
plessità del dominio possono essere incluse nello studio attraverso la definizione
delle RDDs tramite metriche non Euclidee, che consentono di rappresentare oppor-
tunamente la relazione di adiacenza tra i dati. Per tener conto della complessità
del dominio, è qui proposto l’uso di una metrica basata su un grafo, definito
attraverso una opportuna triangolazione del dominio (e.g., triangolazione di De-
launay).
Come illustrazione delle potenzialità della metodologia è qui considerata l’analisi
e la previsione spaziale (Kriging) di dati distribuiti su domini complessi come
quelli degli estuari. Un estuario è una regione non convessa dai contorni irregolari
dove, spesso, diversi affluenti confluiscono in un corpo centrale. In questi casi, le
aree di suolo che separano affluenti vicini rappresentano delle barriere per molte
variabili acquatiche. Il metodo proposto è qui applicato allo studio del livello di
ossigeno dissolto nelle acque dell’estuario più grande degli Stati Uniti: la Baia di
Chesapeake.

Parole chiave: non stazionarietà, Statistica Spaziale Orientata agli Oggetti,
variogramma, Kriging, funzione kernel, triangolazione di Delaunay, metrica non
Euclidea, sistema estuarino.
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Introduction

In recent years, the increasing availability of complex data led to the growth of
Object Oriented Data Analysis (OODA, Marron and Alonso [2014]) which is a
novel frontier of applied statistics focusing on the study of object data, such as
high- or infinite-dimensional data or constrained data. The key idea upon which
this framework is grounded is that the atom of the analysis is the whole com-
plex datum, which is represented as a point within a mathematical space (e.g.,
a Hilbert space) reflecting all its fundamental properties. The datum is analysed
with all its attributes and complexities. In some cases, spatial dependence may
exist among these object data: this is the focus of Object Oriented Spatial Statis-
tics (O2S2, Menafoglio and Secchi [2016]). O2S2 combines the approaches of
OODA with classical geostatistical methods, used to take into account the spatial
dependence among the object data. The description of the spatial dependence
may be based, e.g., on the definition of the variogram (or covariogram) function,
which can then be used to make predictions at unsampled locations. A common
assumption regards the stationarity of the process, i.e., the homogeneity of its
distributional properties over the whole domain. In many real spatial processes
the covariance structure may vary over different areas of the study region or, in
other cases, the characteristics of the domain may lead to the actual impossibility
of defining a global stationary model for describing the spatial dependence.
Several approaches exist to handle non-stationary spatial fields by using local
models. Each local model describes the spatial dependence of the random field
within a neighborhood in the domain, where it is possible to assume stationar-
ity. All these methods often require strong assumptions on the distribution which
generated the data, which are rarely met in application with object data.
In this dissertation we propose a new family of methodologies for the analysis of
object data, within the O2S2 framework, prone to account for the possible com-
plexity associated with the geographical characteristics of the domain. A complex
domain may consist in a very large domain or in a region with natural or artificial
constraints, such as holes, barriers, irregular boundaries. Note that the complex-
ity of the domain may even hinder the formulation of stationarity. In fact, within
a non-convex domain one can hardly assume homogeneity in the structure of spa-
tial dependence. To define the spatial dependence between two observations one
needs to know how far two points are from each other, but also in which part of

xix



Introduction

the domain they are located, as well as if a barrier exists between them. More-
over, the presence of obstacles may require the use of a non-Euclidean metric as
measure of the adjacency relationships among observations, which turns into the-
oretical and operational problems in most classical geostatistics techniques (e.g.,
variogram modeling).
The basic idea of the method we propose is to develop the spatial analysis of object
data by using simple, local and repeated analyses instead of an unique global and
complex analysis. Indeed, our computationally intensive yet simple methodology
is based on a divide et impera idea. During the divide step the domain is randomly
partitioned into several sub-regions, within which local geostatistical analyses are
performed. These local and weak analyses are repeated for different realizations
of the random domain decomposition and then, during the impera step, they are
aggregated into a final strong analysis.
Although this dissertation focuses on the application of this new idea with the
aim of performing linear spatial prediction (i.e., Kriging), an important property
of this novel class of methodologies relies in its generality. Indeed, general geosta-
tistical problems (e.g., classification or smoothing problems) may be successfully
tackled in this broad framework.
The non-parametric nature of this approach is open to handle complex object
data, while the complexity of the domain may be taken into account in the def-
inition of the metric upon which the partitions of the domain are based. For
example, within a domain with barriers it is possible to use a graph-based metric:
the distance between two points is then computed as the length of shortest paths
from one point to the other on a given undirected graph representing the real
closeness relation among the data.
The method we propose is entirely general, and suitable to be applied in a wide
range of real environmental studies. Here, we illustrate the application of the
proposed methodology to the analysis of spatial data observed within an estu-
ary. Indeed, an estuarine system develops on a complex, non-convex and highly
irregular domain where the areas of land between adjacent tributaries act as bar-
riers for many aquatic variables. Therefore, the use of the Euclidean distance
is somehow inappropriate for describing the adjacency relation between observa-
tions. Moreover, the data collected within this particular region may be complex
(e.g., functional data). The proposed methodology is able to handle jointly both
data and domain complexities, providing more accurate predictions with respect
to the existing methods, which are able to treat at most one of these two com-
plexities.

The remaining part of this dissertation is organized as follows.

Chapter 1: Geostatistics. This chapter recalls the basic notions on Geostatistics
for real-valued random fields based on Cressie [1993] and Chilès and Delfiner
[1999]. Here, we introduce the key concepts, i.e., the definition of station-
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arity, the variogram and covariogram functions, used to define the spatial
dependence among data, and the Kriging predictor.

Chapter 2: Non-stationary Spatial Data. This chapter overviews current ap-
proaches to handle non-stationary spatial processes and highlights the rea-
sons why they would be inappropriate for the analysis of object data.

Chapter 3: Random Domain Decompositions for O2S2. This chapter provides
a more detailed description of the O2S2 framework and introduces possible
applications of the new method for spatial statistics analysis. In particular,
the chapter introduces the first original contribution of the dissertation, de-
scribing the key idea of the proposed methodology: the Random Domain
Decompositions (RDDs). The need of performing local analyses, without
requiring strong distributional assumptions, motivates us to use random
partitions of the domain. Following a bagging procedure, the same spa-
tial analysis is performed several times and then the bootstrap replicates
are aggregated into a final analysis. The difference between two bootstrap
iterations regards the realization of the RDD, which defines a system of
homogeneous neighborhoods. Therefore, within each neighborhood, a local
and simple analysis can be performed. The use of a geographically weighted
statistics viewpoint gives the possibility to consider information from neigh-
bour sub-regions for the estimate of the structure of spatial dependence
within each neighborhood.

Chapter 4: Kriging-RDDs: the case of regular domain. The chapter provides
an in-depth description of the RDDs idea applied in the context of Kriging
predictions of spatial random fields distributed over simple domains. Sec-
tion 4.2 shows the results of the method applied to two simulated examples
(i.e., a simple stationary Gaussian process and a non-stationary process,
both distributed over a square domain). Moreover, using these simulated
examples, we investigate the performance of the method with respect to the
model parameters (e.g., the number of sub-regions).

Chapter 5: Kriging-RDDs applied to irregularly shaped domain. The chapter
illustrates the difficulties which can occur when one has to analyse spatial
fields distributed over a complex domain, where a non-Euclidean metric is
needed. This chapter describes how the proposed method may account for
the complex properties of the domain. In particular, as a key element of in-
novation, we here propose to map the sampled points into a neighborhood re-
lational graph representing their spatial adjacency and to use a graph-based
metric (i.e., the length of the shortest path) as distance for the definition of
the domain partitions. Finally, the chapter describes the application of the
proposed methodology to two simulated datasets distributed over complex
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regions: a domain with a hole within Section 5.5.1, and a C-shaped domain,
Section 5.5.2.

Chapter 6: Case Study: Chesapeake Bay. The chapter describes the application
of the method for the Kriging prediction of the Dissolved Oxygen values in
the Chesapeake Bay, the biggest and most productive estuary in the United
States.

Appendix A: R codes. The appendix includes the codes implemented in R [R
Development Core Team, 2008] of the main functions defining all the steps of
the RDDs methodology employed to perform Kriging prediction of spatially
distributed random fields.
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Chapter 1

Geostatistics

“Geostatistics is the application of probabilistic methods to regionalized variables”

G.Matheron

The definition of the founder of Geostatistics, the French mathematician Georges
François Paul Marie Matheron, summarizes the role of this branch of statistics:
it focuses on the analysis of spatial or spatiotemporal data, which are observed
at different locations within a spatial domain. Geostatistics deviates from the
the classical statistical framework due to the need to release the independence
assumption among the samples. Indeed, most of the Earth science data often do
not satisfy this independence assumption, since they are spatially correlated. A
geostatistical analysis is then based on the intuitive idea that data from locations
that are closer together, in time or space, are likely to be correlated, therefore
they tend to be more similar than data from locations that are far away. If clas-
sical statistics aim to examine the statistical distribution of a sample of data,
Geostatistics focuses on both the statistical distribution of the sampled data and
the structure of spatial correlation underlying them.
The fundamental goal of Geostatistics is often to predict the spatial distribution
of a random process at unsampled locations, by using information coming from
the observed data within the study region. This estimation is based not only on
the sample data, but also on a model (variogram), which represents the spatial
correlation of the observed data. The estimate at unsampled locations can be
performed by applying the Kriging technique. In the geostatistical setting, the
Kriging approach is widely preferred to the classical interpolation method. Indeed,
with a simple interpolation approach the predictor is defined as linear combina-
tion of the observed data with weights that may depend on some properties (e.g.
inverse distance or inverse distance squared), but they do not incorporate infor-
mation on spatial correlation. On the other hand, the Kriging predictor considers
both the distance and the spatial correlation in the definition of the weights for
the observed data.
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Chapter 1. Geostatistics

In the geostatistical framework, spatial data can be thought as observations of a
random field

{Zs, s ∈ D} (1.1)

whereD ⊆ R
p (usually p = 2, 3) represents a fixed domain. The data {Zs1 , . . . , Zsn}

are partial observations of this field at n locations {s1, . . . , sn} in D. The charac-
teristics of the process (1.1) and the properties of the domainD give the possibility
to distinguish three prototypes of spatial data [Cressie, 1993]: (a) Geostatistical
data, (b) Lattice Data, and (c) Point patterns.

Geostatistical data. In this setting the data are observations of the variable
of interest Zs (or a vector of variables) over a fixed spatial region D. The
measurement points {s, s ∈ D} vary continuously over the study region.
The analysis of these data is aimed to recognize spatial variability at both
the large scale and the small scale. This means that a model for both
spatial trend and spatial correlation must be defined. The model for the
spatial variability is used to perform predictions at unsampled locations.

Lattice data. In this setting, the study region D is a fixed, countable, regular
or irregular, collection of spatial sites where observations are made. The
domain is described by its partition into sub-regions (such as counties or
provinces). The collection of points in D is known as a lattice. Also in
this case Zs is a random variable (or a vector of variables) observed at
the location s. The analyses of lattice data often involve estimation or
classification problems.

Point patterns. Contrarily to the other two cases, here D is a random domain.
Point patterns arise when the aim is to analyse locations of events. The
question of interest is whether the pattern is exhibiting complete spatial
randomness, clustering or regularity. The random variable Zs may be ob-
served at location s ∈ D (in this case we call (1.1) marked process) or not
((1.1) is called standard point process).

Our focus is on the analysis of geostatistical data. In particular, we will mostly as-
sume that (1.1) is a real-valued random field distributed over an Euclidean space.
Nevertheless, all the geostatistical methodologies here considered can be extended
to more complex frameworks, for example to spatially dependent functional data
in Hilbert spaces [Menafoglio et al., 2013].

1.1 Geostatistics for real-valued random fields

In the standard geostatistical framework, the random variable Zs at location s is
modeled as the combination of a global trendms and the element δs of a stochastic
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Chapter 1. Geostatistics

process:
Zs = ms + δs s ∈ D. (1.2)

Here, the mean function ms, called drift, is assumed to be deterministic while the
residual δs represents the stochastic term. This residual part defines the random
properties of the field and it is characterized by the structure of spatial dependence
that we want to investigate. For any set of locations {s1, . . . , sn}, under the
Kolmogorov homogeneity assumption [Cressie, 1993], the joint distribution of the
random vector Z = (Zs1 , . . . , Zsn)

T , named finite-dimensional law, is defined as

Fs1,...,sn(z1, . . . , zn) = P{Zs1 ≤ z1, . . . , Zsn ≤ zn} (1.3)

with z1, . . . , zn ∈ R. The family {Fs1,...,sn , s1, . . . , sn ∈ D} completely characterizes
the distribution of process (1.1).

1.1.1 Stationary processes

In principle, a Geostatistical analysis could be performed independently of any
hypothesis on the nature of the random field (1.1). However, in order to achieve
acceptable estimating results without requiring an amount of data much larger
than what is usually available, some restrictions on the nature of the random field
are essential. Simplifying assumptions are often made on the spatial dependence
structure. The most important is the stationary assumption. There are several
definitions of stationarity:

Definition 1.1. The random process {Zs, s ∈ D} is said strongly stationary if
(Zs1 , . . . , Zsn)

T and (Zs1+h, . . . , Zsn+h)
T have the same joint distribution for all

h ∈ R
p, n ≥ 1 and for any collection {si}

n
i=1 in D.

This property can be summarized by saying that the finite dimensional distri-
butions of a stationary field are translation invariant.
Since the strong stationarity assumption is difficult to be verified in practise, and
it is an uncommon property for random fields commonly observed in real appli-
cations, a weakened definition is required:

Definition 1.2. The random process {Zs, s ∈ D} is defined to be second-order
(or weak) stationary if the following conditions are satisfied:

(i) E[Zs] = m, for all s ∈ D;

(ii) Cov(Zsi , Zsj) = E[(Zsi −m)(Zsj −m)] = C(h), for all si, sj ∈ D, such that
h = si − sj.

In general, the class of second-order stationary random fields is much larger
than that of strong stationary random fields. Furthermore, a strong stationary
field is also second-order stationary, whenever each element of the random process
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Chapter 1. Geostatistics

satisfies the finite second moment assumption (i.e. E[Z2
s ] < ∞ for all s in D). The

reverse implication generally does not hold, except for the case when the process
is Gaussian (in this case the two definitions coincide).
The function C(·) appearing in the previous definition is called covariogram and
it is characterized by the following properties:

(a) Positive definiteness:

n
∑

i=1

n
∑

j=1

λiλjC(si − sj) ≥ 0 ∀λi, λj ∈ R, si, sj ∈ D;

(b) Symmetry: C(h) = C(−h);

(c) Boundedness: |C(h)| ≤ C(0).

The second-order stationarity property is a common assumption for random fields,
but in some cases a further weaker definition is needed.

Definition 1.3. The random process {Zs, s ∈ D} is said intrinsically stationary
if:

(i) E[Zs] = m, for all s ∈ D;

(ii) Var(Zsi − Zsj) = E[(Zsi − Zsj)
2] = 2γ(h), for all si, sj in D, h = si − sj.

The function γ(·) is called semivariogram, while 2γ(·) indicates the variogram
function.
Under finite second moment assumption, we can observe that a second-order sta-
tionary process is also intrinsically stationary; in this case we can relate the co-
variogram and the semivariogram functions according to the following relation:

γ(h) = C(0)− C(h), h ∈ R
d. (1.4)

1.1.2 Variogram properties

The variogram is the function describing the second-order properties of a second-
order (or intrinsic) stationary process. It quantifies the spatial correlation among
the observations, giving a measures of dissimilarity among them. In order to
analyse a spatially distributed dataset, the first step which must be performed is
the estimate of the variogram. According to Cressie [1993] and Chilès and Delfiner
[1999], a variogram must satisfy the following properties:

(a) Conditional negative definiteness:

n
∑

i=1

n
∑

j=1

λiλjγ(si − sj) ≤ 0 ∀si, sj ∈ D; λi, λj ∈ R s.t.
n
∑

i=1

λi = 0;
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Chapter 1. Geostatistics

(b) Symmetry: γ(h) = γ(−h);

(c) Non-negativity: γ(h) ≥ 0;

(d) Zero at the origin: γ(0) = 0;

(e) Sub-quadratic growth: lim‖h‖→∞
2γ(h)
‖h‖2

= 0.

A semivariogram fulfilling the properties (a)-(e) is said to be a valid semivari-
ogram.

Definition 1.4. An intrinsic stationary process {Zs, s ∈ D} is said isotropic if
its variogram is isotropic:

Var(Zsi − Zsj) = 2γ(h), h = ‖h‖ = ‖si − sj‖

for all si, sj in D.

Therefore an isotropic variogram only depends on the separation distance be-
tween two points. This distance is computed according to the Euclidean metric.
The isotropic property characterizes a process with a covariance structure which
is homogeneous over all the directions of Rp. If this property is not satisfied the
process is said anisotropic.
Assume that the variogram is isotropic. The structural properties of a valid semi-
variogram reflect the physical properties of the field that we want to analyse.
Even if the semivariogram is null at the origin ((d)-property), here it may present
a discontinuity, associated with a non-zero limit when h goes to zero:

lim
h→0

γ(h) = τ 2 6= 0.

In this case τ 2 is called nugget. Since an L2-continuous process cannot have a
discontinuous variogram, the nugget effect is associated with either a measurement
error in the data or a discontinuity in the process. Measurement error is in general
assumed to be spatially uncorrelated and should not affect the structure of the
variogram for values of h different from zero. Another important property of the
variogram is the sill, which indicates the value of the semivariogram asymptote.
It is defined as:

lim
h→∞

γ(h) = τ 2 + σ2

where τ 2 is the nugget and σ2 is called partial sill. The existence of this finite
limit indicates that the process is second-order stationary and the variance of each
random variable Zs is defined as C(0) = τ 2 + σ2.
As last property of a valid semivariogram, we mention the range R:

γ(R) = τ 2 + σ2.
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The range of a valid semivariogram is the point where it reaches the sill. It
describes how fast the autocovariance decays with the distance, quantifying the
range of influence of the process: if two points of the domain have a distance
greater than R, then they are uncorrelated. However, the range of a variogram
can be infinite. It happens when the sill does not exist (in this case the process is
not stationary) or when the sill is reached asymptotically. In the latter case it is
possible to define a practical range R̃, such that γ(R̃) = 0.95(τ 2 + σ2).

1.1.3 Variogram estimation

Most methods for variogram estimate consist of three stages: (a) compute a raw
estimate from the data, which may lead to a non valid model; (b) based on
graphical tools, choose a theoretical model among the family of valid variograms;
finally (c) fitting of a parametric valid model via least square (LS) or maximum
likelihood (ML) methods.

Empirical variogram

Given n observations Z = (Zs1 , . . . , Zsn)
T of an intrinsic stationary and isotropic

random process, an empirical estimate of the semivariogram can be obtained via
method of moments, according to:

γ̂(h) =
1

2|N(h)|

∑

(i,j)∈N(h)

[Zsi − Zsj ]
2 (1.5)

where N(h) = {(i, j) : ‖si − sj‖ = h} and |N(h)| indicates its cardinality. Since
the estimate is based on the data, we observe only a finite number of distances
h (the distances between each pair of sampled locations). Therefore a discretized
version of (1.5) is generally used for the estimate. Firstly, the semivariogram cloud
is computed: its plot displays the individual point-pair 1

2
[Zsi −Zsj ]

2 contributions
to the final variogram. This cloud of points gives important information regarding
the number of couples available for the variogram estimation and the spread of
the squared differences (the cloud’s shape may help in getting a visual impression
of the appropriateness of the stationarity assumption and it helps the selection of
a valid variogram).
Then, a discretized version of (1.5) is defined

γ̂(h) = (γ̂(h1), . . . , γ̂(hM))T .

Here, M classes of distances are identified and γ̂(hm) indicates the average of the
estimator (1.5) within the m-th class, for every m = 1, . . . ,M . Under the as-
sumption of intrinsic stationarity the estimator defined by (1.5), or its discretized
version, is an unbiased estimate of γ(·). If the mean function is not constant over
the whole domain, estimator (1.5) defines an unbiased estimate of

E[(Zs − Zs+h)
2] = 2γ(‖h‖) + (ms −ms+h)

2
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Chapter 1. Geostatistics

which does not represent the process variogram and, in general, it does not satisfy
the sub-quadratic growth property of a valid variogram model.
Once the empirical variogram has been estimated, we need to fit a valid model.
Indeed, the empirical variogram typically does not produce a valid model, since
some of the properties described before are not fulfilled. To guarantee that in all
the cases the statistical analysis of a spatially distributed dataset is based on a
valid variogram, a number of families of parametric valid models was defined.

Valid variogram models

Within the family of valid variograms, a function is selected. This function must
accurately represent the underlying spatial dependence of the available data. The
final estimated variogram will be obtained by fitting this selected theoretical model
to the empirical estimation obtained from the data.
Among the valid models, the most employed ones are the following:

❼ Pure Nugget

γ(h) =

{

τ 2 h > 0
0 h = 0.

(1.6)

The random process with a pure nugget variogram is a white noise with
variance τ 2.

❼ Linear model

γ(h) =

{

a2h h > 0
0 h = 0

(1.7)

with a ∈ R. In this case range and sill are infinite. The associated process
is intrinsically stationary, but non-stationary.

❼ Exponential model

γ(h) =

{

σ2(1− e−h/a) h > 0
0 h = 0.

(1.8)

In this case σ2 is the sill, the range is infinite, but we can compute the
practical range R̃ = 3a.

❼ Spherical model

γ(h) =

{ σ2[3
2
h
a
− 1

2
(h
a
)3] h ≤ a

σ2 h > a
0 h = 0.

(1.9)

In this case a is the range and σ2 is the sill.

There are no universal algorithms in order to define the best variogram model.
The most common methods used to choose a valid family are based on graphical
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tools. From the graphical representation of the empirical variogram we can detect
some properties of the most suitable theoretical model. These properties (such as
the behaviour close to the origin, the existence of a finite or infinite range) may be
used to restrict the set of valid variogram models useful for our analysis. One of
the most important structural properties, that can be detected from the empirical
variogram, is the behaviour of the variogram close to the origin. The discontinuity
at the origin is associated with a highly irregular and L2- discontinuous random
process and it is due to measurement errors. The linear behaviour at the origin
(linear, exponential and spherical models) is associated with continuous but non-
differentiable random processes. A quadratic behaviour at the origin is associated
with regular random fields with smooth realizations.

Fitting step

A valid variogram model is characterized by a set of unknown parameters which
must be estimated. For example, the valid models previously described (i.e., pure
nugget, linear, exponential and spherical models) are completely identified by the
three parameters ϑ = (τ 2, σ2, R). The fitting step concerns the estimate of these
parameters. We can follow a parametric approach by using the maximum like-
lihood method, or a more popular non-parametric approach like a least square
criterion. We can choose among three LS criteria: ordinary least square (OLS),
generalized least square (GLS) and weighted least square (WLS). The OLS vari-
ogram fitting consists of looking for the parameters ϑ which minimize:

M
∑

m=1

(γ̂(hm)− γ(hm;ϑ))
2

where γ(hm;ϑ) indicates a valid model parameterized by ϑ and evaluated in the
center hm of the m-th class of distances.
To take into account also the variability of the binned estimator, a GLS criterion
can be used. In this case we look for the parameters which minimize:

(γ̂(h)− γ(h;ϑ))T [Cov(γ̂(h))]−1(γ̂(h)− γ(h;ϑ))

where γ(h;ϑ) = (γ(h1;ϑ), . . . , γ(hM ;ϑ))T . The limit of this approach is that the
covariance of the variogram estimator is, in general, unknown.
A good compromise between OLS and GLS comes from the WLS method, based
on the minimization of:

M
∑

m=1

1

ωm

(γ̂(hm)− γ(hm;ϑ))
2

where ωm can be set, for example, to Var(γ̂(hm)) or |N(hm)|, for m = 1, . . . ,M .
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1.1.4 Kriging prediction

In most cases, the geostatistical analysis based on a set of n locally distributed
observations {Zs1 , . . . , Zsn} of the random field (1.1) is aimed to predict the value
for Zs0 at an unsampled location s0 in D. The geostatistical approach consists of
three steps: (1) an experimental variogram analysis based on the observed data
aimed to define the empirical variogram; (2) the selection of a valid variogram
and the following parameters estimate by a LS criterion; (3) a final Kriging inter-
polation based on the estimated variogram.
The Kriging predictor at an unsampled locations s0 is defined as a weighted linear
combinations of the observed data according to the following identity:

Z∗
s0
(Z) = λ0 +

n
∑

i=1

λiZsi . (1.10)

The Kriging predictor Z∗
s0
(Z) is the Best Linear Unbiased Predictor (BLUP)

(1.10), whose weights λ0, λ1, . . . , λn are solutions of the following constrained min-
imization problem:

min E[(Zs0 − Z∗
s0
(Z))2]

s.t. E[Z∗
s0
(Z)] = E[Zs0 ].

According to the prior knowledge on the process, we distinguish three Kriging ap-
proaches: (a) Simple Kriging (SK), (b) Ordinary Kriging (OK) and (c) Universal
Kriging (UK).

(a) Simple Kriging
It is employed when the stationarity assumption holds true and the drift
term m is known. In this case the unbiasedness constraint implies

λ0 = m

(

1−
n
∑

i=1

λi

)

.

The optimal weights vector λ = (λ1, . . . , λn)
T is solution of the following

system

Σλ = σ0

where the ij-th element of the covariance matrix Σ is defined as [Σ]ij =
Cov(Zsi , Zsj), with i, j = 1, . . . , n. While the i-th element of the σ0 vector
is defined as [σ0]i = Cov(Zsi , Zs0), with i = 1, . . . , n.

(a) Ordinary Kriging
It is employed when the stationarity assumption holds true, but the drift
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term is unknown. In this case the uniform unbiasedness constraint can be
expressed as m = λ0 +

∑n
i=1 λim, for any m, which implies:

{

λ0 = 0
∑n

i=1 λi = 1.

The optimal weights are solutions of the following system
(

Σ 1
1 0

)(

λ

ξ

)

=

(

σ0

1

)

(1.11)

where ξ is the Lagrangian multiplier used to solve the constrained optimiza-
tion problem, while the other elements of the system are defined as before.

(c) Universal Kriging
It is applied in non-stationary framework. In this case the (unknown) drift
term is modeled as

ms =
L
∑

l=0

alfl(s) (1.12)

where {al}
L
l=0 are coefficients in R independent from the spatial locations,

while {fl(s)}
L
l=0 are known functions, with the same role of the regressors

in the linear model case. If we define the vector f0 such that the l-th ele-
ment is [f0]l = fl(s0) and the design matrix F such that [F]il = fl(si), with
l = 0, 1, . . . , L and i = 1, . . . , n, then the optimal weights defining the UK
predictor are solutions of the following linear system

(

Σ F

F
T 0

)(

λ

ξ

)

=

(

σ0

f0

)

where ξ = (ξ0, . . . , ξL) is the vector of Lagrangian multipliers coming from
the constraints:

n
∑

i=1

λifl(si) = fl(s0) l = 0, . . . , L.

In all the three Kriging approaches, we can evaluate the uncertainty in the esti-
mated field through the Kriging variance. It is the variance associated with the
prediction error ǫ∗s0(Z) = Z∗

s0
(Z)− Zs0 and it is computed (according to the type

of performed Kriging) in the following way

σ2
SK(s0) = C(0)−

n
∑

i=1

λiC(s0 − si); (1.13)

σ2
OK(s0) = C(0)−

n
∑

i=1

λiC(s0 − si)− ξ; (1.14)

σ2
UK(s0) = C(0)−

n
∑

i=1

λiC(s0 − si)−
L
∑

l=0

ξlfl(s0). (1.15)
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We can notice that in stationary framework, if the variogram is known, the Kriging
method gives the possibility to compute prediction at unsampled locations without
having estimated the mean function in advance. This cannot be applied in non-
stationary framework, since the variogram cannot be estimated according to the
(1.5) estimator, because it defines a biased estimator. In this case the drift term,
defined by the equation (1.12), must be estimated.
Given the n observations Z = (Zs1 , . . . , Zsn)

T , from the definition of the drift term
given by equation (1.12), we can write

Z = Fa+ δ

with m = Fa = (ms1 , . . . ,msn)
T and the residuals δ = (δs1 , . . . , δsn)

T , whose
covariance structure is defined by Σ.
If Σ is known, the Generalized Least Square method (GLS) can be used to estimate
the coefficients a, by minimizing

(Z− Fa)TΣ−1(Z− Fa).

The GLS estimator of a is defined as

âGLS = (FTΣ−1
F)−1

F
TΣ−1Z.

Since in general the matrix Σ is unknown, we need to estimate it. If the residuals
were observed, we can estimate the variogram according to

γ̂(h) =
1

2|N(h)|

∑

(i,j)∈N(h)

[δsi − δsj ]
2 (1.16)

but also the residuals are unknown informations. We can only use estimated
residuals obtained as δ̂ = Z− Fâ.
Since â depends on Σ, an iterative algorithm must be defined to jointly estimate
γ(·) and a. The algorithm can be initialized with the OLS estimate âOLS =
(FT

F)−1
F
TZ and then the estimated residuals δ̂ are used to compute an estimate

of the covariance matrix: Σ̂. Finally, Σ̂ will be used to define the GLS estimator
of a

âGLS = (FT Σ̂−1
F)−1

F
T Σ̂−1Z.

The estimate âGLS is used to update the residuals estimate and these steps are
repeated until convergence is reached.
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Chapter 2

Non-stationary Spatial Data

The most common assumption in geostatistical analysis is stationarity, which gives
the possibility to define a global variogram (or covariogram) function describing
the spatial relationships among data over the entire study domain. This function
describes the second-order properties of the phenomenon and under (intrinsically)
stationary assumption it only depends on the separation vector between loca-
tions. But, stationarity is more an exception than a general condition. Indeed,
local factors (such as environmental or human-based activities, natural or artificial
constraints, as well as irregular boundaries) may influence the geographical depen-
dence differently at different locations of the domain, introducing non-stationary
effects, reflecting the fact that the characteristics of the phenomenon may vary
across the study region. In recent years, various modeling approaches have been
proposed to take into account the possible non-stationary structure of spatial dis-
tributed phenomena. A brief review of these methods is reported in this chapter.
For a complete and in-deep description of the existing methods for analysing non-
stationary and spatially distributed random processes we refer the reader to the
work of Fouedjio [2016].

2.1 Approaches for modeling non-stationary spa-

tial processes

2.1.1 Moving-Window

Haas [1990] (and Haas [1995]) proposed a moving-window approach for handling
the non-stationarity property of spatial processes. The method consists in defin-
ing a local window around each location s0 to be predicted. Within the window
the stationarity is assumed, therefore the Ordinary Kriging can be performed.
The Kriging predictor is, as usual, a weighted linear combination of the data, but
it only takes into account the data within the defined window.
The size of the window is chosen by cross-validation and it controls the trade-off
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between the need to have a sufficient number of pairs to estimate the local sta-
tionary spatial dependence structure and the need to use a window as small as
possible in order to make the stationarity within the window a viable hypothe-
sis. Since the window is often symmetrically designed around the location s0, the
method is not able to capture sharp changes in covariance structure.
Later, Harris et al. [2010] proposed a generalized moving window Kriging (GMWK)
approach where the classical variogram estimator is replaced with a geographi-
cally weighted variogram estimator, constructed by using kernel smoothing. This
kernel weighting function is used to smooth the individual semivariances of each
lag interval according to the distance of these paired values from the target loca-
tion where the estimate of the variogram is computed. Therefore, contrarily to
the simple moving window approach, the GMWK also uses information coming
from sampled data outside the moving window, with weights depending on the
kernel function.
The moving window-based approaches handle the non-stationarity without pro-
viding a global non-stationary spatial dependence structure model. Indeed, they
provide a collection of local stationary models, each of them is related to a neigh-
borhood of the locations where prediction must be computed. Moreover, since
data locations are suddenly included and excluded from the window, this ap-
proach may result in discontinuities on the Kriging map.

2.1.2 Basis functions

The basis functions based approach for handling non-stationarity was proposed
for the first time by Cohen and Jones [1969]. It is based on the Karhunen-Loève
decomposition of a random field {Zs, s ∈ D}, which defines the random variable
Zs as an infinite linear combination of orthogonal functions

Zs =
∞
∑

k=1

ωkφk(s) ∀s ∈ D

where {ωk}
∞
k=1 are i.i.d variables and {φK(·)}

∞
k=1 are orthogonal basis functions.

In real applications, the random process {Zs, s ∈ D} is often approximated by a
finite linear combination of orthogonal basis functions

Ẑs =
M
∑

k=1

ωkφk(s) ∀s ∈ D.

In this framework replicated observations through the time of the random field
{Zs, s ∈ D}, under the temporal stationarity assumption, make easier the estimate
of the non-stationary covariance function defined as

C(si, sj) =
M
∑

k=1

λkφk(si)φk(sj)
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where φk(·) indicates the k-th eigenfunction of the covariance function and λk

is the corresponding eigenvalue. Therefore the estimate of the non-stationary
covariance function C(·, ·) corresponds to the estimate of its eigenfunctions and
eigenvalues. The numerical approximations of the eigenfunctions are performed
by using principal component analysis on the empirical covariance matrix esti-
mated from the data.
Nychka et al. [2002], replaced the orthogonal basis functions with wavelets. In
particular the focus was on computational problems related to the analysis of
large data sets. In this case, the data have to be mapped to a regular grid before
applying the Kriging analysis. The correlation among the random variables ωk

allows the possibility to define a flexible model which can be used to estimate
non-stationary covariance structures.
Even if the approaches based on the use of basis functions are general and flexi-
ble, they are not popular for handling non-stationarity, due to the lack of connec-
tion with traditional approaches based on the Kriging technique and variograms.
Furthermore, these approaches require replicated observations and, even if they
provide a global non-stationary spatial dependence model, it is not guaranteed
that this resulting global covariance has closed-form.

2.1.3 Space deformation

The space deformation based approach for handling non-stationary spatial data
was introduced for the first time by Sampson and Guttorp [1992] and Guttorp and
Sampson [1994]. The method consists in transforming the original non-stationary
space D ⊆ R

p into a space of given dimension where stationarity and isotropy
assumptions hold true. The geostatistical analysis is not performed on the original
random field {Z(s), s ∈ D ⊆ R

p, p ≥ 1} but on the transformed field {Y (u),u ∈
G ⊆ R

q, q ≥ p} such that

Z(s) = Y (f(s)) ∀s ∈ D.

Function f : D ⊆ R
p → G ⊆ R

q is deterministic, non-linear, smooth and bijective.
Since stationarity can be assumed in G, here standard geostatistical techniques
can be applied. The variogram γ(·, ·) of the random field Z(·) is modeled as

2γ(si, sj) = Var(Z(si)− Z(sj)) = γ0(‖f(si)− f(sj)‖)

for all si, sj in D, where γ0(·) represents the isotropic and stationary variogram of
the random field Y (·) and ‖ · ‖ is the Euclidean norm in the space Rq. The results
obtained on Y (·) are then transposed to Z(·) by the inverse deformation function
f−1. In general the functions f(·) and γ0(·) are unknown and therefore they need
to be estimated.
The space deformation-based approaches had great success as methods for han-
dling data distributed over domains where the Euclidean distance is not the most
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appropriate measure of closeness among locations. In this case, one must be care-
ful about using a non-Euclidean distance with the traditional Kriging techniques
since, as discussed by Curriero [2006], covariance functions that are known to be
valid in an Euclidean space are not necessarily valid in a non-Euclidean frame-
work. In these cases the multidimensional scaling method (MDS) can be used
to embed locations of the domain of interest in an Euclidean space where the
distances between points well approximate the original non-Euclidean distances
and where the validity of the described variogram models is guaranteed.
The drawbacks of these space deformation methods concern the necessity of having
multiple realizations of the field. Moreover, a non-stationary spatial dependence
structure is not always reducible to a stationary model by using a transformation
of the space.

2.1.4 Convolution approach

The convolution based approach introduced by Higdon [1998] is based on the
possibility of defining a non-stationary process {Z(s), s ∈ D} as a convolution of
a deterministic function K(s) with a white noise process X (s) according to

Z(s) =

∫

D

K(s− u)X (u)du.

An improvement to this method came from Higdon et al. [1999], who proposed
the idea of a spatially evolving kernel Ks(·). They defined the random process as
a convolution of a deterministic kernel Ks(u), whose parameters vary spatially,
with a white noise process X (s) according to

Z(s) =

∫

D

Ks(u)X (u)du.

According to this definition, the non-stationary covariance of the random field
Z(·) can be expressed as

C(si, sj) =

∫

D

Ksi(u)Ksj(u)du.

The function Ks(·) is treated as un unknown smooth function which should be
estimated in a Bayesian hierarchical framework, together with the model parame-
ters. The choice of the kernel function is crucial for a convolution based approach
and, in general, one tries to find a kernel such that the global non-stationary co-
variance function has closed-form.
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2.1.5 Kernel smoothing

The kernel-based approach was proposed for the first time by Fuentes [2001].
He defined a non-stationary random field as a linear and weighted combination of
stationary random fields. Each stationary random field describes the phenomenon
within a sub-region of the study domain D. This domain is partitioned into K
disjoint sub-regions Dk such that

Z(s) =
K
∑

k=1

wk(s)Zk(s) ∀s ∈ D

where the collection {Zk(·)}
K
k=1 are unobserved and orthogonal random functions

defined on D and each of them is characterized by a stationary covariance function
Cθk(·). The linear combination is weighted by using the weights {wk(s)}

K
k=1 that

are functions of the distance between the sub-region Dk and the location s (e.g.,
the distance between the centroid of Dk and the points s). The weight wk(s)
gives more importance to the random function Zk(s) at locations s ∈ Dk and
less importance to random functions at locations outside Dk. The global valid
non-stationary covariance can be define as follows

C(si, sj) =
K
∑

k=1

wk(si)wk(sj)Cθk(si − sj).

In Fuentes [2001], the shape of the sub-regions was considered as a priori known
and the number of sub-regions was chosen by using an Akaike or Bayesian infor-
mation criterion.
Later, Fuentes [2002] introduced an extension to this approach. He defined the
random field {Z(s), s ∈ D} as a continuous convolution of locally stationary and
independent processes Zϑ(u)

(·) with a kernel weighting function K(·)

Z(s) =

∫

D

K(s− u)Zϑ(u)
(s)du.

The index ϑ(·) is the parameter associated with the local stationary covariance
function Cϑ(u)(·) of the random field Zϑ(u)

(·) and it is allowed to vary across the
domain to reflect the lack of stationarity of the process. The global non-stationary
covariance function is then defined according to

C(si, sj) =

∫

D

K(si − u)K(sj − u)Cϑ(u)(si − sj)du.

Unlike the moving window approach, this method has the advantage that a global
model is simultaneously defined everywhere. In addition, for suitable choices of
the kernel function, it is possible to obtain a closed-form non-stationary covariance
function with locally varying geometric anisotropy.
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2.1.6 Partitioning

The approaches based on the partition of the domain assume that the global non-
stationary spatial dependence structure can be assumed stationary within some
sub-regions of the domain. The stationarity assumption holds true within each
sub-region Dk but, contrarily to the partition {Dk}

K
k=1 proposed by Fuentes, here

observations are considered independent across different sub-regions. Fuentes as-
sumed that the shapes of the homogeneous regions were known, although this is
not a common situation in real applications. Later, Kim et al. [2005] introduced
uncertainty about the properties of the homogeneous sub-regions of the domain,
by defining a prior distribution on their shape and number. They proposed a
random partition approach with the aim to define a method able to model sharp
transitions in the covariance function. In Kim et al. [2005], the study region was
partitioned into several sub-regions such that the data were assumed to be ho-
mogeneous within each region and independent across sub-regions. The partition
of the domain was computed according to an Euclidean Voronoi tessellation with
K tiles. The number K of sub-regions and the coordinates of their centers were
treated as unknown information and they were estimated in a Bayesian frame-
work together with the model parameters. The process within each region was
assumed to be a Gaussian process, therefore the overall field was defined as a piece-
wise stationary Gaussian process. In particular, given a tessellation t = (K, c)
of the domain D, where c = (c1, . . . , cK) are the locations of the centers, they
assumed a Gaussian distribution within each k-th sub-region

Zk|sk,βk, t ∼ Nnk
(Gkβk,Σk)

where nk is the number of data points within the k-th sub-region such that
∑K

k=1 nk = n and Zk = (Zsk.1 , . . . , Zsk.nk
)T is the vector of observations at lo-

cations sk = (sk.1, . . . , sk.nk
) within the k-th region. The matrix Gk is a known

design matrix used to capture the trend within each region, and the Σk is a co-
variance matrix that describes the local spatial dependence. Having assigned the
priors (uniform for t and Gaussian for βk, with k = 1, . . . , K), to draw sample
from the posterior model space, they used a modified version of the MCMC ap-
proach, due to the need of designing a Markov chain which is able to move between
models of different dimensions.
Heaton et al. [2015] defined a partition of the spatial domain into disjoint sub-
regions by using hierarchical clustering of observations and finite differences as a
measure of dissimilarity. Also in this case stationarity was assumed within each
sub-region and independence among different sub-regions.
The approaches based on the partition of the study domain show the problem
of defining the local spatial dependence structure at the border of two disjoint
sub-regions. This could imply, as in the case on moving window approaches, some
discontinuities on the Kriging map. Moreover, the assumption of independence
between sub-regions ignores the spatial correlation between neighboring points
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located in different sub-regions.

2.2 Local Stationarity

From this brief review on the approaches that allow the analysis of second-order
non-stationary geostatistical data, we can divided them into two groups: (a) ap-
proaches which handle non-stationarity without providing a global non-stationary
model for the dependence structure underlying the data (e.g., partitioning and
moving window) and (b) approaches which define a global non-stationary model
for the covariance structure (e.g., basis functions, space deformation, convolution,
kernel smoothing). Moreover, the review shows the importance of the stationar-
ity assumption in geostatistical settings since, in most of the described methods,
the stationarity is always considered. Precisely, almost all the methods assume
that a non-stationary process can be at least considered locally stationary. The
definition of local stationary comes from Matheron [1971].

Definition 2.1. (Matheron, 1971.)
The random field {Zs, s ∈ D} is local stationary (or quasi-stationary) if its mean
function ms and its non-stationary covariance function C(·, ·) fulfill the following
properties:

(i) ms is a very regular function varying slowly in space (at the scale of the
grid). More precisely, ms can be considered constant in a neighborhood
Vs of s. That is, if we define at any location s ∈ D the neighborhood
Vs = {x ∈ D : ‖s − x‖ ≤ b} with b > 0, then the drift term of a quasi-
stationary process satisfies the following relation

mx ≈ my ≈ ms ∀(x,y) ∈ Vs × Vs.

(ii) There exists a function of three arguments CS(h;x,y) such that

C(x,y) = CS(x− y;x,y)

and CS(h;x,y) is a very regular slowly varying function of the two argu-
ments x and y, for a given h. Therefore, for locations x and y in D not too
far from each other, the function CS(h;x,y) only depends on h, hence the
covariance function is locally stationary.

From this definition, we can conclude that if a random field (1.1) is local sta-
tionary, then at any location s0 ∈ D there exists a neighborhood Vs0 where the
random field can be considered as stationary. However, note that one needs to
define this neighborhood in each location of the domain and handles the trade-off
between the range of homogeneity of the studied phenomenon and the number of
observations available around the considered point.
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The method that we propose for handling possibly non-stationary geostatistical
data is based on the local stationarity assumption. Although some of the ideas
are inspired by the approaches described in this chapter, the family of method-
ologies here proposed is entirely general and prone to the final aim of analysing
complex data with spatial dependence in the framework of Object Oriented Spatial
Statistics (O2S2) [Menafoglio and Secchi, 2016].
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Random Domain Decompositions
for O2S2

3.1 Object Oriented Spatial Statistics

Object Oriented Spatial Statistics (O2S2) is a new branch of statistics focused on
the analysis of data sets of complex objects with spatial dependence. O2S2 com-
bines the ideas of Object Oriented Data Analysis (OODA) with the approaches
used in Spatial Statistics in order to take into account the spatial dependence
among object data. OODA was introduced by Wang and Marron [2007], with
the aim to define some new statistical approaches for analysing populations of
complex object, such as curves, images, shape objects, tree-structured objects or
elements of a manifold.
In univariate statistics the atoms of the analysis are numbers, in multivariate anal-
ysis the atoms are vectors, while in O2S2 the atom is the whole complex spatially
distributed datum. Further, in O2S2 one may need to take into account also the
fact that the object-datum may be distributed over a complex domain. Here, we
face the need to jointly handle both the object and the domain complexities.
In O2S2 the atom is represented in the so-called feature space. This space should
represent, through its geometry, all the salient data features. Within this space
we need to formalize appropriate definitions of distance and similarity between
object data, such that the fundamental idea of geostatistics, i.e., points close to-
gether are likely to be correlated, may still hold true. For these reasons, in the
O2S2 framework, the object data are often represented within a separable Hilbert
space, where we are able to define the fundamental operations (+, ·), the inner
product and the induced norm.
The complexity related to a datum may concern its dimensionality or its con-
straints (or both). An example of complex spatial data treated within the O2S2
is represented by the particle-size densities (PSDs) dataset collected in a German
aquifer, analysed by Menafoglio et al. [2016]. In this case the datum is a probabil-
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ity density function associated with the local distribution of the particle size mea-
sured at a given location of the aquifer. It is a curve, thus an infinite-dimensional
datum, but, in addition, it is a distributional datum, hence constrained to be
positive and integrate to unity. These complexities cannot be ignored for the fi-
nal aim of spatial prediction of PSDs at unsampled locations, since O2S2 aim to
predict the whole complex object datum, not only some of its attributes. In this
case a Bayes Hilbert space was used as feature space, that is a space of positive
functions with constant integral, hence it precisely represents, with its geometric
properties, the attributes of the complex data.
The complexity of the domain may be associated with its size or its geometrical
constraints. When data are observed over a very large domain, the definition of an
unique global model describing the spatial dependence may be not an appropriate
approach, while it might be better to perform several local analyses. Furthermore,
also a small domain may be considered as a complex domain, e.g., for the presence
of holes, highly irregular boundaries or barriers. In this case we are not able to
define the meaning of global stationarity, regardless of the observed phenomenon.
An example can be the dataset of population densities distributed over the Island
of Montréal [Sangalli et al., 2013]. Hence, data are simple scalar observations,
while the complexity of the analysis is associated with the domain. Indeed, the
Island of Montréal is located between two rivers, which represent natural geo-
graphical constraints. Within the island there are some areas (the harbour and
the public parks) where people cannot live. These regions represent the holes of
the domain and must be taken into account if the goal of the analysis is the re-
construction of the population densities over the whole domain. In Sangalli et al.
[2013] a semi-parametric approach was used for the analysis, which takes into
accounts the presence of holes and the possible presence of boundary conditions.
The complexity of a domain with holes or irregular boundaries is not only asso-
ciated with the possible necessity of defining boundary conditions, but also with
the more difficult problem of finding an appropriate measure of distance between
points. Most applications of Geostatistics have defined the separation between
sample points simply by using the Euclidean distance. However, in many envi-
ronmental settings some features (natural or artificial) may act as barriers. The
presence of such barriers is not taken into account if the analysis is based on the
Euclidean distance between locations.
Barriers are common features in coastal or estuarine environments. The study

of estuarine ecosystems is becoming increasingly important, in particular for
analysing the impact of the human activities on these environments, that are
among the most productive resources of the Earth. Estuaries are irregularly
shaped non-convex regions. Therefore the classical geostatistical methods based
on the Euclidean distance are not suitable for their analyses. Previous meth-
ods based the variogram modeling and the Kriging analysis on the use of non-
Euclidean distance metrics, such as the water distance defined in Rathbun [1998]
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Figure 3.1: Chesapeake Bay. Left panel: satellite image from the
https://commons.wikimedia.org/wiki/File:Chesapeakewatershedmap.png
website. Right panel: shape file used for the analysis.

or the landscape-based distance defined in Jensen et al. [2006]. In these cases, sig-
nificant problems may arise, due to the fact that the valid models defined in the
Euclidean framework (see, e.g., those recalled in Chapter 1, Section 1.1.3) may be
no longer valid when non-Euclidean metrics are used.
The problem that motivated our work is related to the depletion of dissolved
oxygen (DO) in the Chesapeake Bay. The Chesapeake Bay is the largest, most
productive and biologically diverse estuary in North America (Figure 3.1). The
oxygen depletion problem was addressed for the first time by Newcombe and Horne
[1938]. These scientists pointed out the contribution of physical and biological fac-
tors to the seasonal reduction of DO in the bottom water of the Bay. During the
following years, the excess of nutrient pollution made the DO depletion and its
consequences for ecosystem dynamics a central theme of research in the Chesa-
peake Bay. Indeed, the low oxygen levels are insufficient to support most marine
life and habitats. For this reason, these low-oxygen areas are called Dead zones.
As we can see from Figure 3.1 the boundaries of the Chesapeake Bay are highly
irregular and very jagged. Likewise many estuaries, the Chesapeake Bay has sev-
eral tributaries arising from the central unit. These tributaries are separated by
long and narrow areas of land that represent barriers for the distributions of many
aquatic variables. Moreover, the different uses of the watersheds imply different
chemical and biological characteristics of points located in adjacent tributaries.
Despite adjacent tributaries can show different characteristics, they result to be
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very close and, consequently, presumed to be similar if the Euclidean distance is
used for the geostatistical analysis. Domains like this estuary require appropriate
statistical methods to be analysed in order to take into account the complexity
of the region. Furthermore, some environmental variables may take deterministic
values at the estuarine boundaries or they can be functional data, therefore the
complexity of the domain must be associated with the complexity of the data.
This dissertation aims to define a novel methodology allowing for the analysis of
complex data distributed over complex domains. The complexity of the datum
addresses our attention on a non-parametric and computationally intensive ap-
proach, that allows to avoid strong assumptions on the distribution generating
the random field. On the other hand, the complexity of the study region and
the possible non-stationarity motivate us to develop an approach based on local
object oriented geostatistical analyses, instead of an unique global analysis. In the
local framework, the method is based on the well-documented geostatistical tech-
niques (such as variogram estimator, Kriging predictors). These local analyses are
here properly developed and combined to handle data distributed over complex
domains where the adjacency relationships among locations cannot be described
by the Euclidean distance, still avoiding to work with non valid variograms.

3.2 Random Domain Decompositions (RDDs)

Performing local analyses suggests the idea of partitioning the study domain into
disjoint sub-regions, such that within each sub-region stationarity is a viable as-
sumption. Partitioning the domain leads overall to a model simplification: here,
a collection of locally stationary models are considered instead of a global (and
complex) non-stationary model.
The first issue arising within this approach then regards how to perform the par-
tition. In most real applications we do not have any information regarding the
optimal partition underlying the data. Therefore, we cannot generally consider it
as a priori information, as done by Fuentes [2001]. A possible solution may be to
estimate an optimal partition by using the information coming from the observed
data. This was the approach proposed by Kim et al. [2005], recalled in Chapter 2.
The application of the latter method to the analysis of object data would become
challenging since we can hardly make similar distributional assumptions on these
complex data.
The complexity associated with the nature of object data motivates us to move
away from the idea of estimating an optimal partition of the study region. Indeed,
we are not interested in defining an optimal partition, we rather want to build
our analysis on a collection of clever, but simple, partitions of the domain.
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3.2.1 Voronoi RDDs for complex domains

Aiming to avoid strong distributional assumptions, we will randomly perform the
domain decomposition through simple methods, regardless and independently of
the data structure and complexity. It is clear that a single random partition rarely
approximates the real existing subdivision of the domain. For this reason we do
not perform a single simple random partition, but we use several random parti-
tions of the domain as starting points for the local analyses of the same dataset.
Each analysis is based on a different system of neighborhoods.
There exist many ways to perform a random decomposition of the study domain.
Although in principle the methodology we propose is completely general, for ease
of exposition we focus in this work on a particular decomposition: the Voronoi
tessellation. This partition is defined by a set of sites (called nuclei) and a met-
ric function d(·, ·). Given a spatial domain D ⊂ R

p, assume that we want to
randomly divide the domain into K disjoint sub-regions. The set of nuclei of
the Voronoi tessellation is defined by sampling K points in D from an appropri-
ate distribution F defined on D or by randomly selecting K points among the
n sampled locations. In our work, the centers were uniformly extracted among
the sample sites. In case of non-homogeneous distribution of the measurement
locations, a non-homogeneous sampling scheme can be used (e.g., by considering
a tessellation generated by non-homogeneous Poisson processes or more complex
point processes).
Let ΦK = {c1, . . . , cK} be the locations set of theK nuclei in D. The k-th Voronoi
cell is defined as follows

V (ck|ΦK) = {s ∈ D : d(s, ck) ≤ d(s, cj), for all cj ∈ ΦK , j 6= k}. (3.1)

In other words, the Voronoi cell V (ck|ΦK) consists of all the points of D closer
to the nucleous ck than to any other nucleous, according to the metric d(·, ·).
There are no restrictions on the type of metric; obviously different metrics define
different partitions of the same domain, even if the set of nuclei is the same. Typi-
cally, the Euclidean metric is used for the construction of Voronoi tessellations. In
this case, if the domain is a convex region, each Voronoi cell is a convex polytope
with straight segments as boundaries. Voronoi cells can be defined for metrics
other than Euclidean, such as the Mahalanobis distance, Manhattan distance or
the metric induced by local kernels. However, in these cases the boundaries of
the Voronoi cells may be more irregular than in the Euclidean case. Furthermore,
the properties of the domain, such as irregular shapes or the presence of barriers,
can be used for choosing a more suitable metric d(·, ·) for the definition of each
domain decomposition. As we shall see later in detail, we here use an appropriate
spatial metric for defining the relation of closeness among the observations within
a possibly complex domain. The partition based on such a metric allows the defi-
nition of sub-regions which are more likely to be homogeneous. Here, the key idea
is to map the sampled locations on a graph representing the spatial adjacency and
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Figure 3.2: Voronoi tessellations of the Chesapeake Bay. Top panels: K = 4; bottom
panels: K = 8. Right panels: Euclidean metric; left panels: graph-based
metric.

neighborhood relation of the observed objects. This gives the possibility to use a
graph-based metric for defining homogeneous regions within a complex domain,
which takes into account the geometrical properties of the domain and it better
describes the closeness among points, with respect to the Euclidean metric. The
construction of such graph is based on the Delaunay triangulation of the domain,
as we will discuss later. Figure 3.2 shows the differences between tessellations of
the Chesapeake Bay based on the Euclidean metric (on the right side) and tessel-
lations, with the same centers, obtained by using a graph-based metric (on the left
side). In the top panels the tessellation divides the estuarine domain into K = 4
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sub-regions, while in the bottom panels the sub-regions are K = 8. The differ-
ences are, in particular, in the partitions of tributaries areas: with an Euclidean
approach points located on different tributaries are assigned to the same Voronoi
tile. This situation rarely occurs with a graph-based metric tessellation, where
locations belonging to different tributaries are likely to be assigned to different
Voronoi neighborhoods.

3.2.2 Voronoi tessellation and coverage property

The choice of using a Voronoi tessellation approach is due to its simplicity, as
well as to the numerous interesting properties of this type of domain partition.
The most interesting properties for our purpose are the coverage property and
the duality between Voronoi tessellation and Delaunay triangulation (as we will
describe in Chapter 5).
The coverage property was proved by Penrose [2007]. Let A be a Lebesgue mea-
surable set, with A ⊂ D and set Vk := V (ck|ΦK), we define

AK =
⋃

ck∈A

Vk.

AK is an approximation of A, given by the Voronoi cells whose nuclei belong to
A. The coverage property states that the set AK is a consistent estimator for the
unknown set A, since:

|AK∆A| → 0 as K → ∞

where ∆ denotes the symmetric difference between two sets and |·| is the Lebesgue
measure. The proof of this property is based on the assumption that the support
of F includes D and it represents a strong law of large numbers in the Voronoi
tessellation framework.
Therefore an unknown set A can be always consistently estimated by the corre-
sponding union of Voronoi cells, whose nuclei belong to A. This coverage prop-
erty provides a strong basis upon which building RDDs-based methods. Indeed,
if {Aj}

M
j=1 represents the (unknown) collection of sets that partition the domain

D into homogeneous sub-regions, the coverage property guarantees that, when
the tessellation becomes more refined, the homogeneous sub-regions of D are well
approximated by appropriate sets of Voronoi elements.

3.3 Spatial statistics based on RDDs

We here propose RDDs-based methods for O2S2, aiming to develop a flexible class
of methodologies able to deal with general types of data (e.g., object data) and
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general domains, possibly complex, convoluted or with holes.
Following a divide et impera approach, given a system of neighborhoods (i.e., a
domain partition) randomly generated, we shall propose to perform K weak lo-
cal analyses, K being the number of sub-regions, each analysis restricted to a
sub-region of the domain. To filter out the dependence of the analysis on the sin-
gle realization of the partition generating the result, these local analyses shall be
repeated for several realizations of the random domain decomposition, and then
aggregated into an unique final strong analysis. The method we propose is based
on a bagging approach, acronym used by Breiman [1996] to define a two steps
procedure which includes: (1) a first bootstrap stage, where the same analysis is
performed several times on different learning samples, and (2) a final aggregating
stage where the repeated analyses are aggregated into a final analysis.

3.3.1 Bootstrap step

During the bootstrap step, the domain is repeatedly and randomly partitioned
into K sub-regions (e.g., by using Voronoi tessellations). Once a K dimensional
partition has been defined, K local analyses are performed, one for each sub-
region. For ease of exposition, we shall focus on spatial prediction, which will be
the core of the present study. Nevertheless, the method is entirely general, and
apt to be applied in varied contexts.
If the final goal is to predict the value of the random variable Zs0 at an unsampled
location s0 ∈ D, at each bootstrap iteration the BLUP of Zs0 can be defined ac-
cording to an Ordinary Kriging approach restricted within the sub-region where s0
is located. Even though, in this case, the Kriging predictor would be thus defined
as a linear combination only of the data within the sub-region of s0, one could
borrow strength from the information coming from neighbour regions, e.g., by em-
ploying geographically weighted statistics to estimate the spatial dependence. For
example, a weighted estimate of the local variogram could be performed, where
the weights are defined according to a kernel function Kǫ(·, ·). The kernel down-
weights the contribution of data “far apart” from the center of the neighborhood,
where the range of influence of neighbour locations is controlled by the band-
width parameter ǫ. This weighted version of the variogram would be in contrast
with the assumption of independence among disjoint sub-regions of the previously
mentioned approaches, but it is a relevant source of flexibility and robustness for
the methodology, as we shall discuss below.
As in the standard bagging approach, during the bootstrap step multiple versions
of the same target (e.g., predictor for Zs0) are generated. Contrarily to the clas-
sical definition, the difference between two bootstrap iterations does not concern
the dataset used for the analysis, but the partition of the domain. Indeed, in
the classical definition of the bagging meta-algorithm [Breiman, 1996], given an
n-dimensional dataset L = (Zs1 , . . . , Zsn), at each iteration a new n-dimensional
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dataset Lb was generated from L by using combinations with repetitions. In our
approach we use the same original dataset L, but the analyses are based on dif-
ferent partitions of the domain. In the case of Kriging prediction via RDDs, at
the b-th iteration the predictor of Zs0 is a linear combination of a set observations
which is not necessarily the same set of data that will define the predictor at the
(b+ 1)-th iteration.
These simple random partitions give the possibility to perform simple, inde-
pendent weak local analyses: although computationally intensive, this class of
methodologies is suitable for introducing parallel approaches.
After B replicates of the K local analyses aimed to define a predictor for Zs0 , the
output of the bootstrap step consists of:

- a collection of Kriging predictors {Z∗b
s0
(Z)}Bb=1;

- a collection of estimated variograms {γ̂b(h; s0)}
B
b=1

(each of them describes the second-order property of the study random
field limited to the sub-region where s0 was located at the b-th bootstrap
iteration).

3.3.2 Aggregating step

The multiple weak local analyses of the same analysis have to be aggregated into
a final strong analysis. In this work the focus will be on the aggregation of the
predictors, while we will not consider the aggregation of the local measures of
spatial dependence, which will be the scope of future work.
The multiple realizations of the target predictor, each of them conditional to the
partition and to the data, will be then used to define a final aggregated predictor,
which is expected to have a smaller variance with respect to the predictor obtained
through a single partition of the domain. If the variable that we want to predict
is a real-valued random variable, the aggregate predictor can be obtained as an
average (or a weighted average) of the predictors obtained along the bootstrap
repetitions. If we wanted to perform classification, the final predictor would be
the label assigned to the target point s0 and, in this case, the aggregation could
be based on the plurality vote criterion.
We remark that the choice of defining multiple versions of the same predictor,
based on different partitions of the domain, allows to overcome the main drawback
of the previous partitioning and moving window approaches, that is the presence
of discontinuities in the Kriging map. Indeed, since we do not define a single
partition (or a single window around each grid point to be predicted) we do not
expect discontinuities on the predictions of points located along the boundaries
defining two different sub-regions, because the final estimate at these points is an
average over multiple values obtained during the bootstrap replicates.
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3.4 Parameters setting

Contrarily to the partitioning approaches defined in Chapter 2 (Section 2.1.6)
the proposed methodology allows avoiding any strong distributional assumption
for the definition of the partition, but only requires to initialize at most three
parameters: the number of auxiliary analyses B, the number K of sub-regions
defining the partition of the domain and, possibly, the bandwidth parameter ǫ
defining the kernel function, if this is used. Furthermore, unlike the method
of Kim et al. [2005], here we do not need to estimate an “optimal” position
of the centers of the K sub-regions, since every time they are randomly and
independently redefined. The K centers, which define the Voronoi nuclei, may be
randomly selected among the n observations or as points within the domain D.
The parameter B should be chosen large enough to ensure that the algorithm
reaches a desired accuracy. It controls the robustness of the final result: the
higher the number of B weak analyses performed, the stronger the basis upon
which the final result is obtained.

3.4.1 Number of sub-regions: bias-variance trade-off

While the parameter B can be initialized to a sufficiently large value which guar-
antees good results and a reasonable computational time, the parameter K should
be carefully evaluated since it has great influence on the algorithm performances.
Indeed, the value of K affects the Kriging bias-variance trade-off: if K is small,
the predictor for an unsampled location will be based on sub-samples that are
large, on average, in terms of numerosity. This ensures a minimal variance, but
on the other hand the partition of the domain will be coarse, with the consequence
that the local stationarity assumption within each sub-region may not be verified
(maximal bias). The limiting case is K = 1: here we would assume stationarity
over the whole domain, although we might not even be able to formulate a defi-
nition of stationarity due to, e.g., domain complexities, such as holes or irregular
boundaries. On the other hand, if K increases, the partition of the domain will
become more and more refined, being able to accurately define the boundaries of
different homogeneous sub-regions. This ensures a minimal bias, but at the same
time the size of each sub-sample will decrease: a predictor based on few observa-
tions will eventually show maximal variance. The limiting case is K = n, when
the prediction of Zs0 is based on a single observation, that is the closest datum to
the location s0. It is then apparent that setting the parameter K is key for the
analysis. Methods to do this will be discussed in Chapter 5.

3.4.2 Introducing a kernel

As we mentioned before, we can include within the general RDDs methodology,
a geographically weighted statistics viewpoint by using a kernel function. This is
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an optional choice which contributes to the flexibility and robustness of our pro-
posal. However, the use of this kernel function can be unimportant in some cases,
e.g, if many observations of the phenomenon are available, while it may become
necessary if we have very few observations, since each local analysis would be then
performed on a subset of the data of very small size.
The first choice regards the type of kernel function. In this work, we will mostly

focus on isotropic Gaussian kernels, defined as Kǫ(x,y) = e−
1

2ǫ2
d(x,y)2 where d(·, ·)

indicates the distance function on the spatial domain D. Nevertheless, the choice
may concern other types of kernel function, possibly driven by prior knowledge
on the phenomenon. As we can see from Figure 3.3, if we fix a point x ∈ D, the
Gaussian kernel assigns the same value to each point y ∈ D at the same distance
from x.
As regards the bandwidth parameter ǫ, it controls the range of influence of the
observations on the estimate of a local variogram. It allows to ground the estimate
of the variogram within the k-th neighborhood not only on the local information,
but also on that coming from distant locations. A too small value of ǫ may imply
a variogram estimate based on too few observations, which can be reflected in a
biased estimate, while a too large value of ǫ can assign high weights to observa-
tions which are very far away from the considered neighborhood, with the risk to
make the domain partition useless.
An example of the differences which can occur in the kernel weights if different
values of the parameter ǫ are used is showed in Figure 3.3. If we want to estimate
the variogram within a neighborhood whose center is the black point of the Po-

Figure 3.3: Isotropic Gaussian kernel. Left panel: ǫ = 1, right panel: ǫ = 0.5
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tomac river (the main tributary of the estuary) and set ǫ = 1 we will assign high
weights to information provided by data at locations very far away. For example
observations from points on tributaries on the other side of the central unit, such
as points of the Choptank river, contribute to the estimate with weights very close
to 1, even if the distance is around 115 km. Instead, with ǫ = 0.5 the highest
weights are assigned only to points very close to the considered center: the red
points, which are associated with the highest kernel values, are distant from the
black points at most 35 km.
In these two examples the kernel weights were based on the Euclidean distance,
but also another type of distance can be used. In particular when the analysis
concerns data distributed over complex domains, like this estuary, the kernel could
represent the topology of the study region by using a non-Euclidean metric which
should reflect the geographical characteristics of the domain, as we will examine
in depth in Chapter 5.

32



Chapter 4

Kriging-RDDs: the case of
regular domain

We here propose Random Domain Decompositions (RDDs) for Kriging prediction,
a method based on random partitions of the domain and aimed to predict the value
of a random field at unsampled locations. The method is detailed in Section 4.1
and a sketch of the pseudocode is showed in Figure 4.3. The algorithm introduced
for the analysis of Section 4.2 has been implemented in R [R Development Core
Team, 2008].
Even if the description of the method will be based on simple real-valued random
fields, the approach is totally general. As we can see from the pseudocode in
Figure 4.3, the initialization step does not require any assumption on the nature
of the distribution which generated the data. Therefore, the method may be used
to handle more complex object data in the O2S2 framework.

4.1 Kriging prediction via RDDs method

This section is aimed to detail each step of the described Random Domain De-
compositions method for Kriging prediction over a regular domain.

4.1.1 Bootstrap stage

Assume that n observations are available over the domain D and we want to
use this dataset to estimate the values of the random field (1.1) at an unsampled
location in D or a grid of unsampled locations. At each bootstrap replicate a weak
predictor for each Zs0 is defined, conditional to the random Voronoi tessellation
generated at that iteration. The following steps are repeated B times.
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Step 1. Voronoi tessellation

Given the parameter K (which is the same for all the iterations), the centers of
the Voronoi tiles are uniformly sampled among the sampled locations {s1, . . . , sn}.
Let Φb

K = {cb1, . . . , c
b
K} be the set of selected nuclei, the collection {V (cbk|Φ

b
K)}

K
k=1

defines the random Voronoi tessellation obtained at the b-th bootstrap iteration,
where each Voronoi tile V (cbk|Φ

b
K) is defined according to (3.1). From Figure 4.1

it is possible to see some examples of the Voronoi tessellation of a simple square
domain. Each column of images refers to a fixed value for the parameter K. For
each value of K, according to the RDDs method, B random domain partitions
are performed. The squared domain is a very simple region, therefore the Voronoi
neighborhoods can be defined by using an Euclidean metric.

B 

repetitions

of RDD
. . .

K = 2

. . .

K = 4 K = 8 K = 16 K = 32 K = 64

. . .

. . . . . . . . . . . .

Figure 4.1: B repetitions of the Voronoi Tessellation for a simple square domain.

Step 2. Variogram Estimate

Under the local stationary framework, a non-parametric estimator of the local
variogram can be obtained via method of moments by using kernel-based weights
[Fouedjio et al., 2016]. At each b-th bootstrap iteration we need to estimate K
local variograms. For ease of notation we omit the index b. Nevertheless, one
needs to remember that the following variogram estimate is to be interpreted as
conditional to the realization of the random Voronoi tessellation of the domain
obtained at that bootstrap iteration. The estimate of the k-th local variogram is
computed at the center ck (the Voronoi nucleous) of the corresponding tile. Let
γ(h; k) be the variogram related to the k-th Voronoi neighborhood evaluated for

34



Chapter 4. Kriging-RDDs: the case of regular domain

a spatial lag h ∈ R
p. Its empirical estimate γ̂ǫ(h; k) is defined as:

γ̂ǫ(h; k) =

∑

N(h) Kǫ(ck, si)Kǫ(ck, sj)‖Zsi − Zsj‖
2

2
∑

N(h) Kǫ(ck, si)Kǫ(ck, sj)
(4.1)

where N(h) = {(si, sj) ∈ D ×D : si − sj = h}. The norm ‖ · ‖ is in general the
norm on the feature space; in case of real-valued random field it simply indicates
the absolute value: ‖Zsi − Zsj‖ = |Zsi − Zsj |.
The kernel Kǫ : R

p × R
p → R

+ is a non-negative symmetric function which
depends on the bandwidth parameter ǫ > 0. We use a Gaussian kernel, hence a
kernel with exponential decay

Kǫ(x,y) = e−
1

2ǫ2
d2(x,y) (4.2)

where the distance d(x,y) must be the same distance used for defining the Voronoi
tiles in (3.1). If we use the Euclidean distance, the Gaussian kernel will be an
isotropic kernel: all the points at the same (Euclidean) distance from ck have the
same kernel weights.
This choice for the kernel is coherent with the Voronoi tessellation. Indeed a point
s ∈ D is assigned to the nearest Voronoi nucleous in the Φb

K set, i.e., the center
at minimum distance according to the metric d(·, ·). In fact, this center is also
associated with the maximum value of the kernel function {Kǫ(s, ck)}

K
k=1, as we

can see from Figure 4.2. Hence, the following relation holds true

s ∈ V (ck|ΦK) ⇐⇒ Kǫ(s, ck) ≥ Kǫ(s, cj) ∀j = 1, . . . , K, j 6= k.

The kernel-based estimator defined by equation (4.1) is a weighted local average
of squared differences between all pairs of observations separated by a distance
h. The kernel function is used to smoothly down-weight the square differences
according to the distance of these paired values from the center ck. To each data
pair is assigned a weight proportional to the product of the individual weights.
Therefore, observation pairs close to the center ck have more influence on the
local variogram estimator for the k-th neighborhood, than those which are far
away. Moreover, the use of a kernel allows to make more robust the estimation
of variograms in sub-regions with low sampling density. Indeed, without the
use of a kernel function, the estimated variogram within sub-regions with very
few observations may prove to be very uncertain. We remark that, the choice
of employing a weighted variogram estimate is in contrast with the assumption
of independence and strong discontinuities among disjoint sub-regions, since the
variogram estimate within a Voronoi tile is based also on observations coming
from other neighborhoods. Hence, unlike the previous partitioning approaches,
we allow taking into account both the spatial correlation between points within
the same sub-region and the correlation between neighboring points located in
different sub-regions.
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Figure 4.2: Voronoi tessellation and the corresponding values of the kernel weights.

The kernel function Kǫ(·, ·) depends on the bandwidth parameter ǫ, which is a
key parameter for the analysis. In Fouedjio et al. [2016], a similar bandwidth
parameter was used to set the size of the local stationary neighborhoods. The
parameter ǫ has to be initialized before performing the Kriging analysis; a possible
data driven method for the selection of ǫ may involve the minimization of the
cross-validation mean square error [Zhang and Wang, 2010]:

MSE(ǫ) =
1

n

n
∑

i=1

(Zsi − Ẑ−i(si; ǫ))
2

where Ẑ−i(si; ǫ) is the spatial predictor computed at location si using all the obser-
vations except Zsi . The value of the parameter K may influence the initialization
of the parameter ǫ. If K has a small value, we should use a large value for ǫ,
otherwise we will assign very small weights even to observation pairs within the
same Voronoi tile, where we assumed homogeneity. Instead, if K is large, the
size of each Voronoi tile is smaller, therefore we should use a smaller value for ǫ -
still compatible with the need to provide robust variogram estimates - otherwise
we would contrast the partition of the domain. In our studies we did not use
data driven methods for the initialization of ǫ, but we tested the robustness of the
method with respect to this parameter by investigating through graphical tools
the effect of varying the value of ǫ.
Once the empirical variogram has been estimated for each Voronoi neighborhood,
we fit a valid model by using a least square approach, as described in Chapter
1. In the following, we denote by γ̂b(h; k, ǫ) the fitted variogram within the k-th
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Voronoi neighborhood at the b-th iteration.

Step 3. Kriging on the grid

We now aim to predict Zs0 at an unsampled location s0 ∈ D. Let V b
s0

⊂ D be
the Voronoi tile s0 belongs to at the b-th bootstrap iteration and let γ̂b(h; k, ǫ)
be the corresponding estimated variogram . The analysis is now restricted to V b

s0

and results in the weak predictor Z∗b
s0
(Z). We use a Kriging procedure, and thus

look for the Best Linear Unbiased Predictor (BLUP) which is defined as linear
combination of the data located within V b

s0
, according to

Z∗b
s0
(Z) =

n
∑

i=1

λb
iZsi✶{si ∈ V b

s0
} (4.3)

where the vector of weights λb = (λb
1, . . . , λ

b
n) is solution of the linear problem

(1.11) (or its extension to object data, discussed in Menafoglio et al. [2013]).
Within each Voronoi neighborhood we assume stationarity, therefore we apply an
Ordinary Kriging approach. The term ✶{si ∈ V b

s0
} is an indicator function which

is 1 if s0 and si are in the same Voronoi tile at the b-th iteration, 0 otherwise. If
the ✶{si ∈ V b

s0
} = 0, then the weight λb

i has 0 value. This means that, at this
specific bootstrap iteration, the observation Zsi is not used for the estimate of
Zs0 , since the two locations s0 and si are not in the same Voronoi neighborhood.
Even if the predictor Z∗b

s0
(Z) is defined as function of the data, we must highlight

the fact that it can be defined only if a partition P = Pb of the domain has been
previously defined: Z∗b

s0
(Z) := Z∗

s0
(Z;P = Pb).

The step 1.-3. are repeated B times. Every time, a bootstrap Kriging predic-
tor Z∗b

s0
(Z) is computed, conditionally on the defined random domain partition

Pb = {V (cbk|Φ
b
K)}

K
k=1. At each iteration the set of K local maps together defines

a weak Kriging map. In the following final step the B weak Kriging maps will be
aggregated to obtain a final strong Kriging map.

4.1.2 Aggregation stage

The aggregation step consists in aggregating the B Kriging predictors Z∗b
s0
(Z),

with b = 1, . . . , B, into an unique final predictor Z∗
s0
(Z). Since each bootstrap

predictor can be defined only if a Voronoi tessellation of the domain is given,
the final predictor will depend on the B tessellations: Z∗

s0
(Z) := Z∗

s0
(Z;P ) where

P = {Pb}
B
b=1 indicates the collection of the realizations of the random domain

partitions performed along the B replicates. The replicates of the same predictor
have the final aim to define a predictor Z∗

s0
(Z) which is the discretized version of

EP [Z
∗
s0
(Z;P )] =

∫

P

Z∗
s0
(Z; p)dP (p)
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where P is the set of all possible partitions of the domain.
The aggregation can be performed in different ways. We here investigate (a) a
simple average aggregation; (b) a kernel-weighted average aggregation; and (c) a
variance-weighted average aggregation of the B weak analyses.

Equal aggregation

This is the simplest way of aggregating the results coming from the bootstrap
replicates. Indeed, the final predictor for Zs0 is a simple average of all the predic-
tors obtained throughout the B iterations

Z∗
s0
(Z) =

1

B

B
∑

b=1

Z∗b
s0
(Z). (4.4)

With this type of aggregation, all the predictors computed during the boostrap
stage have the same weights in the definition of the final predictor.

Kernel aggregation

For each point of the grid s0 and at each bootstrap iteration we keep the additional
information regarding the value of the kernel function

Kb
ǫ (s0) := Kǫ(s0, c

b)

where cb indicates the coordinates vector of the Voronoi nucleous to which s0 is
assigned at the b-th bootstrap iteration, and Kǫ(·, ·) is the kernel function defined
in (4.2). This value gives an indication of how far the target point s0 is from
the center of the corresponding neighborhood. This center is also the location
where the local variogram estimate is computed. The weighted average is defined
according to

Z∗
s0
(Z) =

∑B
b=1 K

b
ǫ (s0) · Z

∗b
s0
(Z)

∑B
b=1 K

b
ǫ (s0)

. (4.5)

With a kernel aggregation, the final predictor is more influenced by the predic-
tors of those repetitions in which the target location is near the center of the
corresponding Voronoi tile.

Variance aggregation

An additional information kept for each bootstrap iteration and for each grid
point s0 regards the Kriging variance. Given the Kriging predictor Z∗b

s0
(Z) the

b-th Kriging prediction error is defined as

ǫ∗bs0(Z) = Zs0 − Z∗b
s0
(Z).
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Its variance σ2
OK(s0)

b is called Kriging variance and, since an Ordinary Kriging has
been performed within each neighborhood, it is defined by the equation (1.14).
The Kriging variance in a point s0 gives an indication of how far the point is
from the nearest data: a small variance value indicates a more reliable prediction.
Therefore, the aggregation weight may be set to be proportional to the inverse of
the Kriging variance

Z∗
s0
(Z) =

∑B
b=1[σ

2
OK(s0)

b]−1 · Z∗b
s0
(Z)

∑B
b=1[σ

2
OK(s0)

b]−1
. (4.6)

Using the variance aggregation, one gives more importance to more precise pre-
dictors obtained throughout the bootstrap repetitions.

It is important to observe that, in the case of weighted average, each target point
is weighted according to its own weight, which is not necessarily the same as those
of the neighbors. This weighting strategy could be useful to account (and smooth
down) the discontinuities generated by the domain partitions.
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Algorithm. RDDs for Kriging prediction.

Initialization.
Set parameters: K, B, a valid variogram model, the kernel function
Kǫ(·, ·) with its bandwidth ǫ, a metric d(·, ·) for the spatial domain
D, and a grid of prediction over the spatial domain.
Choose an aggregation method among: (a) simple average; (b) a
weighted average with weights proportional to the kernel value; (c)
weighted average with weights inversely proportional to the Kriging
variance.

Bootstrap step.
for b := 1 to B do

Step 1. Randomly generate a set of nuclei Φb
K = {cb1, . . . , c

b
K}

among the observed sites in D: for k = 1, . . . , K, cbk ∼ U(s)
where U is the uniform distribution on the set of the n sam-
pled locations s = (s1, . . . , sn). Obtain a random Voronoi
tessellation of D defined by the collection of Voronoi tiles
{V (cbk|Φ

b
K)}

K
k=1 by assigning each site s ∈ D to the nearest

nucleus cbk according to the specified metric d(·, ·);

Step 2. For each neighborhood: perform a non-parametric ge-
ographically weighted estimate of the empirical variogram
γ̂ǫ(h; k)

b by using a kernel function Kǫ(·, ·). Fit the parametric
valid model to the empirical estimate.

Step 3. For each neighborhood: perform Kriging on the portion of
the grid belonging to the considered neighborhood, according
to the defined Voronoi tessellation, based on the variogram
structure associated with the neighborhood.

Results of the b-th iteration: K local maps, which jointly
define a global map, called weak Kriging map.

end for.

Aggregation step.
Aggregate the B weak Kriging maps according to the chosen crite-
rion and obtain a final strong Kriging map.

Figure 4.3: Pseudocode scheme of the Random Domain Decompositions (RDDs) algorithm
for Kriging prediction over the grid domain.
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4.2 Simulated example

The proposed RDDs procedure for Kriging prediction has been tested on some
simulated examples to explore its performances.
Following a similar approach of Kim et al. [2005], we firstly tested the method
on a simple domain where a stationary random process has been generated, and
then we considered a more complex simulation by considering a non stationary
random process.

4.2.1 Stationary process

In the first simulation example we tested the method by using a single smooth
Gaussian process (mean 0 and standard deviation 1). We used an exponential
covariance function with sill 1, nugget 0 and range 2 (i.e, it is the same setting as
the simulation example used in Kim et al. [2005]). The data are distributed over
a simple square domain. The x- and y-coordinates of the sampled locations are
in the interval [−1, 1]. Figure 4.4 shows the reference realization of the generated
random process.
We performed Kriging on the domain by using the RDDs method with B =
100, a Gaussian kernel with ǫ = 1 and an “Equal” aggregation. Due to the
convexity of the domain, we used an Euclidean metric for the definition of the
Voronoi tessellations and the kernel weights. The domain has been partitioned into
K = {1, 2, 4, 8, 16, 32, 64} sub-regions. The case K = 1 is the simple case when
stationarity assumption is assumed on the whole domain, therefore no partition
is computed and the Ordinary Kriging technique is used to obtain the desired

Figure 4.4: Stationary process: reference realization (example from Kim et al. [2005]).
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predictions. Moreover, the case of K = 1 does not require the use of any kernel
function. Therefore, the empirical variogram is simply estimated via method of
moments according to equation (1.5).
Since we are in simulation framework, we can compute the mean square prediction
error (MSPE) and use it to understand how the values of the parameters influence
the results of the method. Given all the parameters, the (normalized) MSPE is
computed as

MSPE =

∑

s0∈G
(Z∗

s0
(Z)− Zs0)

2

∑

s0∈G
Z2

s0

(4.7)

where G is the set of grid points where we want to perform Kriging prediction.
In this simple stationary case we are interested in understanding if the Ordinary
Kriging and the Kriging via RDDs provide equivalent results. We repeated the
whole analysis M = 50 times. At each repetition we used a different set of
observations randomly selected among the grid points within the domain. Figure
4.5 shows the boxplots of the MSPEs obtained through the M repetitions for
each value of K and for each dimension of the used dataset (in particular we set
nsub = 100, 250, 500). The results of Ordinary Kriging and Kriging via RDDs are
very similar in terms od MSPEs, in particular when nsub = 250 or nsub = 500.
When nsub = 100, if K assumes high values, then the MSPEs increase on average.
This is a consequence of the fact that when K assumes values close to the number
of available observations, there may be some neighborhoods wherein the local
Kriging analysis is based on a single datum (i.e., the Voronoi center).

Figure 4.5: Stationary simulation example. MSPEs boxplots: different nsub values.
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nsub
K

1 2 4 8 16 32 64

100 0.0402 0.0401 0.0400 0.0400 0.0405 0.0418 0.0467
250 0.0243 0.0244 0.0245 0.0249 0.0254 0.0254 0.0259
500 0.0171 0.0171 0.0172 0.0173 0.0175 0.0177 0.0180

Table 4.1: Stationary simulation example. Different nsub: Average of the MSPEs over the
M = 50 repetitions.

4.2.2 Non-stationary process

The second simulation example comes from the literature, in particular it follows
the same model used by Kim et al. [2005] to test their partitioning method applied
to the analysis of a non-stationary process. In this simulation two Gaussian pro-
cesses, with a large difference in means and different covariance structures, have
been generated over a simple square domain. From Figure 4.6 we can see that
the domain is divided into two homogeneous sub-regions. The process occupying
the bottom region of the domain (with negative ordinates) has been generated by
using an exponential covariance with range 4 and a Gaussian process with mean
0 and standard deviation 1. The second process, in the top region of the domain
(positive ordinates) has been generated by using an exponential covariance with
range 1.5 and a Gaussian process with mean 10 and standard deviation 1. For
both processes the sill and the nugget values are 1 and 0, respectively.

Figure 4.6: Non-stationary process: reference realization (example from Kim et al. [2005])
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This simple example does not show any complexity associated with the domain
or to object data, but the nature of the process does not allow us to assume sta-
tionarity over the whole domain. We know that there exists an optimal partition
of the domain which divides the region into two disjoint sub-regions separated by
the axis of ordinates. Indeed, using a Bayesian approach, the partitioning method
proposed in Kim et al. [2005] finds these two regions more that 95% of the times
in the posterior samples. Nevertheless, we here aim to test the performances of
our general method on a non-stationary case for which the local stationarity as-
sumption is not verified everywhere (i.e., it is not valid at the boundary between
the sub-regions).
We tested our method on this simple domain and, since there are no holes or
barriers, its random partition, as well as the kernel weights, can be computed by
simply using the Euclidean metric. The same analysis has been performed by
using different values of K = {1, 2, 4, 8, 16, 32, 64} to explore how this parameter
influences the results of the method. In all the cases, for this analysis we chose an
exponential valid model for fitting the empirical variogram and a Gaussian kernel
and we performed B = 100 bootstrap iterations. We are interested in seeing how
the Kriging prediction computed via RDDs at unsampled locations is influenced
by the parameter K, the number of available observations, the kernel bandwidth
ǫ and the type of aggregation.
In Figure 4.7 we can observe the result of the analysis performed with fixed values
of K = 8 on a dataset of 250 observations, by setting the bandwidth parameter
ǫ = 1 and using a simple equal aggregation. We can observe that the points where

Figure 4.7: Kriging prediction via Random Domain Decompositions.
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the algorithm gives less precise results are those close to the axis Y = 0, which
represents the separation line of the two sub-region with different processes.

4.2.3 Number of observations

Before performing the analysis, we need to consider the number of observations
which are available for our study. This is an important information for the initial-
ization of the parameter K. If we have a small number of observations we cannot
compute a dense partition of the domain, because we can meet the problem of
having very few observations within each Voronoi neighborhood, with the conse-
quence of bad predictions. In Figure 4.8 we can see three examples of datasets
with different number of sampled locations. The left panel of the figure shows
an example of dataset of size 100, the central panel shows an example of dataset
with 250 observations, the right one is an example of 500 observations.
We repeated the whole Kriging-RDDs analysis M = 50 times. For this simula-
tion we set ǫ = 1 and we aggregated the bootstrap predictors according to an
“Equal Aggregation”. Every time a different nsub-dimensional set of points is
used as dataset. These data points were randomly chosen among all the avail-
able grid points. Such simulation enables us to plot the boxplots of the MSPEs
obtained for each subsample. In Figure 4.9 the red boxplots refer to datasets
with nsub = 100 observations, the blue ones to datasets with nsub = 250 and the
green ones to dataset with nsub = 500. As we can expect, the MSPEs related to
small datasets have higher values with respect to the others. Furthermore, as in
the stationary case, the MSPEs values related to nsub = 100 increase on average
when the parameter K assumes high values. The analyses performed on datasets
of dimensions 250 and 500 show smaller values, on average, of MSPEs for each
K > 1 with respect to the MSPEs obtained with simple Ordinary Kriging on the

Figure 4.8: Examples of sampled points: nsub = 100, 250, 500, respectively.
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whole domain (i.e., the case K = 1). Another important observation concerns
the fact that we do not see a minimum for the MSPEs obtained when K = 2,
which would correspond to the optimal partition of the domain. In fact, we are no
looking for such an optimal partition, but for a partition which makes viable the
stationary assumption within each neighborhood, ensuring that each sub-region
contains a sufficient number of observations upon which it is possible to build the
Kriging local analysis.

Figure 4.9: Non-stationary simulation example. MSPEs boxplots: different nsub values.

nsub
K

1 2 4 8 16 32 64

100 0.0607 0.0595 0.0585 0.0581 0.0596 0.0614 0.0707
250 0.0385 0.0379 0.0375 0.0373 0.0371 0.0368 0.0375
500 0.0264 0.0259 0.0256 0.0255 0.0254 0.0251 0.0249

Table 4.2: Non-stationary simulation example. Different nsub: Average of the MSPEs
over the M = 50 repetitions.

4.2.4 Kernel width

Another important parameter is the bandwidth ǫ defining the kernel function.
For this case we performed the analysis for ǫ = {0.5, 1, 2}. Figure 4.10 shows
the differences among the kernel values when different values of the bandwidth
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Figure 4.10: Kernel values for different values of ǫ.

parameter are defined. For each grid point s0 ∈ D the value Kǫ(s0, c) has been
plotted. The kernel was defined by using the Euclidean metric, therefore the value
Kǫ(s0, c) is the same for points at the same distance from c. The right, the central
and the left panels of Figure 4.10 refer to a kernel function with ǫ = 0.5, ǫ = 1
and ǫ = 2, respectively. As we can observe, small values of ǫ give high weights
only to points very close to the centers (i.e., the red zone, that is the area of
points associated with the highest kernel values, are small neighborhoods around
the center), while when ǫ increases also points far away from the center have high
kernel values.

Figure 4.11: Non-stationary simulation example. MSPEs boxplots: different ǫ values.
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ǫ
K

1 2 4 8 16 32 64

0.5 0.0371 0.0362 0.0357 0.0354 0.0351 0.0355 0.0364
1 0.0371 0.0361 0.0358 0.0355 0.0354 0.0354 0.0362
2 0.0371 0.0366 0.0364 0.0362 0.0362 0.0359 0.0368

Table 4.3: Non-stationary simulation example. Different ǫ: Average of the MSPEs over
the M = 50 repetitions.

As before, we repeated the whole Kriging-RDDs analysis M = 50 times. Figure
4.11 shows the boxplots of the MSPEs obtained throughout the M repetitions,
for each fixed value of K and ǫ. Every time the analysis was based on a different
dataset of dimension nsub = 250. The final predictor was defined according to
a simple average aggregation. We can observe that, on average, the cases with
K > 1 show smaller MSPEs values than the case K = 1. In this latter case,
since no partition has been computed, we did not use any kernel function, but
the unique variogram estimate has been defined according to equation (1.5) and
the Ordinary Kriging has been computed. Figure 4.11 does not show obvious
differences in the MSPEs values associated to different values of the parameter ǫ.
We can only observe a smaller dimension of boxplots associated with the cases
when ǫ = 1. For this reason we opt for using this value for the following analyses,
without performing an in-depth study for its initialization.

4.2.5 Aggregation type

The final analysis regards the different types of aggregation which can be used for
the definition of the final predictor. In particular we used an “Equal” aggregation
according to the equation (4.4), a “Kernel” aggregation defined by the equation
(4.5) and a “Variance” aggregation defined by the equation (4.6). Also in this
case we repeated the whole Kriging-RDDs analysis M = 50 times. The boxplots
of the MSPEs are described in Figure 4.12. Also in this case we do not observe
an aggregation type which prevails on the others, they give similar results in term
of MSPE.
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Figure 4.12: Non-stationary simulation example. MSPEs boxplots: different aggregation
types.

Aggregation
K

1 2 4 8 16 32 64

Equal 0.0360 0.0352 0.0349 0.0348 0.0348 0.0347 0.0357
Kernel 0.0360 0.0355 0.0350 0.0346 0.0348 0.0344 0.0355
Variance 0.0360 0.0354 0.0350 0.0346 0.0350 0.0347 0.0354

Table 4.4: Non-stationary simulation example. Different aggregation types: Average of
the MSPEs over the M = 50 repetitions.
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Chapter 5

Kriging-RDDs applied to
irregularly shaped domain

Geostatistics is based on the intuitive idea that locations which are close together
provide more similar information than locations that are far apart. The Kriging
predictor uses weights that are calculated according to the value of the variogram,
which is usually defined (in the stationary and isotropic case) as a function of the
Euclidean distance. Methods for spatial data analysis have been typically applied
to convex subsets of R2 or R3, where the Euclidean distance is the natural argu-
ment for defining correlation functions. Nevertheless, there are some situations
where the study domain shows complex characteristics, which make the Euclidean
distance a non appropriate metric for describing the proximity relationships. In
particular, our focus is on situations where data are distributed over irregularly
shaped domains with complex boundaries, barriers, holes or strong concavities.
The first idea may be the use of a non-Euclidean metric for the variogram esti-
mate and the consequent Kriging analysis. However, the main problem is that,
in general, there is no guarantee that the set of valid models commonly used in
Geostatistics (i.e., the models such as (1.6)-(1.9) described in Chapter 1, Section
1.1.3) will remain valid when they are used with distance measures other than the
Euclidean distance.

5.1 Isometric embedding

Recall that given a random field {Zs, s ∈ D}, the functions covariogram C(·)
and variogram γ(·) must fulfill specific properties. In particular the covariogram
must be a positive definite function, while the variogram must be a conditionally
negative definite function. Even if, in general, we do not have proofs about the
validity of the models used in Euclidean framework when they are based on non-
Euclidean metrics, Curriero [2006] proved that there are some metrics equivalent
to the Euclidean one such that, when used with existing covariance and variogram
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functions, positive or conditionally negative definiteness are guaranteed. These
metrics are said to be isometrically embeddable.

Definition 5.1. Let dij = d(si, sj) represent the distance between points si and sj
of some metric space (D, d). The metric space is said to be isometrically embedded
in a Euclidean space of dimension n∗ if there exist points s∗i and s∗j and a function
φ : Rn → R

n∗

such that

dij = d(si, sj) = ‖s∗i − s∗j‖

for all si, sj ∈ D and φ(s) = s∗, where ‖ · ‖ is the Euclidean norm.

If a non-Euclidean distance function, satisfying the metric properties, is embed-
dable, then this distance function used with existing covariance and variogram
functions will retain the positive and conditionally negative properties, hence
these functions are valid in the embedding dimension. Appendix 5.A describes
the theorems used to check the isometric embeddable property of a generic metric
d. In particular, Wells and Williams [1975] proved that a metric d is embeddable
if and only if d2 is conditionally definite. Moreover, Appendix 5.A shows a simple
theorem used to check the isometric embeddable property for the class of norm
distances (Theorem 5.3).
Nevertheless, in the more general case, if d is not a norm function, establishing
the validity of C(d) or γ(d) may be mathematically challenging and methods for
dealing with such situations has not received much attention.

5.2 Existing approaches for spatial processes

over complex domains

The need of finding a non-Euclidean distance for the description of proximity rela-
tionships among spatial data is an essential problem for understanding the spatial
distributions of variables over domains like estuaries.
Little et al. [1997] suggested the idea of measuring distances between sites in
estuarine streams “as the fish swims” (i.e., the length of the shortest in-water
path between two sites) instead of “as the crow flies” (i.e., the Euclidean dis-
tance). They provided several comparisons between the results obtained with
kriging analyses based on the Euclidean distance and those based on the in-water
distance, without dealing with the validity problem.
Rathbun [1998] proposed the use of a water distance (i.e., the shortest dis-
tance that may be traversed entirely over water) as measure of the proximity
relationships among locations within an estuary. Furthermore, he dealt with
the additional complexity related to the fact that some environmental variables
may take deterministic values at estuarine boundaries. For these reasons, he
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based the Kriging analysis on the estimate of a function called spatial dispersion
2δ(si, sj) = Var(Zsi − Zsj). It is defined as the variogram function but, under
intrinsically stationarity assumption, it does not only depend on h = si − sj, but
it also depends on the distance between the points si, sj and the estuarine bound-
aries where the random variable Z(·) assumes fixed values.
Krivoruchko and Gribov [2002] suggested a moving window kernel approach to
estimate the covariance model that is not subject to the same criterion of non-
negative definiteness. The modeling of the process is based on a cost weighted
distance, that computes the cost of travelling from one cell of a grid to the next
one. The covariance estimate was based on an asymmetric kernel, which is able
to takes into account the presence of barriers within the domain.
Finally, Løland and Høst [2003] used multidimensional scaling to define an Eu-
clidean approximation of the water distance. This method consists in defining a
triangular grid covering the complex domain of interest that is used for computing
the water distances as length of the shortest paths on the graph defined by the
triangulation. These water distances are then used to remap the sample locations
into a new Euclidean space where the (Euclidean) distances approximate the ob-
tained water distances and the validity of the variogram models is guaranteed.
One drawback of this approach is that it is dependent on the sample design, in
the sense that adding and/or removing a location can change the distance approx-
imation elsewhere.
The basic idea of our approach is inspired by this latter described method, since
we use graph-based metrics to better approximate the spatial relationships among
points. To avoid the need to check for the validity of the variogram models com-
puted by using non-Euclidean metrics (which could require ad hoc situations in
case of non-validity), we opt to use a graph-based metric only for defining the
random domain decompositions and the kernel weights. The variogram estimate
will be grounded on the Euclidean distance instead, that is used to define the
adjacency relations among points located within the same Voronoi neighborhood.

5.3 Triangulation of planar point sets

Before performing the Kriging analysis on a complex domain, we want to well
define the spatial adjacency and neighbourhood relation among the data. For this
reason, we firstly construct a neighborhood relational graph representing the spa-
tial adjacency of objects distributed over a domain with constraints (e.g., holes,
irregular boundaries or barriers).
Given a set of points, a possible way to define a graph is to perform a triangula-
tion of these points. In general, this can be done in many different ways and it
does not necessarily exist a “most appropriate” triangulation. Nevertheless, some
triangulations look more natural than others. In particular, triangulations con-
taining triangles with small angles can badly approximate the spatial adjacency
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among data. Therefore we focused on triangulations that maximize the smallest
angle.
Let P = {p1, p2, . . . , pn} be a set of points in the plane. The definition of a trian-
gulation of P is based on the maximal planar subdivision concept [de Berg et al.,
2000a]. A maximal planar subdivision is a subdivision S such that no edge con-
necting two vertices can be added to S without destroying the planarity property
of the graph (i.e., a graph is planar if it can be drawn in a plane without graph
edges crossing). A triangulation T of P is defined as the maximal planar subdivi-
sion whose vertex set is P . Each face of this triangulation, except the unbounded
one, is a triangle. This is a consequence of the fact that a bounded face is a poly-
gon and any polygon can be triangulated [de Berg et al., 2000b]. Moreover, we
can observe that any segment connecting two consecutive points on the boundary
of the convex hull of P is an edge in any triangulation T . This implies that the
union of the bounded face of T is always the convex hull of P and the unbounded
face is always the complement of the convex hull.
The number of triangles is the same for every triangulation of P and this number
depends on the number of points in P that are on the boundary of its convex
hull. Let T be a triangulation of P , and suppose it has m triangles. The set of
3m angles of the triangles of T , sorted by increasing values, is called angle-vector :
A(T ) = (α1, α2, . . . , α3m). Let T

′

another triangulation of P , with its angle-vector
A(T

′

) = (α
′

1, α
′

2, . . . , α
′

3m). The angle-vector of T is said to be larger than the
angle-vector of T

′

if there exists an index i, with 1 ≤ i ≤ 3m, such that

αj = α
′

j for all j < i and αi > α
′

i.

If this condition is satisfied A(T ) is lexicographically larger than A(T
′

) and we
denote it as A(T ) > A(T

′

).
A triangulation T is called angle-optimal if A(T ) ≥ A(T

′

) for all triangulation
T

′

of P . A good triangulation of a set of points has the property of having an
angle-vector as large as possible. For this reason, among the several ways which
can be adopted for the triangulation of a set of points P , our focus is on the
Delaunay triangulation.

5.3.1 Delaunay Triangulation

Let P be the set of n points in the plane. Let Vor(P ) be the Voronoi diagram of
P , that is the Voronoi tessellation of the plane whose nuclei are the n points in
P . The dual graph G of the Voronoi diagram is a graph with a node for every site
p ∈ P and it has an arc between two nodes if the corresponding Voronoi cells share
an edge. The straight-line embedding of the graph G replaces the arc connecting
p and q with the segment pq. This embedding is called Delaunay graph of P and
it is indicates as DG(P ). An example of a Voronoi diagram of P and its Delaunay
graph is showed in figure 5.1.
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Figure 5.1: Example: Voronoi diagram and Delaunay graph.

The name Delaunay comes from the Russian mathematician Boris Nikolaevich
Delone (Delaunay is the French version of his surname), who proposed this type
of triangulation in Delaunay [1934]. The Delaunay graph DG(P ) is often called
Delaunay triangulation since, if there are not four points in P which are co-circular
(i.e., four points which lie on the same circle), then all the vertices of the Voronoi
diagram have degree three and, hence, all bounded faces are triangles.
The success of this kind of triangulation and its recurring use in many applications,
is due to its several interesting properties. The most important property is the so
called empty circumcircle [de Berg et al., 2000a]:

Theorem 5.1. Let P be a set of points in the plane, and let T be a triangulation
of P . Then T is a Delaunay triangulation of P if and only if the circumcircle of
any triangle of T does not contain a point of P in its interior.

The most important consequence of the empty circumcircle property is that, given
a set of points P , any angle-optimal triangulation of P is a Delaunay triangula-
tion. Furthermore, the Delaunay triangulation of P maximizes the minimum angle
over all the triangulations of P . The need of defining a triangulation without very
skinny triangles comes from the goal that we want to reach, i.e., using the De-
launay graph to compute a graph-based metric which must describe the spatial
adjacency relations among data. Indeed, the presence of very stretched triangles
may not properly be used to describe the obstacles located within the domain
and, consequently, this may badly describe the spatial adjacency relations among
the data.

55



Chapter 5. Kriging-RDDs applied to irregularly shaped domain

In our application, the set P that we use for the Delaunay triangulation of the
domain is the set of n observed locations {s1, s2, . . . , sn} in D. Without any other
information regarding the domain, the Delaunay triangulation of the set of sample
locations does not take into account the presence of constraints. For example, if
a hole exists within the domain, it must be bounded by segments and its empty
space should not be triangulated. The addition of information regarding holes,
boundaries and obstacles, poses our attention on the definition of Constrained
Delaunay triangulation (CD-T) [Lin et al., 2013].
Given a set of spatial objects in the plane together with a set of spatial obstacles
and facilitators, the constrained Delaunay triangulation is an undirected graph
representing the adjacency and neighborhood relations among the objects. It is
an approximated triangulation of vertices, since the obstacles are included in the
graph as some barrier edges that obstruct the connection of the objects, and the
facilitators are included in the graph as edges that connect the objects that are
broken by the obstacles. Even if it is an approximation of the Delaunay triangula-
tion, the CD-T is as close as possible to the unconstrained Delaunay triangulation,
in the sense that the main properties, such as the empty circumcircle property,
are still satisfied.
In our study we do not consider the presence of facilitators, but only barriers.
In this cases, the segments defining holes borders or irregular boundaries of the
domain must be specified and they will be in the set of the edges defining the De-
launay triangulation. The triangulation of the domain has been developed in R [R
Development Core Team, 2008] by using the function triangulate, implemented
in the RTriangle package [Shewchuk et al., 2016].

5.4 Graph-based metric

As we mentioned before, the aim of the Delaunay tessellation of the sampled lo-
cations is to define a more suitable metric than the Euclidean one, that is able
to describe the spatial relation between the data. The RDDs method described
in Chapter 4 is based on random domain decompositions, in particular Voronoi
tessellations, repeated several times. The Voronoi tessellation is aimed to define
homogeneous sub-regions of the domain wherein it is possible to assume station-
arity. A Voronoi tessellation is defined by a set of nuclei and a metric d(·, ·). So
far, we used the Euclidean metric, which generates tessellations of the domain
that do not take into account the presence of obstacles.
Let P = {s1, s2, . . . , sn} be the set of sampled locations in the considered domain
D and DG(P ) the Delaunay graph obtained with a (constrained) Delaunay tri-
angulation of P . This is an undirected graph DG(P ) = G(P,E) and it is defined
by the set of vertices P and the set of edges E (which includes also the segments
defining the obstacles). The distance between two vertices si, sj ∈ P can be com-
puted as the length of the shortest path from si to sj carried on the graph DG(P ).
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A positive weight equals to the length of the segment sisj is assigned to each edge
e := {si, sj} ∈ E

ωe = dE(si, sj)

where dE(·, ·) indicates the Euclidean distance. Given an undirected graph with
non-negative edges weights and with cycles, a possible algorithm for computing
the shortest path between two vertices is the Dijkstra’s Algorithm [Dijkstra, 1959].
Since we want to compute the distance between each pair of sampled locations,
the Dijkstra’s algorithm is applied n(n − 1)/2 times and at each iteration the
distance between two sample points is computed. The algorithm is implemented
in R by using the distances functions of the igraph package [Csardi and Nepusz,
2006].
Let dSP (si, sj) be the graph-distance between the two points, that is the length
of the shortest path (SP) from si to sj on the Delaunay graph. This distance
is defined for each pair of observed locations, therefore a symmetric (n × n)-
dimensional distance matrix can be defined.
Since the final aim of this work is to define a Kriging method to perform prediction
of unsampled locations s0 ∈ D, we should be able to define a distance also between
unsampled and sampled locations. One possibility can be to perform the Delaunay
triangulation of the domain based on the set of both the observed points and
the locations where we want to perform prediction. In this case the distance
between an unsampled and a sampled location could be computed as shortest
path on the defined Delaunay graph. However, we remark that this approach
can be computationally expensive if the final aim of the analysis is to use the
observed data to make prediction on the whole grid of points within the domain
of interest. In this case the Delaunay triangulation will be composed by very small
and unnoticeable triangles. For this reason we opted for an approximation of the
distances between unsampled and sampled locations, in the following way.
Let s0 be a location in D, before performing the distance between this point and
a sampled location si, we need to find the triangle of the Delaunay triangulation
where it is located. There may be three cases

(a) the point is a vertex of the Delaunay triangulation;

(b) the point is in the interior of one triangle only;

(c) the point is on a common edge of two triangles.

Let dG(s0, si) be the approximated distance between s0 and si. The case (a) means
that the point is a sampled location, since the set of vertices of the Delaunay
triangulation coincides with the set of sampled location. In this case dG(s0, si) =
dSP (s0, sj). The case (b) describes the situation when the point s0 is located within
a triangle, which can be identified by its three vertices, denoted as p1,p2,p3 ∈ P .
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The distance dG(s0, si) is defined as:

dG(s0, si) = min{dE(s0,p1) + dSP (p1, si);

dE(s0,p2) + dSP (p2, si);

dE(s0,p3) + dSP (p3, si)} (5.1)

where dE(·, ·) is the Euclidean distance and dSP (·, ·) is the length of the SP between
the two sampled points. In the last case (c), the point is located on an common
edge shared by two triangles. Let p1 and p2 be the end points of this common
edge. These points are also two of the three vertices of the two triangles. Let p3

be the third vertex identifying one ot the two triangles and p4 the third vertex
identifying the other one. In this case the distance is defined as follows:

dG(s0, si) = min{dE(s0,p1) + dSP (p1, si);

dE(s0,p2) + dSP (p2, si);

dE(s0,p3) + dSP (p3, si);

dE(s0,p4) + dSP (p4, si)} (5.2)

Once this graph-based metric has been defined, the Voronoi tessellation of the
domain could be computed by considering d(·, ·) = dG(·, ·).
Within each Voronoi cell, the estimation of the local stationary variogram is still
computed by using a kernel-weighted method of moments, according to the fol-
lowing formula, as described in Chapter 4

γ̂ǫ(h; k) =

∑

N(h) Kǫ(ck, si)Kǫ(ck, sj)‖Zsi − Zsj‖
2

2
∑

N(h) Kǫ(ck, si)Kǫ(ck, sj)

The norm ‖ · ‖ appearing in the formula is, in general, the norm on the feature
space where the object data are represented. The metric used to define the N(h)
sets is the Euclidean one, since we are assuming that locally (i.e., within each
Voronoi neighborhood) the closeness between points is well described by the Eu-
clidean distance.
Since the kernel weights must be coherent with the Voronoi tessellation, the dis-
tance d(·, ·) appearing in the kernel definition (4.2) will be the graph-based dis-
tance dG(·, ·) previously described.
Hence, in presence of complex domain with holes, irregular shapes or barriers,
the Kriging-RDDs approach described in the previous chapter will be applied in
the same way, with the only difference that the Voronoi tessellation, as well as
the kernel values, are computed according to a graph-based metric instead of the
standard Euclidean metric.
This modified method has been tested on two simulated datasets distributed over
complex domains. In the first case the region of interest is a simple square domain
as before, but with a hole in the central part of the domain. In the second case,
the data are simulated on a C-shaped domain.
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5.5 Simulated examples

5.5.1 Domain with hole

Figure 5.2 describes the domain related to the first example. It is the same
domain that we studied in the Chapter 4, with two different Gaussian processes
distributed over the two sub-regions separated by the ordinates axis, as presented
by Kim et al. [2005]. We deleted the points within an ellipse located in the center
of the domain. This ellipse represents our hole. If we look at the hole as an
obstacle which cannot be crossed, the two black points of Figure 5.2 will result to
be very far from each other: to go from one point to the other one needs to travel
around the hole. Instead, if we simply consider the Euclidean distance, they will
be very close to each other.
For this simulation example, we defined the exterior boundary of the domain, as

Figure 5.2: Domain with hole: reference realization.

well as the border of the hole, starting from the sampled locations. Precisely, the
exterior border has been defined as the convex hull of the observed data, instead
the hole’s border has been defined with such points whose coordinates (x, y) fulfill
the following condition

1 ≤
(x cosα− y sinα− x0)

2

a2
+

(x sinα + y cosα− y0)
2

b2
< 1 + δ (5.3)

where (x0, y0) = (0, 0) indicates the center of the ellipse, α = 9➦ is the angle of
rotation, a = 1 and b = 0.1 are the semimajor and semiminor axis, respectively.
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The value of δ ∈ (0, 0.5) was set according to the number of available observations
(i.e., δ ≈ 0 if many observations are available, while δ increases if there are few
observations). We can do it since we know the ellipse equation describing the hole.
In real applications, we must be able to define the boundary of the domain, as well
as the boundaries of the constraints within the domain. This can be computed
by using the observed locations and the a priori information about the spatial
properties of the domain or by adding some points defining the boundaries. These
points will not be used for the Kriging analysis (i.e., they are NA data).
In the left panel of Figure 5.3 we can see an example of a dataset with 500 obser-

Figure 5.3: Domain with hole: observations and Delaunay triangulation.

vations distributed over the domain (the observations are indicated with the black
points). In the right panel of the same figure there is the plot of the corresponding
Delaunay triangulation of the domain. The red segments are the segments that
we used to describe the boundaries of the domain. They must be used in the
triangulation, even if they do not define properly Delaunay triangles according
the previous definitions. Indeed, due to the presence of the hole, the triangles
close to it seem to show skinny shapes, which is not a characteristic of triangles in
a Delaunay mesh. A possible way for avoiding the presence of elongated triangles
may be the addition of points and, consequently, of segments which give a more
precise description of the ellipse’s boundary. Another observation regards the ex-
terior boundary: it coincides with the convex hull of the set of observed locations.
For this reason some of the grid points of the square domain, in particular those
close to the corners, are kept out from the Kriging analysis. These points are
not located within any Delaunay triangle, therefore at this locations the Kriging
predictor will not be computed. However, this is only an exemplifying case, it can
be extended if one needs to make predictions for the points on the corners of the
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domain.
According to the Kriging-RDDs method, B weak analyses are performed. Each of
them is based on a realization of the random Voronoi tessellation of the domain.
To understand the differences between the Kriging-RDDs approach based on the
Euclidean distance or on the graph-based metric, we repeated the whole analysis
M = 50 times. Each analysis has been computed on a dataset with nsub = 250
observations, firstly by using an Euclidean approach and then the same dataset
has been analysed by using the graph-based metric approach.
Figure 5.4 show the boxplots of the MSPEs computed throughout the M repe-

titions. The case K = 1 shows a single boxplot, since the same analysis based on
the whole domain without partition is computed and the estimate of the (global)
variogram does not require the use of kernel weights. We can observe that, for
small values of K, the graph-based metric approach shows better results. When
K increases the differences among the two approaches are less obvious. Indeed,
for high values of K the tessellations computed with the two metrics are similar,
but the boundaries of the tiles obtained with the graph-based metric are more
jagged with respect to the straight lines of the Euclidean tiles. The irregularity

Figure 5.4: Domain with hole. MSPE boxplots: different distances.

Distance
K

1 2 4 8 16 32 64

Euclidean 0.0183 0.0179 0.0172 0.0165 0.0161 0.0163 0.0172
Graph 0.0183 0.0171 0.0164 0.0159 0.0164 0.0172 0.0192

Table 5.1: Domain with hole. Kriging-RDDs method with different metrics: Average of
the MSPEs over the M = 50 repetitions.
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of the Voronoi tiles boundaries is due to the fact that the Delaunay triangulation
is computed by considering only the sampled locations as vertices of the graph.
A denser triangulation, with the addition of other vertices, may better describe
the adjacency relations among the locations, which may be reflected into a more
regularity in the boundaries of the Voronoi tiles.
A more detailed analysis on the differences between the two approaches is de-
scribed by using the following simulation example.

5.5.2 C-shaped domain

This example of irregularly shaped region comes from the literature: it is the C-
shaped domain studied by Ramsay [2002], Wood et al. [2008] and Sangalli et al.
[2013]. In this simulation study a test function varies smoothly from a value of
about −4 at the boundary of the lower branch of the C-shape to a value of about
4 at the boundary of the upper branch, as we can see from Figure 5.5. The par-
ticular shape of the region does not allow us to assume stationarity on the whole
domain, due to the presence of the thin space which separates the two branches
of the C-shape, but the local stationarity assumption is verified for almost all the
points within the domain. Therefore, given a set of observations distributed over
this domain, we performed Kriging analysis via RDDs.
Contrarily to the previous example, here the Delaunay triangulation of the do-

Figure 5.5: C-shaped domain, smooth test function.

main cannot be computed by using the convex hull of the observed points, but the
boundary of the domain must be carefully defined. For this reason, we defined
the boundary through a set of locations which will not be used for the kriging
prediction. In fact, we use only their positions, but not the value of the test
function at these points (i.e., their value is set to NA for the Kriging analysis).
In Figure 5.6 we can see an example of dataset with nsub = 250 observations.
The black points in the top panel of the figure are the points used for defining the
domain boundary. The bottom panel of the same figure shows the corresponding
Delaunay triangulation based on this set of sampled points. The introduction of
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such points for the definition of the domain boundary ensures a more regular tri-
angulation with respect to the one which can be obtained when the boundaries are
estimated by using the observed locations. We remark that a good triangulation
is essential for the performance of the algorithm.
It is interesting to see the differences between random domain partitions based

on the Euclidean metric and those defined on a graph-based metric. Figure 5.7
show some examples which allow us to make this comparison: the panels on the
right side refer to Euclidean Voronoi tessellations, while those on the left side refer
to Voronoi tessellations defined by a graph-based metric. For small values of K,
tessellations based on the two metrics are dramatically different. If points located
on the terminal part of different branches of the C-shape are often assigned the
same sub-region with an Euclidean approach, this does not happen if the graph-
based metric is used. Therefore, in the neighborhoods defined with a graph-based
metric the local stationarity is a viable assumption, while it often does not hold

Figure 5.6: C-shaped domain: example of dataset with nsub = 250 observations and the
corresponding Delaunay triangulation.

63



Chapter 5. Kriging-RDDs applied to irregularly shaped domain

Figure 5.7: C-shaped domain: examples of Voronoi tessellation of the domain for different
values of K and for different metric d(·, ·).

true when the Euclidean metric is used. For higher values of K the differences
in the assignments are noticeable in particular for the points close to the inner
boundary of the C-shape. The tiles obtained with the two approaches are similar,
even if those defined with a graph-based metric show more jagged boundaries.
It is also important to note the differences among the kernel values based on the
two metrics. If the simple Euclidean metric is used to define the kernel function
according to equation (4.2), the resulting kernel will be isotropic. In that case,
having fixed a Voronoi nucleous, all the points at the same (Euclidean) distance
from the nucleous will have the same kernel value even if they are on different
branches of the C-shape. In fact, the isotropic kernel does not takes into account
the properties of the domain, for example the presence of barriers. When a graph-
based metric is used for the definition of the domain partition, the kernel function
must be coherently defined by using the same metric. In this case, the kernel is
not a symmetric kernel, in particular the symmetry property is no longer fulfilled
near the barriers. Figure 5.8 shows the differences between an Euclidean kernel
(panels on the right side) and a graph-based kernel (panels on the left side). For
each grid point s0, the images refer to the value of the kernel Kǫ(s0, c), where
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Figure 5.8: C-shaped domain: examples of kernel weights for different positions of the
Voronoi center and for different metric d(·, ·).

c is the center indicated by the black point and the kernel bandwidth was set
to ǫ = 1. Although the differences among the two approaches in the first cases
(top panels) are not particularly evident, from the central and bottom panels we
can appreciate that points on one branch do not contribute on the estimate of
variograms in the other branch when the graph-based distance is used. This does
not happen if the Euclidean distance is used, since the narrow empty space which
divides the two branches is not considered.
As for the previous example, also in this case we performed the whole Kriging-
RDDs analysis M = 50 times to understand the performance of the algorithm
for different values of K. In particular, every time, we used a 250-dimensional
dataset, B = 100 bootstrap repetitions, a kernel width ǫ = 1 and a final predic-
tor based on an “equal” aggregation. Each dataset has been analysed with the
two approaches: one based on the Euclidean distance, the other one based on a
graph metric. We used K = {1, 2, 4, 8, 16}, where K = 1 means that an Ordinary
Kriging technique has been performed for the predictions. The MSPE has been
computed every time and for each fixed value of K and the boxplots of the MSPEs
obtained during the 50 repetitions are showed in Figure 5.9.
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We can observe that, even with a Kriging-RDDs based on the Euclidean dis-
tances, when K increases, we get better results with respect to the case of K = 1.
If we compare the Euclidean approach with the graph-based approach, we can
observe that the latter gives better results in term of MSPE. In particular the
MSPEs values are very close to zero for K = 4, 8, 16. Figure 5.11 shows the
Kriging predictions values obtained via RDDs based on both the Euclidean (left
panels) and graph (right panels) metric, with K = 4, 8.
It is interesting to understand where the MSPEs assume higher values. As we can
observe from Figure 5.10, when the procedure is based on the Euclidean metric,
the highest values of the prediction error ǫ∗s0(Z) = Zs0−Z∗

s0
(Z) are associated with

those points located close to the inner boundary of the C-shape. In particular,
points of the lower branch are estimated with higher values with respect to the
real values, due to the use of information coming from locations of the other upper
branch, therefore the prediction errors for these points tend to be negative. In-

Figure 5.9: C-shaped domain. MSPE boxplots: different distances.

Distance
K

1 2 4 8 16

Euclidean 3.287·10−3 3.365·10−3 3.307·10−3 3.207·10−3 3.029·10−3

Graph 3.287·10−3 0.4807·10−3 0.1168·10−3 0.0603·10−3 0.0551·10−3

Table 5.2: C-shaped domain. Kriging-RDDs method with different distances: Average of
the MSPEs over the M = 50 repetitions.
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stead, for points located on the top branch, the estimated values Z∗
s0
(Z) are lower

than the real values Zs0 . This situation does not happen when the graph-based
distance is used, since the information of one branch are not used for estimating
variables associated with the other branch.
In real applications we cannot compute the MSPE, therefore we need to define
a method which is able to provide an optimal value for the K parameter. One
possibility may be to set K by cross-validation, although this approach is very
computationally expensive. For this reason we explored the concept of variance
associated with the final Kriging predictor aiming to grasp information regarding
the setting of parameter K.
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Figure 5.10: MSPEs computed via Kriging-RDDs applied to data over the C-shaped do-
main: comparison between Euclidean (left panels) and graph-based (right
panels) metrics.
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Figure 5.11: Kriging predictions computed via RDDs applied to data over the C-shaped
domain: comparison between Euclidean (left panels) and graph-based (right
panels) metrics.
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5.6 Variance

A method which allows the choice for the value of the parameter K is needed
for the analysis. In Secchi et al. [2013] a Bagging Voronoi method was used for
clustering spatial functional data, therefore the final predictor at an unsampled
location indicated the label of the class to which the location was assigned. In
that case a criterion to set K was based on the minimization of average entropy
associated with the cluster assignment distribution along the bootstrap replicates.
This entropy was defined as measure of the final predictor uncertainty. For an
optimal choice of K, we expect a data classification leading to a map of the spa-
tial entropy mostly equal to zero, with values significantly different from zero only
in sites close to the boundaries between regions associated with different labels.
Therefore an optimal choice of K implies a small value, close to zero, for the
entropy. This measure of the accuracy of the predictor can be extended to con-
tinuous distributions, hence when the aim of the analysis is to make predictions,
but the entropy cannot be easily defined in the O2S2 framework.
In Secchi et al. [2015] a criterion based on the total average variance (TAV) was
proposed to set the parameter K. In this case the aim of the work was to define
a non-parametric method for the analysis of spatially dependent functional data
based on a dimensional reduction of these signals, aimed to identify sub-regions
of the metropolitan area of Milan sharing a similar pattern. The TAV was defined
as the average over the sites s0 ∈ D and over the time intervals of the bootstrap
variance. A small value of TAV implied stable scores across bootstrap replicates.
In our case, the choice of a value for the parameter K based on the analysis of the
total variance is more complicated. Indeed, this variance includes the variance
due to the bootstrap replicates and the Kriging variance associated with the pre-
diction error. Even if we do not define a complete formula for the final variance,
both the bootstrap variance and an approximated Kriging variance may provide
useful information for the choice of a suitable value, or at least a set of values, for
the parameter K.
For each bootstrap iteration, the Kriging variance associated with the prediction
error ǫ∗bs0(Z) = ǫ∗s0(Z;P = Pb) = Zs0 − Z∗

s0
(Z;P = Pb) is computed according

to the equation (1.14), since Ordinary Kriging has been performed within each
Voronoi tile, and it is indicated as σ2

OK(s0)
b. After B replicates and an “equal”

aggregation, the final prediction error is defined as

ǫ∗s0(Z;P ) =
1

B

B
∑

b=1

ǫ∗s0(Z;P = Pb)

whose variance is defined as

VarData[ǫ
∗
s0
(Z;P )] = EData[(ǫ

∗
s0
(Z;P )− EData[ǫ

∗
s0
(Z;P )])2]. (5.4)

Indeed, the final predictor Z∗
s0
(Z;P ), aggregated according to an “equal”

average of the bootstrap predictors, is unbiased. Note that Z∗
s0
(Z;P ) =

70



Chapter 5. Kriging-RDDs applied to irregularly shaped domain

1
B

∑B
b=1 Z

∗
s0
(Z;P = Pb) is the discretized version of

EP [Z
∗
s0
(Z;P )] =

∫

P

Z∗
s0
(Z; p)dP (p)

where P is the set of all the possible partitions of the domain. Due to the inde-
pendence between the data and each partition, using the Fubini-Tonelli Theorem,
we can write

EData

[

∫

P

Z∗
s0
(Z; p)dP (p)

]

=

∫

P

EData

[

Z∗
s0
(Z; p)

]

dP (p) = E[Zs0 ] (5.5)

where the second equality is a consequence of the fact that, when the partition is
fixed P = p, the Kriging predictor Z∗

s0
(Z; p) is the Best Linear Unbiased Predictor

(BLUP) of Zs0 (as mentioned in Chapter 1, Section 1.1.4). In particular, the
unbiasedness equality (5.5) holds true also for the discretized predictor Z∗

s0
(Z;P ).

Therefore, equation (5.4) becomes

VarData[ǫ
∗
s0
(Z;P )] = EData[ǫ

∗
s0
(Z;P )2]. (5.6)

A formula for variance (5.6) requires the definition of an aggregated global (non-
stationary) covariance function, which will be the scope of future work. In this
dissertation, we focus our attention on a global indication of the uncertainty asso-
ciated with the Kriging-RDDs, computed as the average of the Kriging variances
(AKV) over the B repetitions, i.e.,

AKV(s0) =
1

B

B
∑

b=1

σ2
OK(s0)

b. (5.7)

The top panels of Figure 5.12 shows an example of the AKV(·) values for each
grid point obtained after Kriging predictions. The left panel refers to an Ordi-
nary Kriging approach: the values of the Kriging variance are within the interval
[0, 1.47] and the highest values are associated with the points of the regions of
the domain with low density of observations. The central panel shows the values
of AKV(·) when the Kriging prediction is computed via Euclidean-RDDs based
on partitions of the domain into K = 8 neighborhoods. In this case the AKV(·)
∈ [0, 2.94] and the highest values refer to the points on the ending parts of the two
branches of the C-shape. The right panel of Figure 5.12 shows the AKV(·) values
when Kriging predictions are computed via graph-based RDDs with K = 8. In
this case, AKV(·) ∈ [0, 0.32] and the highest values are associated with the points
close to the curved part of the C-shape.
We can appreciate that the graph-based RDDs approach provides smaller values
for the average Kriging variance with respect to the values obtained with Ordinary
Kriging or Euclidean-RDDs. Indeed, it is important to highlight the fact that the
ranges of values are totally different: the graph-based approach results in AKV
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Figure 5.12: Average Kriging Variance (AKV) plots. Left panel: Ordinary Kriging; central
panel: Euclidean-RDDs with K = 8; right panel graph-based RDDs with
K = 8. Bottom panel refers to the boxplots of the TAKV.

Distance
K

1 2 4 8 16

Euclidean 0.5636 0.5705 0.5744 0.5902 0.6352
Graph 0.5636 0.1324 0.1337 0.1357 0.1425

Table 5.3: C-shape domain. Average of the TAKV over the M = 50 repetitions.

values of the order of 10−1 with respect to those associated with the Euclidean
framework.
As before, for each value of K the analysis has been computed M = 50 times.
At each p-th iteration we computed the total average of the AKV values over the
domain:

TAKV =
1

ng

∑

s0∈G

AKV (s0)

The bottom panel of Figure 5.12 shows the boxplots of the TAKV values. We
can observe that the use of a graph-based metric allows to drastically reduce the
total average Kriging variance with respect to both the Ordinary Kriging and the
Euclidean RDDs approaches.
Although the value (5.7) provides an indication on the global prediction uncer-
tainty, another source of variability in the aggregated prediction Z∗

s0
(Z;P ) is pro-
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vided by the bootstrap variance σ2
BT (s0) defined as

σ2
BT (s0) = VarP [Z

∗
s0
(Z;P )].

It allows to give a measure of how the aggregated predictor deviates from the
EP [Z

∗
s0
(Z;P )]. We can simply compute an approximation of this bootstrap vari-

ance as

σ2
BT (s0) ≈

1

B − 1

B
∑

b=1

(

Z∗
s0
(Z;P = Pb)−

1

B

B
∑

b=1

Z∗
s0
(Z;P = Pb)

)2

.

The use of a graph-based metric for the definition of the RDDs implies a
reduction of the bootstrap values with respect to the use of Euclidean-RDDs,
as we can see from Figure 5.13. With an Euclidean approach the points that
show the highest values of bootstrap variance are those close to the inner border

Figure 5.13: Bootstrap Variance plots. Left panel: Euclidean-RDDs with K = 8; right
panel graph-based RDDs with K = 8. Bottom panel refers to the boxplots
of the TABV.

Distance
K

2 4 8 16

Euclidean 0.0033 0.0087 0.0156 0.0250
Graph 0.0059 0.0018 0.0013 0.0018

Table 5.4: C-shape domain. Average of the TABV over the M = 50 repetitions.
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which separates the two branches of the C-shape, while for the other grid points
σ2
BT (s0) ≈ 0. Instead, with graph-based RDDs the bootstrap variance assumes

values very close to zero for almost all the grid points. As before, even in this
case the range of values are totally different. In the example reported in Figure
5.13, σ2

BT (s0) ∈ [0, 0.72] if the Euclidean metric is employed for the RDDs, while
with a graph-based approach σ2

BT (s0) ∈ [0, 0.06].
The boxplots of Figure 5.13 refers to the total average bootstrap variance (TABV)
over the domain computed during the M = 50 repetitions of the analysis

TABV =
1

ng

∑

s0∈G

σ2
BT (s0).

When K = 1, a single iteration of Ordinary Kriging over the whole domain is
performed, therefore the bootstrap variance is 0 for all the grid points.
If we used the information coming from the bootstrap and Kriging variance for
the choice of the parameter K when the RDDs are based on the graph metric,
our choice could fall on the values K = 4 or K = 8. Indeed, the boxplots of the
TAKV suggest to use K = 2, 4, 8, while the boxplots of the TABV suggest to
set K = 4 or 8. Therefore, when K = 4 or K = 8 both the approximation of
the Kriging variance and the bootstrap variance show the smallest values. This
result is coherent with the results coming from the MSPE values. Indeed, when
K = {4, 8} the MSPEs are very close to zero for almost all the points of the
C-shaped domain.
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5.A Appendix. Theorems for checking the iso-

metrically embeddable property

Let D be an arbitrary collections of spatial locations s ∈ R
n, we can define a

function d(·, ·) representing the distance function such that d : D ×D → [0,∞).
The d is said to satisfy the conditions of metric if

d(si, sj) ≤ 0 and d(si, sj) = 0 iff si = sj;

d(si, sj) = d(sj, si);

d(si, sj) ≤ d(si, sk) + d(sk, sj) (Triangle inequality)

for all si, sj ∈ D. The space D together with the metric d is called metric space.
The following theorem, due originally to Schoenberg [1937] (see also Young and
Householder [1938]) provides a necessary and sufficient condition for the embed-
ding property of a finite metric space.

Theorem 5.2. (Schoenberg, 1937). The finite metric space (D, d) where D =
{s0, s1, . . . , sn} with n > 2, is embeddable in R

n if and only if

1

2

n
∑

i=1

n
∑

j=1

λiλj{d(s0, si)
2 + d(s0, sj)

2 − d(si, si)
2} ≥ 0 (5.8)

for all choices of real numbers λ0, λ1, . . . , λn.

As pointed out in Wells and Williams [1975], the condition (5.8) is equivalent to

n
∑

i=0

n
∑

j=0

λiλjd(si, sj)
2 ≤ 0 (5.9)

for all choices of real numbers λ0, λ1, . . . , λn such that
∑n

i=0 λi = 0. This is the
definition of the conditionally negative property. Therefore a distance function
d is embeddable if and only if d2 is conditionally negative definite. Moreover,
thanks to this theorem we can conclude that the square root of the variogram
is equivalent to an Euclidean metric. In Wells and Williams [1975], we can also
find a connection between the positive definiteness and the conditionally negative
property, through the following relation

e−ad(·,·) is positive definite ∀a > 0 iff d(·, ·) is conditionally negative definite.

A simple approach for defining if a distance d is embeddable, has been defined by
Richards [1985] for the class of norm distances.
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Definition 5.2. A vector norm is a function f : Rn → [0,∞) that satisfies the
following properties

f(h) ≤ 0 and f(h) = 0 iff h = 0;

f(h+ h∗) ≤ f(h) + f(h∗);

f(αh) = |α|f(h)

for all h,h∗ ∈ R
n.

A vector norm becomes a distance metric by defining d(si, sj) = f(h), with h =
si − sj. The common α-norm distance metrics for α ≥ 1 are defined as

‖h‖α = (|h1|
α + |h2|

α + · · ·+ |hn|
α)

1
α

with h = (h1, h2, . . . , hn)
T . Richards provided a simple rule to define whether a

norm distance is embeddable or not, through the following theorem.

Theorem 5.3. (Richards, 1985)

(a) On R
2, ‖h‖βα is conditionally negative definite if

(i) 0 < β ≤ 1, 1 ≤ α ≤ ∞, or

(ii) 0 < β ≤ α ≤ 2.

(b) On R
n with n ≥ 3, ‖h‖βα is conditionally negative definite if

(i) 0 < β ≤ α ≤ 2 , and

(ii) if α > 2 it is not conditionally negative definite if β > 1

where α is the norm index and β indicates the power.

Therefore, if we combine the results of this theorem with Schoenberg’s Theorem
5.2 we can conclude that if ‖h‖βα is conditionally negative definite, then ‖h‖β/2α

is embeddable, hence it can be used with existing covariance and variogram
functions that are valid in all dimensions.
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Chapter 6

Case Study: Chesapeake Bay

We apply the proposed RDDs methodology to perform Kriging prediction for spa-
tial data distributed over the complex and highly irregular domain of the Chesa-
peake Bay. In particular, we studied a dataset regarding the values of Dissolved
Oxygen (DO) in the water of the estuary.

6.1 Geographical description

The Chesapeake Bay is the largest estuary in the United States and the third
largest in the world. This estuarine ecosystem is approximately 300 km long,
from Havre de Grace, Maryland (on the North) to Virginia Beach, Virginia (on
the South). Its width ranges between 5 km (the mean width of the mainstream)
and 30 km, if one considers the lateral tributaries. The total shoreline, including
tributaries, is 18804 km long, and circumnavigates a surface area of 11601 km2.
The average depth is around 6.4 m, reaching a maximum of 53 m in the deepest
part of the Bay, located at south-east which is called “The Hole”. The Bay is a
mix of fresh and salt water (coming from the Atlantic Ocean).
From Figure 6.1 we can see the major rivers emptying into the Bay, including
the James, York, Rappahannock, Potomac, Patuxent, Patapsco and Susque-
hanna from the west side and the Pocomoke, Wicomico, Nanticoke, Choptank
and Chester from the east side.

6.2 Oxygen depletion problem

The Chesapeake Bay was formed about 10000 years ago when glaciers melted and
flooded the Susquehanna River valley. It is one of the most productive and com-
plex ecosystems in the US. As all the estuaries, the Bay provides a wide variety
of habitats, with thousands species of animals and plants. The Bay is a very im-
portant economic resource for the zone: around 500 million euros of seafood per
year are produced in the Chesapeake Bay. The extreme use of the land around
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Figure 6.1: Chesapeake Bay with the names of its main rivers (image from the
https://www.chesapeakebay.net/ website).

the estuary and, in particular, the pollution of close farms and cities changed the
Bay over the years. Human activities caused a drastic reduction of oxygen, which
must be present underwater, in dissolved form, to guarantee the life of most ma-
rine species.
The Bay’s degradation problem led to the birth, in 1983, of the Chesapeake Bay
Program (CBP). The CBP is a regional partnership whose partners include fed-
eral and state agencies, local governments, non-profit organizations and academic
institutions. Its aim is to provide a support for the Chesapeake Bay restoration
and protection activities.
The most critical areas of the Bay, with the lowest values of DO, are called Dead
zones. These are the areas of the estuary where the presence of oxygen in the water
is below 2 milligrams per litre. In these areas most of the marine species cannot
move quickly enough and, consequently, they usually suffocate. The presence of
these Dead zones is not a specific characteristic of the Chesapeake Bay. The dis-
tinctive fact is that in many of the other estuaries the causes of the presence of
dead zones are related to natural phenomena (such as, e.g., the decomposition
of algae blooms), while in the Chesapeake Bay the main cause is the pollution
generated by human activities. For this reason, the CBP has a supervisioning
goal for avoiding the development of these zones, by controlling the activities of
urban areas near the Bay’s shoreline.
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In this work we apply the Kriging-RDDs method to predict the value of dissolved
oxygen in the Chesapeake Bay given the data observed at different monitoring
stations within the estuary.

6.2.1 Dataset

The dataset includes the value of dissolved oxygen (DO) measured at 119 monitor-
ing stations across the Bay and the coordinates related to these stations (Figure
6.3, top left panel). The data refer to the year 2005 and were extracted from the
US Environmental Protection Agency Chesapeake Bay Program (US EPA-CBP)
database.
In general, the oxygen depletion problem becomes a very critical situation during
the summer months. Indeed, in May the heavy spring rains start bringing all the
fertilizers used by the farms and suburban areas in the water of the Bay, with the
consequence of a dramatic DO reduction during the following summer months.
For this reason we focused our study on the values of DO measured during the
months from May to August.

6.2.2 Kriging prediction of DO values via RDDs method

The Chesapeake Bay shows highly irregular boundaries which do not allow to
formulate a global stationarity assumption over the whole region. Indeed, even
if few kilometres separate two points lying on adjacent and parallel tributaries,
these rivers are separated by long and narrow areas of land. These areas of land
represent barriers for the distribution of many aquatic variables. The different
uses of the watersheds from people who live near to the estuary reflect different
chemical and biological characteristics in the water of adjacent tributaries.
Moreover, the Bay with all its tributaries cover a region of large size. Therefore,
the size of the domain, as well as the land-barriers between adjacent tributaries do
not allow to employ approaches based on a global model for spatial dependence.
Instead, the use of local models can be employed to describe the variability in the
spatial dependence structure induced by the complex and irregular properties of
the domain.
Furthermore, even if local approaches are employed for the analysis, the presence
of barriers is not taken into account if the Euclidean metric is used for the
definition of the separation distance between points. For this reason, we opted
to perform Kriging prediction via RDDs by using a graph-based metric approach
in addition to the standard Euclidean approach. The construction of the graph
is based on the Delaunay triangulation of the domain, as described in Chapter
5. Since the boundary of the Chesapeake Bay is highly jagged, we considered a
simplified description of the Bay’s border in order to define the triangulation.
The boundaries have been defined by using straight segments, such that they
could be approximate the real boundary of the estuary, taking into account the
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presence of all the main tributaries and the land areas which separate them, but
without considering the short and tight channels coming out from the tributaries
and from the central unit of the Bay. The definition of this simplified boundary
required the addition of points which must be considered only for the Delaunay
triangulation, but they will not be taken into account for the analysis.
The available observations come from the monitoring stations located in the
Bay. These stations are only 119, therefore the size of the dataset is very small,
in particular if it is compared with the size of the whole estuarine system. For
this reason a triangulation, whose nodes are only the observed locations, may
imply the definition of very elongated triangles. Therefore, we opted for a
constrained Delaunay triangulation: some points (which will not be considered
for the analysis) have been added with the aim to define a set of triangles
without too small angles. The top-right panel of Figure 6.3 shows the constrained
Delaunay triangulation of the domain, where the grey points indicate the points
which have been added to get a denser triangulation and for the boundaries
definition. Furthermore, the constrained triangulation gives the possibility
to better approximate the adjacency relationships between points within the
estuarine region.
Moreover, the few available observations led us to the use of a kernel function

to make more robust the estimation of variograms within sub-regions with low
sampling density. We recall that, from Figure 3.3 in Chapter 3, we observed that
the values ǫ = 1 assigns high kernel weights to information coming from data very

Figure 6.2: Gaussian kernel values with bandwidth parameter ǫ = 0.5. Left panel: Eu-
clidean metric, right panel: graph-based metric.
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far away from the center where the local variogram must be estimated, while the
value ǫ = 0.5 seems to be a good compromise between the need to provide robust
variogram estimates and the need of considering only information from close
observations. Figure 6.2 shows the difference between Gaussian kernel weights
obtained by using the Euclidean metric (left panel) and those obtained with a
graph-based metric (right panel), when ǫ = 0.5. In particular, we can observe
that the use of a graph-based metric guarantees that a local variogram estimate
centered in the black point of the Potomac river will not be based on information
coming from monitoring stations of the Rappahannock river (on the South).
Indeed, the weights assigned to these points are very close to zero. Furthermore,
smaller kernel values, with respect to those based on an Euclidean approach, are
assigned to the points of the Patuxent river (on the North with respect to the
black point). Hence, the use of a graph-based metric gives the possibility to take
into account the irregular shape of the region and all the land-barriers between
adjacent tributaries.
The central and bottom panels of Figure 6.3 show the predicted values of DO

obtained by using Ordinary Kriging, an Euclidean RDDs and a graph-based
RDDs approach, respectively. In the latter two cases the domain has been
partitioned into K = 32 sub-regions, the weak and local analyses have been
repeated B = 100 and the final aggregation has been computed according to an
“equal” average.
The most evident differences regard the values of DO close to the mouth of the
Choptank river (on the north-east side) where a RDDs approach assigns higher
values with respect those assigned by Ordinary Kriging predictions. Differences
in the predicted DO values also regard the locations of the main tributaries on
the west side of the Bay.
To investigate the differences in the results between a Kriging-RDDs approach
based on the Euclidean distance and the one based on a graph-metric we
performed cross-validation. For each repetition 10% of the observations has
been left out from the analysis and used as test set, while the remaining 90%
of observations has been used as training set. Figure 6.4 refers to the boxplots
of the MSPEs obtained through M = 100 repetitions, where each repetition
computed the prediction errors on different test sets left out from the training
set. These boxplots do not show a strong improvement in term of MSPE values
for a Kriging-RDDs approach with respect to those obtained with Ordinary
Kriging (case K = 1). In addition, even the differences between Kriging-RDDs
with Euclidean distance or with a graph-based metric are not so evident.
The general cross-validation method assumes that the errors are independent.
This is not a viable assumption if the data are spatial distributed, since we
know that in this case a spatial dependence exists among the observed locations.
For this reason we tried to investigate in which parts of the study region the
Euclidean (or the graph-based) Kriging-RDDs method generates the smallest
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Figure 6.4: Kriging-RDDs in the Chesapeake Bay: MSPE boxplots obtained via cross-
validation.

Distance
K

1 2 4 8 16 32

Euclidean 0.0650 0.0669 0.0663 0.0651 0.0642 0.0642
Graph 0.0650 0.0687 0.0684 0.0677 0.0657 0.0647

Table 6.1: Chesapeake Bay. Kriging-RDDs method with different distances: Average of
the MSPEs over the M = 100 repetitions.

values of prediction errors.
The goal is the define a spatial map of the mean predictions errors. Hence, at
each point is assigned the average of the prediction errors obtained through the
M repetitions. The final average errors for the sampled locations are computed
on sets of different dimensions, which depend on the number of times in which a
given point belonged to the test set. Figure 6.5 shows the values of these mean
cross-validation (MCV) errors for each monitoring station.
The Kriging-RDDs results reported by Figure 6.5 are based on random partitions
of the domain into K = 32 sub-regions. Smaller values of parameter K do not
show obvious differences between the approaches based on two different metrics.
We can observe that with a graph-based Kriging-RDDs approach the errors of
points within the tributaries on the west side are very close to zero (in particular
those on the York and Rappahannock rivers). The errors for the central points of
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the Potomac river are generally higher, but still much smaller if the Kriging-RDDs
approach is based on the graph metric (MCV errors between 0.092% and 0.184%)
than on the Euclidean distance (MCV errors between 0.184% and 0.828%).
For the monitoring stations within the tributaries on the north-east region of
the Bay the conclusions are different. Here, the Kriging-RDDs approach based
on the Euclidean distance shows better results in terms of MCV errors. A
possible reason can be related to the presence of few monitoring stations within
these rivers. Here, if the graph-based metric is used, only few observations are
considered to estimate local variograms. Instead, the Euclidean RDDs approach
gives the possibility to ground local variogram estimates on a larger set of
observations coming from monitoring stations which are far away, but which
registered similar values of DO. A possible solution to this situation may be the
modulation of the kernel bandwidth such that each neighborhood contains a
comparable number of observations.
Another possibility is to ground the kernel definition on prior knowledge of

Figure 6.5: Chesapeake Bay. Mean cross-validation (MCV) errors for each sampled point.

the study phenomenon. Scully [2010] demonstrated that the depletion, or the
growth, of dissolved oxygen in the water of Chesapeake Bay is influenced by the
direction of the wind. In particular, winds from the South have an important
effect for the increase of dissolved oxygen in the dead zones of the Bay, while
winds of the west are shown to be less effective. This dependence of the oxygen
dynamics in Chesapeake Bay on wind direction can be used as information for
the definition of the kernel function. Indeed, a possible way can be to define an
anisotropic kernel depending on the summertime wind direction.
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In this dissertation we propose a methodology for the analysis of spatially dis-
tributed random fields when complexities associated with the observed data
and/or with the domain make inappropriate the use of classical techniques usually
employed in geostatistical settings. Our work gives a contribution to the research
in the O2S2 direction, whose focus is on the analysis of spatially distributed ob-
ject data (e.g., functional and/or constrained data, tree-structured data, elements
of a manifold or images). In particular the proposed method is able to handle
situations in which one cannot assume the existence of a global stationary model
describing the spatial field underlying the object data.
The impossibility of defining a global stationary model motivated us to explore
the possibility of employing local models. We propose to perform repeated do-
main partitions, through a Random Domain Decompositions (RDDs) approach.
This choice was motived by the will of defining a non-parametric methodology
which does not require strong assumptions on the distribution generating the
data, hence prone to be applied for the analysis of object data. We assume that
each realization of a random domain partition defines a system of homogeneous
neighborhoods, which represents the starting point for performing local analy-
ses. Therefore, local and simple analyses are performed instead of a global and
complex non-stationary analysis. According to a bagging approach, the repeated
analyses are then aggregated into a final analysis.
Here, we applied the RDDs methodology to perform Kriging predictions over a
possibly complex spatial domain. Nevertheless, the method is entirely general and
it can be employed for different types of analysis (e.g., classification, drift esti-
mate). Furthermore, with respect to existing partitioning-based approaches used
to handle non-stationary random fields, the RDDs method overcomes a critical
drawback: the presence of discontinuities over the prediction maps. Indeed, dis-
continuity in correspondence of the boundary between two disjoint sub-regions are
here smoothed away by the aggregation phase, that consists of averaging the mul-
tiple bootstrap replicates. Moreover, we propose a possible solution to overcome
the independence hypothesis between disjoint neighborhoods within the domain,
which is often assumed in many partitioning-based approaches. The solution is
grounded on the use of a geographically weighted estimate for local variograms:
within a neighborhood the variogram estimate is based on both the observations
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within the neighborhood itself, and on those within neighboring sub-regions, the
weights being defined through a kernel weighting function. Here, the use of a
kernel function contributes to the flexibility and robustness of the analysis, in
particular for those sub-regions with few observations.
The RDDs method, together with the use of kernel weighted variogram estimates,
can be employed for the analysis of directional data. In recent years an important
area of statistics has focused on the study of methods able to analyse directional
data, typical of many scientific fields (e.g., astronomy, geology, biology, medicine
and meteorology), where each observation is recorded as a direction, i.e., a vector
with an angle of rotation and a length. In this case, the directional property of
the datum does not allow to assume stationarity, hence a RDDs can be employed.
Moreover, even if for the simulation examples, as well as for the case study de-
scribed in this dissertation, we used a Gaussian kernel, in general one can take
advantage from a possible prior knowledge on the study phenomenon for the defi-
nition of a more appropriate type of kernel. The use of an anisotropic kernel allows
to incorporate information on a possible spatial directional dependence existing
among the observations. For example, the depletion problem of dissolved oxygen
within the Chesapeake Bay is influenced by the summertime wind direction, as
mentioned in Chapter 6. This information was used by Scully [2010] to model the
average dissolved oxygen concentration. His results are showed in Figure 6.6 and
could eventually drive the definition of the spatial kernel.
The possible non-convex geometry of the domain may require the use of a non-
Euclidean metric as measure of the adjacency relations among the locations. The
Euclidean metric is commonly used in Geostatistics, and the validity of the most
theoretical variogram models (i.e., those mentioned in Chapter 1, Section 1.1.3) is
guaranteed only if the variogram estimates are based on the Euclidean distance.
The RDDs method is able to deal with possible complex domains with a simple
approach by combining two different metrics. Indeed, the partitions of the domain
are based on a non-Euclidean metric, which takes into account the geographical
constraints of the domain. Once a system of homogeneous sub-regions has been
defined, within each neighborhood the adjacency relationships are described by
the Euclidean distance, avoiding to incur non valid local variograms. Here, for the
study of complex domains we propose to employ a non-Euclidean metric based
on the shortest path computed on a mesh which is used to triangulate the study
region (e.g., we proposed the use of the Delaunay triangulation).
However, an interesting future direction of research may concern the develop-
ment of a theory to perform Kriging prediction directly on the graphs by using a
graph-based metric. In this case, the aim to predict the value of a variable at an
unsampled location of the domain is replaced by the goal to make prediction of
the value of a feature at one node in the graph. Xu et al. [2010] established some
connections between the Kriging technique and several semi-supervised learning
approaches for prediction on graphs, which estimates the correlation structure
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Figure 6.6: Chesapeake Bay: modeled average of dissolved oxygen concentration using
information on the wind directions. Figure extracted [Scully, 2010, pag. 1167]

between values observed at the vertices of the graph and uses it to make smooth
prediction respect to a notion of distance on the graph.
Another possible future development for the RDDs method may concern the type
of decomposition used to define the partitions of the domain of interest. In all
the examples described in this dissertation we used a simple Voronoi tessellation
of the domain, although this can be computed in different ways. Moreover, we
randomly and uniformly sampled the Voronoi nuclei among the set of available
observations, but one could make more precise assumptions on the distribution
of the sampled points (e.g., in case they are irregularly spaced within the region)
and use non-homogeneous schemes to select the neighborhoods centers (e.g., by
employing a tessellation based on non-homogeneous Poisson processes or more
complex point patterns).
An improvement to the RDDs method may concern the addition of covariates both
for the Kriging prediction and for the definition of the kernel weights. In fact, in
all the examples of this dissertation, we based the Kriging predictions and kernel
weights only on information regarding the positions of the locations. Instead,
one could take advantage even from other information which can be measured at
these locations. For example, for the dissolved oxygen study one may consider
information coming from the values of water temperature, salinity and dissolved
nutrient concentrations often collected at each monitoring station, and use them
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for the definition of an empirical model to predict dissolved oxygen levels within
the Chesapeake Bay, as proposed by Prasad et al. [2011].
Further developments will concern the use of a data-driven approach for setting
the value of the kernel bandwidth. The parameter ǫ - which controls the range of
influence of the observations on the estimate of local variograms - can be set by
using cross-validation, as mentioned in Chapter 4. It may be influenced by the
value chosen for the parameter K or, more precisely, by the observation density.
Tavakoli et al. [2016] pointed out the possible drawbacks associated with the use of
a fixed bandwidth parameter: an oversmoothing problem can occur in particular
within regions with denser observations, while an undersmoothing problem may
concern neighborhoods with few observations. Tavakoli et al. [2016] proposed the
idea of adjusting the bandwidth parameter on the basis of the number of available
observations: the parameter is then adapted by using a modulation of a global
bandwidth, on the basis of the distance from the k-th nearest location (or obser-
vation), guaranteeing that a comparable number of observations is used for the
estimate at each point. This solution can be useful even when the observations
are not uniformly distributed over the domain.
A further important development regarding the possibility of improving the pro-
posed method may concern the formalization of an aggregated final covariance
function defining the structure of spatial dependence on the whole domain. This
aggregated covariance could be useful to obtain an explicit expression for the vari-
ance of the aggregated prediction error ǫ∗s0(Z;P ) = Zs0−Z∗

s0
(Z;P ) which has been

mentioned in Chapter 5, Section 5.6. Such variance would be key to support the
uncertainty assessment for Kriging-RDDs, besides allowing for further inferential
tools for the scope of prediction (e.g., Kriging prediction bands).
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R Codes

The proposed RDDs methodology for performing Kriging prediction over simple
and complex domains has been implemented with R [R Development Core Team,
2008]. This appendix includes the codes implemented in R of the main functions
to perform all the steps of the RDDs methodology described in Chapters 4 and 5.

A.1 Kernel values

The function kerfn computes the values of the kernel for sampled (or unsampled)
points given a reference center (e.g., a Voronoi nucleous).

kerfn= function(newdata ,center ,dist=’euclidean ’,ker.type=’Gau ’,

param ,distance.matrix = NULL)

{

# INPUT:

# newdata = matrix with the coordinates points

# center = it’s a 3-dimension vector:

# x[1] = x-coordinate ,

# x[2] = y-coordinate ,

# x[3] = the row -index of the center in

# the matrix of data

#

# dist = method to compute distances

# (’euclidean ’ or ’graph.distance ’)

#

# ker.type = type of kernel (only Gaussian kernel implemented so far)

#

# param = parameters that define the kernel (bandwidth parameter)

#

# distance.matrix is needed only if dist = ’graph.distance ’

# distance.matrix :

# 1. if the points are observed locations (data points)

# distance.matrix is a nsub*nsub distance matrix

# such that: the (i,j) element is the length of the

# shortest path between the i-th and j-th observed
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# points on the Delaunay graph;

# 2. if the points are unobserved locations (grid points)

# distance.matrix is a K*ngrid distance matrix

# such that the (k,l) element is the distance

# on the Delaunay graph between the k-th center

# and the l-th grid point.

# OUTPUT:

#

# value of the kernel function

center = as.numeric(center)

if(dist == ’euclidean ’){

d=as.matrix(dist(rbind(center [1:2] , newdata), ’eucl ’))[1 ,-1]

}

if(dist == ’graph.distance ’){

# d = k-th row of the distance matrix

d = distance.matrix[as.integer(center [3]),]

}

if(ker.type!=’Gau ’)

{

print(’Error: only Gaussian kernel

implemented so far (*Gau*)’)

}

eps=param [1]

return(exp ( -1/(2* eps ^2)*(d^2)))

}

A.2 Delaunay graph

Given the Delaunay triangulation of the domain, an undirected graph has to be
constructed which includes the same set of vertices and edges defining the trian-
gulation. The weight of each edge is its length. The function distance.on.graph

defines an (nsub · nsub)-dimensional graph-based distance matrix.

distance.on.graph = function(data , mesh)

{

# INPUT

# data = data matrix

# mesh = mesh obtained via Delaunay triangulation

# (with tringulate function of RTriangle package)

# OUTPUT

# graph.distance =

# nsub*nsub -dimensional symmetric matrix.

# The element (i,j) is the shortest length path

# between the i-th and j-th points

# on the Delaunay graph.

edge.list = mesh✩E
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edge.num = dim(edge.list )[1]

# edges.list: edge.num * 2-dimensional matrix

# (each row contains the indices of the nodes

# i and j defining the edge e = {ij})

# Construct the undirected graph

graph = graph_from_edgelist(edge.list , directed = FALSE)

# Given two linked nodes i and j

# the weigth of edge (i,j) is:

# w(i,j) = euclidian distance (i, j)

edge.weights = rep(0, edge.num)

for(l in 1:edge.num){

node.i = edge.list[l,1]

node.j = edge.list[l,2]

point.i = data[node.i,1:2]

point.j = data[node.j,1:2]

edge.weights[l] = dist(rbind(point.i,point.j),

method = ’euclidean ’)

}

graph.distance = distances(graph , v = V(graph),

to = V(graph),

mode = c("all"),

weights = edge.weights ,

algorithm = c(" automatic "))

return(graph.distance)

}

A.3 Voronoi tessellation

Given a set of Voronoi nuclei, for each sampled point the function
datapoints2centers.distance computes the distance vector between the point
and each center of the Voronoi nuclei set. If the graph-based metric is employed,
the assignment of an unsampled point to a Voronoi nucleous will require: (1) find-
ing the triangle of the Delaunay triangulation where it is located (this assignment
is computed by the grid2triangle function); and (2) computing the distance be-
tween the point and each center according to the equation (5.1) if the grid point
is located within a triangle, to the equation (5.2) if it is located on a common
edge shared by two triangles (gridpoints2centers.distance).
Given a K-dimensional vector with the distances between a sample/unsampled
point and each Voronoi center, the assign2center function returns the Voronoi
nucleous to which the point is assigned.

datapoints2centers.distance = function(x,centers ,

method=’euclidean ’,
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graph.distance=NULL)

{

# This function compute the K-dimensional

# distance vector

# (according to the specified method) between

# an observed point and each center

# INPUT :

# x= it ’s a 3-dimension vector

# (x[1] = x-coordinate ,

# x[2] = y-coordinate ,

# x[3] = it indicates the row -index

# in the data matrix corresponding

# to the observed point)

#

# centers= K*3- dimensional matrix

# (centers[k ,1:2] = coordinates of the k-th center ,

# centers[k, 3] = indicates the row index

# in the data matrix of the k-th center)

#

# method= ’euclidean ’ or ’graph.distance ’

#

# graph.distance= nsub*nsub matrix

# (graph.distance(i,j) =

# shortest path between i and j on

# the Delaunay graph)

# OUTPUT

# d = K-dimensional vector with the distance

# between the x-point

# and each of the selected Voronoi nuclei

x = as.numeric(x)

if(method==’euclidean ’){

d = as.matrix(dist(rbind(c(x[1],x[2]), centers [,1:2]),

method ))[1, -1]}

if(method==’graph.distance ’){

ncenters = dim(centers )[1]

d = rep(NA, ncenters)

for(i in 1: ncenters ){

d[i] = graph.distance[x[3], centers[i,3]]}

}

return(d)

}

#############################################################

grid2triangle = function(grid.matrix , data.matrix , mesh)

{

# INPUT:

# grid= ngrid*2- dimensional matrix

# (the i-th row contains the

# coordianates of the i-th grid point)

# data= nsub*2- dimensional matrix

# (the i-th row contains the

# coordinates of the i-th data point)
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# mesh= mesh obtained with Delauny Triangulation

# (using tringulate function of

# RTriangle package)

# OUTPUT:

# assign.matrix=

# ngrid*num.triangles -dimensional matrix

# (the (i,j) elemenent = TRUE if the point grid[i,]

# is inside the j-th triangle , FALSE otherwise)

# no.assg.complet=

# indices of grid points that were not assigned

# to any triangle

triangles = mesh✩T

num.triangles = dim(triangles )[1]

ngrid = dim(grid.matrix )[1]

assign.matrix = matrix(NA , ngrid , num.triangles)

for(j in 1:num.triangles ){

bnd.triangles = triangles[j,]

assign.matrix[,j]=

in.out(bnd = cbind(data.matrix[bnd.triangles ,1],

data.matrix[bnd.triangles ,2]),

x = cbind(as.numeric(grid.matrix [,1]),

as.numeric(grid.matrix [ ,2])))

}

check.complete = rep(NA, ngrid)

for(i in 1: ngrid){

check.complete[i] = length(which(assign.matrix[i,]== TRUE))

}

no.assg.complete = which(check.complete == 0)

output = list()

output [[1]]= assign.matrix

output [[2]]= no.assg.complete

return(output)

}

#############################################################

gridpoints2centers.distance = function(x, centers ,

method=’euclidean ’,

graph.distance=NULL ,

assign.matrix = NULL ,

data.grid.distance = NULL ,

triangles = NULL)

{

# INPUT :

# x= it’s a 4-dimension vector

# (x[1] = x-coordinate ,

# x[2] = y-coordinate ,

# x[3] = row -index of the gridmatrix

93



Appendix A. R Codes

# corresponding x[1:2] coodinates ,

# x[4] = 0 if the point is UNSAMPLED locations is 0,

# otherwise it indicates the

# row -index of the data matrix

# corresponding to x[1:2] coodinates)

#

# centers= K*3 matrix

# (centers[k,1:2] = coordinates of the k-th center ,

# centers[k, 3] = row -index of the data matrix

# corresponding to the k-th center)

#

# method= ’euclidean ’ or ’graph.distance ’

#

# graph.distance= nsub*nsub -dimensiona matrix

# (graph.distance(i,j) = shortest path

# between i and j on

# the Delaunay graph)

#

# assign.matrix= ngrid*nuum.traingles -dimensional matrix

# (assign.matrix[i,j] = 1 if the i-th

# grid point is assigned to the

# j-th triangle , 0 otherwise)

#

# data.grid.distance= nsub*ngrid -dimensional matrix

# (data.grid.distance(i,j) is the

# euclidean distance

# between the i-th observed point and

# the j-th grid point)

#

# triangles= num.triangles *3 dimensional matrix

# (the i-th row contains the 3 indices of

# the 3 vertices defining the i-th triangle)

# OUTPUT :

# d : K-dimensional vector (d[k] is the distance between

# the point x and the k-th center)

x = as.numeric(x)

ncenters = dim(centers )[1]

if(method==’euclidean ’){

d = as.matrix(dist(rbind(c(x[1],x[2]), centers [,1:2]),

method ))[1, -1]}

if(method==’graph.distance ’){

# If x[4] > 0 it means that the grid point

# is an already observed location.

# Hence , it’s a vertex of the graph , the distance between

# the point and each center is computed directly as

# shortest distance path on the Delaunay graph

if(x[4] > 0){

d = rep(NA, ncenters)

for(i in 1: ncenters ){

d[i] = graph.distance[x[4], centers[i,3]]}

}
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# If x[4] == 0 it means that the grid points is

# an unobserved location

if(x[4] == 0){

# ind.tringles containes the index/indices

# of the row/rows of the triangles matrix

# corresponding to the triangle/s where the point is located

ind.triangle = which(assign.matrix[x[3] ,]==1)

# It can be assigned to one and only one triangle

# (i.e., the point is inside the triangle) or

# it can be assigned to two adjacent triangles

# (if it’s on the common border of the triangles)

if(length(ind.triangle) == 1){

# d.Pj = euclidian distance between the point x and

# the j-th vertex of the triangle where it is located

d.P1 = data.grid.distance[triangles[ind.triangle ,][1] ,x[3]]

d.P2 = data.grid.distance[triangles[ind.triangle ,][2] ,x[3]]

d.P3 = data.grid.distance[triangles[ind.triangle ,][3] ,x[3]]

d = rep(NA, ncenters)

for(i in 1: ncenters ){

d[i] = min(d.P1 + graph.distance[triangles[ind.triangle ,][1] ,

centers[i,3]],

d.P2 + graph.distance[triangles[ind.triangle ,][2] ,

centers[i,3]],

d.P3 + graph.distance[triangles[ind.triangle ,][3] ,

centers[i ,3]])

}

}

if(length(ind.triangle) == 2){

# There are 4-vertices to evaluate d.Pj

ind.vertex = union(triangles[ind.triangle [1],],

triangles[ind.triangle [2],])

d.P1 = data.grid.distance[ind.vertex [1],x[3]]

d.P2 = data.grid.distance[ind.vertex [2],x[3]]

d.P3 = data.grid.distance[ind.vertex [3],x[3]]

d.P4 = data.grid.distance[ind.vertex [4],x[3]]

d = rep(NA, ncenters)

for(i in 1: ncenters ){

d[i] = min(d.P1 + graph.distance[ind.vertex [1], centers[i,3]],

d.P2 + graph.distance[ind.vertex [2], centers[i,3]],

d.P3 + graph.distance[ind.vertex [3], centers[i,3]],

d.P4 + graph.distance[ind.vertex [4], centers[i,3]])

}

}

# If the grid point is UNSAMPLED it cannot happen

# that length(ind.triangle)>2, because otherwise it’s a

# vertex of a triangle ,

# hence it’s a data point

# There are some grid points which are not assigned

# to any triangle. These grid points are not used

# to perform prediction.
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if(length(ind.triangle )==0)

{d=rep(NA, ncenters )}

}

}

return(d)

}

#############################################################

assign2center=function(distance.vector)

{

# INPUT :

# distance.vector : K-dimensional vector

# (distance.vector[k] = distance between

# a fixed point and the k-th center)

# OUTPUT :

# the index of the center to which the

# point is assigned

# (i.e., an integer between 1 and K)

assigned.center = which.min(distance.vector)

if(!is.empty(assigned.center )){

return(assigned.center )}

# If the distance.vector is a vector with only NA’s

# it means that it’s the grid point has not be assigned

# to any triangle , therefore it will not assigned to

# any Voronoi center

if(is.empty(assigned.center )){

return (0)

}

}

A.4 Bootstrap step

The function OKBV (or its parallelized version OKBVpar) performs the bootstrap
step of the method. In receives as input almost all the parameters chosen by the
user (e.g., the number of sub-regions K, the number of bootstrap repetitions B,
the type of kernel and its bandwidth parameter, a theoretical model to fit the
empirical variograms and the metric for the definition of the RDDs and the kernel
weights). In addition, if we want to use a graph-based metric, we have to give as
input of the function a matrix which defines the positions of the grid points with
respect to the triangles of the mesh and a matrix defining the distance between
each pair of sampled points. Other needed parameters are described within the
comments regarding the function OKBV reported below.
At each bootstrap iteration, the realization of a RDD is used as system of neigh-
borhoods for performing K local analysis under local stationarity assumption.
For each Voronoi tile (and for each bootstrap iteration), the function defines a
geographically weighted estimate for the local variogram by using the kernel func-
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tion. After the B repetitions, for each grid point the function returns the set of
bootstrap predictors, the set of local variograms and the kernel values (i.e., the
value Kǫ(s0, c

b), where cb is the Voronoi center of the neighborhood where s0 was
located at the b-th iteration).

OKBV = function(data , K, grid , nk_min=1, B=100, model ,

sill_ini=NULL , range_ini=NULL , nugget_ini=NULL ,

spdist=’euclidean ’, suppressMes=F, tol=1e12 ,

ker.width=0, mesh = NULL , graph.distance= NULL ,

assign.matrix = NULL , no.assg.grid = NULL ,

data.grid.distance = NULL , is.observed = NULL ,

border.length =0)

{

# INPUT:

# data = data.frame containing the data

# (the first two columns contain the coordinates ,

# the third contains the data)

# K = number of neighborhoods

# grid = the grid of prediction

# nk_min = minimum number of observations within a

# neighborhood (default: 1)

# B = number of bootstap iterations (default: 100)

# model = parametric variogram model

# (as in package gstat - only Sph and Exp used so far)

# sill_ini , range_ini , nugget_ini = initial parameters

# for variogram estimations. If NULL the inizial parameters

# are estimated from the data

# spdist = method to compute distances in the space

# (only ’euclidean ’ or ’graph.distance ’ implemented so far)

# suppressMes = {T, F} controls the level of interaction and warnings

# tol = parameter used in variogram fitting

# ker.width = parameter controlling the width

# of the Gaussian kernel (if 0, no kernel is used)

# mesh = contains the parameters defining the Delaunay triagulation

# graph.distance = nsub*nsub dimensional graph -based

# distance matrix

# assign.matrix = ngrid*num.triangles -dimensional matrix

# (the (i,j) elemenent = TRUE if the point grid[i,]

# is inside the j-th triangle , FALSE otherwise)

# no.assg.grid = indices of grid points that were not assigned

# to any triangle

# data.grid.distance = nsub*ngrid dimensional matrix

# (the (i,j) element is the distance beteween

# the i-th observed point and the j-th grid point.

# If data.grid.distance(i,j)==0 then the

# j-th grid point is an already observed value)

# is.observed = ngrid -dimensional vector.

# If the i-th grid point is already

# observed , then is.observed[i] contains the index

# of the corrisponding point in the data matrix ,

# otherwise is.observed[i]=0
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# border.length = number of the NA-points used for the definition

# of the boundaries of the domain

# (the coordiantes of these points

# occupy the first border.length rows of the

# data matrix)

#

#

# OUTPUT:

# list(fpred , variofit=vfit), with

# fpred = list of B components , each containing a grid realization

# variofit = list of B components , each containing the

# parameter of the variogram over the grid

# (i.e., for each grid point , the parameter used

# to make the prediction at that points are given)

# Set parameters and initialize lists

colnames(data)=c(’x’,’y’,’z’)

nsub = dim(data )[1]

fpredk=fpred=gridk=vfitk=vfit=list()

nk=rep(0,K)

coord.list=as.list(data.frame(t(cbind(data✩x , data✩y ))))

coordg.list=as.list(data.frame(t(cbind(grid✩x , grid✩y ))))

nugget_ini_user=nugget_ini

sill_ini_user=sill_ini

range_ini_user=range_ini

coordinates(data)=c(’x’,’y’)

ngrid=dim(grid )[1]

nstr=length(model)

for(b in 1:B) # Repeat over the B bootstrap replicates

{

if(suppressMes ==F)

print(paste (" Repetition B = ", b, sep=’’))

# Step 1: Extract centers

ind=sort(sample (( border.length +1):nsub , size=K))

# We need also the indices of the data matrix

# corresponding to each center

centers = cbind(data✩x[ind],data✩y[ind],ind)

## 1.1 Assign data to centers

assign = rep(0, nsub)

for(i in (border.length +1): nsub){

d = datapoints2centers.distance(x=cbind(data✩x[i],data✩y[i],i),

centers = centers , method = spdist ,

graph.distance = graph.distance)

assign[i] = assign2center(d)}

while(min(table(assign))<nk_min)

# this is done only if a neighborhood has too few points

{
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if(suppressMes ==F)

print (" Repeating sampling ")

ind=sort(sample (( border.length +1):nsub , size=K))

centers = cbind(data✩x[ind],data✩y[ind],ind)

assign = rep(0, nsub)

for(i in (border.length +1): nsub){

d = datapoints2centers.distance(x=cbind(data✩x[i],data✩y[i],i),

centers = centers ,

method = spdist ,

graph.distance = graph.distance)

assign[i] = assign2center(d)}

}

## 1.2 Assign grid points to centers

grid.new = cbind(grid , 1:ngrid , is.observed)

grid.new = data.frame(grid.new)

colnames(grid.new)=c(’x’,’y’,’grid.position ’,’is.observed ’)

assigng = rep(0, ngrid)

# graph.distance.grid.centers : K*ngrid -dimensional matrix

# (the element (k,i) is the distance on the graph

# between the k-th center and the i-th grid point)

# (This matrix will be used to compute

# the kernel values if ker.width > 0)

graph.distance.grid.centers = matrix(NA, K, ngrid)

triangles = mesh✩T

for(i in 1: ngrid){

d = gridpoints2centers.distance(x=grid.new[i,], centers = centers ,

method = spdist ,

graph.distance = graph.distance ,

assign.matrix = assign.matrix ,

data.grid.distance = data.grid.distance ,

triangles = triangles)

graph.distance.grid.centers[,i]=d

assigng[i]= assign2center(d)

}

for(k in 1:K)

{ gridk [[k]]= grid[assigng ==k,]

coordinates(gridk [[k]])=c(’x’,’y’)

}

# If a kernel is given , initialize the quantities

# for variogram estimate

if(ker.width >0)

{

v=variogram(z~1, data=data[which (!is.na(data✩z)),], cloud=T)

vB=variogram(z~1, data=data[which(!is.na(data✩z )),])

tmp=bbox(coordinates(data)[ which(!is.na(data✩z )) ,1:2])
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cutoff=sqrt(diff(tmp [1 ,])^2+ diff(tmp [2 ,])^2)/3

width=cutoff /( length(vB✩dist ))

punto_lag=cbind ((0:( length(vB✩gamma )-1))*width ,

(1:( length(vB✩gamma )))* width)

kergrid=list()

}

for(k in 1:K) # repeat in each neighborhood

{

# Step 2.k: estimate the variogram

# Select the data of the neighborhood

datak=data.frame(data[assign ==k,])[ ,1:3]

coordinates(datak )=c(’x’,’y’)

if(ker.width ==0)

{ # if no kernel is given , compute

# classical variogram estimator

vk=variogram(z~1, data=datak)

}

if(ker.width >0)

{ # else compute the weighted estimator

vkB=vB

center = centers[k,]

KER=kerfn(newdata=coordinates(data )[,1:2],

center=center , dist=spdist , ker.type = ’Gau ’,

param = ker.width , distance.matrix = graph.distance)

KER=KER%*%t(KER)

for(l in 1:dim(punto_lag )[1])

{

inVh=which(v✩dist >= punto_lag[l,1] & v✩dist <punto_lag[l,2])

indKER=as.matrix(as.data.frame(v)[inVh ,6:7])

vkB✩gamma[l]=sum(v✩gamma[inVh]*KER[indKER ])/( sum(KER[indKER ]))

}

vk=vkB

}

# If the initial parameters are not given , estimate from the data

if(is.null(nugget_ini_user ))

nugget_ini =.25* median(c(rep(vk✩gamma [1],vk✩np [1]),

rep(vk✩gamma [2],vk✩np [2])))

if(is.null(sill_ini_user ))

sill_ini=median(c(rep(vk✩gamma[length(vk✩gamma )-1],

vk✩np[length(vk✩gamma )-1]),

rep(vk✩gamma[length(vk✩gamma )-2],

vk✩np[length(vk✩gamma )-2]),

rep(vk✩gamma[length(vk✩gamma )-3],

vk✩np[length(vk✩gamma )-3]),

rep(vk✩gamma[length(vk✩gamma )-4],

vk✩np[length(vk✩gamma )-4])))- nugget_ini
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if(is.null(range_ini_user ))

{

if(nstr >1)

{ # if nested structure are given ,

# initial ranges are asked to the user

print (" Please provide initial range

for variogram estimation ")

return (-1)

}

if(model==’Exp ’)

{range_ini=vk✩dist[min(which(vk✩gamma >.95*

(sill_ini+nugget_ini )))]/3

}else range_ini=vk✩dist[min(which(vk✩gamma >( sill_ini+nugget_ini )))]

}

# Build initial variogram

vm=vgm(sill_ini ,model[1], range_ini [1], nugget_ini [1])

nstr=length(model)

if(nstr >1)

{for(j in 2:nstr)

vm=vgm(psill = sill_ini , model = model[j],

range = range_ini[j], add.to=vm)}

# Fit variogram (several attempts are done ,

# it none of them works the initial variogram is used)

vk.fit = try(fit.variogram(vk , vm , fit.sills=T, fit.method = 7,

debug.level = 1), silent = FALSE)

if(class(vk.fit )[1]=="try -error")

{

print (" Trying fitting again ")

vk.fit = fit.variogram(vk , vm , fit.sills=T,

fit.method = 2, debug.level = 0)

}

if(vk.fit✩psill [1]<0 | vk.fit✩range [2]>tol)

{

print (" Trying with fixed nugget ")

sill_ini=sill_ini+nugget_ini

nugget_ini =0

vm=vgm(sill_ini ,model[1], range_ini [1], nugget_ini [1])

nstr=length(model)

if(nstr >1)

{for(j in 2:nstr)

vm=vgm(psill = sill_ini , model = model[j],

range = range_ini[j], add.to=vm)

}

vk.fit = try(fit.variogram(vk , vm , fit.sills = c(0, rep(1, nstr)),

fit.method = 7, debug.level = 1))

if(class(vk.fit )[1]=="try -error")

{

print(" Trying fitting again ")

vk.fit = fit.variogram(vk, vm , fit.sills = c(0, rep(1, nstr)),
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fit.method = 2, debug.level = 1)

}

}

vk.fit✩range[vk.fit✩range <0]= range_ini[which(vk.fit✩range <0)-1]

if(sum(vk.fit✩psill )==0)

{

print(’Warning: unable to fit the variogram , using the initial one ’)

vk.fit=vm

}

# Step 3.k: perform kriging (within the neighborhood)

datak.gstat = gstat(formula = z ~ 1,

data = datak , nmax = 50, model=vk.fit ,

set = list(gls =1))

fpredk [[k]] = predict(datak.gstat , gridk[[k]],debug.level =0)

if(ker.width >0)

{

if(spdist==’euclidean ’){

kergrid [[k]]= kerfn(newdata=coordinates(gridk[[k]])[ ,1:2] ,

center=c(center [1], center [2],k),

dist = spdist ,

ker.type = ’Gau ’, param = ker.width)

}

if(spdist==’graph.distance ’){

kergrid [[k]]= kerfn(newdata=coordinates(gridk[[k]])[ ,1:2] ,

center=c(center [1], center [2],k), dist = spdist ,

ker.type = ’Gau ’, param = ker.width ,

distance.matrix =

graph.distance.grid.centers )[which(assigng == k)]

}

}

vfitk [[k]]=vk.fit

}

# Store results

fpred [[b]]= matrix(NA,ngrid ,2+( ker.width >0))

vfit[[b]]= matrix(NA ,ngrid ,1+2* nstr)

for(k in 1:K)

{

vfit[[b]][ which(assigng ==k),]= matrix(rep(c(vfitk[[k]][1,2],

vfitk [[k]][-1,2],

vfitk [[k]][-1,3]),

sum(assigng ==k)),

nrow = sum(assigng ==k),

ncol = 1+2*nstr ,byrow = T)

fpred [[b]][ which(assigng ==k) ,1:2]=as.matrix(slot(fpredk [[k]],’data ’))

if(ker.width >0)

{

fpred [[b]][ which(assigng ==k),3]= kergrid [[k]]

}
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}

# There are some grid points where I could not compute the prediction ,

# Here the function returns NA values

fpred [[b]][no.assg.grid ,]=NA

vfit[[b]][no.assg.grid ,]=NA

if(ker.width >0)

{

colnames(fpred [[b]])=c("V1","V1.var","Ker.val")

} else colnames(fpred [[b]])=c("V1","V1.var")

}

list.ret=list(fpred=fpred , variofit=vfit)

return(list.ret)

}

###############################################################

##### PARALLEL adaptation of the Bootstrap step ######

###############################################################

OKBVpar = function(data , K, grid , nk_min=1, B=100,

model , sill_ini=NULL ,

range_ini=NULL , nugget_ini=NULL ,

spdist=’euclidean ’,

suppressMes=F, tol=1e12 , ker.width=0,

mesh = NULL , graph.distance= NULL ,

assign.matrix = NULL , no.assg.grid = NULL ,

data.grid.distance = NULL ,

is.observed = NULL ,border.length =0)

{

colnames(data)=c(’x’,’y’,’z’)

nsub = dim(data )[1]

fpredk=fpred=gridk=vfitk=vfit=list()

nk=rep(0,K)

coord.list=as.list(data.frame(t(cbind(data✩x , data✩y ))))

coordg.list=as.list(data.frame(t(cbind(grid✩x , grid✩y ))))

nugget_ini_user=nugget_ini

sill_ini_user=sill_ini

range_ini_user=range_ini

coordinates(data)=c(’x’,’y’)

ngrid=dim(grid )[1]

nstr=length(model)

fpred = foreach(b=1:B, .combine=’cbind ’,

.packages=c(’gstat ’, ’sp’,’spatstat ’,’rgl ’,

’igraph ’,’Cairo ’,

’fdaPDE ’,’mgcv ’,’geoR ’)) %dopar%

{

if(suppressMes ==F)
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print(paste (" Repetition B = ", b, sep=’’))

ind=sort(sample (( border.length +1):nsub , size=K))

centers = cbind(data✩x[ind],data✩y[ind],ind)

assign = rep(0, nsub)

for(i in (border.length +1): nsub){

d = datapoints2centers.distance(x=cbind(data✩x[i],data✩y[i],i),

centers = centers , method = spdist ,

graph.distance = graph.distance)

assign[i] = assign2center(d)}

while(min(table(assign))<nk_min)

{

if(suppressMes ==F)

print (" Repeating sampling ")

ind=sort(sample (( border.length +1):nsub , size=K))

centers = cbind(data✩x[ind],data✩y[ind],ind)

assign = rep(0, nsub)

for(i in (border.length +1): nsub){

d = datapoints2centers.distance(x=cbind(data✩x[i],data✩y[i],i),

centers = centers , method = spdist ,

graph.distance = graph.distance)

assign[i] = assign2center(d)}

}

grid.new = cbind(grid , 1:ngrid , is.observed)

grid.new = data.frame(grid.new)

colnames(grid.new)=c(’x’,’y’,’grid.position ’,’is.observed ’)

assigng = rep(0, ngrid)

graph.distance.grid.centers = matrix(NA, K, ngrid)

triangles = mesh✩T

for(i in 1: ngrid){

d = gridpoints2centers.distance(x=grid.new[i,], centers = centers ,

method = spdist ,

graph.distance = graph.distance ,

assign.matrix = assign.matrix ,

data.grid.distance =

data.grid.distance ,

triangles = triangles)

graph.distance.grid.centers[,i]=d

assigng[i]= assign2center(d)

}

for(k in 1:K)

{ gridk [[k]]= grid[assigng ==k,]

coordinates(gridk [[k]])=c(’x’,’y’)

}

if(ker.width >0)

{

v=variogram(z~1, data=data[which (!is.na(data✩z)),], cloud=T)

vB=variogram(z~1, data=data[which(!is.na(data✩z )),])
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tmp=bbox(coordinates(data)[ which(!is.na(data✩z )) ,1:2])

cutoff=sqrt(diff(tmp [1 ,])^2+ diff(tmp [2 ,])^2)/3

width=cutoff /( length(vB✩dist ))

punto_lag=cbind ((0:( length(vB✩gamma )-1))*width ,

(1:( length(vB✩gamma )))* width)

kergrid=list()

}

for(k in 1:K)

{

datak=data.frame(data[assign ==k,])[ ,1:3]

coordinates(datak )=c(’x’,’y’)

if(ker.width ==0)

{

vk=variogram(z~1, data=datak)

}

if(ker.width >0)

{

vkB=vB

center = centers[k,]

KER=kerfn(newdata=coordinates(data )[,1:2],

center=center , dist=spdist ,

ker.type = ’Gau ’,

param = ker.width ,

distance.matrix = graph.distance)

KER=KER%*%t(KER)

for(l in 1:dim(punto_lag )[1])

{

inVh=which(v✩dist >= punto_lag[l,1] & v✩dist <punto_lag[l,2])

indKER=as.matrix(as.data.frame(v)[inVh ,6:7])

vkB✩gamma[l]=sum(v✩gamma[inVh]*KER[indKER ])/( sum(KER[indKER ]))

}

vk=vkB

}

if(is.null(nugget_ini_user ))

nugget_ini =.25* median(c(rep(vk✩gamma [1],vk✩np [1]),

rep(vk✩gamma [2],vk✩np [2])))

if(is.null(sill_ini_user ))

sill_ini=median(c(rep(vk✩gamma[length(vk✩gamma )-1],

vk✩np[length(vk✩gamma )-1]),

rep(vk✩gamma[length(vk✩gamma )-2],

vk✩np[length(vk✩gamma )-2]),

rep(vk✩gamma[length(vk✩gamma )-3],

vk✩np[length(vk✩gamma )-3]),

rep(vk✩gamma[length(vk✩gamma )-4],

vk✩np[length(vk✩gamma )-4])))- nugget_ini

if(is.null(range_ini_user ))

{
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if(nstr >1)

{

print (" Please provide initial range for variogram estimation ")

return (-1)

}

if(model==’Exp ’)

{range_ini=vk✩dist[min(which(vk✩gamma >.95*

(sill_ini+nugget_ini )))]/3

}else range_ini=vk✩dist[min(which(vk✩gamma >

(sill_ini+nugget_ini )))]

}

vm=vgm(sill_ini ,model[1], range_ini [1], nugget_ini [1])

nstr=length(model)

if(nstr >1)

{for(j in 2:nstr)

vm=vgm(psill = sill_ini , model = model[j],

range = range_ini[j], add.to=vm)}

vk.fit = try(fit.variogram(vk , vm , fit.sills=T,

fit.method = 7,

debug.level = 1), silent = FALSE)

if(class(vk.fit )[1]=="try -error")

{

print (" Trying fitting again ")

vk.fit = fit.variogram(vk , vm , fit.sills=T,

fit.method = 2, debug.level = 0)

}

if(vk.fit✩psill [1]<0 | vk.fit✩range [2]>tol)

{

print (" Trying with fixed nugget ")

sill_ini=sill_ini+nugget_ini

nugget_ini =0

vm=vgm(sill_ini ,model[1], range_ini [1], nugget_ini [1])

nstr=length(model)

if(nstr >1)

{for(j in 2:nstr)

vm=vgm(psill = sill_ini , model = model[j],

range = range_ini[j], add.to=vm)}

vk.fit = try(fit.variogram(vk , vm ,

fit.sills = c(0, rep(1, nstr)),

fit.method = 7, debug.level = 1))

if(class(vk.fit )[1]=="try -error")

{

print (" Trying fitting again ")

vk.fit = fit.variogram(vk , vm ,

fit.sills = c(0, rep(1, nstr)),

fit.method = 2, debug.level = 1)

}

}

vk.fit✩range[vk.fit✩range <0]= range_ini[which(vk.fit✩range <0)-1]
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if(sum(vk.fit✩psill )==0)

{

print(’Warning: unable to fit the variogram , using the initial one ’)

vk.fit=vm

}

datak.gstat = gstat(formula = z ~ 1,

data = datak , nmax = 50,

model=vk.fit , set = list(gls =1))

fpredk [[k]] = predict(datak.gstat , gridk[[k]],debug.level =0)

if(ker.width >0)

{

if(spdist==’euclidean ’){

kergrid [[k]]= kerfn(newdata=coordinates(gridk[[k]])[ ,1:2] ,

center=c(center [1], center [2],k),

dist = spdist , ker.type = ’Gau ’,

param = ker.width)

}

if(spdist==’graph.distance ’){

kergrid [[k]]= kerfn(newdata=coordinates(gridk[[k]])[ ,1:2] ,

center=c(center [1], center [2],k),

dist = spdist , ker.type = ’Gau ’,

param = ker.width ,

distance.matrix =

graph.distance.grid.centers )[which(assigng == k)]

} }

vfitk [[k]]=vk.fit

}

# Store results

fpredb=matrix(0,ngrid ,2+( ker.width >0))

vfitb=matrix(0,ngrid ,1+2* nstr)

for(k in 1:K)

{

vfitb[which(assigng ==k),]= matrix(rep(c(vfitk [[k]][1,2],

vfitk [[k]][-1,2],

vfitk [[k]][-1,3]),

sum(assigng ==k)),nrow = sum(assigng ==k),

ncol = 1+2*nstr ,byrow = T)

fpredb[which(assigng ==k) ,1:2]=as.matrix(slot(fpredk [[k]],’data ’))

if(ker.width >0)

{

fpredb[which(assigng ==k),3]= kergrid [[k]]

}

}

fpredb[no.assg.grid ,]=NA

vfitb[no.assg.grid ,]=NA

if(ker.width >0)

{
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colnames(fpredb )=c("V1","V1.var","Ker.val")

} else colnames(fpredb )=c("V1","V1.var")

list(fpredb , vfitb)

}

list.ret=list(fpred=fpred[1,], variofit=fpred [2,])

return(list.ret)

}

A.5 Aggregation step

The results of the B weak analyses are aggregated into a final strong analysis by
using the aggrOKBV function.

aggrOKBV=function(fOKBV , weight=’equal ’, N_samples=NULL , vOKBV=NULL)

{

# INPUT:

# fOKBV = result of OKBV , as returned by

# the first element of output of OKBV()

# weight = how the results are aggregated

# (default : equal)

# N_samples = sample size

# vOKBV = variance of OK (needed only if variance weight are used)

# OUTPUT:

# Average prediction (on the grid used to produce fOKBV)

if(weight != ’equal ’ & weight!=’median ’ &

weight!=’variance ’ & weight!=’variovar ’ &

weight!=’pvariance ’ & weight!=’kernel ’)

{

print(’Error: unexpected weight.

Please choose betwen *equal*, *median*, *variance*,

*variovar*, *pvariance* and *kernel*’)

return (-1)

}

fOKBV1=simplify2array(fOKBV)[,1,]

fOKBV2=simplify2array(fOKBV)[,2,]

if(weight==’equal ’)

return(apply(fOKBV1 ,1, function(x)

mean(x, na.rm = TRUE )))

if(weight==’median ’)

return(apply(fOKBV1 ,1,median ))

if(weight==’variance ’ & is.null(N_samples ))

{

print(’Error: please provide N sample ’)

return (-1)

}
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B=dim(fOKBV1 )[2]

if(weight==’variance ’)

{

ngrid=dim(fOKBV1 )[1]

W.b=1/( apply(fOKBV2 ,2,sum)/(ngrid -N_samples ))

W.tot=sum(W.b)

fpred.ave=apply(fOKBV1*matrix(rep(W.b/W.tot ,ngrid),

nrow = ngrid ,ncol=B,byrow = T),

1,sum)

return(fpred.ave)

}

if(weight==’variovar ’ & is.null(vOKBV))

{

print(’Please provide estimated variograms ’)

return (-1)

}

if(weight==’variovar ’)

{

vOKBV=simplify2array(vOKBV)

W.b=1/( apply(vOKBV[,2,],2,max))

W.tot=sum(W.b)

fpred.ave=apply(fOKBV1*matrix(rep(W.b/W.tot ,ngrid),

nrow = ngrid ,ncol=B,byrow = T),

1,sum)

}

if(weight==’pvariance ’)

{

ngrid=dim(fOKBV1 )[1]

W.b=matrix(1,nrow = ngrid , ncol=B)

W.b[which(fOKBV2 >=1e -10)]=1/ fOKBV2[which(fOKBV2 >=1e-10)]

W.tot=apply(W.b,1,sum)

fpred.ave=apply(fOKBV1*W.b/W.tot , 1,sum)

return(fpred.ave)

}

if(weight==’kernel ’)

{

ngrid=dim(fOKBV1 )[1]

W.b=matrix(1,nrow = ngrid , ncol=B)

W.b=simplify2array(fOKBV )[,3,]

W.tot=apply(W.b,1,sum)

fpred.ave=apply(fOKBV1*W.b/W.tot , 1,sum)

return(fpred.ave)

}

return (-1)

}
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A.6 Application to the Chesapeake Bay study

As mentioned in Chapter 6, due to the small size of the dataset with respect to
the size of the Chesapeake Bay region, the graph-based analysis of this real case
has been performed by computing a constrained Delaunay triangulation of the
domain. For this reason some of the previously described functions have been par-
tially modified. Here, we report the changes occurred to the distance.on.graph
and grid2triangle functions. If the analysis is based on the graph metric, the
OKBV function (or its parallelized adaptation) receives as input a graph.distance

matrix which indicates the graph-based distance between each pair of vertices of
the constrained Delaunay graph, instead of a (nsub · nsub)-dimensional matrix
only with the distances between sampled locations. The other difference is the
input regarding the data.grid.distance matrix, which contains the graph-based
distances between each grid point and each vertex of the mesh.

distance.on.graph.constrained = function(data , mesh)

{

# INPUT

# data = data matrix

# mesh = mesh obtained with a constrained

# Delaunay triangulation

# (with triangle function)

# OUTPUT

# graph.distance = n*n-dimensional symmetric matrix

# n = number of vertices

# (nsub + number of added nodes)

# (element (i,j) is the shortest length path

# between the i-th and the j-th vertices

# of the constrained Delaunay graph)

edge.list = mesh✩E

edge.num = dim(edge.list )[1]

graph = graph_from_edgelist(edge.list , directed = FALSE)

edge.weights = rep(0, edge.num)

for(l in 1:edge.num){

node.i = edge.list[l,1]

node.j = edge.list[l,2]

point.i = mesh✩P[node.i ,1:2]

point.j = mesh✩P[node.j ,1:2]

edge.weights[l] = dist(rbind(point.i,point.j),

method = ’euclidean ’)

}

graph.distance = distances(graph , v = V(graph), to = V(graph),

mode = c("all"),

weights = edge.weights ,

algorithm = c(" automatic "))

return(graph.distance)

}
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grid2triangle.constrained = function(grid.matrix , data.matrix , mesh)

{

# INPUT:

# grid ,matrix and data.matrix as before

# mesh = constrained Delaunay triangulation

# OUTPUT:

# as in the non -constrained case

triangles = mesh✩T

num.triangles = dim(triangles )[1]

ngrid = dim(grid.matrix )[1]

assign.matrix = matrix(NA , ngrid , num.triangles)

for(j in 1:num.triangles ){

bnd.triangles = triangles[j,]

assign.matrix[,j] = in.out(bnd = cbind(mesh✩P[bnd.triangles ,1],

mesh✩P[bnd.triangles ,2]),

x = cbind(as.numeric(grid.matrix [,1]),

as.numeric(grid.matrix [ ,2])))

}

check.complete = rep(NA, ngrid)

for(i in 1: ngrid){

check.complete[i] = length(which(assign.matrix[i,]== TRUE))

}

no.assg.complete = which(check.complete == 0)

output = list()

output [[1]]= assign.matrix

output [[2]]= no.assg.complete

return(output)

}

#######################################################

##### Dissolved Oxygen dataset #####

#######################################################

# Upload the dataset

# data.file = nsub*3- dimensional matrix with

# long -coordinate

# lat -coordinate

# DO(x,y) (or NA if boundary point)

data.file=read.table(file=’Data.txt ’, header=TRUE)

data.file=data.frame(data.file)

colnames(data.file)=c(’x’,’y’,’z’)

zlim = range(data.file[,3], na.rm = T)

# Upload the grid

grid=read.table(file=’Grid2Predict.txt ’, header=TRUE)

grid=data.frame(grid)

colnames(grid)=c(’x’,’y’)
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X=as.vector(as.matrix(read.table(’X.txt ’, header = T)))

Y=as.vector(as.matrix(read.table(’Y.txt ’, header = T)))

lenX=length(X)

lenY=length(Y)

ngrid=dim(coordinates(grid ))[1]

# Matrix with information regarding which

# grid points are inside the shape

in.poly.matrix = as.matrix(read.table(’InPolyMatrix.txt ’))

shape = readShapePoly(’estuaries.shp ’)

shape = gUnaryUnion(shape1)

# Boundary points (which z = NA)

border.index = which(is.na(data.file✩z ))

border.coordinates = data.file[border.index ,1:2]

border.length = length(border.index)

nsub=dim(data.file )[1]

########## Parameter Settings ############

B = 100

rangeK =2^(0:5)

ker.width = 0.5

aggregation.type = ’equal ’

spdist.vector = c(’euclidean ’,’graph.distance ’)

model=c(’Exp ’)

################################################

nstr=length(model)

nk_min =1

sill_ini=NULL; range_ini=NULL; nugget_ini=NULL;

data=data.file

data = data.frame(data)

colnames(data) = c(’x’,’y’,’z’)

N_samples=dim(data )[1]

n=dim(data )[2]-2

# Constrained Dekaunay Traingulation

segment.bnd = matrix(0, border.length , 2)

for(i in 1:( border.length -1))

{

segment.bnd[i,1]=i

segment.bnd[i,2]=i+1

}

segment.bnd[border.length ,1]= border.length

segment.bnd[border.length ,2]=1

planar.slg = pslg(P = data [,1:2], S = segment.bnd)
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mesh = RTriangle :: triangulate(planar.slg , a = 0.01)

graph.distance.complete = distance.on.graph.constrained(data ,

mesh = mesh)

output.grid2triangle = grid2triangle.constrained(grid.matrix = grid ,

data.matrix = cbind(data✩x , data✩y), mesh = mesh)

assign.matrix = output.grid2triangle [[1]]

no.assg.grid = output.grid2triangle [[2]]

data.grid.distance = loccoords(coords = cbind(data✩x ,data✩y),

locations = grid)

already.observed = which(data.grid.distance == 0, arr.ind = TRUE)

is.observed = rep(0,ngrid)

is.observed[already.observed [,2]]= already.observed [,1]

vertices.grid.distances = loccoords(coords = cbind(mesh✩P[,1],mesh✩P [,2]),

locations = grid)

M= 100

parallel=TRUE

if (parallel)

worker.number <-2

for(spdist in spdist.vector ){

resOKBV=fpred=f.ave=ds.pred=vfit=list()

ds.pred.Spatial = list()

for(K in rangeK)

{

print(K)

if(K==1) # No tessellation

{

resOKBV [[K]]= OKBV(data , K, grid , nk_min , B=1, model ,

sill_ini=sill_ini , suppressMes=T,

range_ini , nugget_ini ,

spdist=’euclidean ’, ker.width = 0,

no.assg.grid = no.assg.grid ,

data.grid.distance = vertices.grid.distances ,

is.observed = is.observed ,

border.length=border.length)

fpred [[K]]= simplify2array(resOKBV [[K]] ✩fpred )[,,1]

vfit[[K]]= simplify2array(resOKBV [[K]] ✩variofit )[,,1]

ds.pred[[K]]=in.poly.matrix

ds.pred[[K]][ which(!is.na(in.poly.matrix ))]= fpred[[K]][ ,1]

x11(width=8, height =8)

image.plot(X,Y,ds.pred[[which(rangeK ==K)]],col = tim.colors(M),

main=paste(’Ordinary Kriging - K=’,K,sep=’’), zlim = zlim ,asp =1)

plot(shape , add=T)

}

if(K>1)

{
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# if parallel implementation is used

if(parallel)

{

cl <- makeCluster(worker.number)

registerDoParallel(cl)

resOKBV [[ which(rangeK ==K)]]= OKBVpar(data , K, grid , nk_min , B=B,

model , sill_ini=NULL , suppressMes=F,

range_ini=NULL , nugget_ini=NULL ,

spdist=spdist , ker.width = ker.width ,

mesh = mesh , graph.distance.complete =

graph.distance.complete ,

assign.matrix = assign.matrix ,

no.assg.grid = no.assg.grid ,

data.grid.distance = vertices.grid.distances ,

is.observed = is.observed ,

border.length=border.length)

stopCluster(cl)

}

if (! parallel)

{

resOKBV [[ which(rangeK ==K)]]= OKBV(data , K, grid , nk_min , B=B, model ,

sill_ini=NULL , suppressMes=F,

range_ini=NULL , nugget_ini=NULL ,

spdist=spdist , ker.width = ker.width ,

mesh = mesh ,

graph.distance.complete =

graph.distance.complete ,

assign.matrix = assign.matrix ,

no.assg.grid = no.assg.grid ,

data.grid.distance = vertices.grid.distances ,

is.observed = is.observed ,

border.length=border.length)

}

f.ave[[ which(rangeK ==K)]]= aggrOKBV(resOKBV [[which(rangeK ==K)]]✩fpred ,

weight=aggregation.type ,

N_samples ,

resOKBV [[ which(rangeK ==K)]] ✩variofit )

ds.pred[[ which(rangeK ==K)]]=in.poly.matrix

ds.pred[[ which(rangeK ==K)]][ which(!is.na(in.poly.matrix ))]=

f.ave[[ which(rangeK ==K)]]

x11(width=8, height =8)

image.plot(X,Y,ds.pred[[which(rangeK ==K)]],col = tim.colors(M),

main=paste(’KrigRDD - K=’,K,sep=’’), zlim = zlim , asp =1)

plot(shape , add=T)

}

}

}
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