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Abstract

Let Tn be the compact convex set of tridiagonal doubly stochastic matrices.
These arise naturally in probability problems as birth and death chains with a uni-
form stationary distribution. We study ‘typical’ matrices T ∈ Tn chosen uniformly
at random in the set Tn. A simple algorithm is presented to allow direct sampling
from the uniform distribution on Tn. Using this algorithm, the elements above the
diagonal in T are shown to form a Markov chain. For large n, the limiting Markov
chain is reversible and explicitly diagonalizable with transformed Jacobi polynomi-
als as eigenfunctions. These results are used to study the limiting behavior of such
typical birth and death chains, including their eigenvalues and mixing times. The
results on a uniform random tridiagonal doubly stochastic matrices are related to
the distribution of alternating permutations chosen uniformly at random.

Keywords: Markov chain, birth and death chain, cutoff phenomenon, random matrix

1 Introduction

Let Tn be the set of (n+1)×(n+1) tridiagonal doubly stochastic matrices, each element
of which has the form:



















1− c1 c1 0
c1 1− c1 − c2 c2

c2 1− c2 − c3 c3
. . .

. . .
. . .

cn−1 1− cn−1 − cn cn
0 cn 1− cn



















, (1.1)

where all entries not on the main diagonal, superdiagonal, or subdiagonal are zero. Such
matrices are completely determined by the numbers c1, c2, . . . , cn above the diagonal,
and so we may view Tn as a subset of Rn. As a polytope, Tn has interesting combinatorial
properties. For example, the number of extreme points of Tn is Fn+1, the (n + 1)-st
Fibonacci number (where F0 = F1 = 1 and Fi = Fi−1 + Fi−2). Clearly Tn is a compact
convex subset of Rn, and using Lebesgue measure in Rn the volume of Tn is En/n!,
where En is the number of alternating (up/down) permutations in the symmetric group,
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namely, those permutations σ ∈ Sn such that σ(1) < σ(2) > σ(3) < σ(4) > · · · . Using
these properties, we give a simple direct way to sample uniform random elements of Tn.
These results are presented in Section 2.

Section 3 presents experimental results on the distribution of eigenvalues and mix-
ing times of the associated birth and death chains. These results show that typical
elements of Tn mix in order n2 log n steps and do not have a ‘cutoff’ in their approach
to stationarity (by convention we use log to denote the natural logarithm loge).

The question of proving whether a random element of Tn exhibits a cutoff is at
the heart of this paper. We will discuss our approach below, demonstrating that
c1, c2, . . . , cn form a Markov chain and proving new results that characterize the lim-
iting chain as n → ∞. The limiting-chain results, in turn, provide an important tool
for analyzing both the mixing time and the eigenvalue gap, leading to an answer to the
cutoff question, discussed further at the end of this introduction.

In Section 4, the joint distribution of c1, c2, . . . , cn is shown to be a Markov chain
with a simple large n limit. Section 6 studies the limiting chain as n → ∞, showing the
following:

• Pr(c1 ≤ y) = sin(π2 y) for 0 ≤ y ≤ 1.

• Pr(ci ≤ y|ci−1 = x) = sin(π2 min{y, 1 − x})/ sin(π2 (1 − x)), for 0 ≤ y ≤ 1 and
0 ≤ x ≤ 1.

• The Markov chain ci is reversible with stationary density π(y) = 2 cos2(π2 y) for
0 ≤ y ≤ 1.

• The eigenvalues are 1,−1
3 ,

1
5 ,−1

7 , . . . ,
(−1)m

2m+1 , . . ., and the eigenfunctions are trans-
formed Jacobi polynomials.

• The total variation distance is bounded by ‖L(cℓ)− π‖TV ≤∑∞
i=1 i

(

1
2i+1

)2ℓ
.

These results are used to study the distribution of eigenvalues and mixing times
in Section 7, where it is proved that, for the limiting distribution, the spectral gap is
of (stochastic) order 1/(n2 log n) and the mixing time is at most of order n2 logn. In
Section 5, it is shown that a similar Markov chain governs the entries of a randomly
chosen length n alternating permutation in the limit as n → ∞. In particular, we
prove in Theorem 5.1 that for any fixed positive integer ℓ, the joint distribution of the
first ℓ entries of a randomly chosen alternating permutation is the same as the joint
distribution of the first ℓ superdiagonal entries of a randomly chosen tridiagonal doubly
stochastic matrix in the large n limit.

Our study of the matrices in this paper arose from the study of the cutoff phenomena
in convergence of Markov chains to their stationary distributions. Let d(•, •) denote a
distance between two probability measures such as total variation. Briefly, a sequence
Kn(x, y) of Markov chains on finite state spaces Xn with stationary distribution πn
shows a cutoff at ln if for every ǫ > 0,

d
(

K ln(1+ǫ)
n , πn

)

→ 0 and d
(

K ln(1−ǫ)
n , πn

)

→ 1, (1.2)

where the chain Kn is started at state xn.
As an example, the random walk on the hypercube Cn

2 which changes a randomly
chosen coordinate (or holds) with probability 1/(n+1) has a cutoff at 1

4n logn [25]. The
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random transposition chain on the symmetric group Sn has a cutoff at 1
2n logn [24] and

the Gilbert–Shannon–Reeds riffle shuffling chain has a cutoff at 3
2 log2 n [7]. A survey

of many examples is in [20].
The cutoff phenomena was named and studied by Aldous and Diaconis [1]. The

fact that it was discovered very early in the quantitative study of rates of convergence
suggests that it is endemic. Do most Markov chains show a cutoff? It took a while to
find chains without a cutoff; simple random walk on a path of length n and walks on
finite parts of lattices in fixed dimension do not show cutoffs. These questions motivated
the present study.

Yuval Peres [22, Conjecture 1 on page 2] noticed that for all of the available examples
two simple features of the Markov chain determine if there is a cutoff. The spectral gap,
gapn, is the difference between one and the (absolute) second-largest eigenvalue. The
mixing time is the smallest number of steps rn such that the distance to stationarity
is smaller than 1/e. Peres observed that, in many examples, there is a cutoff if and
only if gapn × rn → ∞. For example, the walk on the hypercube has gapn = 2/(n+ 1)
and rn = n logn so gapn × rn tends to infinity. For riffle shuffling, gapn = 1

2 while
rn = log n. For random walk on a path, gapn = c/n2 while rn = c′n2. Isolated
counter-examples have been found by Aldous and Pak but the finding largely holds.
Furthermore, [27, Lemma 2.1] proves for any reversible Markov chain that if there is a
cutoff, then gapn × rn → ∞.

Simple random walk on a path of length n, where the probability of moving left
or right is 1/2 and the probability of holding at an endpoint is also 1/2, is a notable
example. Combining [27, Lemma 2.1] and the bounds in the previous paragraph gives
a proof that simple random walk does not have a cutoff. It is natural to ask: should
the fact that simple random walk does not have a cutoff suggest that a general birth-
and-death process with uniform stationary distribution also has no cutoff, or is simple
random walk a special case? On one hand, simple random walk seems very natural; on
the other hand, simple random walk is also extreme in certain ways. For example Boyde,
Diaconis, Sun, and Xiao [9] show that simple random walk has the largest eigenvalue
gap of birth-and-death processes with uniform stationary distribution. Furthermore,
Jonas Kahn and James Fill [31] have recently shown that for any t ≥ 0, simple random
walk is closer (measured in total variation distance or in L2 distance) to uniform after t
steps than any other birth-and-death chain with uniform stationary distribution if both
chains are started from an endpoint.

To address the question of whether the lack of a cutoff for simple random walk is
part of a general phenomenon, we return to Peres’s observation that cutoffs typically
are present when gapn × rn → ∞. In fact, Diaconis and Saloff-Coste [23] proved Peres
observation is true for all birth-and-death chains. In their version, the chains started
from one endpoint of their interval of definition and the distance used was separation;
the analysis was carried out in continuous time. Ding, Lubetzky and Peres [27] proved
that the observation held without these caveats as well (in discrete time, from any start,
and in total variation) so long as the chain is lazy, namely the probability of holding
at any given point is at least δ > 0, where δ is a constant. Further developments on
birth/death cutoffs are seen in Barrera, Bertoncini, and Fernández [4] and Diehl [26].
Another step forward: Chen and Saloff-Coste [12, 13, 14] have proved that the Peres
observation is true in lp distances, p > 1, for any sequence of reversible Markov chains.

All of this work points to the question, “Well, which is it?” Does the cutoff phenom-
ena usually hold or not? The Peres observation reduces this to a study of eigenvalues
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and mixing times, but it does not help with the details.
Since so much is known about birth-and-death chains, this seems like a good place

to start. What do the eigenvalues of a typical birth-and-death chain look like? To
focus further, we fixed the stationary distribution as uniform and thus ask, What is the
distribution of the eigenvalues and the mixing time of a random, symmetric, tridiagonal,
doubly stochastic matrix? Our results above show that most birth-and-death chains
with uniform stationary distributions mix in order n2 log n steps and do not show a
cutoff.

2 Polytope combinatorics and random generation

From Equation (1.1), it is clear that the polytope Tn is n dimensional and determined
by

ci ≥ 0 and ci + ci+1 ≤ 1, for all 0 ≤ i ≤ n (we let c0 = cn+1 = 0). (2.1)

The extreme points are determined by setting ci to be 0 or 1. Of course, Display (2.1)
prevents two consecutive entries ci from both being equal to 1. The binary sequences
of length n with no two consecutive ones are in bijection with the Fibonacci numbers,
for example |{000, 001, 010, 100, 101}| = 5. Thus, Tn has Fn+1 extreme points, where
F0 = F1 = 1 and Fi = Fi−1 + Fi−2. Explicitly, the extreme points are n + 1 by n + 1
tridiagonal permutation matrices. See [17] for more on these Fibonacci permutations,
including a study of the graph formed by the vertices and edges of the polytope Tn.
Chebikin and Ehrenborg [10] give a nice but somewhat complicated expression for the
generating function for the f -vector of Tn. See [16] for a combinatorial description of
the faces of the polytope Tn, including counting the number of vertices on each face,
and see [15] for enumeration of the vertices, edges, and cells in terms of formulas using
Fibonacci numbers.

We note here that random tridiagonal matrices are also studied from another view-
point, as tridiagonalizations of the standard Gaussian orthogonal ensembles (GOE) or
Gaussian unitary ensembles (GUE). First studied by Trotter [51] in 1984, such matrix
ensembles gained considerable interest in 2002 with the introduction by Dumitriu and
Edelman [28] of a continuous family of tridiagonal matrix ensembles parametrized by
β, where β = 1 corresponds to GOE and β = 2 corresponds to GUE; for example, see
[32, 52].

The volume of Tn was determined in [46] (see also [47]) as

vol(Tn) =
En

n!
, (2.2)

where En is the number of alternating (up/down) permutations on n letters (which is
also equal to the number of reverse alternating permutations on n letters). Recall that
a permutation σ is alternating if σ(1) < σ(2) > σ(3) < σ(4) > · · · ; and σ is reverse
alternating if the reverse inequalities all hold. (Note that some papers use a different
convention, calling down/up permutations alternating and up/down permutations re-
verse alternating.) For example, E4 = 5 corresponds to the permutations 3412, 2413,
1423, 2314, 1324. A classical result of Desiré André in 1879 [3] gives an elegant way to
compute En.
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Theorem 2.1. [3]
∑

n≥0

En
xn

n!
= sec(x) + tan(x).

The survey of alternating permutations by Richard Stanley [49] includes an elemen-
tary proof of Theorem 2.1, and has other connections with work in the current paper.
For example [49] discusses enumeration of alternating permutations and Euler numbers
and refinements such as the Entringer numbers, topics that we will return to in Subsec-
tion 5.1. Stanley’s survey [49] also gives connections between the theory of alternating
permutations and Euler numbers and the more general theory of permutations with a
given descent set.

Alternating permutations may be identified with a special case of standard Young
tableaux taking a particular shape. In [5], Baryshnikov and Romik derive combinatorial
identities that generalize André’s identity (Theorem 2.1) for a wider class of standard
Young tableaux. In particular, an alternating permutation corresponds to something
called a width-2 diagonal strip standard Young tableau, and [5] considers width-m
diagonal strip standard Young tableau, for any m ≥ 2. One tool in [5] is an extension
of a transfer operator approach developed by Elkies [30] for alternating permutations
(see [5, Section 2]).

In [47], Richard Stanley gives a decomposition of the polytope Tn into equal volume
unit simplices, indexed by the set of alternating permutations. This gives a nice way to
prove Equation (2.2), and we will use the decomposition to give a simple algorithm to
choose an element of Tn uniformly at random.

2.1 Algorithm for randomly generating tridiagonal doubly stochastic

matrices, with respect to Lebesgue measure

1. Choose an alternating permutation σ uniformly at random (see below).

2. Choose n points uniformly in (0, 1) and order them from smallest to largest, calling
them 0 < x1 < x2 < · · · < xn < 1.

3. Define the ci as follows:

ci :=

{

xσi
if i is odd, and

1− xσi
if i is even.

This step uses the map given by Richard Stanley in [47, Theorem 2.3].

The point of the above algorithm is that it generates an element of Tn uniformly
with respect to Lebesgue measure, which we formalize below.

Proposition 2.2. Let (x1, x2, . . . , xn) be an element of Tn generated by the above algo-
rithm, and let B be a ball in Rn. Then

Pr((x1, x2, . . . , xn) ∈ B) =
Vol(B ∩ Tn)
Vol(Tn)

,

where the volume Vol(•) is Lebesgue measure in Rn.
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Proof. In [47, Theorem 2.3], Richard Stanley shows that the polytope Tn = {(x1, x2, . . . , xn) :
0 ≤ xi ≤ 1 for 1 ≤ i ≤ n and xi + xi+1 ≤ 1, for 1 ≤ i ≤ n− 1} is affinely equivalent to
the polytope Pn := {(y1, y2, . . . , yn) : 0 ≤ yi ≤ 1 for 1 ≤ i ≤ n and y1 ≤ y2 ≥ y3 ≤ y4 ≥
· · · yn}. In particular, the map φ(x1, x2, . . . , xn) = (y1, y2, . . . , yn) ∈ Rn defined by

yi =

{

xi if i is odd

1− xi if i is even.

is a volume-preserving bijection between the Tn and Pn. Note that it is shown in [36]
that Tn and Pn are in fact 0/1 equivalent, and hence also congruent.

By step 3 of the above algorithm, Pr((x1, x2, . . . , xn) ∈ B) = Pr(φ(y1, y2, . . . , yn) ∈
B), where (y1, y2, . . . , yn) is a uniformly chosen element of Pn with respect to Lebesgue
measure by steps 1 and 2. Furthermore, Pr(φ(y1, y2, . . . , yn) ∈ B) = Pr((y1, y2, . . . , yn) ∈
φ(B)), since φ is volume-preserving and an involution. Finally Pr((y1, y2, . . . , yn) ∈
φ(B)) = Vol(Pn ∩ φ(B))/Vol(Pn) = Vol(Tn ∩ B)/Vol(Tn), since (y1, y2, . . . , yn) was
chosen uniformly in Pn and φ is volume-preserving.

There is a more complicated map given in [47] that can be used in place of the final
step in the above algorithm. Namely, one can define the ci as follows:

ci :=

{

xσi
if i is odd, and

min
{

xσi
− xσi−1

, xσi
− xσi+1

}

if i is even.

This more complicated map is useful in [47] for dealing with polytopes derived from
arbitrary posets (the above is specialized to the case where the only relations are a1 <
a2 > a3 < a4 > · · · , which is the poset associated to an alternating permutation).
However, in the case of posets with length at most 1 (which includes the alternating
poset), the simpler map given in the algorithm is sufficient.

Example: Say that n = 7 and we have the alternating permutation 4627153. Let
the uniformly chosen points in the interval [0, 1] be 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ 1. To help
remember which of the xi cover other elements (which is determined by the alternating
permutation), we write:

x4 < x6 > x2 < x7 > x1 < x5 > x3.

Finally, we define the ci as follows:

c1 = x4

c2 = 1− x6

c3 = x2

c4 = 1− x7

c5 = x1

c6 = 1− x5

c7 = x3

Choosing the alternating permutation. Richard Stanley [48] has given the fol-
lowing procedure for choosing an alternating permutation σ uniformly at random based
on the recurrence En =

∑

k even

(

n−1
k−1

)

Ek−1En−k, where En is the number of alternating
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permutations (which also equals the number of reverse alternating permutations). Note
that Nijenhuis and Wilf [43] discuss in general how any recursive formula can be turned
into a recursive random sampling method, and their procedure matches the one we use
here.

1. Choose even k between 1 and n with probability pk :=
(

n−1
k−1

)

Ek−1En−k/En. Insert
n into position k.

2. Choose a k − 1 element subset S of {1, 2, . . . , n− 1}.

3. Choose an alternating permutation U of S (recursively).

4. Choose a reverse alternating permutation V of {1, 2, . . . , n− 1} \ S (by a similar
recursive algorithm).

5. Let σ = UnV .

The fact that
∑

n≥0Enx
n/n! = sec(x) + tan(x) enables us to compute the num-

bers En quickly using Taylor series. A different way of generating random alternating
permutations we have found efficient is to run a Markov chain by making random trans-
positions (accepting to move only if the resulting permutation is still alternating). It
is straightforward to show that this walk is connected, and experiments indicate that
it mixes rapidly. In addition to being efficient in practice, this second method also has
the advantage that one does not need to compute the numbers En.

2.2 Fast, approximately uniform random generation

One very fast way to generate a random tridiagonal doubly stochastic matrix with
respect to Lebesgue measure, or at least a very close approximation of Lebesgue measure,
is to use Gibbs sampling. One Gibbs sampling algorithm that we use extensively in
Section 3 may be described using the following subroutine that operates on a matrix
with superdiagonal entries (c1, c2, . . . , cn):

Subroutine(i):
1. Choose x uniformly in the interval [0, 1].
2. If ci−1 + x ≤ 1 and ci+1 + x ≤ 1, then set ci = x. By convention c0 = cn+1 = 0.
3. Adjust entries (i, i), (i+ 1, i+ 1), and (i+ 1, i) in the matrix so that the new matrix
with i-th superdiagonal entry x is doubly stochastic and tridiagonal.

To sample in Tn close to uniformly, one can successively apply Subroutine(i) many
times so that each superdiagonal entry ci has had a number of chances to be updated.
In particular, the Gibbs sampling algorithm we use in Section 3 starts with an n+1 by
n+1 identity matrix (so ci = 0 for all i) and does the following simple procedure 10 logn
times: apply Subroutine(i) for i = 1, 2, . . . , n in order. Thus in total, each superdiagonal
entry has 10 log n opportunities to be changed. The resulting algorithm is a very fast
way to generate a tridiagonal doubly stochastic matrix, and empirically the resulting
distribution on tridiagonal doubly stochastic matrices is very close to Lebesgue measure.

3 Experiments and conjectures

This section collects experimental results using Gibbs sampling to produce a random
element of Tn−1 (so there are n−1 superdiagonal entries, and the matrices are each n by
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Figure 1: Above left: the distribution function for the first superdiagonal entry of a 10
by 10 tridiagonal doubly stochastic matrix. The circles represent the 100-quantiles from
data of 10, 000 random trials using Gibbs sampling, and the curve is sin(πx/2). Above
right: the corresponding Q-Q plot, which shows that the fit is good.

n). We have compared Gibbs sampling to the (much slower) exact sampling algorithm
in many examples and see no difference.

Figures 1, 2, and 3 give experimental verification for Corollary 4.4, which proves
that the distribution in the limit as n → ∞ of first superdiagonal entry is sin(xπ/2) and
also describes the marginal distribution for the k-th entry given the (k − 1)-st entry.
Here, with n = 50 or even n = 10, the experimental distributions are extremely close
to the limiting distribution as n → ∞.

Figure 4 demonstrates that the distribution of the superdiagonal entries rapidly
become close to the stationary distribution function sin(xπ)/π + x as one moves away
from the ends of the superdiagonal. In particular Figure 4 shows that, while the first
superdiagonal entry has distribution sin(xπ/2), the fourth superdiagonal already has a
distribution that is almost indistinguishable from sin(xπ)/π + x, even for when n = 9.
Data for larger n produces plots virtually identical to those in Figure 4.

In Figure 5, we experimentally compare the distribution of the limiting Markov
chain formed by the superdiagonal entries in the limit as n → ∞. Theorem 6.1 shows
that the stationary distribution should have distribution function sin(πx)/π + x, and
the data shows that the average value of the superdiagonal entries away from the top
and bottom of the matrix closely matches this distribution.

Figure 6 shows the growth rate of the eigenvalue gap gapn−1, that is, the second
smallest absolute difference between an eigenvalue and 1 (note that 1 is always an
eigenvalue). The figures suggest that the growth rate of the random function gapn−1

satisfies
3.4 ≤ n2 log(n) gapn−1 ≤ 4.3,

with high probability for large n.
We can analogously study the mixing time rn of a randomly selected tridiagonal

doubly stochastic matrix. Figure 7 shows plots of rn−1, each averaged over 100 trials,
for values of n up to 2000. The plots suggest that

2

9
n2 log(n) ≤ rn−1 ≤

2

5
n2 log(n)
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Figure 2: Above left: the distribution function for the first superdiagonal entry of a 50
by 50 tridiagonal doubly stochastic matrix. The circles represent the 100-quantiles from
data of 10, 000 random trials using Gibbs sampling, and the curve is sin(πx/2). Above
right: the corresponding Q-Q plot, which shows that the fit is good.
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Figure 3: Above left: the distribution function for the seventh superdiagonal entry of a
50 by 50 tridiagonal doubly stochastic matrix, given that the sixth superdiagonal entry
is 0.3. The circles represent the 100-quantiles from data of 10, 000 random trials using

Gibbs sampling, and the curve is
sin(π2 min{x, 0.7})

sin(π(0.3)/2)
. Above right: the corresponding

Q-Q plot, which shows again that the fit is good.
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Figure 4: Above left: the distributions of the first, second, and third superdiagonal
entries for an 10 by 10 tridiagonal doubly stochastic matrix, denoted by, respectively,
circles, plus signs, and triangles. Notice that the distribution of the first closely matches
the solid curve sin(xπ/2), and that the third comes close to (though is slightly below)
the dashed curve sin(xπ)/π + x, which is the stationary distribution. Above right: the
Q-Q plot comparing the distribution of the fourth superdiagonal entry in a 10 by 10
tridiagonal doubly stochastic matrix to the stationary distribution sin(xπ)/π + x. The
fit is remarkably good.
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Figure 5: Above left: the curve is sin(πx)/π + x, and the circles represent the 100-
quantiles from the data from 100 trials using Gibbs sampling of all superdiagonal entries
in rows 10 through 189 of a 200 by 200 tridiagonal doubly stochastic matrix. Above
right: the corresponding Q-Q plot.
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Figure 6: Above: an empirical plot of the function n2 log(n) gapn−1 using Gibbs sam-
pling for n = 50 to n = 5000, with the results averaged over 100 trials. The plots
suggest that n2 log(n) gapn−1 is bounded by a constant.

with high probability for large n. Taken together with the fact (see [27, Lemma 2.1] or
also [23]) that there is a cutoff for a birth and death chain only if gapn−1×rn−1 → ∞,
we see that data on the eigenvalue gap in Figure 6 and the data on the mixing time
in Figure 7 suggest that, with high probability, a random element of Tn−1 does not
have a cutoff. In Section 7, we will prove, in fact, that with probability tending to 1,
gapn−1×rn−1 is bounded as n → ∞, thus proving that with high probability, a random
element of Tn−1 does not have a cutoff (see Theorems 7.1 and 7.2).

We have seen that the second largest (absolute) eigenvalue has an important effect
on whether or not a birth and death chain has a cutoff, and one can consider the more
general question of determining the distribution of the eigenvalues of a random element
of Tn−1. Figure 8 shows a histogram of the eigenvalues for n = 100, 000. The pictured
distribution seems empirically stable as n increases and does not seem to belong to one
of the standard ensembles. It would be interesting to describe some of the persistent
features of this distribution in the large n limit. Though it does not directly give any
information on the limiting shape, note that using the tools in [33], it is possible to
prove that, with probability 1, the histogram approaches some fixed, nonrandom shape
as n → ∞. Recently, Anderson and Zeitouni [2] used ideas from [39] to develop some
tail estimates on the limiting eigenvalue distribution for a random element of Tn−1. For
example, [2] shows that for sufficiently small δ > 0, the number of eigenvalues in the
interval [1− δ, 1] is at most O(n/ log δ) with high probability.

Another interesting question to consider is the behavior of the smallest superdiagonal
entry of a random tridiagonal doubly stochastic matrix. Figure 9 provides some exper-
imental evidence suggesting that the smallest superdiagonal entry may have roughly
the distribution of the smallest of n independent uniform random samples from the
interval [0, 1/2], which would have distribution function 1 − (1 − 2x)n. However, the
Q-Q plot shows that the match is not perfect when the smallest superdiagonal entry is
in the larger part of its range. It would be interesting to describe the behavior of the
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Figure 7: The random function rn denotes the mixing time of a randomly chosen
tridiagonal doubly stochastic matrix. Using Gibbs sampling, the plot above gives
n2 log(n)/rn−1 for values of n equal to multiples of 50 between 50 and 2000 averaged
over 50 trials.
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Figure 8: Above is a histogram of the eigenvalues from a single 100, 000 by 100, 000
randomly generated tridiagonal doubly stochastic matrices using Gibbs sampling.
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Figure 9: Above is are plots for the distribution of the smallest superdiagonal entry for
100 by 100 tridiagonal doubly stochastic matrices, where the data is taken from 1000
matrices generated with Gibbs sampling. On the left, the circles represent the 100-
quantiles and the curve is a graph of 1− (1− 2x)99. On the right is the corresponding
Q-Q plot, which shows that the fit becomes less good when the smallest superdiagonal
entry is in the larger part of its range.

distribution of the smallest superdiagonal entry of a random element of Tn.
Finally, it would also be interesting to determine the quantitative behavior of the

smallest eigenvalue of a randomly chosen tridiagonal doubly stochastic matrix. In Fig-
ure 10, data is shown suggesting that the average smallest eigenvalue approaches a value
less than −0.9. It would be interesting to determine whether this average approaches
−1 as n goes to infinity.

4 Distribution of the superdiagonal

As noted in Section 2, the elements of an n+ 1 by n+ 1 tridiagonal doubly stochastic
matrix are determined by the superdiagonal c1, c2, . . . , cn. For a uniformly chosen ma-
trix, we determine the joint distribution of {ci}. For both fixed n and in the large n
limit, the ci form a Markov chain. We compute the distribution of the (1, 2) entry and
the distribution of the (i, i+1) conditioned on the (i− 1, i) entry. Section 6 studies the
limiting Markov chain defined by letting n tend to infinity. We first state the results.
Proofs are brought together at the end of this section.

Let (c1, c2, . . . , cn) be the superdiagonal of an n + 1 by n + 1 tridiagonal doubly
stochastic matrix chosen uniformly at random with respect to Lebesgue measure (for

example, using the algorithm in Section 2). Write ci = c
(n)
i when it is useful to emphasize

the dependence of ci on n.

Theorem 4.1. For any 1 ≤ i ≤ n− 1, for any real constants a1, . . . , ai in the interval
[0, 1], and for any 0 ≤ t ≤ 1,

Pr(ci+1 ≤ t|c1 = a1, c2 = a2, . . . , ci = ai) = Pr(ci+1 ≤ t|ci = ai). (4.1)

13
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Figure 10: The data above was generated using Gibbs sampling to find the average
value of the smallest eigenvalue out of 200 trials for n ranging over multiples of 200
between 200 and 10000.

Proof. The probabilities in Equation (4.1) can be computed via integration. In partic-
ular, define the function

fi,n(x) :=

∫ x

ci=0

∫ 1−ci

ci+1=0

∫ 1−ci+1

ci+2=0

∫ 1−ci+2

ci+3=0
· · ·
∫ 1−cn−1

cn=0
dcn dcn−1 · · · dci. (4.2)

The left-hand side of Equation (4.1) thus becomes fi+1,n(min{t, 1− ai})/fi+1,n(1− ai).
The right-hand side of Equation (4.1) can be represented via

gi+1,n(x, y) :=

(

∫ y

ci−1=0

∫ 1−ci−1

ci−2=0
· · ·
∫ 1−c2

c1=0
dc1 dc2 . . . dci−1

)

×
(

∫ x

ci+1=0

∫ 1−ci+1

ci+2=0
· · ·
∫ 1−cn−1

cn=0
dcn dcn−1 · · · dci+1

)

= fi+1,n(x)f1,i−1(y).

The right-hand side of Equation (4.1) equals gi+1,n(min{t, 1 − ai}, 1 − ai)/gi+1,n(1 −
ai, 1− ai) = fi+1,n(min{t, 1− ai})/fi+1,n(1− ai), thus proving Equation (4.1).

Remark 4.2. One interesting feature to note is that the distribution of ci is the same as
the distribution of cn−i+1 for each 1 ≤ i ≤ n. This fact can be proven by demonstrating
a volume preserving bijection between the following two n-dimensional polytopes:

Pi(t) : 0 ≤ c1, c2, . . . , cn ≤ 1

cj + cj+1 ≤ 1 for 1 ≤ j ≤ n− 1,

ci ≤ t

Pn−i+1(t) : 0 ≤ c1, c2, . . . , cn ≤ 1

cj + cj+1 ≤ 1 for 1 ≤ j ≤ n− 1,

cn−i+1 ≤ t.

14



One simple volume-preserving bijection is the map φ : cj 7→ cn−j+1 for all 1 ≤ j ≤ n.
It is clear that φ is a bijection, is volume preserving, and maps Pi to Pn−i+1. Since the
probability that ci is at most t is exactly the volume of Pi, and the probability that
cn−i+1 is at most t is exactly the volume of Pn−i+1, it is clear that ci and cn−i+1 have
the same distribution.

Probabilities from integration. Let c
(n)
1 , c

(n)
2 , . . . , c

(n)
n be the superdiagonal en-

tries of an n + 1 by n + 1 tridiagonal doubly stochastic matrix chosen uniformly with
respect to Lebesgue measure. From the definition of fi,n in Equation (4.2), it is clear
that fi,n(x) = f1,n−i+1(x). Furthermore,

Pr(c
(n)
1 ≤ x) =

f1,n(x)

f1,n(1)
, and (4.3)

Pr(c
(n)
i+1 ≤ x|ci = ai) =

f1,n−i(min{x, 1− ai})
f1,n−i(1− ai)

, for 1 ≤ i ≤ n− 1. (4.4)

Thus, the distribution of c
(n)
1 and also the distribution of c

(n)
i+1 given c

(n)
i may be

computed from f1,m(x) for various values of m.
We will call f1,n(x) the volume of Tn up to height x in the first dimension. As we

have seen above, f1,m(x) is useful in computing the marginal distributions of the entries
of an element of Tn chosen uniformly at random. The main theorem for the current
section is the following.

Theorem 4.3. There is an exact polynomial formula for the volume of Tn up to height
x in the first dimension, namely,

f1,n(x) =
1

n!







⌊n−1

2 ⌋
∑

k=0

(−1)kx2k+1En−(2k+1)

(

n

2k + 1

)

+ (−1)n/2xnδn,even






, (4.5)

where δn,even is 0 if n is odd and 1 if n is even. Here, as usual, En denotes the n-th
Euler number, the number of alternating permutations on [n].

Proof. Our original proof was an elementary but lengthy induction. We would like to
thank Richard Stanley for pointing out the following elegant proof.

Stanley [49, page 13] proves the following generating function
∑

n≥0

f1,n(x)t
n = sec(t) (cos((x− 1)t) + sin(xt)) .

Expanding the right hand side as a Taylor series in x we have

∑

n≥0

f1,n(x)t
n =

∑

k≥0

(−1)k
(xt)2k

(2k)!
+ (sec(t) + tan(t))

∑

k≥0

(−1)k
(xt)2k+1

(2k + 1)!
.

Noting that sec(t)+tan(t) =
∑

ℓ≥0Eℓ
tℓ

ℓ! (Theorem 2.1) and collecting terms on the right
hand side by powers of t, the desired result follows.

Theorem 4.3 together with Equations (4.3) and (4.4) provide a way to compute the

distribution of c
(n)
1 and the conditional distribution of c

(n)
i+1 given c

(n)
i . In particular, it

is known that
En

n!
=

2n+2

πn+1
+O

((

2

3π

)n)

, (4.6)
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(see, for example, [49]). Plugging these asymptotics into Equation (4.5) gives the follow-
ing corollary to Theorem 4.3 describing the limiting distributions of the superdiagonal
entries; Figures 1, 2, 3, and 4 show that this is quite accurate when n ≥ 9.

Corollary 4.4. For any 0 ≤ x ≤ 1, for any fixed integer i ≥ 1, and for any 0 ≤ ai ≤ n,
we have

lim
n→∞

Pr(c
(n)
1 ≤ x) = sin(xπ/2) and

lim
n→∞

Pr(c
(n)
i+1 ≤ x|c(n)i = ai)) =

sin(π2 min{x, 1− ai})
sin(π2 (1− ai))

.

Sketch of proof. Note that n!f1,n(1) = En, which follows from Equation (2.2), since
f1,n(1) is the volume of the polytope Tn of all n+1 by n+1 tridiagonal doubly stochastic
matrices. To prove the corollary, it is sufficient to show that

n!f1,n(x)

En
→ sin(πx/2)

as n → ∞. We will leave out ⌊•⌋ and ⌈•⌉ notation below for readability.
First, we may use Equation (4.6), the fact that x ≤ 1, a union bound, and Stirling’s

formula to show that
∣

∣

∣

∣

∣

∣

n/2
∑

k=n/4

(−1)kx2k+1En−(2k+1)

En

(

n

2k + 1

)

∣

∣

∣

∣

∣

∣

≤ n

(n/2)!

En/2

(n/2)!

n!

En
≤
( c

n

)n/2

for some constant c.
Second, note that the n/4 term Taylor series expansion for sin(πx/2) is a good

approximation, namely:

∣

∣

∣

∣

∣

∣

n/4
∑

k=0

(−1)k
(πx/2)2k+1

(2k + 1)!
− sin(πx/2)

∣

∣

∣

∣

∣

∣

≤ (c/n)n/4.

Third, we may use Equation (4.6) and Stirling’s formula to show that each term in
the sum

n/4
∑

k=0

(−1)kx2k+1En−(2k+1)

En

(

n

2k + 1

)

− (−1)k
(πx/2)2k+1

(2k + 1)!
=

n/4
∑

k=0

(−1)k
x2k+1

(2k + 1)!

(

En−(2k+1)n!

(n− (2k + 1))!En
− (π/2)2k+1

)

is at most O
(

(π2/12)n/2
)

in absolute value.
Combining the three steps above, we have that

∣

∣

∣

∣

n!f1,n(x)

En
− sin(πx/2)

∣

∣

∣

∣

≤
(

π2

12
− o(1)

)n/2

,

where o(1) is a small quantity that tends to zero as n → ∞.
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4.1 Interpreting the sine function in Corollary 4.4

The appearance of the sine function in Corollary 4.4 is notable, and it would be inter-
esting to have a heuristic reason why the first superdiagonal entry has an asymptotic
sine distribution. We are indebted to Neil O’Connell for pointing out that the limiting
Markov chain described by Corollary 4.4 appears in work of Manon Defosseux [18] from
a completely different direction. Defosseux [18] studies the eigenvalues of products of
random reflections in dimension n ≥ 3, and the main result in the dimension 3 case may
be described as follows. Let uk, for k = 0, 1, 2, 3, . . . , be a sequence of iid uniform ran-
dom points on the 2-dimensional real sphere {x21+x22+x23 = 1}, represented as length-3
column vectors. Let Rk be the random reflection defined by Rk := I − 2uku

t
k, where

utk of uk. For k ≥ 0, let Mk = R0R1R2 . . . Rk be the product of the first k + 1 random
reflection matrices defined in this way. Note that Mk has (−1)k−1 as an eigenvalue, and
the other two eigenvalues for Mk are a complex conjugate pair, say eiπαk and e−iπαk

where αk ∈ [0, 1]. Then the following holds for the random sequence (αk)k≥0:

Theorem 4.5. [18]

(i) We have α1 ≥ α2 ≤ α3 ≥ α4 ≤ · · · .

(ii) The αk process is Markovian.

(iii) Finally,

Pr(α1 ≤ x) = 1− cos(πx/2),

Pr(α2ℓ ≤ x|α2ℓ−1 = b2ℓ−1) =
sin(π2 min{x, b2ℓ−1})

sin(π2 b2ℓ−1)

Pr(α2ℓ+1 ≤ x|α2ℓ = b2ℓ) = 1− cos(π2 max{x, b2ℓ})
cos(π2 b2ℓ)

,

where ℓ ≥ 1 and b2ℓ, b2ℓ−1 ∈ [0, 1] are fixed.

The alternating sequence αk may be used to define a new sequence βk where β2ℓ =
α2ℓ and β2ℓ−1 = 1−α2ℓ−1 for all ℓ ≥ 1. One may check that the βk sequence has exactly
the distributions given in Corollary 4.4 for the limit as n → ∞ of the ci sequence.
Aaron Abrams, Henry Landau, Zeph Landau, James Pommersheim, and Eric Zaslow
(personal communication) provide an elementary proof of (iii) in the dimension 3 case.
Peter Windridge [53, Section 4.2.1] derives the limiting density for the αk, process which
is a re-scaling of our result in Theorem 6.1(i).

5 Connections with random alternating permutations, En-

tringer numbers, and parking functions

Consider the following question: If an alternating permutation of length n is chosen
uniformly at random and ai denotes the number in coordinate i divided by n, what
is the distribution of ai for large n? For example, if n = 3, there are two alternating
permutations, 132 and 231, and thus a1 is 1/3 with probability 1/2 and is 2/3 with
probability 1/2. The following result shows that the distribution of ai as n goes to
infinity (with i fixed) has a very close connection to the superdiagonal entries in a
random tridiagonal doubly stochastic matrix.
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Theorem 5.1. Let K be a positive integer constant, let (c
(n)
1 , c

(n)
2 , . . . , c

(n)
n ) be an el-

ement of Tn chosen uniformly at random, let σ be a length n alternating permutation

chosen uniformly at random, and let a
(n)
i = σ(i)/n for each 1 ≤ i ≤ n. For any real

numbers 0 ≤ t1, . . . , tK ≤ 1, we have

lim
n→∞

Pr(
K
⋂

i=1

{a(n)i ≤ ti}) = lim
n→∞

Pr(
K
⋂

i=1

{c̃(n)i ≤ ti}),

where

c̃
(n)
i =

{

c
(n)
i if i is odd, and

1− c
(n)
i if i is even.

In Section 4, we determine limn→∞ Pr(c
(n)
1 ≤ t) exactly (see Corollary 4.4), which

when combined with the above theorem thus also gives the limiting distribution of a
(n)
1 .

The proof of Theorem 5.1 depends on three lemmas which we state and prove below.

We will say that c̃
(n)
i has rank k if c̃

(n)
i is the k-th smallest among c̃

(n)
1 , c̃

(n)
2 , . . . , c̃

(n)
n . We

will omit the superscript (n) where the value of n is clear from context.

Lemma 5.2. Let (c1, c2, . . . , cn) be an element of Tn chosen uniformly at random, let

c̃i =

{

ci if i is odd, and

1− ci if i is even,

let τ be a length n alternating permutation chosen uniformly at random, and let ai =
τ(i)/n. For any real numbers 0 ≤ t1, t2, . . . , tn ≤ 1,

Pr(
n
⋂

i=1

c̃i has rank ≤ ⌊nti⌋) = Pr(
n
⋂

i=1

ai ≤ ti).

Proof. Recall from Section 2 that a uniform random element of Tn may be chosen by
picking real numbers x1 < x2 < · · · < xn each independently and uniformly at random
from [0, 1] and choosing a length n alternating permutation σ uniformly from all length
n alternating permutations and then setting c̃i = xσ(i). The relative order of the c̃i is
thus determined entirely by the alternating permutation σ; in particular,

Pr(
n
⋂

i=1

c̃i has rank ≤ ⌊nti⌋) = Pr(
n
⋂

i=1

σ(i) ≤ ⌊nti⌋) = Pr(
n
⋂

i=1

σ(i) ≤ nti).

Since σ was chosen uniformly at random among length n alternating permutations, the
proof is complete.

Lemma 5.3. Let F be an arbitrary event, let c̃i be defined as in Lemma 5.2, and let
0 < t < 1 be a constant. Then, for every 0 < ǫ and for any 1 ≤ i ≤ n we have

Pr({c̃i ≤ ti − ǫ} ∩ F )− exp(−2nǫ2) ≤ Pr({c̃ihas rank ≤ ⌊nti⌋} ∩ F )

≤ Pr({c̃i ≤ ti + ǫ} ∩ F ) + exp(−2nǫ2).
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Proof. The idea of the proof is to show that the ⌊nt⌋ smallest of the c̃i is typically very
close to t.

Note that

Pr( {c̃i has rank ≤ ⌊nt⌋} ∩ F ) (5.1)

= Pr({c̃i has rank ≤ ⌊nt⌋} ∩ {c̃i ≤ t+ ǫ} ∩ F )+

Pr({c̃i has rank ≤ ⌊nt⌋} ∩ {c̃i > t+ ǫ} ∩ F )

≤ Pr({c̃i ≤ t+ ǫ} ∩ F ) + Pr({c̃i has rank ≤ ⌊nt⌋} ∩ {c̃i > t+ ǫ}).
≤ Pr({c̃i ≤ t+ ǫ} ∩ F ) + Pr( the ⌊nt⌋ smallest of n uniforms is > t+ ǫ). (5.2)

The last inequality uses the fact from the algorithm in Subsection 2.1 that the ci, and
hence the c̃i, are uniquely determined by a set of n (distinct) elements of [0, 1] chosen
uniformly and independently at random along with an alternating permutation chosen
uniformly at random.

We now note that

Pr( the ⌊nt⌋ smallest of n uniforms is > t+ ǫ) =

⌊nt⌋−1
∑

k=0

(

n

k

)

(t+ ǫ)k(1− t− ǫ)n−k

≤ exp

(

−2
(n(t+ ǫ)− nt)2

n

)

= exp(−2nǫ2),

where the inequality comes from using Hoeffding’s inequality [34] to bound the tail of
a binomial distribution.

On the other hand,

Pr( {c̃i has rank ≤ ⌊nt⌋} ∩ F )

≥ Pr({c̃i has rank ≤ ⌊nt⌋} ∩ F ∩ {c̃i ≤ t− ǫ})
= Pr({c̃i ≤ t− ǫ} ∩ F )− Pr({c̃i has rank > ⌊nt⌋} ∩ F ∩ {c̃i ≤ t− ǫ}).
≥ Pr({c̃i ≤ t− ǫ} ∩ F )− Pr( the ⌊nt⌋ smallest of n uniforms is ≤ t− ǫ).

Using similar analysis to the above, we can show that

Pr( the ⌈nt⌉ smallest of n uniforms is ≤ t− ǫ) ≤ exp(−2nǫ2),

and thus the proof is complete.

Lemma 5.4. The function limn→∞ Pr(
⋂K

i=1 c̃
(n)
i ≤ ti) is continuous in t1, . . . , tK .

Proof. Let gK(t1, . . . , tK) := limn→∞ Pr(
⋂K

i=1 c
(n)
i ≤ ti), and note that the function

limn→∞ Pr(
⋂K

i=1 c̃
(n)
i ≤ ti) is continuous in t1, . . . , tK if and only if gK(t1, . . . , tK) is

continuous in t1, . . . , tK .
We will use induction on K to prove that gK(t1, . . . , tK) is continuous in t1, . . . , tK .

If K = 1, then g1(t1) = limn→∞ Pr(c
(n)
i ≤ t1) = sin(t1π/2) by Corollary 4.4, and thus

is continuous in t1.
For the induction step, assume that gK(t1, . . . , tK) is continuous in t1, . . . , tK . We

will show the corresponding statement for K + 1. Define

Fℓ,n(t1, . . . , tℓ) :=

∫ t1

0

∫ min{t2,1−x1}

0
· · ·
∫ min{tℓ,1−xℓ−1}

0

∫ 1−xℓ

0
. . .

∫ 1−xn−1

0
dxn · · · dx1.
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Thus, we have

gK+1(t1, . . . , tK+1) = lim
n→∞

FK+1,n(t1, . . . , tK+1)

En/n!
,

since FK+1,n(1, . . . , 1) = En/n! by Equation (2.2).
We may now write

FK+1,n(t1, . . . , tK+1)

=

∫ t1

0

∫ min{t2,1−x1}

0
· · ·

∫ min{tK+1,1−xK}

0

∫ 1−xK+1

0
. . .

∫ 1−xn−1

0
dxn · · · dx1,

= AK−1

∫ min{tK ,1−xK−1}

0

∫ min{tK+1,1−xK}

0
BK+2,n dxn · · · dx1,

where for notational expedience, we define the symbols

AK−1 :=

∫ t1

0

∫ min{t2,1−x1}

0
· · ·
∫ min{tK−1,1−xK−2}

0
and BK+2,n :=

∫ 1−xK+1

0
. . .

∫ 1−xn−1

0

to represent, respectively, the first K − 1 integrals over the variables x1, . . . , xK−1 and
the last n − K − 1 integrals over the variables xK+2, . . . , xn. With this notation, we
have

FK+1,n(t1, . . . , tK+1)

= AK−1

∫ min{tK ,1−xK−1,1−tK+1}

0

∫ tK+1

0
BK+2,n dxn · · · dx1

+AK−1

∫ min{tK+1,1−xK}

min{tK ,1−xK−1,1−tK+1}

∫ 1−xK+1

0
BK+2,n dxn · · · dx1

= AK−1

∫ min{tK ,1−xK−1,1−tK+1}

0
dxK · · · dx1

∫ tK+1

0
BK+2,n dxn · · · dxK+1

+AK−1

∫ min{tK+1,1−xK}

0

∫ 1−xK+1

0
BK+2,n dxn · · · dx1

−AK−1

∫ min{tK ,1−xK−1,1−tK+1}

0

∫ 1−xK+1

0
BK+2,n dxn · · · dx1

= FK,K(t1, . . . , tK−1,min{tK , 1− tK+1}) · F1,n−K(tK+1)

+ FK,n(t1, . . . , tK)− FK,n(t1, . . . , tK−1,min{tK , 1− tK+1}).

Thus,

gK+1(t1, . . . , tK+1)

= FK,K(t1, . . . , tK−1,min{tK , 1− tK+1}) · lim
n→∞

En−K/(n−K)!

En/n!

F1,n−K(tK+1)

En−K/(n−K)!

+ gK(t1, . . . , tK)− gK(t1, . . . , tK−1,min{tK , 1− tK+1})

= FK,K(t1, . . . , tK−1,min{tK , 1− tK+1}) ·
(π

2

)K
sin(

π

2
tK+1)

+ gK(t1, . . . , tK)− gK(t1, . . . , tK−1,min{tK , 1− tK+1}),

where the last equality follows from Equation (4.6) and from Corollary 4.4, using the
fact that F1,n−K(tK+1) = f1,n−K(tK+1). It is not hard to show (by induction) that
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FK,K(s1, . . . , sK) is a composition of polynomials and the function min{x, y}, and thus
FK,K(t1, . . . , tK−1,min{tK , 1 − tK+1}) is continuous in t1, . . . , tK+1. Furthermore, the
other functions that appear on the right-hand side of the last equation are all contin-
uous by induction or by inspection. Thus, we have proven that gK+1(t1, . . . , tK+1) is
continuous in t1, . . . , tK+1.

We now return to the proof of the main theorem of this section.

Proof of Theorem 5.1. By Lemma 5.2 we have

Pr(
K
⋂

i=1

a
(n)
i ≤ ti) = Pr(

K
⋂

i=1

c̃
(n)
i has rank ≤ ⌊nti⌋).

Iterating Lemma 5.3 K times, we have

Pr(
K
⋂

i=1

c̃
(n)
i ≤ ti − ǫ)−K exp(−nǫ2) ≤ Pr(

K
⋂

i=1

c̃
(n)
i has rank ≤ ⌊ntk⌋) = Pr(

K
⋂

i=1

ai ≤ ti)

≤ Pr(
K
⋂

i=1

c̃
(n)
i ≤ ti + ǫ) +K exp(−nǫ2).

Taking the limit as n goes to infinity, we have

lim
n→∞

Pr(
K
⋂

i=1

c̃
(n)
i ≤ ti − ǫ) ≤ lim

n→∞
Pr(

K
⋂

i=1

a
(n)
i ≤ ti) ≤ lim

n→∞
Pr(

K
⋂

i=1

c̃
(n)
i ≤ ti + ǫ).

By Lemma 5.4, the function limn→∞ Pr(
⋂K

i=1 c̃
(n)
i ≤ ti) is continuous in t1, . . . , tK ,

and thus, we can let ǫ tend to zero to prove that

lim
n→∞

Pr(
K
⋂

i=1

a
(n)
i ≤ ti) = lim

n→∞
Pr(

K
⋂

i=1

c̃
(n)
i ≤ ti).

Remark 5.5. The results above suggest the following approximate picture of the coor-
dinates (divided by n) of an alternating permutation chosen uniformly at random when
n is large. We know from Theorem 5.1 and Corollary 4.4 that the first coordinate has
distribution sin(a1π/2). Given that the first coordinate takes the value a1, Theorem 5.1
and Corollary 4.4 suggest that the second coordinate ought to have distribution function
one minus cos(a2π/2)/ cos(a1π/2) conditioned on a1 ≤ a2 ≤ 1 (since the permutation is
alternating up-down). Thus, the distribution function for the second coordinate should
be

max

{

0, 1− cos(a2π/2)

cos(a1π/2)

}

.

Given that the second coordinate is a2, the same heuristic suggests that third coordinate
a3 ought to be drawn from a sine distribution conditioned on 0 ≤ a3 ≤ a2; in particular,
it should be

min

{

1,
sin(a3π/2)

sin(a2π/2)

}

.
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The distributions of the coordinates should continue in this way, with the distribution
for odd i being determined by a sine distribution constrained by the fact that ai must
be larger than the previous coordinate, and with the distribution for even i being deter-
mined by a cosine distribution constrained by the fact that ai must be smaller than the
previous coordinate. Computer simulations give strong evidence for the claims above,
and it would be interesting to prove them in detail and to study related questions, for
example how the i+ 2 coordinate is distributed given the value of the i-th coordinate.

5.1 Euler and Entringer numbers

The Entringer number E(n, k) is defined to be the number of length n + 1 reverse
alternating (down/up) permutations that start with k + 1. Thus, E(n, n) = En, the
n-th Euler number, which is the number of alternating (up/down) permutations of
length n. From the definition of Entringer numbers, we have for every non-negative real
number t that

lim
n→∞

Pr(a
(n)
1 ≤ t) = lim

n→∞

⌊nt⌋−1
∑

i=0

E(n, n− i)

En+1
.

This fact lets us derive a local limit theorem, below, for the Entringer numbers, de-
scribing the growth of the Entringer numbers E(n, k) as k increases compared to the
total number of alternating permutations of length n + 1 in the large n limit. More
information on Entringer numbers may be found in [38] and [49, Section 3].

Theorem 5.6. Let 0 ≤ t ≤ 1 be a constant. Then,

lim
n→∞

nE(n, ⌈nt⌉)
En+1

=
π

2
sin(t

π

2
).

Loosely put, E(n, i)/En+1 ∼ π
2n sin(πi/2n). Thus, E(n, i) increases smoothly in i for

large n. Before proving Theorem 5.6, we will remark on a nice heuristic reason that was
pointed out by Eric Rains for the function F (t) := 2nE(n,⌈nt⌉)

πEn+1
to approach sin(tπ2 ) in the

limit as n → ∞. One can prove (for example, by finding a bijection), that the second
difference for the E(n, j) sequence satisifes E(n, j)− 2E(n, j− 1)+E(n, j− 2) = E(n−
2, j−2). Multiplying both sides of this equation by 2n3

πEn+1
and using the asymptotics of

En (see Equation (4.6)) gives an analog of the differential equation F ′′(t) = −
(

π
2

)2
F (t),

and since F (0) = 0 and F (1) → 1, we see that F ought to be asymptotically sin(tπ2 ).
We will now give a formal proof of this fact.

Proof of Theorem 5.6. The main idea is differentiating both sides of the equation in
Theorem 5.1. We start with the equation

sin(tπ/2) = lim
n→∞

Pr(c
(n)
1 ≤ t) = lim

n→∞
Pr(a

(n)
1 ≤ t) = lim

n→∞

⌊nt⌋−1
∑

i=0

E(n, n− i)

En+1
. (5.3)

All sides of Equation (5.3) are differentiable for 0 < t < 1, are differentiable from the
right at t = 0, and are differentiable from the left at t = 1. Because π

2 cos(tπ/2) is
continuous for all 0 ≤ t ≤ 1, it is sufficient to show that

lim
n→∞

nE(n, ⌈nt⌉)
En+1

=
π

2
sin(t

π

2
)
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for all 0 < t < 1, since the result at the endpoints follows from continuity in t. We will
now proceed to bound the derivative of the right-hand-side of Equation (5.3) appropri-
ately from above and from below.

Using the definition of the derivative and the fact that if a limit exists, it is equal to
the right-hand limit, we have

π

2
cos(tπ/2) = lim

∆t→0+

1

∆t
lim
n→∞

⌊n(t+∆t)⌋−1
∑

i=⌊nt⌋

E(n, n− i)

En+1

≤ lim
∆t→0+

1

∆t
lim
n→∞

(⌊n(t+∆t)⌋ − ⌊nt⌋)E(n, n− ⌊nt⌋)
En+1

≤ lim
∆t→0+

1

∆t
lim
n→∞

(∆tn+ 1)
E(n, ⌈n(1− t)⌉)

En+1

= lim
n→∞

nE(n, ⌈n(1− t)⌉)
En+1

,

where the last equality follows from Lemma 5.7 below and the fact that 0 < t by
assumption.

To provide a matching lower bound, we proceed in a similar fashion, using a left-hand
limit instead of a right-hand limit.

π

2
cos(tπ/2) = lim

∆t→0+

1

−∆t
lim
n→∞

⌊nt⌋−1
∑

i=⌊n(t−∆t)⌋

−E(n, n− i)

En+1

≥ lim
∆t→0+

1

∆t
lim
n→∞

(⌊nt⌋ − ⌊n(t−∆t)⌋)E(n, n− ⌊nt⌋+ 1)

En+1

≥ lim
∆t→0+

1

∆t
lim
n→∞

(∆tn− 1)
E(n, ⌈n(1− t)⌉)

En+1

= lim
n→∞

nE(n, ⌈n(1− t)⌉)
En+1

,

where again the last equality holds due to Lemma 5.7. The upper and lower bounds are
equal, and so the proof is complete.

Lemma 5.7. If 0 < t ≤ 1, then

E(n, ⌈n(1− t)⌉)
En+1

→ 0

as n → ∞.

Proof. Note that E(n, k) is increasing in k, since the set of length n + 1 reverse alter-
nating permutations starting with k can be mapped injectively into the set of length
n + 1 reverse alternating permutations starting with k + 1 by switching k and k + 1
in the permutation. Given δ > 0, choose N0 large enough that n − ⌈n(1− t)⌉ >

⌈

1
δ

⌉

.
Then, for every n > N0, we have

En+1 =
n
∑

i=0

E(n, n− i) >

⌈1/δ⌉
∑

i=0

E(n, n− i) >
1

δ
E(n, ⌈n(1− t)⌉).
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5.2 Chain polytopes and parking functions

In [11], Chebikin and Postnikov compute the volume of the chain polytope for any ribbon
poset. In the special case where the ribbon poset has only the relations x1 < x2 > x3 <
x4 > · · · , the corresponding chain polytope is exactly Tn, the polytope defined by the
superdiagonal of a tridiagonal doubly stochastic matrix. Chebikin and Postnikov’s main
result [11, Theorem 3.1] can be used to evaluate f1,n(x) (see Equation (4.2)) in terms of
a sum over parking functions of length n. We will state precisely below how this special
case of [11, Theorem 3.1] relates to Theorem 4.3 and Corollary 4.4.

The sequence (b1, b2, . . . , bn) is a parking function of length n if the reordered se-
quence b′1 ≤ b′2 ≤ · · · ≤ b′n satisfies b′i ≤ i for each 1 ≤ i ≤ n. For example, the parking
functions of length 3 are 111, 112, 121, 211, 113, 131, 311, 122, 212, 221, 123, 132, 213,
231, 312, and 321. Let Pn be the set of all parking functions of length n. The sequence
(α1, α2, . . . , αn) is a weak composition of n if 0 ≤ αi for each 1 ≤ i ≤ n and also
∑n

i=1 αi = n. Let Kn denote the set of weak compositions of n satisfying
∑ℓ

i=1 αi ≥ ℓ
for all 1 ≤ ℓ ≤ n. Note that (b1, b2, . . . , bn) is a parking function of length n if and only
if it has content α ∈ Kn, where the content of (b1, . . . , bn) is the list of non-negative
integers (c1, . . . , cn) where cj is the number of indices i such that bi = j.

Theorem 5.8. [11] For every 0 ≤ x ≤ 1,

n!f1,n(x) =

∣

∣

∣

∣

∣

∣

∑

(b1,...,bn)∈Pn

n
∏

i=1

(−1)bih(bi)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

α∈Kn

(

n

α

)

(−1)α1+α3+α5+···xα1

∣

∣

∣

∣

∣

,

where h(bi) = x if bi = 1 and h(bi) = 1 otherwise, and where
(

n
α

)

= n!
α1!α2!···αn!

.

Note that the second equality above follows from grouping terms in the sum over
parking functions. Combining Theorem 5.8 with Theorem 4.3 and Corollary 4.4 we have
the following.

Corollary 5.9. For 0 ≤ x ≤ 1,

sin(xπ/2) = lim
n→∞

1

En

∣

∣

∣

∣

∣

∣

∑

(b1,...,bn)∈Pn

n
∏

i=1

(−1)bih(bi)

∣

∣

∣

∣

∣

∣

= lim
n→∞

1

En

∣

∣

∣

∣

∣

∑

α∈Kn

(

n

α

)

(−1)α1+α3+α5+···xα1

∣

∣

∣

∣

∣

,

where h(bi) = x if bi = 1 and h(bi) = 1 otherwise, and where
(

n
α

)

= n!
α1!α2!···αn!

.

Much more general chain polytopes of ribbon posets are considered in [11], and it
would be interesting to see how much of the analysis of the current paper could be
applied to the more general polytopes. The more general polytopes are unlikely to
satisfy the Markov property analogous to Theorem 4.1; however, it seems like it may be
possible to use similar analysis to study the distribution of a coordinate in a randomly
chosen point in the polytope.

24



6 The limiting Markov chain

As shown in Section 4, in the large n limit, the entries above the diagonal in a uni-
formly chosen tridiagonal doubly stochastic matrix form a Markov chain with starting
distribution

Pr(c1 ≤ x) = sin(xπ/2) and transition distribution (6.1)

Pr(ci+1 ≤ y|ci = x) =
sin
(

π
2 min{y, 1− x}

)

sin(π2 (1− x))
, (6.2)

where 0 ≤ x, y ≤ 1 (see Corollary 4.4).
In the development below, we determine the stationary distribution, eigenvalues,

and eigenvectors, along with good rates of convergence for this chain. We summarize
the main results:

Theorem 6.1. For the Markov chain K(x, dy) defined by Equations (6.1) and (6.2) on
[0, 1], we have the following:

(i) The stationary distribution has density 2 cos2(πx/2) = cos(πx) + 1 = π(x) with
respect to Lebesgue measure on [0, 1].

(ii) The Markov chain is reversible, with a compact, Hilbert-Schmidt kernel.

(iii) The eigenvalues are β0 = 1, β1 = −1/3, β2 = 1/5, . . . , βj = (−1)j/(2j + 1), . . .
(there is no other spectrum).

(iv) The eigenfunctions are transformed Jacobi polynomials.

(v) For any fixed starting state x ∈ [0, 1] and all ℓ ≥ 2, we have

4
∥

∥

∥Kℓ
x − π

∥

∥

∥

2

TV
≤

∞
∑

i=1

i

(

1

2i+ 1

)2ℓ

.

The bound in (v) shows that the chain converges extremely rapidly (see, for example
Table 1). Convergence from the true starting distribution may be even more rapid. The

ℓ 2 3 4 5 · · ·
∥

∥Kℓ
x − π

∥

∥

2

TV
≤ 0.0185608791 0.0015383426 0.0001581840 0.0000171513 · · ·

Table 1: Upper bounds from Theorem 6.1(v) on the total variation distance of the
limiting Markov chain K after ℓ steps.

Markov chain K defined by Equations (6.1) and (6.2) is a close relative of a collection
of related chains, and some parts of the theorem hold in general. These are developed
first.

Consider the following generalization. Let F (x) be a distribution function on [0, 1].
We may form a Markov chain {Yn} on [0, 1] with the following transitions:

Pr(Yn+1 ≤ y|Yn = x) =
F (min{y, (1− x)})

F (1− x)
. (6.3)
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This has the following “stochastic meaning”: From x, pick y from F , conditional on
y ∈ [0, 1 − x]. In the following, suppose that F is absolutely continuous with positive
density f(x) on (0, 1). Then, the chain defined by Equation (6.3) has a transition
density:

k(x, y) =

{

f(y)/F (1− x) if y ≤ 1− x

0 otherwise.
(6.4)

Proposition 6.2. The transition density k(x, y) in Equation (6.4) is reversible with
stationary density π(x) (with respect to Lebesgue measure on [0, 1]) where, up to nor-
malization Z, we have

π(x) = Z−1f(x)F (1−x), for 0 ≤ x ≤ 1, and where Z =

∫ 1

0
f(x)F (1−x) dx.

Proof. We must check that for all x, y that π(x)k(x, y) = π(y)k(y, x). Both sides are
zero unless x+ y ≤ 1. In this case,

π(x)k(x, y) = Z−1f(x)F (1− x)
f(y)

F (1− x)
= Z−1f(x)f(y) = π(y)k(y, x).

Remark 6.3. Reversibility means the operator associated to k is self-adjoint on L2(π).
This implies all the benefits of the spectral theorem—real spectrum (eigenvalues and
eigenvectors if they exist). It seems a bit counterintuitive at first.

In our case, Proposition 6.2 gives an easy proof of Theorem 6.1(i):

Example 6.4. For F (x) = sin(πx/2), we have f(x) = F ′(x) = π
2 cos(πx/2) and F (1 −

x) = sin(π2 (1− x)) = cos(πx/2), so

f(x)F (1− x) =
π

2
cos2(πx/2) =

π

4
(cos(xπ) + 1) .

The normalizing constant comes from integration.

More generally, the following stochastic representation will be useful, and it puts us
into the realm of iterated random functions [8], [21], [54].

Proposition 6.5. The Markov chain generated by Equation (6.4) has the following
stochastic representation:

Yn+1 = F−1(F (1− Yn)Un+1) with {Ui} independent and uniform on [0, 1]. (6.5)

Proof. Note first that F−1(F (1 − x)U) ≤ 1 − x if and only if F (1 − x)U ≤ F (1 − x),
which always holds. Next, we compute

Pr(F−1(F (1− x)U) ≤ y) = Pr

(

U ≤ F (min{y, 1− x})
F (1− x)

)

=
F (min{y, 1− x})

F (1− x)
,

as required.

For strictly monotone F , we may make a one-to-one transformation in Equation (6.5),
defining Wn = F (Yn). Then Equation (6.5) becomes Wn+1 = F (1 − Yn)Un+1. In
our special case of F (x) = sin(πx/2), this becomes Wn+1 = sin(π2 (1 − Yn))Un+1 =
cos(π2Yn)Un+1. Letting Vn = sin2(π2Yn), we see by squaring that

Vn+1 = (1− Vn)U
2
n+1. (6.6)
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Eigenfunction Eigenvalue

x− 1
4 −1

3
x2 − 3

4x+ 1
16

1
5

x3 − 5
4x

2 + 3
8x− 1

64 −1
7

x4 − 7
4x

3 + 15
16x

2 − 5
32x+ 1

256
1
9

x5 − 9
4x

4 + 7
4x

3 − 35
64x

2 + 15
256x− 1

1024 − 1
11

...
...

Table 2: A few eigenfunctions of the Vn chain (see (6.6)) with corresponding eigenvalues.

Proof of Theorem 6.1. In outline, we analyze the Vn chain of Equation (6.6), finding
the eigenvalues and a complete set of orthogonal polynomial eigenfunctions. Since
Vn = sin2(πYn/2), this gives the eigenvalues and eigenvectors of the Yn chain from
Theorem (6.1); If Pn(x) is an eigenfunction of the Vn chain with eigenvalue λ, then
Pn(sin

2(πx/2)) is an eigenfunction of the Yn chain with eigenvalue λ. The tools used
here lean on the developments of [19], where many further details may be found.

To begin, note that the recurrence Vn+1 = (1 − Vn)U
2
n+1 implies that the Vn chain

has a full set of polynomial eigenvectors. To see this, consider first (changing notation
slightly), V1 = (1− V0)U

2
1 gives E(V1|V0 = v) = E((1− v)U2

1 ) = (1− v)13 . This implies
that E((V1− 1

4)|V0 = v) = −1
3(V0− 1

4), that is, (V − 1
4) is an eigenfunction of the V -chain

with eigenvalue −1/3. Similarly, E(V 2
1 |V0 = v) = (1 − v)2 15 implies that the V -chain

has a quadratic eigenfunction with eigenvalue 1
5 , and so on (see Table 2).

Since these are eigenfunctions for distinct eigenvalues for a self-adjoint operator on
L2(π), they must be orthogonal polynomials for π(x) = β(12 ,

3
2 ;x), where π(x) is the

stationary distribution of the Vn chain. These are Jacobi polynomials P
− 1

2
, 1
2

i (see [37,
(1.8.2)]). These are classically given on [−1, 1], and so we make the change of variables

x 7→ 1−x
2 and write pi(x) = P

− 1

2
, 1
2

i (1− 2x). Then

∫ 1

0
pj(x)pk(x)π(x) dx = z−1

j δj,k, (6.7)

where zj =
∏j

i=1

(

1− 1
2i

)−2
.

Since the eigenvalues (−1)i/(2i + 1) are square summable, the operator is Hilbert-
Schmidt. Since the Jacobi polynomials are a complete orthogonal system in L2(π), there
is no further spectrum. This implies (ii), (iii), and (iv) of Theorem 6.1.

Finally, recall that the total variation distance
∥

∥Kℓ
x − π

∥

∥

TV
= 1

2

∫ 1
0

∣

∣kℓ(x, y)− π(y)
∣

∣

and the chi-square distance χ2
x(ℓ) =

∫ 1
0
|kℓ(x,y)−π(y)|2

π(y) dy. Applying Cauchy-Schwartz,
we have

4
∥

∥

∥
Kℓ

v − π
∥

∥

∥

2

TV
≤ χ2

v(ℓ).

Using Mercer’s theorem as in [19, Section 2.2.1] we see that

χ2
x(ℓ) =

∞
∑

i=1

1

(2i+ 1)ℓ
p2i (x)zi.
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In [35, Lemma 4.2.1], it is shown that

sup
x∈[0,1]

|pi| =
(1/2)i
i!

=
1
2(

1
2 + 1) · · · (12 + i− 1)

i!
< 1.

The easy bound zi ≤ i (in fact, zi ∼ eγ/2
√
i) completes the proof of Theorem 6.1(v).

Returning to the generalization above, the same arguments work without essential
change for the distribution function F (x) = xa on [0, 1], for any fixed 0 < a < ∞. Then,

the representation in Equation (6.5) gives the representation Yn+1 = (1 − Yn)U
1/a
n+1. It

follows that the chain has a β(a, 1 + a) stationary distribution and Jacobi polynomial
eigenfunctions with eigenvalues a

i+a for 0 ≤ i < a. Sharp rates of convergence as in
Theorem 6.1(v) are straightforward to derive, as above. Further details are omitted.

7 The spectral gap and mixing time

Throughout this section, a random (n+ 1)× (n+ 1) tridiagonal doubly stochastic ma-
trix M is chosen by choosing the above diagonal entries c1, c2, . . . , cn from the limiting
Markov chain defined by Equation (6.2) with c1 chosen from the stationary distribu-
tion. As shown in Section 3 (see Figure 4), the stationary distribution gives a good
approximation to the distribution of the superdiagonal entries of a random tridiago-
nal doubly stochastic matrix starting as early as the fourth superdiagonal entry. The
approximation appears to be good even for small n—empirically, n ≥ 9 is sufficient.

Since M is symmetric, it has real eigenvalues β0 = 1 ≥ β1 ≥ β2 ≥ · · · ≥ βn ≥ −1.
Let gapn(M) = 1 − β1 denote the spectral gap. The first result gives an upper bound
on the gap.

Theorem 7.1. For M of form (1.1) with {ci}ni=1 chosen from the Markov chain de-
fined by Equations (6.1),(6.2), if An tends to infinity as n tends to infinity, then with
probability approaching one for all large n

gapn(M)n2 log n < An.

This result is proved in Section 7.1. The simulations in Section 3 suggest that
gapn(M)n2 log n tends to a random variable. From the proof below, it is reasonable to
conjecture that the limiting random variable has an asymmetric Cauchy distribution.

The second result gives a bound on the mixing time of the associated Markov chain.
For simplicity, we work in continuous time, thus a rate one Poisson process directs
the time of transitions from the matrix M . Let Kt(x, y) be the associated Markov
chain on {0, 1, . . . , n}, 0 ≤ t < ∞. This chain has a uniform stationary distribution
π(j) = 1/(n+ 1). In Section 7.2 we prove

Theorem 7.2. With notation as above, if An tends to infinity as n tends to infinity,
with probability approaching one, if t = Ann

2 log n, then for all sufficiently large n

∥

∥Kt
0 − π

∥

∥

TV
≤ 1/

√

An.

Note that by the results of Fill and Kahn [31], every birth-and-death chain with
uniform stationary distribution has mixing time at least as large as the mixing time of
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simple random walk on a path of length n, namely cn2 where c is a constant (recall
that simple random walk on a path of length n moves left or right with probability
1/2 and holds at the endpoints with probability 1/2). Thus, Theorem 7.2 shows that
with probability approaching one, when sampling uniformly over all birth-and-death
chains that have uniform stationary distribution, the mixing time is between cn2 and a
function very slightly larger than n2 logn.

These theorems show that, for typical M , the spectral gap times the mixing time is
bounded. It follows from the results of [23, 27] that there is no cutoff in convergence to
stationarity.

7.1 Bounding the spectral gap

Bounds on the spectral gap of the associated birth and death chain are obtained from
a theorem of Miclo [42]. Let m =

⌊

n
2

⌋

be the median of the stationary distribution π.
Miclo shows that

1

4B
≤ gapn(M) ≤ 2

B

for B = B+(m) ∨B−(m) with

B+(m) = max
x>m





x
∑

y=m+1

1

π(y)c(y)





m+1
∑

y=x

π(y) and B−(m) = max
x<m

(

m−1
∑

y=x

1

π(y)c(y + 1)

)

x
∑

y=0

π(y).

In what follows, we want an upper bound on the spectral gap, and so a lower bound on
B. Clearly, B ≥ B− ≥ B∗ =

n
8

∑m−1
y=m/4

1
c(y) .

In outline, we bound the sum above by constructing the c(i) chain via a coupling
approach. This allows the sum above to be represented as a sum of independent blocks.
Taking just the first term in each block gives a lower bound which is in the domain
of attraction of a Cauchy distribution. Now, classical asymptotics shows that the sum
is of size C · n log n, where C is a constant. Thus B ≥ C ′n2 log n and gapn(M) ≤
C ′′/(n2 logn).

To proceed, recall from Equations (6.1), (6.2) that the transition kernel has density
(using sin

(

π
2 (1− x)

)

= cos
(

π
2x
)

)

k(x, y) =

{

(

π
2

) cos(πy/2)
cos(πx/2) for 0 ≤ y ≤ 1− x

0 for 1− x < y ≤ 1.

For 0 < x ≤ 1/2, we may write this as a mixture density

k(x, y) = ǫ2δy≤1/2 + (1− ǫ)q(x, y)

with
q(x, y) = (k(x, y)− ǫ2δy≤1/2)/(1− ǫ)

for ǫ chosen so that q(x, y) ≥ 0. Here k(x, y) is monotone decreasing on (0, 1 − x). It

takes value c(x) =
(

π
2

) cos(π/4)
cos(πx/2) ≥

(

π
2

)

cos(π/4) = c and so ǫ = c
2 works.

This allows the definition of a Markov chain {Xn, δn} on [0, 1]×{0, 1} with transitions
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Pr(δn+1 = 1|Xn = x, δn = δ) =

{

0 if x > 1/2

ǫ if x ≤ 1/2

Pr(δn+1 = 0|Xn = x, δn = δ) =

{

1 if x > 1/2

1− ǫ if x ≤ 1/2

Pr(Xn+1 ∈ A|δn+1 = 0, Xn = x, δn = δ) =

{

k(x,A) if x > 1/2

q(x,A) if x ≤ 1/2

Pr(Xn+1 ∈ A|δn+1 = 1, Xn = x, δn = δ) = U1/2(A).

This has a simple probabilistic interpretation: from x, if x > 1/2, set δ = 0 and
choose from k(x, dy). If x ≤ 1/2, flip an ǫ coin. If heads, set δ = 1 and choose from U1/2

(the uniform distribution on [0, 1/2]). If tails, set δ = 0 and choose from q(x, dy). Thus,
when δ = 1, choices are made from U1/2 independent of x. The marginal distribution of
the Xn chain is a realization of the k(x, dy) chain under study. To study a Markov chain
with starting distribution π0, choose X0 ∼ π0 and set δ0 = 0. Clearly, the marginal
distribution of {Xi}0≤i<∞ is our underlying Markov chain.

Let ζi be the times i that δn = 1 (so ζ0 = 0 and ζi = inf{n > ζi−1, δn = 1}). The
sequence {ζi+1− ζi} for i ≥ 1 is independent and identically distributed. For any i  1,
Xζi is independent of {X0, X1, . . . , Xζi−1}. Therefore, the blocks are independent. We
may bound

N
∑

i=1

1

Xi
≥
∑

ζi≤N

1

Xζi

=
T
∑

j=1

1

vj
,

where vj are independent identically distributed uniform on [0, 1/2], and T = max{i ≤
N : δi = 1}. Now, the basic chain k(x, dy) has the property that there is a > 0 such that
k(x, (0, 1/2]) ≥ a, uniformly in x. It follows that Pr(δi+2 = 1|(X0, δ0), (X1, δ1), . . . , (Xi, δi)) ≥
aǫ and so, for large N , we have T ≥

(

ǫa
10

)

N with probability exponentially close to one.
We have that

1

m logm

m
∑

i=1

1

vi
→ 2

in probability (see, for example, [29, page 41] on triangular arrays), which completes
the proof of Theorem 7.1.

7.2 Bounding the mixing time

Consider a fixed tridiagonal doubly stochastic matrixM of the form in Display (1.1) with
c1, c2, . . . , cn above the diagonal. In this section, a continuous version of the associated
birth and death chain is considered. Thus, a rate one Poisson process directs the moves
which then take place according to the discrete rates. Alternatively, from state i the
process remains at i for an exponential time with mean 1/(ci−1 + ci). It then moves to
i−1 or i+1 with respective probabilities ci−1/(ci−1+ci) and ci/(ci−1+ci) (when i = 0,
the process always moves to 1; when i = n, the process always moves to n − 1). The
advantage of working in continuous time is that two independent such processes cannot
pass each other without meeting (with probability one).
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Consider two such chains (Xt, Yt) evolving independently with X0 = 0 and Y0 uni-
formly distributed on {0, 1, . . . , n}. Let T be the first coupling time and T0 the first
time that Yt hits 0, see for example [50],[40] for background. The standard coupling
bound and elementary manipulations give

∥

∥Kt
0 − π

∥

∥

TV
≤ Pr(T > t) ≤ Pr(Ys 6= 0, 0 ≤ s ≤ t) ≤ 1

n+ 1

n
∑

i=1

Pr(Ys 6= 0, 0 < s ≤ t|Y0 = i)

=
1

n+ 1

n
∑

i=1

Pr i(T0 > t) ≤ 1

(n+ 1)t

n
∑

i=1

Ei(T0). (7.1)

It is shown below that

Ei(T0) =
n

c1
+

n− 1

c2
+ · · ·+ n+ 1− i

ci
, for 1 ≤ i ≤ n. (7.2)

It follows that the right-hand side of Inequality (7.1) equals

1

(n+ 1)t

(

n2

c1
+

(n− 1)2

c2
+ · · ·+ 1

cn

)

≤ n+ 1

t

(

1

c1
+

1

c2
+ · · ·+ 1

cn

)

. (7.3)

It will be further shown that
(

1
c1

+ · · ·+ 1
cn

)

has order n logn when the ci are chosen

stochastically. These ingredients combine to prove Theorem 7.2.
To prove Equation (7.2), set µi = Ei(T0). Clearly, µn = 1

cn
+ µn−1. Similarly,

µn−1(cn + cn−1) = 1 + cn

(

1
cn

+ µn−1

)

+ cn−1µn−2. Equivalently, µn−1cn−1 = 2 +

cn−1µn−2 or µn−1 = 2
cn−1

+ µn−2. Similarly, µn−i = i+1
cn−i

+ µn−(i+1), . . . , µ1 = n
c1
.

Working up from the bottom, µ2 = n−1
c2

+ n
c1
, . . . , µi =

n−i+1
ci

+ n−i+2
ci−1

+ · · · + n
c1
. This

proves Equation (7.2).
It remains to bound 1/c1 + · · · + 1/cn. We suppose that c1 is chosen from the

stationary distribution, so that c1, c2, . . . , cn all have the same distribution with density
1+cos(πx) on [0, 1]. Set Yi = 1/ci and Y ′

i = YiδYi≤n logn for 1 ≤ i ≤ n. Note that Pr(Yi >

n logn) =
∫ 1/(n logn)
0 (1 + cos(πx)) dx ≤ 2/(n log n). Thus, Pr (

⋃n
i=1{Yi > n logn}) ≤

2/ log n → 0 as n → ∞. So it is enough to study {Y ′
i }. Now, E(Y ′

i ) =
∫ 1
1/(n logn)

1
t (1 +

cos(π/t)) dt ≤ 2
∫ 1
1/(n logn)

dx
t = 2 log(n log n) ≤ 3 log n. It follows that for all B ≥ 1 we

have Pr (
∑n

i=1 Y
′
i ≥ Bn logn) ≤ 3

B . Combining bounds, we have

Pr

(

n
∑

i=1

1

ci
> Bn log n

)

≤ 3

B
+

2

log n
. (7.4)

Using Inequalities (7.1), (7.3), and (7.4) with t = A(n+ 1)2 log n, for any A,B ≥ 1 and
all n, we have

∥

∥Kt
0 − π

∥

∥

TV
≤ B

A
with probability 1−

(

3

B
+

2

log n

)

. (7.5)

This proves Theorem 7.2 by taking Bn =
√
An. �

We would like to thank one of the referees for pointing out that the above argument
can be extended to bound the maximum mixing time for the chain started from any
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point, rather than just for the chain started at the left endpoint, thus providing a bound
on the so-called worst-case total variation (see [27]). In particular, one can show that if
An tends to infinity as n → ∞ and if t = Ann

2 log n, then

max
0≤i≤n

∥

∥Kt
i − π

∥

∥

TV
≤ 1/

√

An.

8 Follow up work

In follow up work to the present paper, our student Aaron Smith [45] has extended
and refined our results in various ways. His main contribution extends results to birth
and death chains with non-uniform stationary distributions. Smith still finds that in
a uniform choice from the appropriate set of tridiagonal matrices, the entries above
the diagonal determine the matrices, and furthermore, the same entries form a Markov
chain. He finds that for some stationary distributions, e.g., a discrete exponential, most
chains show a cutoff. Along the way, Smith [45] studies a slight variant on the Gibbs
sampler in Section 2.2. In the variant, the coordinate i that will be updated is chosen
at random, and the new value x is chosen uniformly from [0,min{1− ci−1, 1− ci+1}] so
that ci may always be replaced by x. With these modifications, Smith proves that the
Gibbs sampler converges to the uniform distribution on Tn after at most O(n log2 n)
steps (a lower bound if Ω(n log n) follows from the coupon collector problem). Smith
[45] also considers a sped-up Gibbs sampler for tridiagonal matrices that updates a
randomly chosen block of k consecutive entries on the superdiagonal, where k is a
constant (in particular, k = 56 is analyzed). Here, Smith [45] proves that this Gibbs
sampler converges to uniform in Θ(n log n) steps.

Smith [45] also applies the main theorem of [6] to the process Yt defined by Equa-

tions (6.1) and (6.2), which has transition density k(x, y) = π cos(πy/2)
2 cos(πx/2) . In particular,

[45] shows that for Xt := Y −1
t , the partial sum stochastic process

Vn(t) =

⌊nt⌋
∑

k=1

Xk

an
− ⌊nt⌋E

(

X1

an
1{

X1
an

≤1
}

)

, t ∈ [0, 1],

where an is a sequence of positive real numbers satisfying nPr(|X1| > an) → 1 as
n → ∞, converges in a certain sense to an α-stable Lévy process. The characteristic
triple for the Lévy process is also computed in [45] using [6, Theorem 3.4].
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