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Abstract The response of the train–bridge system has an

obvious random behavior. A high traffic density and a long

maintenance period of a track will result in a substantial

increase in the number of trains running on a bridge, and

there is small likelihood that the maximum responses of the

train and bridge happen in the total maintenance period of

the track. Firstly, the coupling model of train–bridge sys-

tems is reviewed. Then, an ensemble method is presented,

which can estimate the small probabilities of a dynamic

system with stochastic excitations. The main idea of the

ensemble method is to use the NARX (nonlinear autore-

gressive with exogenous input) model to replace the

physical model and apply subset simulation with splitting

to obtain the extreme distribution. Finally, the efficiency of

the suggested method is compared with the direct Monte

Carlo simulation method, and the probability exceedance

of train responses under the vertical track irregularity is

discussed. The results show that when the small probability

of train responses under vertical track irregularity is esti-

mated, the ensemble method can reduce both the calcula-

tion time of a single sample and the required number of

samples.

Keywords Train–bridge system � Ensemble method �
Surrogate model � Nonlinear autoregressive with

exogenous input � Subset simulation with splitting � Small

probability

1 Introduction

With the development of high-speed railways, many high-

speed railway bridges have been used to replace the sub-

grade. Random vibration, excited by the stochastic track

irregularity, is generated when a train runs on the bridge.

As there is a high traffic density of trains, for example, on

Beijing–Shanghai high-speed railway, where the volume of

trains can reach 100 pairs per day, the railway department

formulates a specific rule for monthly rail track mainte-

nance, and preventive rail grinding is conducted at least

once a year to ensure the smoothness of the rail track [1]. If

we assume that the recurrence period of the maximum train

responses is 1 year and 100 pairs of trains pass a bridge

every day, the total number of train pairs that move on the

bridge in a year is 36,500, and the exceedance probability

of the maximum train response is 36,500-1=2.74 9 10-5.

Therefore, it is necessary to ensure the random response of

the train–bridge system under small probability conditions.

For the train–bridge system, the randomness of track

irregularity is an external excitation. The response of the

train–bridge system is also random; thus, the dynamic

response of the train–bridge system should be studied from

the perspective of statistical characteristics. Based on the

stochastic vibration theory and coupling dynamics of the

rail track and wheel-set, the coupling vibration method

[2–4] has been widely applied to the security analysis of

high-speed trains. To analyze the reliability of moving

trains on a bridge under stochastic excitations, random

vibration methods, such as the pseudo-excitation method

[5, 6], spectral approach [7, 8], and probability density

evolution method [9] have been applied in the stochastic

analysis of train–bridge systems. Additionally, the Monte

Carlo simulation (MCS) method has been applied to reli-

ability analysis of the train–bridge systems [10], and the
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stochastic characteristics of coupling systems have been

explored in a way of the multi-sample calculation [11]. The

random vibration method usually obtains statistical prop-

erties, such as the variance, power spectral density and

mean value; and the reliability of the train–bridge system is

evaluated by a statistical index. However, as the maximum

train response may be a non-Gaussian distribution, there is

deviation in the evaluation of dynamic performance under

small probabilities. Though the MCS method is one of the

commonly used approaches for scientific computing due to

its simplicity and general applicability [12], it requires

many samples to achieve high precision.

The subset simulation (SS) method [13], also a con-

trolled MCS method, can reduce the sample number to

estimate small probabilities. The principle of the SS

approach is to decompose the small probability into a

product of larger probabilities under the intermediate event

condition. Ching et al. [14] used the concept of response

trajectory splitting and proposed the method called subset

simulation with splitting (SS/S). Ding and Chen [15]

combined the SS/S method with the multivariate autore-

gressive (AR) modeling of stochastic excitations, and

promoted the application of the SS/S method. The SS/S

method with an improvement of an order of magnitude has

higher computational efficiency than the MCS method at

the same level accuracy, but it requires more samples.

When the SS/S method is applied to estimate the extreme

distribution of train–bridge systems, if the exceedance

probability is 1.0 9 10-4, the number of samples is

approximately 104, which means that the calculations take

a lot of time [16]. Therefore, the calculation time of one

sample should be reduced.

A surrogate model can be used to approximate a com-

plex system and reduce the calculation time of one sample.

Surrogate models such as Kriging, radial basis function,

and support vector regression; and artificial neural network

(ANN) have been applied in optimization, reliability

analysis and wind engineering [17–19]. Although the sur-

rogate models are used to predict time series [20], the

current response of dynamic systems relates to historical

responses and external excitation. Therefore, the nonlinear

autoregressive with exogenous input (NARX) model is

introduced to the surrogate model for a dynamic system.

NARX model can be used to build a system model, which

only relies on the input and output data, and does not need

other system information [21]. Numerical examples show

that the NARX surrogate model has good prediction per-

formance, and it is widely used to predict the dynamic

response of systems [22–27]. However, the training and

calculation efficiency of the NARX surrogate model may

be impaired by an excessive number of input sequences,

such as a multivariate wind field, or lateral acceleration of

the train body. Therefore, the ensemble method, which

combines the SS method with the surrogate model, can

significantly improve the calculation efficiency for small

failure probability.

This paper is organized as follows: Section 2 reviews

the coupling model of the train–bridge system. Section 3

presents the framework of ensemble methods based on

NARX surrogate model and SS/S, and a two-degree car

model is used to verify the ensemble method. In Sect. 4,

the vertical responses of the train are discussed under small

probabilities, and the accuracy and efficiency of the pro-

posed method are proven by a direct MCS method.

2 Train–bridge systems

The numerical calculation model of the train–bridge sys-

tem consists of two parts, the train subsystem and the

bridge subsystem. In this section, the train model and

bridge model are illustrated, respectively.

2.1 Train model

For the train subsystem, the train model is considered as a

four-axle train of seven rigid bodies: one train body, two

bogies and four wheel-sets. The rigid bodies are connected

by springs and dampers [28]. The train model is shown in

Fig. 1.

The train body and each bogie have 5 degrees of free-

dom, and each wheel-set has 2 degrees of freedom.

Therefore, the train model has 23 degrees of freedom in

total. The motion equations of each part of the train can be

established by D’lembert principle [28]:

Mv €uv þ Cv _uv þ Kvuv ¼ Fv; ð1Þ

where Mv, Cv and Kv are the mass, damping and stiffness

matrices of the trains, respectively; Fv is the vector of the

wheel-rail contact force and, uv is the vector of train

displacement.

The wheel-set considers only two degrees of freedom:

lateral and yaw directions; the effect of the vertical track

irregularity directly acts on the bogie, which can be written

as follows:

Floating vibration loads :

Ftzj ¼ Kpz

Xmþ1

i¼m

zeqi þ Cpz

Xmþ1

i¼m

_zeqi;
ð2Þ

Pitching vibration loads :

Ftuj ¼ �l1Kpz

Xmþ1

i¼m

ð�1Þizeqi

� l1Cpz

Xmþ1

i¼m

ð�1Þi _zeqi;

ð3Þ
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where j = 1, 2 denote the front and rear bogies and

m = (j - 1) 9 2 ? 1; i = 1, 2, 3, 4 denote four wheel-sets;

l1 is half of the distance between two wheel-set centroids;

Kpz and Cpz are the vertical stiffness and damping of the

primary suspension, respectively; zeqi and _zeqi are the

equivalent irregularity of the displacement and velocity

terms, respectively, which is the superposition of bridge

displacement and track irregularity.

Although the train model is a 3D model, given that

predicting the lateral response of the train system with a

parametrical nonlinearity is difficult using the surrogate

model, only the vertical track irregularity is considered and

the vertical response of the train–bridge system is explored

in this work.

2.2 Bridge model

The finite element method is used to build the bridge

model, and the motion equation of the bridge structure is

expressed as

Mb €ub þ Cb _ub þ Kbub ¼ Fb; ð4Þ

where Mb, Cb and Kb are the mass, damping and stiffness

matrices of the bridge, respectively; Fb is the wheel-rail

contact force, which is equal and opposite to Fv; ub is the

bridge displacement.

Commercial finite element software is commonly used

to establish a finite element model of the bridge; then, the

mass and stiffness matrices of the model can be derived

from the commercial code. Using the modal analysis, the

natural vibration characteristics of the structure will be

obtained, and the damping matrix of the bridge model is

obtained by the use of Rayleigh damping. This method will

have some errors in the analysis of long-span suspension

bridges in view of the geometry and material nonlinearity.

Here, the mass, damp and stiffness matrices of the bridge

are imported in MATLAB, and the separate iteration

method is used to solve the train and bridge subsystems

[28, 29]. The track irregularity is generated by an auto-

regression (AR) model.

3 Ensemble methods based on the surrogate model
and SS/S

3.1 NARX-based surrogate model of dynamic

system

The NARX model, which has wide application in many

fields, is expressed as follows [30, 31]:

y tð Þ ¼ f ðy t � 1ð Þ; y t � 2ð Þ; . . .; y t � nað Þ; u t � nkð Þ;
u t � nk � 1ð Þ; . . .; u t � nk � nb � 1ð ÞÞ þ e tð Þ;

ð5Þ

where y �ð Þ and u �ð Þ are the outputs and inputs, respectively,

with different delays; e tð Þ is the noise terms; f �ð Þ denotes

nonlinear functions, including linear, neural network, tree

partition, wave network and sigmoid function; na is the

number of outputs in the past; nb is the number of past

inputs, including the current time input; nk is the starting

point of input delay. To simplify the model, nk is set as

zero.

An autocorrelation analysis of the output is applied to

determine na, and cross-correlation analysis of the input

and output is applied to determine nb. If the correlation

function is not close to 0, it is believed that the past input or

output of a certain delay has affected the output of the

current time.

The vibration displacement and velocity of the bridge

relate to the train loads. As the train–bridge system is a

time-variable system, the bridge response to the moving

l1

Vehicle body 

Bogie Bogie 
Wheel-set Bogie 

Wheel-set

Vehicle body 

0.5Kpz 0.5Cpz 

Wheel-set 

Fig. 1 Mass-spring-damping model of the train [28]
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train has some difference under various track irregularities.

If the NARX model is used to predict the response of

trains, the inputs should include the track irregularity that is

generated by the power spectral and vibration response of

the bridge. This is difficult for the NARX model because

the vibration response of the bridge is unknown. In this

work, the vertical vibration response of the bridge is

replaced with the bridge response with all of the track

irregularity set to zero. The displacement and velocity of

the bridge calculated by this simplified method are similar

to those calculated with consideration of the vertical track

irregularity [26]. A train has four wheel-sets, so the NARX

model has four external excitation inputs, and the expres-

sions are shown in Eqs. (2) and (3). The output of the

NARX model is the acceleration of the train body.

For the vertical train–bridge system, many functions can

be used to predict the response of train. Function f (see

Eq. (5)) is more complex, and the accuracy of the surrogate

model may be higher, but complex function f will decrease

the training and calculation efficiency of the surrogate

model. Linear function f has a higher training efficiency

than the NARX neural network model because the selec-

tion of random initial weights is avoided. Thus, it is used to

fit and predict the vertical response of the train.

3.2 Subset simulation with splitting

3.2.1 Reviews of SS/S

SS/S [13] is a kind of MCS method based on conditional

probability. The probability statistics in each generation

sequence can be counted according to the method of MCS

and is multiplied by the probability of the parent genera-

tion, to obtain the target probability level of the current

generation. This method can be expressed as

PrðY [ yjÞ ¼
Yj

i¼1

pi; j ¼ 1; 2; . . .;m; ð6Þ

where yj is the threshold of the jth failure region; pi is the

probability of reaching a threshold in the ith failure region.

The method to generate offspring trajectories using the

SS/S method is shown in Fig. 2, where Xm is the parent

response trajectory, Xc is the newly generated offspring

response trajectory, yi is the threshold of the ith failure

region, and S is the splitting point, at which Xm first reaches

the threshold. When the parent response trajectory first

reaches the threshold value of the response failure region,

the corresponding time point is used as the splitting point to

regenerate the excitation trajectory; then, the response

trajectory under the new excitation is generated. Combined

with the response trajectory before the splitting point, an

offspring response trajectory is generated.

3.2.2 Parameter selection

When the SS/S method is used, some factors must be

determined. First, the target failure probability PF, inter-

mediate failure probability �p, and number of intermediate

failure regions m are determined.

Assuming that the probability of failure and the number

of samples in each intermediate failure region are equal,

i.e., p1 ¼ � � � ¼ pm ¼ �p, N1 ¼ � � � ¼ Nm ¼ �N. Then, the

total number of samples is �N þ �N m� 1ð Þ 1 � �pð Þ ¼ NT .

The coefficient of variation (c.o.v.) of estimated value P̂F is

not sensitive to �p when the intermediate probability is

�p� 0:1 [14]. Therefore, �p ¼ 0:1 is taken in this study, and

the number of intermediate failure events m can be cal-

culated according to the following formula:

m ¼ ln pF

ln �p
: ð7Þ

Next, the total number of samples is determined.

For the SS/S method, S i;kð Þ� �
: k ¼ 1; 2; . . .Ri�1

� �
is

assumed to be the point that represents the first time that

the kth offspring response trajectory reaches the threshold.

Pi S
i;kð Þ� �

is expressed as

Pi S i;kð Þ
� 	

� P a trajectory hits g Xð Þf g trajectories start from S i;kð Þ
n o




� 	
:

ð8Þ

According to Ref. [13], the expected value and variance

of Pi S
i;kð Þ� �

satisfy the following equations:

ESi Pi S i;kð Þ
� 	h i

¼ pi; k ¼ 1; 2; . . .;Ri�1; ð9Þ

0�VarSi Pi S i;kð Þ
� 	h i

� pi 1 � pið Þ; k ¼ 1; 2; . . .;Ri�1:

ð10Þ

When Ni � 1, the variance of the estimated value P̂i can

be obtained by the following formula:

c

m

Fig. 2 Generation of an offspring response trajectory by SS/S
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Var P̂i

� �
¼ pi 1 � pið Þ

Ni
þ

VarSi Pi S
i;1ð Þ� �� �

Ri�1

: ð11Þ

The c.o.v. of the estimated value P̂i is

d2
i ¼

Var P̂i

� �

ESi Pi S i;kð Þð Þ½ �f g2
¼ 1 � pi

Nipi
1 þ cið Þ; ð12Þ

where ci ¼ E N1

Ri�1

� 	
VarSi pi S i;1ð Þð Þ½ �

pi 1�pi½ � when i ¼ 1, ci ¼ 0.

After the c.o.v. of estimated value P̂i is obtained, the

c.o.v. of estimated value P̂F can be obtained [13]:

d2 ¼
Xm

i¼1

d2
i 	

1 � p1

N1p1

þ
Xm

i¼2

1 � pi
Nipi

1 þ cið Þ: ð13Þ

Equation (13) can be simplified as

d 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � p1ð Þc_

N1p1

s

; ð14Þ

where c
_ ¼

Pm
i¼1 1 þ cið Þ when i ¼ 1, and ci ¼ 0.

If c
_� 0, the lower bounds of sample number of the SS/S

method can be written as

N1 �
m 1 � p1ð Þ

d2p1

: ð15Þ

Equation (15) can be used to estimate the minimum

number of samples. Generally, a small d is selected to

obtain a good precision, such as d = 0.1.

3.2.3 Generation of stochastic excitation

In the framework of SS/S, Ding and Chen [15] proposed

the AR model to simulate the stochastic process. The track

irregularity is a univariate stochastic process, and the p-

order AR model of track irregularity can be expressed as

W tð Þ ¼
Xp

k¼1

A kð ÞW t � kDtð Þ þ Ln tð Þ; ð16Þ

where p is the order of the AR model, which is generally

taken as 4; A(k) is the autoregressive coefficient; W(t) is the

value of track irregularity at the current time; Dt is the

length of the time step; n is Gaussian white noise with the

expected value of 0 and variance of 1; L is a coefficient.

Equation (16) is multiplied by W(t - jDt) on the left

and right sides. Taking the mathematical expectations, we

obtain the following results:

Rw jDtð Þ ¼
Xp

k¼1

Rw j� kð ÞDt½ �A kð Þ; ð17Þ

R0 ¼ Rw 0ð Þ �
Xp

k¼1

A kð ÞRw kDtð Þ; ð18Þ

where Rw(jDt) is the autocorrelation function of track

irregularity.

The power spectral density function and autocorrelation

function of the stochastic process satisfy Wiener–Khinchin

formula:

Rw jDtð Þ ¼
Z1

0

Sw fð Þ cosð2pf � jDtÞdf ; ð19Þ

where Sw(f) is the track irregularity power spectrum func-

tion. Therefore, the German low interference spectrum is

used to generate the track irregularity.

The autocorrelation function of the track irregularity

time history can be calculated according to Eq. (19), when

j = 0, 1, 2,…, p. The autoregressive coefficient A(k) is

obtained by substituting the autocorrelation function into

Eq. (17). Then R0 is obtained by substituting A(k) and the

autocorrelation function into Eq. (18), and L is determined

as follows:

L ¼
ffiffiffiffiffi
R0

p
: ð20Þ

For the track irregularity time history, the length of time

step Dt is obtained by substituting A(k) and L into Eq. (16).

Taking the German high-speed track spectrum as an

example, the generation of offspring samples in the SS/S

method is simulated, and the power spectrum and time

history of offspring samples are shown in Fig. 3. As Fig. 3

shows, the simulated spectrum is consistent with the target

spectrum, and the simulated sample is validated. The off-

spring sample has an identical trajectory to the parent

sample before the splitting point, and the trajectory only

changes after the splitting point, which satisfies the

requirements of the SS/S method.

3.3 Analytical procedure

The time history of the train response is split at threshold

point S (Fig. 2) in the SS/S method, and the offspring track

irregularity is generated by the AR model. The NARX

model can be considered as a surrogate model of the time

series, and it is applied to approximate the time history of

train responses. Therefore, it is easy to create a link

between the SS/S method and the NARX surrogate model

if the surrogate model has sufficient accuracy.

The ensemble method, which is composed of the NARX

surrogate model and SS/S method, is called the NARX-SS/

S method. In the ensemble method, the vertical response of

the train in Eq. (1) is replaced by the NARX model, which

is expected to reduce the calculation time of each sample,

and the SS/S method is used to reduce the total number of

samples.
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There are two important objectives in the NARX-SS/S

method: obtain the NARX model of the train bridge system

and use the NARX model in the framework of the SS/S

method. Therefore, the analysis process of NARX-SS/S is

summarized as follows:

Step 1 The time history of the bridge response at each

wheel-set position is obtained from Eqs. (2)–(4) when

all track irregularities are set as zero, which is an

approximate input to replace the dynamic response of

the bridge.

Step 2 Equations (1) and (4) are solved under a set of

arbitrary random track irregularities with some initial

steps set as zero to ensure identical initial condition for

all cases.

Step 3 A correlation analysis is conducted to determine

the initial time delays na and nb, and the accurate time

delays are obtained by trial calculation. The sample is

trained by the NARX model, and the surrogate model of

the vertical response of the train is obtained.

Step 4 The track irregularity is generated by the AR

model, N1 samples of first level are performed by the

NARX surrogate model, and the maximum sample in

one level is calculated by Eqs. (1) and (4). If the

maximum absolute error between the target value and

the prediction value exceeds 5%, the input and output for

the maximum value are used to retrain the NARX

surrogate model, and N1 samples of the first level are

recalculated by a new NARX surrogate model [15].

Step 5 The parent samples of the first level, which

correspond to the intermediate failure probability, are

searched, the splitting point is determined, and the

conditional track irregularity is generated by the AR

model. The offspring samples are generated by the

NARX surrogate model. Similarly, the maximum abso-

lute error is determined by Step 4.

Step 6 Step 5 is repeated until the target failure

probability is reached, and the SS/S method is used to

calculate the probability of exceedance of the train

response based on Eq. (6).

3.4 Numerical verification

To quickly verify the ensemble NARX-SS/S method, a

two-degree-of-freedom model is adopted. The model dia-

gram is shown in Fig. 4.

The equation of the quarter train model can be written as

follows:

m1 0

0 m2

� 

� €x1

€x2

� �
þ c1 �c1

�c1 c1 þ c2

� 

� _x1

_x2

� �

þ k1 �k1

�k1 k1 þ k2

� 

� x1

x2

� �

¼ 0

k2zþ c2 _z

� 

; ð21Þ

where m1 = 24 t; m2 = 3.2 t; k1 = 800 kN/m;

k2 = 2080 kN/m; c1 = 66 kN/(m/s); c2 = 60 kN/(m/s);

_z ¼ z0V ; V is the train speed; z is the track irregularity with

a step of 0.2 m, which is generated by the AR model, and z0

is the derivative of z with respect to displacement.

Equation (21) is solved by the Newmark-b method, with

a train speed of 200 km/h, a step length of 8000, a time step

of 0.0036 s and a space length of 1600 m. The German

high-speed track spectrum is used to reconstruct the track

irregularity.

The target probability of exceedance PF is 10-4, and the

basic setups of the splitting method are m = 4 and pi= 0.1

(i = 1,2, …, m). If the c.o.v. of d is set to 0.1, 3600 samples

(a) (b)
( )

(
)

Fig. 3 Simulation of track irregularity: a power spectrum and b track irregularity of offspring by splitting
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are required for each intermediate failure region by the

lower bounds of the SS/S method [13], i.e. N1 C 3600. In

this work, 4000 samples are used for each intermediate

failure region. Thus, 4000 ? 3600 ? 3600 ? 3600 =

14,800 samples are required in total.

When we look for the splitting point of the parent

sample, the splitting point may not be in the time step

(Fig. 5), and there are two methods to address this issue.

One method is to first obtain the values of

z(t - Dt ? Ds) time steps from the splitting point by

interpolation, take them as the initial values, and use the

AR model to generate the samples; then, the values at the

original spacing point are obtained by interpolation.

Another method is to directly take the value of one step

after the split point (as shown in Fig. 5, taking z(t) as the

splitting point). The second method can reduce the rejected

ratio in the generation of offspring samples; so it has been

used to determine the splitting point in the course of ver-

ifying the ensemble model. Additionally, the train with

four wheel-sets has multiple inputs, and the track irregu-

larity of the first wheel-set is used to determine the splitting

point.

Figure 6 shows the exceedance probability of the

absolute maximum accelerations of m1, which is obtained

by the direct MCS method and NARX-SS/S method. From

Fig. 6a, a theoretical curve of probability of exceedance

based on Eq. (21) is obtained by 1 million MCS samples,

and the estimated c.o.v. of the MCS is 0.1. The two

methods keep consistent with the target probabilities of

exceedance of 10-4. Although the c.o.v. of the NARX-SS/

S method is 0.188, which is 1.88 times higher than that of

the MCS method when the probability of exceedance is

10-4, the c.o.v. of the two methods is relatively small, and

the final result still fits well. Figure 6b shows that under

different failure probabilities, when the MCS method uses

as many samples as the NARX-SS/S method, the c.o.v.

values of the two methods show that the NARX-SS/S

method increase in efficiency with the decrease in excee-

dance probability. In other words, the number required is

significantly less than that of the direct MCS method.

4 Case study

Since the track irregularity sample is simulated by the track

power spectrum, the sample length will affect the coinci-

dence between the simulated and targeted spectra. A longer

sample size corresponds to higher accuracy. To ensure that

the track irregularity sample and the responses of the train

are the stationary process, the bridge model consists of 50

pre-stressed concrete simple-supported beams, each of

which has a span of 32 m, and the total length of the bridge

is 1600 m. The main beam section is 12 m wide and

3.05 m high. The heights of all piers are set to 10 m, the

first 3 spans of the main beam are rigid, and the track

irregularity is set as zero. Suppose that these main beams

do not deform and initial conditions are identical for every

sample. The bridge model is simulated by a spatial beam

element, the damping ratio of the bridge structure is 2%,

and the cross-section of the bridge is shown in Fig. 7. The

train model of CRH3 is introduced in Sect. 2.1. The track

irregularity is simulated by the German high-speed track

spectrum, and the space step is 0.2 m.

Evaluation indices such as the acceleration of the train

body and wheel load reduction rate can be used to evaluate

the safety and comfort of the train. The threshold values of

the vertical acceleration and wheel load reduction rate in

the specifications are 1.0 m/s2 and 0.6, respectively. The

thresholds of evaluation indices do not have a definite

value of exceedance probability, but the target probability

of exceedance has an important effect on the dynamic

performance evaluation of the train. The vibration of the

train is mainly caused by track irregularities without con-

sidering other factors, such as train failures and bridge

damages. Generally, when the maintenance period of the

track is longer, the recurrence period is smaller and the

computing time of reliability analysis is more. Therefore,

the target exceedance probability of the train evaluation

indices can be determined by the maintenance period of the

track.

z

m1

x1

k1 c1

m2

x2

k2 c2

Fig. 4 Quarter train model

Fig. 5 Split point of the responses and excitations
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It is assumed that 55 pairs of trains pass a bridge every

day and the maintenance period of the track is half a year.

The number of train pairs that move on the bridge in half a

year is 55 9 180 = 9900, and the exceedance probability is

9900-1 & 1 9 10-4. The target probability of exceedance

PF for the vertical acceleration of the train body is set as

10-4; the basic setting of the SS/S method is m = 4 and

pi= 0.1 (i = 1,2,…, m). If d = 0.1, then, N1 C 3600. In this

work, the sample number of each intermediate failure area

is set as 4000. Thus, 4000 ? 3600 ? 3600 ? 3600 =

14,800 samples are required in total.

Since directly solving the train–bridge coupling equa-

tion has very low efficiency, the MCS method in this study

calculates only 30,000 samples using Eqs. (1) and (4).

Figure 8 presents the exceedance probability of the abso-

lute maximum accelerations of the first vehicle body,

which is obtained by the MCS method and NARX-SS/S

method. In Fig. 8a, when the MCS method uses only

30,000 samples, if the target probability of exceedance is

less than 10-3, the MCS method and NARX-SS/S method

have consistent results. This is predictable because when

the MCS method uses only 30,000 samples, and the target

probability of exceedance is 10-3, its estimated c.o.v. is

0.183, and the c.o.v. of NARX-SS/S method is 0.181; i.e.,

the MCS method has almost an identical c.o.v. to the

NARX-SS/S method. When the target probability of

exceedance is 10-4, the c.o.v. values of the estimated value

of the MCS and NARX-SS/S methods are 0.577 and 0.217,

respectively; i.e., the MCS method has a far greater c.o.v.

than the NARX-SS/S method. Therefore, when the target

probability of exceedance is within 10-3–10-4, the two

methods have different results. The difference is due to the

insufficient number of samples in the MCS method, and the

predicted value of the surrogate model, which is selected

from the maximum sample of the SS/S method, is consis-

tent with the target value obtained from Eqs. (1) and (4) by

directly solving the train–bridge coupling equation (Fig. 9).

When there are sufficient samples (e.g., 106 samples) in the

MCS method, the results of the two methods should be

identical to Fig. 6a, and show consistency. The vertical

acceleration of the vehicle body is less than the threshold

with an acceleration of 1.0 m/s in the target probability of

exceedance PF = 10-4 because the train running speed is

lower than the design vehicle speed, the simply supported

beam bridge has a large stiffness, and a good track irreg-

ularity spectrum is used in this work.

Figure 8b shows that the c.o.v. of the MCS method takes

as many samples as the NARX-SS/S method under dif-

ferent failure probabilities. Figure 8b shows the same

conclusion as Fig. 6b. When the target probability of

exceedance is sufficiently large (e.g. 10-2), the efficiency

difference between the two methods is not significant. With

the decrease in probability of exceedance, the NARX-SS/S

method has higher efficiency; i.e., it requires fewer samples

than the MCS method.

With the MCS method, the calculation time of Eqs. (1)

and (4) is around 320 s, while it only takes approximately

0.9 s to calculate a sample of the surrogate model, and the

train time of a surrogate model is less than 5 min (a PC

(a) (b)

Fig. 6 Comparison of MCS and NARX-SS/S methods: a exceedance probability of train body and b comparison of c.o.v. for different

estimators

Fig. 7 Bridge cross-section (mm)
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with 2.6 GHz Intel Xeon CPU and 64-bit OS was used for

all numerical calculations), which is significantly faster

than directly solving Eqs. (1) and (4). The number of

samples in the SS/S method is significantly less than that in

the MCS method. Therefore, the NARX-SS/S method can

be used to analyze the probability distribution, and the

computational efficiency can be greatly improved. The

ensemble methods can be used to acquire the small prob-

ability characteristic of the dynamic system under the

stochastic excitation. The accuracy of the ensemble method

is mainly determined by the precision of the surrogate

model.

(a) (b)

Fig. 8 Comparison of MCS and NARX-SS/S methods: a exceedance probability of the train body acceleration and b comparison of the c.o.v. for

different estimators

(a)

(b)

Fig. 9 Comparison of the predicted value of the surrogate model and the target value: a time history of acceleration and b errors
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5 Conclusions

In this work, an ensemble method based on the NARX

surrogate model and SS/S method is presented, and the

correctness and efficiency of the proposed method are

verified by the MCS method. The ensemble method is

applied to acquire the small probability distribution of the

train response under vertical track irregularity. The results

show that the ensemble method NARX-SS/S has the

advantages of the SS/S method and surrogate model and its

computational efficiency is obviously improved. In other

words, the calculation time of a single sample is decreased,

and the required number of samples is greatly reduced

when the small probability of train responses under vertical

track irregularity is estimated.
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