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Abstract 

This paper suggests random and fixed effects spatial two-stage least squares estimators 

for the generalized mixed regressive spatial autoregressive panel data model. This extends the 

generalized spatial panel model of Baltagi, Egger and Pfaffermayr (2013) by the inclusion of a 

spatial lag dependent variable. The estimation method utilizes the Generalized Moments method 

suggested by Kapoor, Kelejian, and Prucha (2007) for a spatial autoregressive panel data model. 

We derive the asymptotic distributions of these estimators and suggest a Hausman test a la Mutl 

and Pfaffermayr (2011) based on the difference between these estimators. Monte Carlo 

experiments are performed to investigate the performance of these estimators as well as the 

corresponding Hausman test. 
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Random E¤ects, Fixed E¤ects and Hausman�s Test for the 
Generalized Mixed Regressive Spatial Autoregressive Panel Data 

Model� 

Badi H. Baltagiy, Long Liuz 

November 1, 2014 

Abstract 

This paper suggests random and �xed e¤ects spatial two-stage least squares estimators for the the 
generalized mixed regressive spatial autoregressive panel data model. This extends the generalized spatial 
panel model of Baltagi, Egger and Pfa¤ermayr (2013) by the inclusion of a spatial lag dependent variable. 
The estimation method utilizes the Generalized Moments method suggested by Kapoor, Kelejian, and 
Prucha (2007) for a spatial autoregressive panel data model. We derive the asymptotic distributions of 
these estimators and suggest a Hausman test a la Mutl and Pfa¤ermayr (2011) based on the di¤erence 
between these estimators. Monte Carlo experiments are performed to investigate the performance of 
these estimators as well as the corresponding Hausman test. 

Key Words: Panel Data; Fixed E¤ects; Random E¤ects; Spatial Model; Hausman Test. 
JEL classi�cation: C12; C13; C23 

1 Introduction 

Anselin (1988) and Kapoor, Kelejian, and Prucha (2007) considered two di¤erent variants of a random e¤ects 

panel data model with spatially correlated errors. The �rst paper estimated it with maximum likelihood 

methods and the second estimated it with a generalized moments (GM) method that is computationally 

simpler. Baltagi, Egger and Pfa¤ermayr (2013) generalized this random e¤ects spatial model to encompass 

both cases and derived LM and LR tests to distinguish between these models. The generalized model allows 

the individual e¤ects and the remainder errors to have di¤erent spatial autoregressive parameters. Using 

maximum likelihood methods, Baltagi, Egger and Pfa¤ermayr (2008) examined the consequences of model 

misspeci�cation in this context using Monte Carlo simulations. These papers assume that the underlying 

�We would like to thank the editor Essie Maasoumi, an Associate editor and two anonymous referees for their helpful 
comments and suggestions. Long Liu gratefully acknowledges the summer research grant from the College of Business at 
UTSA. 

yAddress correspondence to: Badi H. Baltagi, Center for Policy Research, 426 Eggers Hall, Syracuse University, Syracuse, 
NY 13244-1020; e-mail: bbaltagi@maxwell.syr.edu. 

zLong Liu: Department of Economics, College of Business, University of Texas at San Antonio, One UTSA Circle, TX 
78249-0633; e-mail: long.liu@utsa.edu. 
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spatial panel model is random e¤ects (RE). Spatial panel data model with �xed-e¤ects (FE) have been 

considered by Baltagi and Li (2006), Mutl and Pfa¤ermayr (2011), and Lee and Yu (2010) to mention a 

few. In fact, Baltagi and Li (2006) obtained the maximum likelihood estimator of a �rst order spatial 

autoregressive model with �xed e¤ects and used it to forecast the consumption of liquor across a panel of 

US states, while Lee and Yu (2010) established the asymptotic properties of a quasi-maximum likelihood 

(QML) estimator for the spatial panel data model with �xed-e¤ects. However, as pointed out by Kapoor, 

Kelejian, and Prucha (2007), hereafter denoted by (KKP), the QML estimation of Cli¤ and Ord (1973, 1981) 

type models entail substantial computational problems if the number of cross sectional units is large. To 

circumvent these computational problems for the mixed regressive spatial autoregressive (MRSAR) model, 

Mutl and Pfa¤ermayr (2011) suggested a �xed e¤ects two-stage least squares (FE-2SLS) estimator based on 

a generalized moments (GM) estimator a la Kapoor, Kelejian, and Prucha (2007) extending the latter to 

include a spatial lag of the dependent variable. Mutl and Pfa¤ermayr (2011) also propose a Hausman test 

based on the di¤erence between the �xed and random e¤ects speci�cation of this model. This paper applies 

the FE-S2SLS estimator of Mutl and Pfa¤ermayr (2011) to the generalized error component model considered 

by Baltagi, Egger and Pfa¤ermayr (2013) by adding a spatial lag term. We also suggest a random e¤ects 

spatial two-stage least squares (RE-S2SLS) estimator using GM estimation of this generalized MRSAR 

error component model. Following Mutl and Pfa¤ermayr (2011), we apply a Hausman test based on the 

di¤erence between the �xed and random e¤ects speci�cation of this generalized MRSAR model. Small 

sample properties of these estimators as well as the size of the proposed Hausman test are studied using 

Monte Carlo experiments. We show that a misspeci�ed GM estimator can cause substantial loss in root 

mean squared error (RMSE) and wrong size for the corresponding Hausman test. 

The rest of the paper is organized as follows. Section 2 introduces the RE-S2SLS and FE-S2SLS estimators 

for the MRSAR model. Generalized moments (GM) estimators a la Kapoor, Kelejian and Prucha (2007) 

are proposed for this model and their asymptotic distributions are derived. Following Mutl and Pfa¤ermayr 

(2011), a Hausman test is proposed based on the di¤erence between the FE-S2SLS and feasible RE-S2SLS 

estimators of this spatial panel model. Simulation results are reported in section 3, while section 4 concludes 

the paper. All proofs are relegated to the Appendix. 

2 The MRSAR Model 

Let us consider the MRSAR model which is based on a generalized spatial error components model studied 

in Baltagi, Egger and Pfa¤ermayr (2013) but extends it by adding a spatial lag of the dependent variable as 

2 







 	

in Mutl and Pfa¤ermayr (2011). For each time period t = 1; :::; T , the data are generated according to the 

following model: 

yN (t) = �MN yN (t) + XN (t) � + uN (t) (1) 

uN (t) = u1N + u2N (t) ; (2) 

u1N = �1WN u1N + �N ; (3) 

u2N (t) = �2WN u2N (t) + �N (t) ; (4) 

where yN (t) denotes the N � 1 vector of observations on the dependent variable in period t. XN (t) denotes 

the N � K matrix of observations on exogenous regressors in period t, which may contain the constant 

term. � is the corresponding K � 1 vector of regression parameters, and uN (t) denotes the N � 1 vector 

of disturbance terms. uN (t) follows an error component model which involves the sum of two disturbances. 

The N � 1 vector u1N captures the time-invariant unit-speci�c e¤ects and therefore has no time subscript. 

The N � 1 vector of the remainder disturbances u2N (t) varies with time. Both u1N and u2N (t) are spatially 

correlated with the same spatial weights matrix WN , but with di¤erent spatial autocorrelation parameters 

�1 and �2, respectively. Both MN and WN are N � N weighting matrices of known constants which do not 

vary over time. MN and WN may or may not be the same. This generalizes the model in Baltagi, Egger 

and Pfa¤ermayr (2013) by incorporating a spatial lag term MN yN (t). 

Stacking the cross-sections over time yields 

yN = �MN yN + XN � + uN (5) 

uN = Z�u1N + u2N ; (6) 

u1N = �1WN u1N + �N ; (7) 

u2N = �2 (IT WN ) u2N + �N ; (8) 

0 0 
N (T )]0 , uN = [u0 N (1) ; : : : ; u

0 
N (T )]0 , u2N =

0 
N 

0 
N (T )] XN = [X 0 

Nwhere yN = [y (1) ; : : : ; y (1) ; : : : ; X, 
0 0

[u0 2N (1) ; : : : ; u
0 
2N (T )] 0 

N (1) ; : : : ; v
0 
Nand The unit-speci�c errors u1N are repeated in all [v (T )]vN = . 

time periods using the NT � N selector matrix Z� = �T IN , where �T is a vector of ones of dimension T � 
and IN is an identity matrix of dimension N , see Baltagi (2013). Let �i;N and f�it;N g denote the elements 

of the N � 1 vector of individual e¤ects �N and the n � 1 vector of remainder disturbances �N . Following 

Kapoor, Kelejian and Prucha (2007), we employ the following assumptions: 

Assumption 1 Let T be a �xed positive integer. (a) For all 1 � t � T and 1 � i � N , N � 1 the error 

components �it;N are identically distributed with zero mean and variance �� 
2 , 0 < �2 < bv < 1, and �nite � 
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fourth moments. In addition, for each N � 1 and 1 � t � T , 1 � i � N the error components �it;N 

are independently distributed. (b) For all 1 � i � N , N � 1; the unit speci�c error components �i;N are 

independently distributed with zero mean and variance �2 
�, 0 < �2 < b� < 1, and �nite fourth moments. � 

In addition, for each N � 1; and 1 � i � N the unit speci�c error components �i;N are independently � 
distributed. (c) The processes �i;N and f�it;N g are independent. 

Assumption 2 (a) All diagonal elements of MN and WN are zero. (b) j�j < 1, j�1j < 1 and j�2j < 1. (c) 

The matrices IN � �MN , IN � �1WN and IN � �2WN are nonsingular. The row and column sums of MN , 
�1 �1 �1

WN , (IN � �MN ) , (IN � �1WN ) and (IN � �2WN ) are bounded uniformly in absolute values for all 

j�j < 1, j�1j < 1 and j�2j < 1. 

As pointed out by Baltagi, Egger and Pfa¤ermayr (2013), this model nests various spatial panel models 

in the literature. For example, for the case where there is no spatial lag, i.e., � = 0; and when �1 = �2, 

this reduces to the spatial random e¤ects model considered in Kapoor, Kelejian and Prucha (2007). When 

� = 0 and �1 = 0 , it reduces to the Anselin (1988) spatial random e¤ects model also described in Baltagi, 

Song and Koh (2003) and Anselin, Le Gallo and Jayet (2008). When �1 = �2 = 0, it reduces to the familiar 

random e¤ects (RE) panel data model with no spatial e¤ects, see Baltagi (2013). In the presence of the 

spatial lag of the dependent variable, it nests the MRSAR model considered by Mutl and Pfa¤ermayr (2011) 

and Debarsy and Ertur (2010), to mention a few. 

2.1 The RE-S2SLS Estimator 

As shown in Kelejian and Prucha (1998) for the cross-section case, the spatial lag MN yN is correlated with 

the vector of disturbances uN . Therefore, the Ordinary Least Squares (OLS) estimator will be inconsistent. � �0
De�ne ZN = (MN yN ; XN ) and � = �; �0 . With this notation, the MRSAR model can be rewritten as 

yN = ZN � + uN : (9) 

For the cross-section spatial autoregressive model, Kelejian and Prucha (1998) suggested instruments like � � 
= XN ;MN XN ;M

2 . De�ne = var (uN ). As shown in Baltagi, Egger and Pfa¤ermayr (2013), HN N XN u h i�1 �1 �1 �1 
= J�T T�� 

2 (A0A) + �� 
2 (B0B) + ��2 [ET (B0B)] ; (10) u � 

where A = IN � �1WN and B = IN � �2WN . ET = IT � J�T , J�T = JT =T and JT is a matrix of ones of 
�1=2dimension T . Multiplying Equation (9) by u , we get 

�1=2 �1=2 �1=2 
u yN = ZN � + u uN : (11) u 
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� � 
� 

De�ne P = J�T IN and Q = INT � P , where INT is an identity matrix of dimension NT . Following Baltagi 
�1=2and Liu (2011), we apply the instruments u H� with H� = (QHN ; PHN ) to this transformed panelN N 

autoregressive spatial model. The random e¤ects spatial two-stage least squares estimator (RE-S2SLS) of � 

is given by h i�1��1 �1 
��1 

�RE�S2SLS 

with variance var 

b �1Z 0 H� 
N N H

�0 �1H� 
N N H�0 

N 
�1Z 0 H� 

N N H
�0 �1H� 
N N H�0 �1 yN (12)N uZN = u u u u u 

�RE�S2SLS 

h� b� i�1��1 
Z 0 �1H� H�0 �1H� 
N N N N H�0 �1 

N ZN = .u u u 

Kapoor, Kelejian and Prucha (2007) considered the special case where � = 0 and �1 = �2 and proposed 

GM estimators of �2 and �2 based on the following three moment conditions:� 

1 
E [�0 �2 

N Q�N ] = � ; (13)
N (T � 1) 

1 �� 
2 tr (W 0 WN )NE [��N 

0 Q��N ] = ; (14)
N (T � 1) N 

1 
E [��0 N Q�N ] = 0; (15)

N (T � 1) 

where ��N = (IT WN ) �N . De�ne u�2N = (IT WN ) u2N and u��2N = (IT WN ) �u2N . Substitute �N = 

u2N � �2u�2N and ��N = u�2N � �2u��2N into the system of equations given above, we get 

1 2 10 0 �2 0 �2E [u2N Qu2N ] � �2E [�u2N Qu2N ] + 2E [�u2N Qu�2N ] = � ; (16)
N (T � 1) N (T � 1) N (T � 1) 

1 2 1 �� 
2 tr (W 0 WN )0 0 �2 0 NE [�u2N Qu�2N ] � �2E [��u2N Qu�2N ] + 2E [��u2N Qu��2N ] = (17);

N (T � 1) N (T � 1) N (T � 1) N 
1 1 10 0 0 0E [�u2N Qu2N ] � �2E [��u2N Qu2N + �u2N Qu�2N ] + �2

2E [��u2N Qu�2N ] = 0: (18)
N (T � 1) N (T � 1) N (T � 1) 

0Note that Q (�T u1N ) = 0. Therefore, for the general model in Equations (5)-(8), we have u QuN = N 

0 0 0 0 0u Qu2N ; u� Qu�N = u� Qu�2N and u� QuN = u� Qu2N . This system can be expressed as2N N 2N N 2N � �0 
�0 
N �2; �

2
2; �

2 
� � 
0 = 0; (19)N 10 

2 0 1 0E [�u QuN ] � E [�u Qu�N ] 1N(T �1) N N(T �1) NBBB@ 

CCCA 
where �0 

N 
2 0 1 0 1E [��u Qu�N ] � E [��u Qu��N ] tr (W 0 WN )N N(T �1) N N N = 

N(T �1) 

1 
1 0 0 1 0E [��u QuN + �u Qu�N ] � E [��u Qu�N ] 0N N NN(T �1) N(T �1)0 

1 E [u0 QuN ]N(T �1) NBBB@ 

CCCA 
.and 
0 

N = 1 E [�u0 Qu�N ]N Let ubN denote the 2SLS residuals from (5) ignoring the random e¤ects,
N(T �1) 

1 
N(T �1) E [�u0 QuN ]N 
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h i�1�1 0 0 �10 0 0i.e., ubN = yN � ZN 
b�2SLS , where b�2SLS N yN . 0 

0and g be the sample analogues of �0 and 
0 substituting ubN for uN :We can get a GM estimator by solvingN N N � � �� � � �0 � 

�~2; �~
2 = arg min �0 �2; �

2 �0 �2; �
2 ; �2 2 [�a0; a0] ; �� 

2 2 [0; b0] ; (20)� N � N � 

� � � �0 1where �0 �2; �
2 = G0 �2; �2

2; �2 � gN , a0 � 1 and b0 � bv.N � N � 

Let GNZ HN (H HN ) H ZN Z HN (H HN ) H= N N N N N 

Assumption 3 The smallest eigenvalues of �0 N �N are bounded away from zero. 

Kapoor, Kelejian and Prucha (2007) showed that, for their model with no spatial lag, and where the 

disturbances are replaced by OLS residuals, �~ and �~2 are consistent. It is worth pointing out that the� 

condition Q (�T u1) = 0 holds for the general model given in equation (5), and not only for the special 

case in Kapoor, Kelejian and Prucha (2007). Therefore, for all values of �1 and �2 in the parameter space,� 

the GM estimator of �2 and �2 suggested by Kapoor, Kelejian and Prucha (2007) and applied to our model� 

based on 2SLS residuals, will also be consistent. By Theorem 1 of Kapoor, Kelejian and Prucha (2007), � � � � 
�2 p

we have �~2; ~ ! �2; �
2 under assumptions 1-3 as N ! 1. Similarly, we introduce the following GM� � 

estimators of �1 and �2 
�: 

De�ne �� = WN �. We have the following three moment conditions: 

1 
N 

0E [�N �N ] 

0 

�2 
�; (21) 

N WN ) ; 

= 

1 
N 

1 
�2 
�tr (W

0E [��N ��N ] (22)= 
N 

1 
N 

0E [��N �N ] (23)= 0: 

Similarly de�ne u�1N = WN u1N and u��1N = WN u�1N . Substitute �N = u1N � �1u�1N and ��N = u�1N � �1u��1N 

into the system of equations given above, we get 

1 
N 

2 
N 

1 
�21E [�0E [u1N u1N ] � 0�1E [�u1N u1N ] +

0 u 

0 

�2 
�; (24) 

N WN ) ; 

1N u�1N ] = 
N 

�2 
�1 2 10 

1 

0�1E [��u 0 u�21E [�� (25) 

0 

1N u�1N ] �E [�u 1N u�1N ] + 1N u��1N ] = tr (W
N N N N 

1 
N 

1 
�21E [��0E [�u1N u1N ] � 0 

1N u1N + �u 0 u (26)�1E [��u 1N u�1N ] + 1N u�1N ] = 0: 
N N 

This system can be expressed as � �0 
�1 �1; �

2
1; �

2 � 
1 = 0; (27)N � N 
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0 1 
2 0 0E [�u � 1 E [�u � 1B N 1N u1N ] N 1N u1N ] CB C2 0 � 1 0 1where �1 = B E [��u � E [��u �� tr (W 0 CN N 1N u1N ] N 1N u1N ] N N WN )@ A 

1 0 0 � 1 0E [��u1N u1N + �u u�1N ] E [��u u�1N ] 0N 1N N 1N0 1 
1 E [u0 1N u1N ]NB C B C 1 1and 
1 = B 1 E [�u0 � C. De�ne S = P � Q = ST IN , where ST = J�T � ET . AlsoN N 1N u1N ] T �1 T �1@ A 
1 E [�u0 1N u1N ]N 

1 � �0 � �0 W k W l = u IT S IT uN ' kl;N NT N N N � �0 � �0 =
1 
u IT W k (ST IN ) IT W l uNN N NNT 

1 � �0 W k0 = u ST N W l uNN NNT 

for k; l = 0; 1; 2. Hence 

� � 1 � � � �0 W k0E ' kl;N = E uN ST N WN
l uN

NT 
1 � 0 � � � 

W k0 = E (Z�u1N + u2N ) ST N W l (Z�u1N + u2N )NNT � � � � � � � �0 
W k0 0 W k0 =

1 
E (Z�u1N ) ST N W l (Z�u1N ) + 

1 
E u ST N W l u2NN 2N NNT NT 

2 � � � �0 W k0+ E u ST N W l Z�u1N2N NNT 

� I + II + III: 

Note that 

1 � � � � 1 � � � � 1 � �0 
W k0 0 W k0 0I = E (Z�u1N ) ST N W l (Z�u1N ) = E u �0 T ST �T N W l u1N = E u1N WN

k0WN
l u1NN 1N NNT NT N � � 

� 1 � 1 �since �0 ST �T = �0 JT � ET �T = �0 JT �T � �0 ET �T = T using JT �T = �T and ET �T = 0;T T T �1 T T �1 T h i1 � � � � 1 � �0 � � � �0 W k0 �0 B�1 W k0 B�1II = E u ST N W l u2N = E IT ST N W l IT �N2N N N NNT NT 
1 � � � � 

= E �0 B�10WN
k0WN

l B�1N ST �N
NT 
1 � � 

= �2tr (ST ) tr B
�10WN

k0WN
l B�1vNT 

= 0 � � 
1since tr (ST ) = tr J�T � ET = 0; andT �1 

2 � � � �0 W k0III = E u ST N W l Z�u1N = 02N NNT 
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� � 
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� 
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� � 

� 

�� 
= 1 0 W k0E uN N0 

lW1N u1N 

SuN ] 

since u1N0 BBB@ 

and u2N are independent by Assumption 1. Hence, one gets E 
0 1 0 1 0 

1 ' kl;N ;1N 

2 
NT E [�u SuN ] E [�u Su�N ] 1 E [uN N NNT NT 

WN ) 
CCCA; and 
1 

N = 
BBB@ 

CCCA 
�1 
N 

2 
NT 

0 1 0 1 1 
NT 

Thetr (W 0 N 
0 
NE [��u Su�N ] E [��u Su��N ] E [�u Su�N ]= .

N NNT N 

1 
NT 

1 
NT 

1 
NT 

0 0 0 0 
NE [��u SuN + �u Su�N ] Su�N ] 0 E [�u SuN ]E [��u0N N N 1 

2 0 1 0u~� Su~N � u~� Su~�N 1NT N NT NBBB@ 

CCCAsample analogues to �1 and 
1 are G1 
N N N 

2 
NT 
~0 1 ~0 ~ 1�� �~ �� �� tr (W 0 N andS S WN )= u uN u uNN NNT N� � 

1 ~0 0 1 ~0u�� Su~N + u~� Su�~N � u�� Su�~N 0NT N N NT N10 
1 u~0 Su~NNT NBBB@ 

CCCA1 , respectively. Hence, a GM estimator can be obtained from1 u~�0 Su~�Ng = N NNT 

1 u~�0 Su~NNNT � �� 
2� ; �1 � 

1� gN , a1 � 1 and b1 � b�. 

� �0 �� 
�1 �1; �

2 �1 
N � N�2�1; ~� ; �1 2 [�a1; a1] ; �2 

� 2 [0; b1] ; (28)= arg min~

�� �0
where �1 

N �1; �
2 = G1 �1; �

2
1; �

2 
� N � � �p!~ �2�1; ~� �1; �

2 
�Theorem 1 Under Assumptions 1 -3, we have as N !1. 

With the GM estimators of �~1, ~ �~2 and �~2 , the corresponding random e¤ects feasible spatial two-stage�2, � � 

least squares estimator b�RE�FS2SLS is given by 

�� ��1��1 � ��1 
�RE�FS2SLS 

where 

b = Z 0 ~�1H� H�0 ~�1H� H�0 ~ �1 Z 0 ~�1H� H�0 ~�1H� H�0 ~�1ZN yN ; (29)N u N N u N N u N u N N u N N u 

�� ��1 � ��1 
��1 �h �i 

~�1 � �2 A~0 ~ �2 B~ 0 ~ ��2 B~ 0 ~= JT T ~ A + ~ B + ~ ET B : (30)u � � � 

Assumption 4 XN h�is non-stochastic. The elements of XN 

1 H 0 J�T T�2 
� (A

0A)N 

�are bounded uniformly in absolute value. Fur-i�1�1 �1 
+ �2 

� (B
0B)thermore, the limit �0 = lim HN ,NTN!1 � �h i�1�1 �1 

+ �21 1 �H 0 [ET (B0B)] HN , �0 = lim H 0 JT T�2 
� (A

0A)N NT N � (B
0B) ZN and�1 = lim 

N!1 NT N!1 
1 H 0�1 = lim [ET (B0B)] ZN are �nite and nonsingular.NT N

N !1 

The theorem below establishes consistency and asymptotic normality of the random e¤ects feasible spatial 

two-stage least squares estimator. The proof of the theorem is given in the appendix. ��� ��1p d! Nb�RE�FS2SLS � � 

as N !1. 
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�0 0�
�1�0 + ��2�1

0 ��1 
0 � 1 �1Theorem 2 Under Assumptions 1-4, we have NT 0; 

� 




 



 



 
 











Next, we turn to the special cases of this general model. Under the KKP model, but now with a spatial 

lag, we have �1 = �2, and as a result A = B, and Equation (10) reduces to � ��1 = �2J�T + ��2ET (B0B) ; (31) u 1 � 

where �21 = T�2 
� + �� 

2 . Kapoor, Kelejian and Prucha (2007) suggest estimating �2 by 1 

�2 1 0 
~ = (~uN � �~2WN u~N ) Q (~uN � �~2WN u~N ) :1 N 

In this case, the asymptotic distribution of the corresponding b�RE�FS2SLS is the same as in Theorem 2 with � � � � 
1 H 0 � 1 H 0 ��0 and �0 reducing to �0 = lim �21JT (B0B) HN , and �0 = lim �2JT (B0B) ZN ,NT N NT N 1

N!1 N !1 

respectively. 

Under the Anselin model, but now with a spatial lag, we have �1 = 0 and hence A = IN . Equation (10) 

reduces to h i�1 �1 = � T��
2 IN + �2 

� (B
0B) + ��2 [ET (B0B)] : (32)u JT 

�1 
� 

We can estimate �2 
� from the �rst Equation in (21) as 

1 1 10 0 0�2 ~ = u~ ~ = u~ u~� N SuN N Pu~N � N Qu~N : 
NT NT NT (T � 1) 

Note that it is the same estimator of �2 
� for the random e¤ect model with �1 = �2 = 0. From the 

p
proof of Theorem 1, we know that under Assumptions 1-3, �~2 ! �� 

2 as N ! 1. With these GM esti-� 

mators of �~2, �~� 
2 and �~� 

2 , we obtain the random e¤ects feasible spatial two-stage least squares estimator b�RE�FS2SLS . Similar to Theorem 2, we can show that b�RE�FS2SLS has the same asymptotic distribution � �h i�1 
1 H 0 � �1as in Theorem 2, with �0 and �0 reducing to �0 = lim JT T�2 

�IN + �� 
2 (B0B) HN , and NT N

N!1� �h i�1 
1 H 0 � �1

�0 = lim NT N JT T�2 
�IN + �2 

� (B
0B) ZN , respectively. 

N !1 

2.2 The FE-S2SLS Estimator 

Let fu1i;N g and fXit;N g denote the elements of the N � 1 vector of u1N and the NT � K vector of XN . A 

critical assumption for the consistency of the RE estimator is that E (u1i;N jXit;N ) = 0. If the unobserved 

individual invariant e¤ects are correlated with Xit; then E (u1ijXit) 6= 0 and RE is inconsistent. As pointed 

out in Lee and Yu (2010), with the �xed e¤ects speci�cation, the panel models in Baltagi, Egger and 

Pfa¤ermayr (2013), Kapoor, Kelejian and Prucha (2007) and Anselin (1988) have the same representation. 

More speci�cally, premultiplying equation (5) by the �xed e¤ects (or within) transformation Q = ET IN , 

one obtains 

QyN = QZN � + Qu2N ; (33) 
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since Q (�T u1N ) = 0, see Baltagi (2013). The �xed e¤ects two-stage least squares estimator (FE-2SLS) 

estimator h i�1�1 �1b�FE�2SLS = Z 0 N QHN ) H 0 
N QHN (H

0 
N QyN (34)N QHN (H

0 
N QZN Z 0 N QHN ) H 0 

wipes out the individual e¤ects and does not require the estimation of �1 or �
2 
�. However, this estimator 

ignores the spatial autocorrelation in the error. To gain e¢ ciency, one can apply the Cochrane-Orcutt type 

spatial transformation on the within transformed model in Equation (33) to obtain the FE-S2SLS estimator 

as suggested in Mutl and Pfa¤ermayr (2011). More speci�cally, we premultiply equation (33) by IT B; to 

get 

(ET B) yN = (ET B) ZN � + Q�N : (35) 

This uses the fact that (IT B) Q = (ET B) = Q (IT B) and (IT B) Qu2N = Q (IT B) u2N = Q�N . 

Applying the instruments (ET B) HN , we get the �xed e¤ects spatial two-stage least squares estimator 

(FE-S2SLS) of � given by n o�1�1b�FE�S2SLS = Z 0 (B0B)] HN (H
0 (B0B)] HN ) H 0 (B0B)] ZNN [ET N [ET N [ET (36) 

�1
Z 0 (B0B)] HN (H

0 (B0B)] HN ) H 0 (B0B)] yN � � n o�1 

N [ET N [ET N [ET 

Z 0
�1with var b�FE�S2SLS = �� 

2 [ET N (B0B)] HN ) H 0 [ET (B0B)] ZN . If(B0B)] HN (H
0 [ETN N 

�2 = 0; then B = IN and the FE-S2SLS estimator in Equation (36) reduces to the FE-2SLS estimator in 

Equation (34). Using the GM estimators of �~2 and �~2 from Equation (20), the corresponding �xed-e¤ects � 

feasible spatial two-stage least squares estimator (FE-FS2SLS) b�FE�FS2SLS is obtained by replacing B by 

~its estimator B = IN � �~2WN , i.e., � h � �i � h � �i ��1 h � �i ��1 b Z 0 B~ 0 ~ H 0 B~ 0 ~ H 0 B~ 0 ~�FE�FS2SLS = N ET B HN N ET B HN N ET B ZN h � �i � h � �i ��1 h � �i 
Z 0 B~ 0 ~ H 0 B~ 0 ~ H 0 B~ 0 ~N ET B HN N ET B HN ET B yN : (37)N 

This estimator can be computed conveniently as the �xed e¤ects two-stage least squares estimator after pre-

~multiplying the model in equation (5) by IT B. The theorem below establishes consistency and asymptotic 

normality of the FE-FS2SLS estimators. The proof of the theorem is given in the appendix. � � � �p � ��1dTheorem 3 Under Assumptions 1-4, we have NT b�FE�FS2SLS � � ! N 0; �� 
2 �0 1�1 

�1�1 as N ! 

1. 

One of the advantages of the FE-FS2SLS estimator of � is that it does not depend on �2 and �1: Hence, � 

the FE-FS2SLS estimator is robust to di¤erent values of �2 and �1. Another advantage of the FE-FS2SLS � 

estimator is that it is still consistent when E (u1ijxit) 6= 0, while the RE-FS2SLS estimator is not. 
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2.3 Hausman�s Test 

One can perform Hausman�s (1978) speci�cation test for this generalized MRSAR panel data model. The bnull hypothesis is H0 : E (u1i;N jXit;N ) = 0. Under H0, �RE�S2SLS given in (12) is the e¢ cient estimator, 

while under the alternative H1 : E (u1i;N jXit;N ) 6 �RE�S2SLS �FE�S2SLS is= 0; b is inconsistent. In contrast, b
consistent under the null and alternative. Let q = b�FE�S2SLS � b�RE�S2SLS and note that � � 

cov b�FE�S2SLS ; b�RE�S2SLS �� �� �0 � b b= E �FE�S2SLS � � �RE�S2SLS � � n o�1�1 
= N [ET N [ET N [ET (B0B)] ZNZ 0 (B0B)] HN (H

0 (B0B)] HN ) H 0 

�1 0ZN 
0 [ET (B0B)] HN (H

0 H 0 
N )N [ET (B0B)] HN ) N [ET (B0B)] E (uN u h i�1 �1H� H�0 �1H� 

��1 
H�0 �1 Z 0 �1H� H�0 �1H� 

��1 
H�0 �1 

u N N u N N u ZN N u N N u N N u ZN h i�1 
Z 0 �1H� H�0 �1H� 

��1 
H�0 �1 = N u N N u N N u ZN � � b= var �RE�S2SLS : 

Hence � � 
var (q) = var b�FE�S2SLS � b�RE�S2SLS � � � � � � 

= var b�FE�S2SLS + var b�RE�S2SLS � 2cov b�FE�S2SLS ; b�RE�S2SLS � � � � � � b b b= var �FE�S2SLS + var �RE�S2SLS � 2var �RE�S2SLS � � � � b b= var �FE�S2SLS � var �RE�S2SLS : 

�1Under H0, the Hausman test m = q0 [var (q)] q has a limiting �2 distribution with degrees of freedom equal � � 
to the rank of var(q). In practice, estimates of both �1 and �2 are needed to calculate var b�RE�S2SLS . 

Under the Kapoor, Kelejian and Prucha (2007) random e¤ects spatial model, �1 = �2 and under the Anselin 

(1988) random e¤ects spatial model, �1 = 0: One could perform a Hausman test based on these RE-S2SLS 

versus FE-S2SLS estimators proposed in this paper. In fact, Mutl and Pfa¤ermayr (2011) suggested a Haus-

man test assuming �1 = �2 for the MRSAR panel data model. Its sensitivity under model misspeci�cation 

(say �1 6 ) is checked in the following section via Monte Carlo experiments. = �2
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3 Monte Carlo Simulation 

This section performs Monte Carlo experiments to study the �nite sample performance of the proposed 

estimators and the corresponding Spatial Hausman test. Following Baltagi, Egger and Pfa¤ermayr (2013) 

but adding a spatial lag term, we consider the following MRSAR panel model 

yN = �MN yN + � + �xN + uN ; (38) 

iidwhere � = 0:5, � = 5 and � = 0:5. xit is generated by xit = �i + zit with �i � U [�7:5; 7:5] and 
iid iid

zit � U [�5; 5]. The individual speci�c e¤ects are drawn from a normal distribution so that �i � N (0; 20�). 

For the remainder error, we let �2 = 10 and �2 = 10. This implies that the proportion of the total � � 
�2 
�variance due to the heterogeneity of the individual-speci�c e¤ects is � 2 

� 
= 0:5. The spatial weight matrix 2 

�+�

is created following Kapoor, Kelejian and Prucha (2007). The weighting matrix is referred as �3 ahead 

and 3 behind�. This matrix is de�ned in a circular world so that the non-zero elements in rows 1 and N 

are, respectively, in positions (2; 3; 4; N � 2; N � 1; N) and (1; 2; 3; N � 3; N � 2; N � 1). This matrix is row 

normalized so that all of its non-zero elements are equal to 1=6. In the Tables below, we reference this 

weighting matrix by J = 6, where J is the number of nonzero elements in a given row. �1 and �2 vary over 

the set f�0:8; �0:5; �0:2; 0; 0:2; 0:5; 0:8g. We consider a panel with N = 100 regions and T = 5 time periods, 

and we perform 10,000 replications. For each replication, we estimate the model using (i) FE-2SLS allowing 

for spatial lag but no spatial error correlation; (ii) RE-2SLS allowing for spatial lag but no spatial error 

correlation; (iii) FE-S2SLS allowing for both spatial lag and spatial error correlation; (iv) KKP RE-S2SLS 

allowing for both spatial lag and error correlation; (v) Anselin RE-S2SLS allowing for both spatial lag and 

error correlation; (vi) General RE-S2SLS allowing for both spatial lag and error correlation; and (vii) True 

RE-S2SLS allowing for both spatial lag and spatial error correlation. 

Table 1 reports the relative root mean squared error (RMSE) of each estimator of � with respect to the 

true RE-S2SLS. Several conclusions emerge from this table. Not surprisingly, true RE-S2SLS is the most 

e¢ cient estimator in terms of root mean squared error. When the true model is spatial RE, KKP or Anselin 

with a spatial lag term, the �correct�feasible RE-S2SLS estimator performs best and is the closest in RMSE 

to the true RE-S2SLS. FE-S2SLS estimator performs much better than standard FE-2SLS which ignores 

the spatial correlation. For example, for �1 = �2 = �0:8, the relative RMSE of FE-2SLS and FE-S2SLS 

with respect to true RE-S2SLS is 1:365 and 1:243, respectively. Note that both FE-S2SLS and FE-2SLS 

estimators perform much worse than any feasible spatial RE-S2SLS estimator. There is also much gain in 

performing RE-S2SLS allowing for spatial correlation than ignoring it. For �1 = �2 = �0:8, the relative 

RMSE of RE-2SLS ignoring spatial correlation with respect to true RE-S2SLS is 1:118 compared to 1:027 for 
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the RE-S2SLS based on KKP. The General spatial RE-S2SLS estimator of Baltagi, Egger and Pfa¤ermayr 

(2013) is second best with relative RMSE of 1:039. For �1 = 0 and �2 = 0:8; the relative RMSE of RE-2SLS 

ignoring spatial correlation is 1:179 compared to 1:047 for the RE-S2SLS based on Anselin. The General 

spatial RE-S2SLS estimator is again second best with relative RMSE of 1:052. The gain in e¢ ciency from 

using the correct feasible RE-S2SLS for our experiments when the true model is a generalized MRSAR 

panel model with �1 = 0:8 and �2 = �0:8, is as follows: The relative RMSE of the RE-S2SLS based on 

KKP is 1:356 and the RE-S2SLS based on Anselin is 1:220, while the General spatial RE-S2SLS estimator 

is 1:062. Table 2 reports the relative root mean squared error (RMSE) of each estimator of �. Similar to 

the simulation results for � in Table 1, for �1 = 0:8 and �2 = �0:8, The relative RMSE of the RE-S2SLS 

based on KKP is 1:262 and the RE-S2SLS based on Anselin is 1:096, while the General spatial RE-S2SLS 

estimator is 1:024. 

Table 3 reports the empirical size (at the 5% level) of the spatial Hausman test for various values of �1 

and �2 based on 10,000 replications. This is based on the contrast of the KKP RE-S2SLS estimator and the 

FE-S2SLS in the �rst column, and the contrast of the Anselin RE-S2SLS estimator and the FE-S2SLS in 

the second column and the contrast of the Generalized RE-S2SLS estimator and the FE-S2SLS in the third 

column. We can see that for �1 = 0 and �2 = �0:8; the spatial Hausman test based on KKP is over-sized if 

the true model is an Anselin random e¤ects MRSAR model. It yields a probability of type I error of 0:070 

when it should be 0:05. This oversizing of the test gets worse when �1 = 0:8 and �2 = �0:8. The Hausman 

test based on KKP yields a type I error of 0:115. In contrast, for �1 = �2 = �0:8, the spatial Hausman test 

based on the Anselin RE-S2SLS estimator is under-sized if the true model is a KKP random e¤ects MRSAR 

model. It yields a probability of type I error of 0:031 when it should be 0:05. However, this undersizing does 

not get worse, and the Hausman test based on the Anselin type MRSAR panel model performs reasonably 

well when the true model is a generalized MRSAR panel model, with size varying between 0:032 and 0:070. 

The spatial Hausman test based on the generalized spatial RE-S2SLS estimator performs better with size 

varying between 0:036 and 0:062. 

4 Conclusion 

This paper suggests simple RE-S2SLS and FE-S2SLS estimators for the generalized MRSAR panel model. 

This extends the generalized spatial error model considered by Baltagi, Egger and Pfa¤ermayr (2013) to 

include a spatial lag term. More speci�cally, this generalized MRSAR model encompasses the KKP and 

Anselin spatial error models and allow for the inclusion of a spatial lag of the dependent variable. Our FE 
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and RE-S2SLS estimators apply the usual �xed and random e¤ects transformations and the GM method of 

KKP and Mutl and Pfa¤ermayr (2011), and are easy to compute. We derive the asymptotic distribution of 

these estimators and investigate their performance using Monte Carlo experiments. Our results show that 

the FE-S2SLS estimator that accounts for the spatial correlation performs much better than the standard 

FE-2SLS which ignores the spatial correlation. There is also much gain from performing RE-S2SLS allowing 

for spatial correlation than the standard RE-2SLS estimator which ignores the spatial correlation. Not 

surprisingly, the �correct�feasible RE-S2SLS estimator (Anselin, KKP or Generalized) performs best in terms 

of RMSE when compared to the true RE-S2SLS. We also investigate the performance of the spatial Hausman 

test based on the contrast involving the FE-S2SLS estimator and the KKP, Anselin and Generalized variants 

of the RE-S2SLS estimator. We show that this Hausman test can be misleading under misspeci�cation. 
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Appendix 

A Proof of Theorem 1 

Proof. First, let us show that �1 = O (1), 
1 = O (1) andN N 

G1� � �1 p 1� � 
1 p! 0 and g ! 0 as N !1: (39)N N N N � �0 � � � � 
Let �N = �1;N ; : : : ; �(T +1)N;N = (�0 )

0 so that uN = �T A�1 IT B�1 �N = N ; : : : ; v
0 = Z�u1N +u2N �N +N �� � � �� 

A�1 B�1�T ; IT �N and 

1 � �0 W k0' kl;N = uN ST N WN
l uN

NT 
1 �� � � ��0 � � �� � � �� 

B�1= �0 A�1 ; B�1 WN
k0W l A�1 ;N �T IT ST N �T IT �NNT 

1 
�0 = N CN �N ;NT 0 1 0 1 

A�10W k0W l A�10W k0T �0 A�1 W l B�1 
T N N N N@ A @where CN = A using �0 ST �T = T and ST �T = �T . Note 

B�10W k0W l A�1 B�10W k0W l B�1 T 
�T ST N N N N 

that the �rst matrix of the Kronecker product in CN does not depend on N . The row and column sums 

of the second matrix of the Kronecker product in CN are bounded uniformly in absolute value by Remark 

A2(b) in Kapoor, Kelejian and Prucha (2007). Under Assumptions 2 and 4, by Lemma A1 in Kapoor, � � � � p
Kelejian and Prucha (2007), we have E = O (1) and ! 0. Notice that are ' kl;N ' kl;N � E ' kl;N ' kl;N � � 

1�elements of G1� and gN . E are elements of �1 and 
1 , Equation (39) is proved. N ' kl;N N N 

Second, let us show that 

G1 p 1 1� p
N � G1N 

� ! 0 and gN � g ! 0 as N !1; (40)N 

1provided b !p � as N !1. Note that the elements of G1� and g1� = u0 
� 

W k0W l 
� 
uN .�2SLS N N are ' kl;N NT N ST N N 

Since the row and column sums of the elements of WN are uniformly bounded in absolute value by Assump-

W k0W ltion 4, it follows that the row and columns sums of the matrices ST also have that property. N N � � 
1 0 W k0W l 1De�ne '~kl;N = u~ ST u~N , which are the elements of G1 and gN . By the proof of Lemma NT N N N N 

p
A3 in Kapoor, Kelejian and Prucha (2007), we have ~ ! 0 as N !1. This completes the proof ' kl;N � ' kl;N 

of Equation (40). � �� � 
Third, Let � = �1; �

2 and � = � ; �2 . The objective function of the nonlinear least squares � �1
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� 

estimator and its corresponding nonstochastic counterpart are given by h i0 h i� �0 � �01 1R1 = G1 �1; �
2
1; �

2 � g G1 �1; �1
2; �2 � g ;N (�) N � N N � N h i0 h i� �0 � �0 

R�1 �1 �1 
N (�) = �1; �

2
1; �

2 � 
1 �1; �1
2; �2 � 
1 ;N � N N � N 

respectively. Using Assumption 3, Equations (39) and (40), and the proof of Theorem 1 in Kapoor, Kelejian 

and Prucha (2007), we get � � �R1 R1 � psup N (�) � �N (�) ! 0 
�12[�a1;a1];�2 2[0;b1]�

as N !1. The consistency of �~1 and �~2 
� follows directly from Lemma 3.1 in Pötscher and Prucha (1997). 

B Proof of Theorem 2 

Proof. First, using the central limit theorem and the law of large numbers, we have � � bp
NT �RE�2SLS � � " #�1 �� 
Z 0 �1H� H�0 �1H� ��1 

H�0 �1 Z 0 �1H� H�0 �1H� ��1 
H�0 �1ZN uNN u N N u N N u N u N N u N N u = p

NT NT NT NT NT NT � � 
d ��1 ! N 0; �0 0�

�1�0 + ��2�1
0 ��1�1 ;0 � 1 

as N !1 since 0 � � 1h i�1 
1 H 0 � �1 

+ �2 �1 
1 N JT T�� 

2 (A0A) � (B
0B) HN 0 

H�0 �1H� B NT C 
N u N = @ A 

��2 1NT 
0 H 0 [ET (B0B)] HN� NT N 0 1 

p �0 0@ A! 
��20 � �1 0 � � 1h i�1 0 1 

�1 �11 H 0 � T�2 
� (A

0A) + �2 
� (B

0B)1 
H�0 �1 B NT N JT ZN C p @ 

�0 A 
N u ZN = @ A ! 

NT ��2 
��2 1 H 0 � �1[ET (B0B)] ZN� NT N 

and 0 0 11 � � 
1 d 1 �0 0 

H�0 �1 H�0 �1p uN ! N 0; lim H� = N @0; @ AA 
N u N u N

NT N !1 NT ��20 � �1 

using Assumption 4. 

17 




 



 



 



 
 



 
 









 



 



 



 


�2 �2Second, from Theorem 1, we know the GM estimators of ~ ~ ~ and ~ are consistent. Similar to �1, �2, � � 

Lemma 4 of Baltagi, Egger and Pfa¤ermayr (2013), one can show that 

1 1 p
H�0 ~�1H� H�0 �1H� 

N � ! 0N u N u NNT NT 
1 
H�0 ~�1 1 

H�0 �1 p! 0N u ZN � N u ZNNT NT 

and 
1 1 p

H�0 ~�1 H�0 �1p uN � p uN ! 0:N u N u
NT NT � �p p

Therefore, we have NT b�RE�F 2SLS � b�RE�2SLS ! 0 as N !1. This proves the Theorem. 

C Proof of Theorem 3 

Proof. First, using the central limit theorem and the law of large numbers, we have � p � � ( 
Z 0 H 0 ��1 

H 0 
)�1 

[ET (B0B)] HN [ET (B0B)] HN [ET (B0B)] ZNb N N NNT �FE�2SLS � � = 
NT NT NT � ��1

Z 0 [ET (B0B)] HN H 0 [ET (B0B)] HN H 0 [ET B0] vNN N N p
NT NT NT � � 

d � ��1 ! N 0; �2 
� �1

0 ��1
1�1 ; 

as N !1 since 

1 p
H 0 
N [ET (B0B)] HN ! �1

NT 
1 p
H 0 
N [ET (B0B)] ZN ! �1

NT 

and � � 
1 d 1 � � 

p H 0 B0] vN ! N 0; lim H 0 (B0B)] HN = N 0; �2 
N [ET N [ET � �1 

NT N!1 NT 

using Assumption 4. 

Second, similar to the proof of Theorem 2, one can show that h � �i1 1 p
H 0 ET B~ 0B~ HN � H 0 (B0B)] HN ! 0N [ETNNT NT h � �i1 1 p
H 0 B~ 0B~ ZN � H 0 (B0B)] ZN ! 0N ET N [ETNT NT 

and h i1 1 p
H 0 B~ 0 H 0p ET vN � p N [ET B0] vN ! 0:N

NT NT � �p p
Therefore, we have NT b�FE�F 2SLS � b�FE�2SLS ! 0 as N !1. This proves the Theorem. 
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Table 1: Relative E¢ ciencies of Spatial Panel Data Estimators of � in the MRSAR Model 

�1 �2 FE-2SLS RE-2SLS FE-S2SLS RE-S2SLS RE-S2SLS RE-S2SLS 

RE 
KKP 

Anselin 

General 

0 
-0.8 
-0.5 
-0.2 
0.2 
0.5 
0.8 
0 
0 
0 
0 
0 
0 

-0.8 
-0.8 
-0.8 
-0.8 
-0.8 
-0.8 
-0.5 
-0.5 
-0.5 
-0.5 
-0.5 
-0.5 
-0.2 
-0.2 
-0.2 
-0.2 
-0.2 
-0.2 
0.2 
0.2 
0.2 
0.2 
0.2 
0.2 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.8 
0.8 
0.8 
0.8 
0.8 
0.8 

0 
-0.8 
-0.5 
-0.2 
0.2 
0.5 
0.8 
-0.8 
-0.5 
-0.2 
0.2 
0.5 
0.8 
-0.5 
-0.2 
0 

0.2 
0.5 
0.8 
-0.8 
-0.2 
0 

0.2 
0.5 
0.8 
-0.8 
-0.5 
0 

0.2 
0.5 
0.8 
-0.8 
-0.5 
-0.2 
0 

0.5 
0.8 
-0.8 
-0.5 
-0.2 
0 

0.2 
0.8 
-0.8 
-0.5 
-0.2 
0 

0.2 
0.5 

1.203 
1.365 
1.280 
1.224 
1.187 
1.157 
1.155 
1.306 
1.222 
1.186 
1.242 
1.307 
1.380 
1.307 
1.312 
1.366 
1.419 
1.444 
1.426 
1.347 
1.265 
1.310 
1.363 
1.414 
1.415 
1.319 
1.246 
1.248 
1.293 
1.361 
1.392 
1.292 
1.193 
1.160 
1.171 
1.252 
1.348 
1.268 
1.161 
1.115 
1.115 
1.119 
1.279 
1.253 
1.145 
1.085 
1.063 
1.066 
1.069 

1.005 
1.118 
1.054 
1.017 
1.011 
1.050 
1.053 
1.157 
1.067 
1.022 
1.029 
1.111 
1.179 
1.084 
1.084 
1.115 
1.163 
1.256 
1.294 
1.111 
1.033 
1.061 
1.103 
1.204 
1.248 
1.119 
1.056 
1.025 
1.048 
1.152 
1.201 
1.206 
1.093 
1.036 
1.015 
1.077 
1.163 
1.337 
1.183 
1.093 
1.052 
1.026 
1.128 
1.815 
1.572 
1.387 
1.268 
1.176 
1.070 

1.205 
1.243 
1.223 
1.217 
1.181 
1.166 
1.215 
1.185 
1.169 
1.180 
1.234 
1.317 
1.465 
1.248 
1.298 
1.366 
1.405 
1.445 
1.520 
1.224 
1.254 
1.306 
1.350 
1.422 
1.509 
1.197 
1.192 
1.250 
1.283 
1.366 
1.476 
1.170 
1.140 
1.155 
1.174 
1.263 
1.435 
1.149 
1.109 
1.114 
1.118 
1.110 
1.360 
1.138 
1.105 
1.097 
1.083 
1.076 
1.098 

KKP 
0.994 
1.027 
1.017 
1.005 
0.956 
0.963 
1.054 
1.105 
1.051 
1.004 
0.976 
1.047 
1.226 
1.024 
1.058 
1.095 
1.117 
1.216 
1.332 
1.036 
1.027 
1.037 
1.059 
1.155 
1.287 
1.063 
1.028 
1.005 
1.005 
1.091 
1.245 
1.152 
1.089 
1.033 
0.995 
1.015 
1.185 
1.243 
1.173 
1.098 
1.052 
0.974 
1.128 
1.356 
1.287 
1.228 
1.165 
1.092 
0.996 

Anselin 
0.985 
1.082 
1.050 
1.016 
0.969 
0.974 
1.073 
1.036 
1.031 
1.009 
0.968 
0.965 
1.047 
1.082 
1.087 
1.084 
1.059 
1.032 
1.075 
1.060 
1.047 
1.036 
1.007 
1.004 
1.063 
1.030 
1.035 
1.000 
0.977 
0.987 
1.045 
1.054 
1.032 
1.020 
1.000 
0.964 
1.031 
1.092 
1.068 
1.055 
1.047 
1.009 
1.025 
1.220 
1.186 
1.164 
1.142 
1.110 
1.046 

General 
1.002 
1.039 
1.028 
1.021 
0.974 
0.970 
1.064 
1.026 
1.021 
1.009 
0.989 
0.968 
1.052 
1.032 
1.019 
1.016 
1.008 
1.005 
1.054 
1.036 
1.015 
1.010 
1.004 
0.995 
1.051 
1.031 
1.028 
1.008 
0.998 
0.983 
1.054 
1.032 
1.006 
1.010 
0.998 
0.961 
1.039 
1.028 
1.011 
1.003 
0.990 
0.959 
1.041 
1.062 
1.054 
1.035 
1.009 
0.977 
0.985 

Notes: (a) Relative mean square error with respect to the true RE-S2SLS. (b) 10,000 replications. 

(c)N = 100; T = 5; J = 6; � = 0:5 and � = 0:5. 
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Table 2: Relative E¢ ciencies of Spatial Panel Data Estimators of � in the MRSAR Model 

�1 �2 FE-2SLS RE-2SLS FE-S2SLS RE-S2SLS RE-S2SLS RE-S2SLS 

RE 
KKP 

Anselin 

General 

0 
-0.8 
-0.5 
-0.2 
0.2 
0.5 
0.8 
0 
0 
0 
0 
0 
0 

-0.8 
-0.8 
-0.8 
-0.8 
-0.8 
-0.8 
-0.5 
-0.5 
-0.5 
-0.5 
-0.5 
-0.5 
-0.2 
-0.2 
-0.2 
-0.2 
-0.2 
-0.2 
0.2 
0.2 
0.2 
0.2 
0.2 
0.2 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.8 
0.8 
0.8 
0.8 
0.8 
0.8 

0 
-0.8 
-0.5 
-0.2 
0.2 
0.5 
0.8 
-0.8 
-0.5 
-0.2 
0.2 
0.5 
0.8 
-0.5 
-0.2 
0 

0.2 
0.5 
0.8 
-0.8 
-0.2 
0 

0.2 
0.5 
0.8 
-0.8 
-0.5 
0 

0.2 
0.5 
0.8 
-0.8 
-0.5 
-0.2 
0 

0.5 
0.8 
-0.8 
-0.5 
-0.2 
0 

0.2 
0.8 
-0.8 
-0.5 
-0.2 
0 

0.2 
0.5 

1.261 
1.322 
1.278 
1.261 
1.267 
1.288 
1.264 
1.368 
1.306 
1.272 
1.265 
1.301 
1.295 
1.257 
1.228 
1.232 
1.239 
1.282 
1.293 
1.341 
1.244 
1.245 
1.253 
1.287 
1.291 
1.358 
1.295 
1.252 
1.268 
1.292 
1.296 
1.380 
1.315 
1.272 
1.268 
1.294 
1.289 
1.399 
1.328 
1.279 
1.265 
1.264 
1.286 
1.413 
1.340 
1.287 
1.271 
1.263 
1.268 

1.004 
1.068 
1.026 
1.008 
1.010 
1.032 
1.062 
1.050 
1.023 
1.008 
1.009 
1.051 
1.121 
1.030 
1.024 
1.028 
1.037 
1.073 
1.186 
1.057 
1.014 
1.020 
1.025 
1.059 
1.160 
1.047 
1.022 
1.006 
1.020 
1.045 
1.140 
1.056 
1.027 
1.008 
1.007 
1.036 
1.107 
1.085 
1.059 
1.033 
1.027 
1.021 
1.095 
1.185 
1.157 
1.131 
1.113 
1.096 
1.070 

1.265 
1.251 
1.249 
1.256 
1.260 
1.270 
1.286 
1.302 
1.280 
1.268 
1.258 
1.283 
1.319 
1.229 
1.222 
1.235 
1.236 
1.257 
1.303 
1.271 
1.238 
1.249 
1.248 
1.263 
1.311 
1.292 
1.267 
1.256 
1.262 
1.269 
1.318 
1.315 
1.289 
1.271 
1.273 
1.276 
1.311 
1.332 
1.300 
1.282 
1.269 
1.264 
1.306 
1.351 
1.319 
1.294 
1.279 
1.261 
1.254 

KKP 
0.998 
1.013 
1.003 
1.001 
1.000 
1.004 
1.021 
1.034 
1.014 
1.003 
1.005 
1.017 
1.057 
1.003 
1.014 
1.030 
1.036 
1.059 
1.102 
1.010 
1.006 
1.021 
1.019 
1.032 
1.082 
1.025 
1.006 
0.998 
1.013 
1.023 
1.067 
1.049 
1.022 
1.000 
1.001 
1.006 
1.044 
1.096 
1.069 
1.035 
1.018 
1.006 
1.039 
1.262 
1.211 
1.141 
1.109 
1.077 
1.030 

Anselin 
1.000 
1.033 
1.009 
1.003 
1.012 
1.025 
1.069 
1.001 
1.000 
1.003 
1.003 
1.002 
1.044 
1.018 
1.019 
1.023 
1.015 
1.011 
1.051 
1.015 
1.007 
1.016 
1.009 
0.998 
1.041 
1.008 
1.000 
1.002 
1.013 
0.997 
1.043 
1.002 
0.997 
1.000 
1.011 
1.001 
1.040 
1.023 
1.024 
1.025 
1.029 
1.026 
1.040 
1.096 
1.096 
1.096 
1.098 
1.097 
1.078 

General 
1.006 
1.011 
0.999 
1.004 
1.010 
1.005 
1.021 
1.004 
1.002 
1.004 
1.009 
1.007 
1.023 
0.998 
0.997 
1.001 
0.999 
1.007 
1.038 
1.012 
1.000 
1.003 
1.004 
1.008 
1.035 
1.011 
1.001 
1.003 
1.013 
1.007 
1.026 
1.007 
1.002 
1.003 
1.008 
1.002 
1.018 
1.012 
1.007 
1.009 
1.003 
0.998 
1.020 
1.024 
1.021 
1.020 
1.015 
1.018 
1.010 

Notes: (a) Relative mean square error with respect to the true RE-S2SLS. (b) 10,000 replications. 

(c)N = 100; T = 5; J = 6; � = 0:5 and � = 0:5. 
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Table 3: Size of the Spatial Hausman Test in the MRSAR Model 

�1 �2 RE-S2SLS RE-S2SLS RE-S2SLS 

RE 
KKP 

Anselin 

General 

0 
-0.8 
-0.5 
-0.2 
0.2 
0.5 
0.8 
0 
0 
0 
0 
0 
0 

-0.8 
-0.8 
-0.8 
-0.8 
-0.8 
-0.8 
-0.5 
-0.5 
-0.5 
-0.5 
-0.5 
-0.5 
-0.2 
-0.2 
-0.2 
-0.2 
-0.2 
-0.2 
0.2 
0.2 
0.2 
0.2 
0.2 
0.2 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.8 
0.8 
0.8 
0.8 
0.8 
0.8 

0 
-0.8 
-0.5 
-0.2 
0.2 
0.5 
0.8 
-0.8 
-0.5 
-0.2 
0.2 
0.5 
0.8 
-0.5 
-0.2 
0 

0.2 
0.5 
0.8 
-0.8 
-0.2 
0 

0.2 
0.5 
0.8 
-0.8 
-0.5 
0 

0.2 
0.5 
0.8 
-0.8 
-0.5 
-0.2 
0 

0.5 
0.8 
-0.8 
-0.5 
-0.2 
0 

0.2 
0.8 
-0.8 
-0.5 
-0.2 
0 

0.2 
0.5 

KKP 
0.050 
0.059 
0.061 
0.054 
0.046 
0.046 
0.053 
0.070 
0.063 
0.055 
0.049 
0.049 
0.053 
0.053 
0.048 
0.047 
0.047 
0.055 
0.055 
0.071 
0.051 
0.048 
0.048 
0.051 
0.053 
0.072 
0.064 
0.050 
0.049 
0.049 
0.053 
0.068 
0.061 
0.051 
0.049 
0.046 
0.052 
0.075 
0.063 
0.048 
0.044 
0.040 
0.053 
0.115 
0.101 
0.076 
0.057 
0.046 
0.046 

Anselin 
0.049 
0.031 
0.041 
0.048 
0.046 
0.040 
0.044 
0.049 
0.048 
0.050 
0.048 
0.049 
0.064 
0.033 
0.038 
0.041 
0.045 
0.052 
0.070 
0.039 
0.043 
0.043 
0.045 
0.050 
0.070 
0.048 
0.048 
0.046 
0.048 
0.051 
0.066 
0.046 
0.047 
0.044 
0.044 
0.047 
0.061 
0.042 
0.042 
0.040 
0.039 
0.038 
0.050 
0.041 
0.040 
0.038 
0.034 
0.032 
0.036 

General 
0.051 
0.061 
0.062 
0.055 
0.045 
0.044 
0.054 
0.053 
0.053 
0.051 
0.052 
0.054 
0.060 
0.062 
0.061 
0.060 
0.060 
0.061 
0.062 
0.062 
0.058 
0.057 
0.057 
0.059 
0.064 
0.057 
0.056 
0.053 
0.056 
0.057 
0.059 
0.046 
0.046 
0.045 
0.046 
0.050 
0.059 
0.039 
0.038 
0.038 
0.036 
0.039 
0.055 
0.040 
0.042 
0.038 
0.038 
0.040 
0.049 

Notes: (a) 10,000 replications. (b) N = 100; T = 5; J = 6; � = 0:5 and � = 0:5. 
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