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Random Effects, Fixed Effects and Hausman’s Test for the

Generalized Mixed Regressive Spatial Autoregressive Panel Data
Model*

Badi H. Baltagi{ Long Liut
November 1, 2014

Abstract

This paper suggests random and fixed effects spatial two-stage least squares estimators for the the
generalized mixed regressive spatial autoregressive panel data model. This extends the generalized spatial
panel model of Baltagi, Egger and Pfaffermayr (2013) by the inclusion of a spatial lag dependent variable.
The estimation method utilizes the Generalized Moments method suggested by Kapoor, Kelejian, and
Prucha (2007) for a spatial autoregressive panel data model. We derive the asymptotic distributions of
these estimators and suggest a Hausman test a la Mutl and Pfaffermayr (2011) based on the difference
between these estimators. Monte Carlo experiments are performed to investigate the performance of
these estimators as well as the corresponding Hausman test.

Key Words: Panel Data; Fized Effects; Random Effects; Spatial Model; Hausman Test.

JEL classification: C12; C13; C23

1 Introduction

Anselin (1988) and Kapoor, Kelejian, and Prucha (2007) considered two different variants of a random effects
panel data model with spatially correlated errors. The first paper estimated it with maximum likelihood
methods and the second estimated it with a generalized moments (GM) method that is computationally
simpler. Baltagi, Egger and Pfaffermayr (2013) generalized this random effects spatial model to encompass
both cases and derived LM and LR tests to distinguish between these models. The generalized model allows
the individual effects and the remainder errors to have different spatial autoregressive parameters. Using
maximum likelihood methods, Baltagi, Egger and Pfaffermayr (2008) examined the consequences of model

misspecification in this context using Monte Carlo simulations. These papers assume that the underlying

*We would like to thank the editor Essie Maasoumi, an Associate editor and two anonymous referees for their helpful
comments and suggestions. Long Liu gratefully acknowledges the summer research grant from the College of Business at
UTSA.

fAddress correspondence to: Badi H. Baltagi, Center for Policy Research, 426 Eggers Hall, Syracuse University, Syracuse,
NY 13244-1020; e-mail: bbaltagi@maxwell.syr.edu.

fLong Liu: Department of Economics, College of Business, University of Texas at San Antonio, One UTSA Circle, TX
78249-0633; e-mail: long.liu@Qutsa.edu.


mailto:long.liu@utsa.edu
mailto:bbaltagi@maxwell.syr.edu

spatial panel model is random effects (RE). Spatial panel data model with fized-effects (FE) have been
considered by Baltagi and Li (2006), Mutl and Pfaffermayr (2011), and Lee and Yu (2010) to mention a
few. In fact, Baltagi and Li (2006) obtained the maximum likelihood estimator of a first order spatial
autoregressive model with fixed effects and used it to forecast the consumption of liquor across a panel of
US states, while Lee and Yu (2010) established the asymptotic properties of a quasi-maximum likelihood
(QML) estimator for the spatial panel data model with fixed-effects. However, as pointed out by Kapoor,
Kelejian, and Prucha (2007), hereafter denoted by (KKP), the QML estimation of Cliff and Ord (1973, 1981)
type models entail substantial computational problems if the number of cross sectional units is large. To
circumvent these computational problems for the mixed regressive spatial autoregressive (MRSAR) model,
Mutl and Pfaffermayr (2011) suggested a fixed effects two-stage least squares (FE-2SLS) estimator based on
a generalized moments (GM) estimator a la Kapoor, Kelejian, and Prucha (2007) extending the latter to
include a spatial lag of the dependent variable. Mutl and Pfaffermayr (2011) also propose a Hausman test
based on the difference between the fixed and random effects specification of this model. This paper applies
the FE-S2SLS estimator of Mutl and Pfaffermayr (2011) to the generalized error component model considered
by Baltagi, Egger and Pfaffermayr (2013) by adding a spatial lag term. We also suggest a random effects
spatial two-stage least squares (RE-S2SLS) estimator using GM estimation of this generalized MRSAR
error component model. Following Mutl and Pfaffermayr (2011), we apply a Hausman test based on the
difference between the fixed and random effects specification of this generalized MRSAR model. Small
sample properties of these estimators as well as the size of the proposed Hausman test are studied using
Monte Carlo experiments. We show that a misspecified GM estimator can cause substantial loss in root
mean squared error (RMSE) and wrong size for the corresponding Hausman test.

The rest of the paper is organized as follows. Section 2 introduces the RE-S2SLS and FE-S2SLS estimators
for the MRSAR model. Generalized moments (GM) estimators a la Kapoor, Kelejian and Prucha (2007)
are proposed for this model and their asymptotic distributions are derived. Following Mutl and Pfaffermayr
(2011), a Hausman test is proposed based on the difference between the FE-S2SLS and feasible RE-S2SLS
estimators of this spatial panel model. Simulation results are reported in section 3, while section 4 concludes

the paper. All proofs are relegated to the Appendix.

2 The MRSAR Model

Let us consider the MRSAR model which is based on a generalized spatial error components model studied

in Baltagi, Egger and Pfaffermayr (2013) but extends it by adding a spatial lag of the dependent variable as



in Mutl and Pfaffermayr (2011). For each time period ¢ = 1, ..., T, the data are generated according to the

following model:

yn (1) = AMyyn (1) + Xn (1) B+ un (2) (1)
un (t) = win + uan (2), (2)
uin = pWNuin + py, (3)
usn (t) = poWhuan (¢) +vn (1), (4)

where yn (t) denotes the N x 1 vector of observations on the dependent variable in period ¢. Xy (t) denotes
the N x K matrix of observations on exogenous regressors in period ¢, which may contain the constant
term. [ is the corresponding K x 1 vector of regression parameters, and uy (¢) denotes the N x 1 vector
of disturbance terms. uy (¢) follows an error component model which involves the sum of two disturbances.
The N x 1 vector uyny captures the time-invariant unit-specific effects and therefore has no time subscript.
The N x 1 vector of the remainder disturbances usy (t) varies with time. Both uqy and ugy (t) are spatially
correlated with the same spatial weights matrix Wy, but with different spatial autocorrelation parameters
p1 and p,, respectively. Both My and Wy are N x N weighting matrices of known constants which do not
vary over time. My and Wy may or may not be the same. This generalizes the model in Baltagi, Egger
and Pfaffermayr (2013) by incorporating a spatial lag term Myyn (¢).

Stacking the cross-sections over time yields

yn = AMyynv+XnB+un (5)
UN ZuiN + uan, (6)
wun = pWruinv + py, (7)
usn = po(Ir Wy)usn + vy, (8)

where yx = [y (1) ooty (D) Xn = (X (1,00, Xo (D] uy = [y (1), sty (1)) way =
[uhn (1), ... uhy (T)) and vy = [V (1),...,0% (T)]. The unit-specific errors u;y are repeated in all
time periods using the NT' x N selector matrix Z, = ¢vr Iy, where vr is a vector of ones of dimension T’
and Iy is an identity matrix of dimension N, sce Baltagi (2013). Let {y; x and {vs,n} denote the elements
of the N x 1 vector of individual effects pp and the n x 1 vector of remainder disturbances vy. Following

Kapoor, Kelejian and Prucha (2007), we employ the following assumptions:

Assumption 1 Let T be a fized positive integer. (a) For all1 <t <T and 1 <i< N, N > 1 the error

components vy N are identically distributed with zero mean and variance o2, 0 < o2 < b, < 00, and finite



fourth moments. In addition, for each N > 1 and 1 <t < T, 1 < i < N the error components vit,n
are independently distributed. (b) For all 1 < i < N, N > 1, the unit specific error components j; y are
independently distributed with zero mean and variance Ui, 0 < O’i < b, < 00, and finite fourth moments.
In addition, for each N > 1, and 1 < i < N the unil specific error components p,; n are independently

distributed. (c¢) The processes {p; y and {viy,n} are independent.

Assumption 2 (a) All diagonal elements of My and Wi are zero. (b) |A| <1, |p;| <1 and |py| < 1. (¢)
The matrices Iy — AMn, In — pyWn and In — psWi are nonsingular. The row and column sums of My,
Wi, (In = AMN) "', (In — p, W) ™" and (In — p,Wa) ™" are bounded uniformly in absolute values for all
Al <1, |p1] <1 and |py| < 1.

As pointed out by Baltagi, Egger and Pfaffermayr (2013), this model nests various spatial panel models
in the literature. For example, for the case where there is no spatial lag, i.e., A = 0, and when p; = p,,
this reduces to the spatial random effects model considered in Kapoor, Kelejian and Prucha (2007). When
A=0and p; =0, it reduces to the Anselin (1988) spatial random effects model also described in Baltagi,
Song and Koh (2003) and Anselin, Le Gallo and Jayet (2008). When p; = p, = 0, it reduces to the familiar
random effects (RE) panel data model with no spatial effects, see Baltagi (2013). In the presence of the
spatial lag of the dependent variable, it nests the MRSAR model considered by Mutl and Pfaffermayr (2011)
and Debarsy and Ertur (2010), to mention a few.

2.1 The RE-S2SLS Estimator

As shown in Kelejian and Prucha (1998) for the cross-section case, the spatial lag Myyy is correlated with
the vector of disturbances uy. Therefore, the Ordinary Least Squares (OLS) estimator will be inconsistent.

Define Zy = (Myyn, Xn) and § = ()\, B/)/. With this notation, the MRSAR model can be rewritten as
YN = ZNO + un. 9)

For the cross-section spatial autoregressive model, Kelejian and Prucha (1998) suggested instruments like

Hy = (XN, MyXy, MJQVXN). Define , = var (uy). As shown in Baltagi, Egger and Pfaffermayr (2013),

_ -1
J=dr [T @A)y v (BB 402 Br (B'B), (10)

where A = Iy — p;Wxn and B = Iy — p,Wn. Ep = Ip — Jr, Jr = Jr /T and Jr is a matrix of ones of
dimension T. Multiplying Equation (9) by Y 2, we get

A2y = SV2Zn6+ TV uy. (11)



Define P = Jr Iy and Q = In7 — P, where Iy7 is an identity matrix of dimension NT'. Following Baltagi
and Liu (2011), we apply the instruments ;1/2Hj'§, with HY = (QHy, PHy) to this transformed panel
autoregressive spatial model. The random effects spatial two-stage least squares estimator (RE-S2SLS) of ¢

is given by
N - * */  — x\ L e — -1 - * */  — x\ "L e —
ORE-525LS = [Zﬁv JHY (HY JTHY)  HYy ulZN] Zy J'Hy (Hy J'HY) Hy Jluv o (12)
with variance var (SRE_SQSLS): [va HY (HY ;1H}§,)_1Hj§,’ ;1ZN}7

Kapoor, Kelejian and Prucha (2007) considered the special case where A = 0 and p; = p, and proposed

GM estimators of p, and o2 based on the following three moment conditions:

NP E Nl = ok (13
N E ey = P, (14
ﬁE[D/JVQVN} = 0 (15)

where vy = (IT WN) vy. Define oy = (IT WN) ugn and Uy = (IT WN) uan. Substitute vy =

UgN — pPolian and Uy = Uan — polien into the system of equations given above, we get

1 2 1

mE [uyn Quan] — msz [a5y Quan] + mng [W)yQlsn] = o2, (16)
1 2 L . o S
mE [ty Qlan] — mmE [hn Qiian] + mpEE @y Qiay] = %@i}?)
1 1 B ) 7
mE [ty Quan] — mﬂgE [ty Quan + Uy N QUan] + mng [UhNQian] = 0. (18)

Note that @ (¢y  uin) = 0. Therefore, for the general model in Equations (5)-(8), we have u/yQuy =

/ —/ = = ~ —/ = .
ugyy Quon, Uy Qun = 5y Quaon and Uy Quy = 5y Quan. This system can be expressed as

I [pa2, 93, 03] =% = 0, (19)
o B [@yQun] —~a—n E [ty Qun] 1
where I'y, = s B [E Qun] e B i Qi) e (W W)
¥ B [inQuy + @y Qun]  — 57— E [y Qun] 0
~r=n E [y Qun]
and 1} = ﬁE [uyQun] |- Let un denote the 2SLS residuals from (5) ignoring the random effects,

N(T1—1)E (U Qun]



—~ ~ -1
i.e., ’l/J\,N = YN *ZN(SZSLS, Where 52SLS = {ZJ/VHN (HJ/VHN)il HJ/\[ZN] Z;vHN (H;VHN)il HJ/VyN Let GN

and g%, be the sample analogues of I'}; and 7%, substituting @y for ux.We can get a GM estimator by solving
(5252) = avgmin { €% (p2.22) € (o2 22) .22 € [-ao,aal 22 € 0.0} (20)

where €% (pQ,cr,%) =G% [pQ,pg,aﬂ/ — gk, ap > 1 and by > b,.

Assumption 3 The smallest eigenvalues of I'T'y are bounded away from zero.

Kapoor, Kelejian and Prucha (2007) showed that, for their model with no spatial lag, and where the
disturbances are replaced by OLS residuals, p and &2 are consistent. It is worth pointing out that the
condition @ (¢ u1) = 0 holds for the general model given in equation (5), and not only for the special
case in Kapoor, Kelejian and Prucha (2007). Therefore, for all values of p; and O’Z in the parameter space,
the GM estimator of p, and o2 suggested by Kapoor, Kelejian and Prucha (2007) and applied to our model
based on 2SLS residuals, will also be consistent. By Theorem 1 of Kapoor, Kelejian and Prucha (2007),
we have ([)2,612,) 2 (pZ,a,%) under assumptions 1-3 as N — oo. Similarly, we introduce the following GM
estimators of p; and ai:

Define g = Wy p. We have the following three moment conditions:

1

VP el = ol (21)
1, 1

NE[/'LINMN] = NUitT(vaWN), (22)
1.

NP Evan] = 0. (23)

Similarly define 41y = Wyuin and a3y = Wytgn. Substitute py = uiny — prtan and iy = iy — priin

into the system of equations given above, we get

1 2 1
NE [uy yuIN] — NP1E (@) yuiN] + NP%E [@) nUi1N] = Uia (24)
iE[” ] — =y B [T L 2B = ﬁt WiW, 25
N Uy NUIN] N [U] NTLN] + N [ nUIN] = N r(WyWn), (25)
1 1 _ 1 _
NE [u) yurN] — NplE [uy yuiN + Uy U] + NP%E [ yian] = 0. (26)

This system can be expressed as

!
Iy [p1.01,0%] =N =0, (27)



[0 yu1N] —~ B @)y i1 n] 1

2w

FE

1 2 =/ = 1

where FN = E [ulNulN] -~
1

N

N
E [’a,llNulN + ﬂ/lNﬂlN] —

1

N

E
and vy = E || yu1y] |- Define S = P — ﬁ@ =Sy Iy, where S; = Jr — ﬁET. Also
E

1
PN = ﬁuﬁv (Ir WJ@)IS(IT Wx) un

1 /
NT'N
1 /
NT'N

(IT WJ@)I (ST IN) (IT W]lv) unN

(ST W]]%/W]lv) unN

for k,1 =0,1,2. Hence

1

1
= 7P [(Zuuan +uan) (Sr WYWR) (Zuuan + uzn)]
1 /
— WE[(Z,LulN) (St WEWL) (Zyun)] +
2
+57 [uby (ST WEWL) Z,uin]

I+11+1I1.

1
~7F [uby (ST WEWL) uan]

Note that

I= iE [(Zuuin) (ST WNWR) (Zyuan)]

1
NT [u’lN (L%STLT W]]\C/W]lv) ulN] =—F (u’lNW]]f,’W]qulN)

= —F
NT N

since . Spir = Up (JT - ﬁET) tp = tpdpip — ﬁL&«ETLT =T using Jrir = vr and Erup = 0;

1 1 . .
I = =B uby (St WEWh)uow] = 2B [vi (Ir B7) (S0 WEWL) (Ir B wa
- %E[uﬁv (St B YWHWLB ') vy]
= %Uztr (St)tr (B~YWNWLB™)
= 0

since tr (St) = tr (jT - ﬁET) =0; and

2
I =B [uhn (S WEWL) Zyuin] =0



since uin and ugy are independent by Assumption 1. Hence, one gets E (@kl,N) = %E (ullNW]]f;’W]l\;U1N);

%E [@y Sun] —ﬁE [@y Sun] 1 ﬁE [uySun]
Iy = 2 F [y Sun] — s E iy Siun]  tr (WAW) | and vy = | - F [y San] |- The
ﬁE [WySun + @y Stun] —ﬁE [@ySun] 0 ﬁE [@y Sun]
oty Sty — sl Sty 1
sample analogues to I'y and v} are G}, = 2ty Sty — Sty Sun  Str (WEWy) | and
~r (T Sty + iy Sin)  —pily Sty 0
Uy SN
gk = ﬁﬁﬁ\,Sﬁ ~ | respectively. Hence, a GM estimator can be obtained from
iy Sty
(py,55,) = arg min {ﬁv (&722)/5}\[ (@Qﬁ) ,p1 € [~ar,a1] 0 € [0,61}}7 (28)

where £}y (pl,ai) =G} [p17p%,oﬁ]l —gn» a1 > 1and by > b,.
Theorem 1 Under Assumptions 1 -3, we have (ﬁl,éi) 2 (pl,ai) as N — oo.

With the GM estimators of p;, pq, &Z and &3, the corresponding random effects feasible spatial two-stage

least squares estimator dgp_ Fsasrs is given by

~ . . -1 . -t - 1 .
Sre-rsass = [va JHy (HYUUHY) O HY ulzw] Zy JUHy (HYDUHY)OHY Dy, (29)

where

. _ -1 _o\ 177t -
1 _ 7 [T&i (A'A) + 52 (B'B) } +5;2 [ET (B'B)} . (30)
Assumption 4 Xy is non-stochastic. The elements of Xn are bounded uniformly in absolute value. Fur-
_ -1
thermore, the limit o = lim sz Hfy {JT [Toi (ATA)™ + 02 (B/B)*l} }HN,
_ B g1
Sy = lim geHy B (B'B) Hy, Ty = A}Enm];TH;V{JT [To—g (A’A)"! + 02 (B'B) 1} }ZN and

I, = A}im ~7HN[Er  (B'B)| Zn are finite and nonsingular.

The theorem below establishes consistency and asymptotic normality of the random effects feasible spatial

two-stage least squares estimator. The proof of the theorem is given in the appendix.

Theorem 2 Under Assumptions 1-4, we have vV NT (SRE_FSQSLS — 6) 4N (O, (F’OEalfo + a;zf’lZflfl)_l>

as N — 00.



Next, we turn to the special cases of this general model. Under the KKP model, but now with a spatial

lag, we have p; = p,, and as a result A = B, and Equation (10) reduces to

-1 _ (U%jT —+ U;QET) (B/B) s (31)

u

where 07 = Tai + 02. Kapoor, Kelejian and Prucha (2007) suggest estimating o? by

- 1 . - - - - -

51 = N (i — paWain)' Q (i — pyWiiiy) -
In this case, the asymptotic distribution of the corresponding SRE,FSQSLS is the same as in Theorem 2 with
Yo and Ty reducing to ¥y = J\}iinooﬁHgv [02Jr (B'B)|Hy, and I'y = J\}ErlwﬁHj’v lo2Jr (B'B)| Zn,
respectively.

Under the Anselin model, but now with a spatial lag, we have p; = 0 and hence A = Iy. Equation (10)

reduces to

- 411
1o Jp [TUZIN +o2(B'B)"|  +0,2BEr (B'B). (32)
We can estimate o2 from the first Equation in (21) as

1 1 1
2 _ s or L s p
b= N NN = RN PN = STy

& Uy Qun.

Note that it is the same estimator of ai for the random effect model with p; = p, = 0. From the

proof of Theorem 1, we know that under Assumptions 1-3, 6i 2, ai as N — oo. With these GM esti-
2

v

mators of p,, &i and &7, we obtain the random effects feasible spatial two-stage least squares estimator

SRE_FSQSLS. Similar to Theorem 2, we can show that gRE_FSQSLS has the same asymptotic distribution

_ 1
as in Theorem 2, with ¥y and I'g reducing to ¥g = Nlim ﬁva {JT [TUZIN + 02 (B’B)fl} } Hy, and
—00

. T —1 .
Ty = ngnooﬁHﬁv {JT [TUiIN + 02 (B'B) } } Zy, respectively.

2.2 The FE-S2SLS Estimator

Let {u1; v} and {X;; v} denote the elements of the N x 1 vector of ujy and the NT x K vector of Xn. A
critical assumption for the consistency of the RE estimator is that E (u1; n|Xi,n) = 0. If the unobserved
individual invariant effects are correlated with X;;, then E (uy;|X;:) # 0 and RE is inconsistent. As pointed
out in Lee and Yu (2010), with the fixed effects specification, the panel models in Baltagi, Egger and
Pfaffermayr (2013), Kapoor, Kelejian and Prucha (2007) and Anselin (1988) have the same representation.
More specifically, premultiplying equation (5) by the fixed effects (or within) transformation @ = Er Iy,

one obtains

Quny = QZN + Quan, (33)



since @ (v win) = 0, see Baltagi (2013). The fixed effects two-stage least squares estimator (FE-2SLS)

estimator

~ _ -1 _
Srp-ssis = | ZnQHy (HyQHN) ' HNQZx|  ZiQHx (HyQHN) ™' HyQuy (34)

2

wipes out the individual effects and does not require the estimation of p; or oy,

. However, this estimator
ignores the spatial autocorrelation in the error. To gain efficiency, one can apply the Cochrane-Orcutt type
spatial transformation on the within transformed model in Equation (33) to obtain the FE-S2SLS estimator
as suggested in Mutl and Pfaffermayr (2011). More specifically, we premultiply equation (33) by I+ B, to
get

(Er B)yn =(Er B)Znd+ Qun. (35)
This uses the fact that (I B)Q =(Er B)=Q(Ir B)and (Ir B)Quay =Q(Ir B)uany =Quy.
Applying the instruments (Er B) Hy, we get the fixed effects spatial two-stage least squares estimator
(FE-S2SLS) of ¢ given by

Sev-sssis = {Zn(Br (BB Hy(Hy[Er (B'B)Hy) 'HylBr (BB)Zx} (30

ZyBEr  (B'B) Hy (Hy[Er (B'B)Hy) " Hy[Er (B'B)yn

with var (8pp-sasis) = 02 {24 [Br  (B'B)|Hy (Hy [Br (B'B)Hx)™ Hy [Er (B'B)] ZN}_I. If
py = 0, then B = Iy and the FE-S2SLS estimator in Equation (36) reduces to the FE-2SLS estimator in
Equation (34). Using the GM estimators of p, and 2 from Equation (20), the corresponding fixed-effects
feasible spatial two-stage least squares estimator (FE-FS2SLS) SF E—FS25Ls 1s obtained by replacing B by

its estimator B = Iy — paWh, ie.,
-1

~ ~ o~ ~ o~ -1 ~ o~
F {Z}V [ET (B’B)} Hy (H;V [ET (B’B)} HN> HY, [ET (B’B)} ZN}
~ ~ ~ ~ -1 ~ ~
Zl {ET (B’B } Hy (H;V [ET (B'B } HN) HY {ET ( 'B } yn.  (37)
This estimator can be computed conveniently as the fixed effects two-stage least squares estimator after pre-
multiplying the model in equation (5) by It B. The theorem below establishes consistency and asymptotic

normality of the FE-FS2SLS estimators. The proof of the theorem is given in the appendix.

Theorem 3 Under Assumptions 1-4, we have vV NT (SFE,FSQSLS — (5) 4, N (0, 012, (F'lEflI‘l)_l) as N —

Q.

One of the advantages of the FE-FS2SLS estimator of § is that it does not depend on ai and p,. Hence,
the FE-FS2SLS estimator is robust to different values of ai and p;. Another advantage of the FE-FS2SLS
estimator is that it is still consistent when F (uq1;|z;:) # 0, while the RE-FS2SLS estimator is not.
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2.3 Hausman’s Test

One can perform Hausman’s (1978) specification test for this generalized MRSAR panel data model. The
null hypothesis is Hy : E (u1;,n|Xit,nv) = 0. Under Hy, ORE—S9SLS given in (12) is the efficient estimator,
while under the alternative Hy : E (u1;, v |Xi,n) # 0, SRE_SQSLS is inconsistent. In contrast, SFE_SQSLS is

consistent under the null and alternative. Let ¢ = gFE_SQSLS — gRE_SggLS and note that

cov (5FE—525LS, 5RE—SzSLS)

= F [(SFE—SZSLS - 5) (SRE—S2SL5 - 5>l]

{Z(Br (B'B) Hy (Hy[Er (B'B)Hy) ' Hy[Er (B'B)Zx}
Zy[Br (B'B)|Hy (Hy[Br (B'B)Hy) " Hy[Er (B'B)E (unul)

— * *x/  — x\—1 * — — * * — )1 *x/  — -t
ulHN (HJ\/{ ulHN) HN/ ulZN |:Z;V ulHN (HJ\; ulHN) H]\; ulZNi|

_ -1
|2 SUHA (Y JUHY)HY 2
= var (SREfAS'ZSLS) .

Hence

var (q) = war §FE—SQSLS*5RE—S2SLS>

)

(
= var(
= UGT‘(

(

= wvar (0rE—s25Ls ) —var (5RE—S2SLS)~

FE—S25LS | + var (5RE—S2SLS) — 2cov (5FE—S2SL5'7 5RE—325LS>

)

(9]

FE7$25LS> + var (gRE752SLS) — 2var (gREf.S’ZSLS)

Under Hy, the Hausman test m = ¢ [var (q)]_1 q has a limiting x? distribution with degrees of freedom equal
to the rank of var(q). In practice, estimates of both p; and p, are needed to calculate var (gRE_SQSLS>.
Under the Kapoor, Kelejian and Prucha (2007) random effects spatial model, p; = p, and under the Anselin
(1988) random effects spatial model, p; = 0. One could perform a Hausman test based on these RE-S2SLS
versus FE-S2SLS estimators proposed in this paper. In fact, Mutl and Pfaffermayr (2011) suggested a Haus-
man test assuming p; = p, for the MRSAR panel data model. Its sensitivity under model misspecification

(say p; # po) is checked in the following section via Monte Carlo experiments.
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3 Monte Carlo Simulation

This section performs Monte Carlo experiments to study the finite sample performance of the proposed
estimators and the corresponding Spatial Hausman test. Following Baltagi, Egger and Pfaffermayr (2013)
but adding a spatial lag term, we consider the following MRSAR. panel model

yn = AMyyn +a+ Bzy + un, (38)

where A = 0.5, « = 5 and f = 0.5. x; is generated by z;; = ¢, + zi with (; i U[-7.5,7.5] and

2 U [—5,5]. The individual specific effects are drawn from a normal distribution so that pu; U N (0,200).
For the remainder error, we let ai = 10 and 02 = 10. This implies that the proportion of the total

variance due to the heterogeneity of the individual-specific effects is = 0.5. The spatial weight matrix

2102
is created following Kapoor, Kelejian and Prucha (2007). The Weighting matrix is referred as “3 ahead
and 3 behind”. This matrix is defined in a circular world so that the non-zero elements in rows 1 and N
are, respectively, in positions (2,3,4,N —2, N —1,N) and (1,2,3, N — 3, N — 2, N — 1). This matrix is row
normalized so that all of its non-zero elements are equal to 1/6. In the Tables below, we reference this
weighting matrix by J = 6, where J is the number of nonzero elements in a given row. p; and p, vary over
the set {—0.8,—0.5,-0.2,0,0.2,0.5,0.8}. We consider a panel with N = 100 regions and T' = 5 time periods,
and we perform 10,000 replications. For each replication, we estimate the model using (i) FE-2SLS allowing
for spatial lag but no spatial error correlation; (ii) RE-2SLS allowing for spatial lag but no spatial error
correlation; (iii) FE-S2SLS allowing for both spatial lag and spatial error correlation; (iv) KKP RE-S2SLS
allowing for both spatial lag and error correlation; (v) Anselin RE-S2SLS allowing for both spatial lag and
error correlation; (vi) General RE-S2SLS allowing for both spatial lag and error correlation; and (vii) True
RE-S2SLS allowing for both spatial lag and spatial error correlation.

Table 1 reports the relative root mean squared error (RMSE) of each estimator of 8 with respect to the
true RE-S2SLS. Several conclusions emerge from this table. Not surprisingly, true RE-S2SLS is the most
efficient estimator in terms of root mean squared error. When the true model is spatial RE; KKP or Anselin
with a spatial lag term, the ‘correct’ feasible RE-S2SLS estimator performs best and is the closest in RMSE
to the true RE-S2SLS. FE-S2SLS estimator performs much better than standard FE-2SLS which ignores
the spatial correlation. For example, for p; = p, = —0.8, the relative RMSE of FE-2SLS and FE-S2SLS
with respect to true RE-S2SLS is 1.365 and 1.243, respectively. Note that both FE-S2SLS and FE-2SLS
estimators perform much worse than any feasible spatial RE-S2SLS estimator. There is also much gain in
performing RE-S2SLS allowing for spatial correlation than ignoring it. For p; = py, = —0.8, the relative
RMSE of RE-2SLS ignoring spatial correlation with respect to true RE-S2SLS is 1.118 compared to 1.027 for

12



the RE-S2SLS based on KKP. The General spatial RE-S2SLS estimator of Baltagi, Egger and Pfaffermayr
(2013) is second best with relative RMSE of 1.039. For p; = 0 and p, = 0.8, the relative RMSE of RE-2SLS
ignoring spatial correlation is 1.179 compared to 1.047 for the RE-S2SLS based on Anselin. The General
spatial RE-S2SLS estimator is again second best with relative RMSE of 1.052. The gain in efficiency from
using the correct feasible RE-S2SLS for our experiments when the true model is a generalized MRSAR
panel model with p; = 0.8 and p, = —0.8, is as follows: The relative RMSE of the RE-S2SLS based on
KKP is 1.356 and the RE-S2SLS based on Anselin is 1.220, while the General spatial RE-S2SLS estimator
is 1.062. Table 2 reports the relative root mean squared error (RMSE) of each estimator of A. Similar to
the simulation results for 5 in Table 1, for p; = 0.8 and p, = —0.8, The relative RMSE of the RE-S2SLS
based on KKP is 1.262 and the RE-S2SLS based on Anselin is 1.096, while the General spatial RE-S2SLS
estimator is 1.024.

Table 3 reports the empirical size (at the 5% level) of the spatial Hausman test for various values of p,
and p, based on 10,000 replications. This is based on the contrast of the KKP RE-S2SLS estimator and the
FE-S2SLS in the first column, and the contrast of the Anselin RE-S2SLS estimator and the FE-S2SLS in
the second column and the contrast of the Generalized RE-S2SLS estimator and the FE-S2SLS in the third
column. We can see that for p; =0 and p, = —0.8, the spatial Hausman test based on KKP is over-sized if
the true model is an Anselin random effects MRSAR model. It yields a probability of type I error of 0.070
when it should be 0.05. This oversizing of the test gets worse when p; = 0.8 and p, = —0.8. The Hausman
test based on KKP yields a type I error of 0.115. In contrast, for p; = p, = —0.8, the spatial Hausman test
based on the Anselin RE-S2SLS estimator is under-sized if the true model is a KKP random effects MRSAR
model. It yields a probability of type I error of 0.031 when it should be 0.05. However, this undersizing does
not get worse, and the Hausman test based on the Anselin type MRSAR panel model performs reasonably
well when the true model is a generalized MRSAR panel model, with size varying between 0.032 and 0.070.
The spatial Hausman test based on the generalized spatial RE-S2SLS estimator performs better with size

varying between 0.036 and 0.062.

4 Conclusion

This paper suggests simple RE-S2SLS and FE-S2SLS estimators for the generalized MRSAR panel model.
This extends the generalized spatial error model considered by Baltagi, Egger and Pfaffermayr (2013) to
include a spatial lag term. More specifically, this generalized MRSAR model encompasses the KKP and

Anselin spatial error models and allow for the inclusion of a spatial lag of the dependent variable. Our FE
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and RE-S2SLS estimators apply the usual fixed and random effects transformations and the GM method of
KKP and Mutl and Pfaffermayr (2011), and are easy to compute. We derive the asymptotic distribution of
these estimators and investigate their performance using Monte Carlo experiments. Our results show that
the FE-S2SLS estimator that accounts for the spatial correlation performs much better than the standard
FE-2SLS which ignores the spatial correlation. There is also much gain from performing RE-S2SLS allowing
for spatial correlation than the standard RE-2SLS estimator which ignores the spatial correlation. Not
surprisingly, the ‘correct’ feasible RE-S2SLS estimator (Anselin, KKP or Generalized) performs best in terms
of RMSE when compared to the true RE-S2SLS. We also investigate the performance of the spatial Hausman
test based on the contrast involving the FE-S2SLS estimator and the KKP, Anselin and Generalized variants

of the RE-S2SLS estimator. We show that this Hausman test can be misleading under misspecification.
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Appendix

A Proof of Theorem 1
Proof. First, let us show that 'y, = O (1), v& = O (1) and

G —Th 20 and g — 74 20 as N — oc. (39)

!
Let &y = <§17N,...,§(T+1)N7N) = (Wy,--.,vy) sothat uy = Z,uin+usy = (cr A Ypuy+(Ir B Yvy

[(AT Ail) ) (IT Bil)] &y and

1
P, N — NiTURf (ST WJ]@/WJZV) un
1 _ _ _ _
= v ler AT (I BT (Sr WAWR) [(r A7) (Ir BTY)]éx
1
= ﬁglNcNfNa
T L/ A—llwklwl A—l A—l/Wk/Wl B—l
where Cy = T NN NN using ;.S = T and Srir = vp. Note
wp St B VYWHWLA™Y BTVWEWL B!

that the first matrix of the Kronecker product in Cn does not depend on N. The row and column sums
of the second matrix of the Kronecker product in Cy are bounded uniformly in absolute value by Remark
A2(b) in Kapoor, Kelejian and Prucha (2007). Under Assumptions 2 and 4, by Lemma Al in Kapoor,
Kelejian and Prucha (2007), we have E (gokl,N) =0(1) and ¢y, xy — E (g@kl’N) 2, 0. Notice that Pri N are
elements of G and g3, F (SOk-z,N) are elements of I'}; and v, Equation (39) is proved.

Second, let us show that

Gy -GN 20 and gh — gy 20 as N — oo, (40)

provided SQSLS L, §as N — oo. Note that the elements of G}\}k and gjl\,* are @y Ny = ﬁuﬁv (ST WJ’{/W}V) UN.

Since the row and column sums of the elements of Wy are uniformly bounded in absolute value by Assump-
tion 4, it follows that the row and columns sums of the matrices Sp WKW/, also have that property.
Define ¢y y = w7l (St WHWY) Gy, which are the elements of G}, and g}. By the proof of Lemma
A3 in Kapoor, Kelejian and Prucha (2007), we have ¢y, n — @p N 2,0 as N — co. This completes the proof
of Equation (40).

Third, Let 8 = (pl,oi) and 6 = (ngi)' The objective function of the nonlinear least squares
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estimator and its corresponding nonstochastic counterpart are given by

Ry (9)

/
(G [0 3 02)" = gk [Gh [on. 3 02) = gk ]

!/
Th [o2: 03 02] = | [T [oropd 03] = k]

=
2)—‘
=

I

respectively. Using Assumption 3, Equations (39) and (40), and the proof of Theorem 1 in Kapoor, Kelejian
and Prucha (2007), we get
sup By (0) — Ry ()] 50

p1€[—a1,a1],02 €[0,b1]

as N — oco. The consistency of p; and &u follows directly from Lemma 3.1 in Potscher and Prucha (1997).

B Proof of Theorem 2
Proof. First, using the central limit theorem and the law of large numbers, we have

VNT (ERE72SLS - 5)

Zy Hy (Hy J*Hy\ ' HY ;'Zn
NT NT NT

—1
i o M (i ;1H7V) HY otux

NT NT VNT

4N (07 (ToXg 'To + 0;21“’12;1&)_1) '

as N — oo since

— —1
1 H 71H* ]VITH§V {JT |:TO'Z (A/A)71+0_12/ (BIB)71:| }HN 0
N u N =
" 0 o, y7Hy [Er (B'B)] Hy
o [ Zo 0
P,
0 _221
_ _ 1 —1
Lo g NlTva{JT T @A) kBB zv) , (T
NT N u - _9
o, wrHy [Er (B'B)]Zy o, T
and
1 — d 1 _ 20 0
——Hy Tlu —>N<O lim —Hy JtHA >_N 0,
YNT N ow N 5 NT N 0 oy,

using Assumption 4.
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Second, from Theorem 1, we know the GM estimators of p;, p,, &i and &3 are consistent. Similar to

Lemma 4 of Baltagi, Egger and Pfaffermayr (2013), one can show that
1

- 1
NTH}({ HY - WJLI;*V’ SHY 20
1 - 1
WHJ*V[ Az - WH]*v’ 1y 20
and
1 - 1
7TVTH;; ;11,61\1 — 7?\7’]’ ;{; ;1uN LA 0.

Therefore, we have V NT' (SRE_FQSLS —SRE_QSLS) 2,0 as N — oo. This proves the Theorem. m

C Proof of Theorem 3

Proof. First, using the central limit theorem and the law of large numbers, we have

Z [Br (B'B)]Hy (H;V [Er (B'B)] HN>1 Hy [Er Bloy
NT NT VNT

4N (0,03 (rgz;lrl)’l) ,

as N — oo since

1
WHEV [Er  (B'B)]Hy = %
1
WHEV [Er (B'B)|Zy 5T
and
L g Er Bloy % N (0, lim —
VNT N©&T N "N—oo NT

using Assumption 4.

Second, similar to the proof of Theorem 2, one can show that

1

Hy [Er (B'B)] HN) =N (0,07%1)

! R N o 1 / / p
N [ET (B B)} Hy = ~=Hy[Er (B'B) Hy 0
1 / N/ D 1 / / D
—NTHN [ET (B B)] 4N — 7NTHN [Er  (B'B)]Zn =0
and
L [ET B’} oy — e HN[Er Blon 50
vNT ¥ VvNT ¥

Therefore, we have vV NT (SFE,FQSLS —SFE,QSLS) 2,0 as N — oco. This proves the Theorem. m
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Table 1: Relative Efficiencies of Spatial Panel Data Estimators of 5 in the MRSAR Model

0 Do -2 -2 -S2 -S2 -S2 -S2
KKP Anselin General

RE 0 0 1.203 1.005 1.205 0.994 0.985 17002
KKP 0.8 -0.8 1.365 T.118 T.243 T.027 T.082 1.039
-0.5 -0.5 1.280 1.054 1.223 1.017 1.050 1.028
-0.2 -0.2 1.224 1.017 1.217 1.005 1.016 1.021
0.2 0.2 1.187 1.011 1.181 0.956 0.969 0.974
0.5 0.5 1.157 1.050 1.166 0.963 0.974 0.970
0.8 0.8 1.155 1.053 1.215 1.054 1.073 1.064
Anselin 0 -0.8 1.306 T.157 T.185 T.105 1.036 1.026
0 -0.5 1.222 1.067 1.169 1.051 1.031 1.021

0 -0.2 1.186 1.022 1.180 1.004 1.009 1.009

0 02 1.242 1.029 1.234 0.976 0.968 0.989

0 05 1.307 1.111 1.317 1.047 0.965 0.968

0 0.8 1.380 1.179 1.465 1.226 1.047 1.052
General -0.8 -0.5 1.307 1.084 1.248 1.024 1.082 1,032
-0.8 -0.2 1.312 1.084 1.298 1.058 1.087 1.019
-0.8 0 1.366 1.115 1.366 1.095 1.084 1.016
-0.8 0.2 1.419 1.163 1.405 1.117 1.059 1.008
-0.8 0.5 1.444 1.256 1.445 1.216 1.032 1.005
-0.8 0.8 1.426 1.294 1.520 1.332 1.075 1.054
-0.5 -0.8 1.347 1.111 1.224 1.036 1.060 1.036
-0.5 -0.2 1.265 1.033 1.254 1.027 1.047 1.015
-0.5 0 1.310 1.061 1.306 1.037 1.036 1.010
-0.5 0.2 1.363 1.103 1.350 1.059 1.007 1.004
-0.5 0.5 1414 1.204 1.422 1.155 1.004 0.995
-0.5 0.8 1415 1.248 1.509 1.287 1.063 1.051
-0.2 -0.8 1.319 1.119 1.197 1.063 1.030 1.031
-0.2 -0.5 1.246 1.056 1.192 1.028 1.035 1.028
-0.2 0 1.248 1.025 1.250 1.005 1.000 1.008
-0.2 0.2 1.293 1.048 1.283 1.005 0.977 0.998
-0.2 0.5 1.361 1.152 1.366 1.091 0.987 0.983
-0.2 0.8 1.392 1.201 1.476 1.245 1.045 1.054
0.2 -0.8 1.292 1.206 1.170 1.152 1.054 1.032
0.2 -0.5 1.193 1.093 1.140 1.089 1.032 1.006
0.2 -0.2 1.160 1.036 1.155 1.033 1.020 1.010
0.2 0 1.171 1.015 1.174 0.995 1.000 0.998
0.2 0.5 1.252 1.077 1.263 1.015 0.964 0.961
0.2 0.8 1.348 1.163 1.435 1.185 1.031 1.039
0.5 -0.8 1.268 1.337 1.149 1.243 1.092 1.028
05 -0.5 1.161 1.183 1.109 1.173 1.068 1.011
05 -0.2 1.115 1.093 1.114 1.098 1.055 1.003
0.5 0 1.115 1.052 1.118 1.052 1.047 0.990
05 0.2 1.119 1.026 1.110 0.974 1.009 0.959
0.5 0.8 1.279 1.128 1.360 1.128 1.025 1.041
0.8 -0.8 1.253 1.815 1.138 1.356 1.220 1.062
0.8 -0.5 1.145 1.572 1.105 1.287 1.186 1.054
0.8 -0.2 1.085 1.387 1.097 1.228 1.164 1.035
0.8 0 1.063 1.268 1.083 1.165 1.142 1.009
0.8 0.2 1.066 1.176 1.076 1.092 1.110 0.977
0.8 0.5 1.069 1.070 1.098 0.996 1.046 0.985

Notes: (a) Relative mean square error with respect to the true RE-S2SLS. (b) 10,000 replications.
()N =100,7 = 5,J = 6,0 = 0.5 and \ = 0.5.
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Table 2: Relative Efficiencies of Spatial Panel Data Estimators of A in the MRSAR Model

0 Do -2 -2 -S2 -S2 -S2 -S2
KKP Anselin General

RE 0 0 T1.261 1.004 1.265 0.998 T.000 1.006
KKP -0.8 -0.8 1.322 1.068 1.251 T.013 1.033 T01T
-0.5 -0.5 1.278 1.026 1.249 1.003 1.009 0.999
-0.2 -0.2 1.261 1.008 1.256 1.001 1.003 1.004
0.2 0.2 1.267 1.010 1.260 1.000 1.012 1.010
0.5 0.5 1.288 1.032 1.270 1.004 1.025 1.005
0.8 0.8 1.264 1.062 1.286 1.021 1.069 1.021
Anselin 0 -0.8 1.368 T.050 1.302 T.034 T.00T 1.004
0 -0.5 1.306 1.023 1.280 1.014 1.000 1.002

0 -0.2 1.272 1.008 1.268 1.003 1.003 1.004

0 0.2 1.265 1.009 1.258 1.005 1.003 1.009

0 0.5 1.301 1.051 1.283 1.017 1.002 1.007

0 0.8 1.295 1.121 1.319 1.057 1.044 1.023
General -0.8 -0.5 T1.257 1.030 1.229 1.003 T.0I8 0.998
-0.8 -0.2 1.228 1.024 1.222 1.014 1.019 0.997
-0.8 0 1.232 1.028 1.235 1.030 1.023 1.001
-0.8 0.2 1.239 1.037 1.236 1.036 1.015 0.999
-0.8 0.5 1.282 1.073 1.257 1.059 1.011 1.007
-0.8 0.8 1.293 1.186 1.303 1.102 1.051 1.038
-0.5 -0.8 1.341 1.057 1.271 1.010 1.015 1.012
-0.5 -0.2 1.244 1.014 1.238 1.006 1.007 1.000
-0.5 0 1.245 1.020 1.249 1.021 1.016 1.003
-0.5 0.2 1.253 1.025 1.248 1.019 1.009 1.004
-0.5 0.5 1.287 1.059 1.263 1.032 0.998 1.008
-0.5 0.8 1.291 1.160 1.311 1.082 1.041 1.035
-0.2 -0.8 1.358 1.047 1.292 1.025 1.008 1.011
-0.2 -0.5 1.295 1.022 1.267 1.006 1.000 1.001
-0.2 0 1.252 1.006 1.256 0.998 1.002 1.003
-0.2 0.2 1.268 1.020 1.262 1.013 1.013 1.013
-0.2 0.5 1.292 1.045 1.269 1.023 0.997 1.007
-0.2 0.8 1.296 1.140 1.318 1.067 1.043 1.026
0.2 -0.8 1.380 1.056 1.315 1.049 1.002 1.007
0.2 -0.5 1.315 1.027 1.289 1.022 0.997 1.002
0.2 -0.2 1.272 1.008 1.271 1.000 1.000 1.003
0.2 0 1.268 1.007 1.273 1.001 1.011 1.008
0.2 0.5 1.294 1.036 1.276 1.006 1.001 1.002
0.2 0.8 1.289 1.107 1.311 1.044 1.040 1.018
0.5 -0.8 1.399 1.085 1.332 1.096 1.023 1.012
0.5 -0.5 1.328 1.059 1.300 1.069 1.024 1.007
0.5 -0.2 1.279 1.033 1.282 1.035 1.025 1.009
0.5 0 1.265 1.027 1.269 1.018 1.029 1.003
05 0.2 1.264 1.021 1.264 1.006 1.026 0.998
0.5 0.8 1.286 1.095 1.306 1.039 1.040 1.020
0.8 -0.8 1.413 1.185 1.351 1.262 1.096 1.024
0.8 -0.5 1.340 1.157 1.319 1.211 1.096 1.021
0.8 -0.2 1.287 1.131 1.294 1.141 1.096 1.020
0.8 0 1.271 1.113 1.279 1.109 1.098 1.015
0.8 0.2 1.263 1.096 1.261 1.077 1.097 1.018
0.8 0.5 1.268 1.070 1.254 1.030 1.078 1.010

Notes: (a) Relative mean square error with respect to the true RE-S2SLS. (b) 10,000 replications.

(¢)N =100,T =5,.J = 6,6 = 0.5 and A = 0.5.
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Table 3: Size of the Spatial Hausman Test in the MRSAR Model

P1 P2 -52 -52 -S52
KKP Anselin General

RE 0 0 0.050 0.049 0.051
KKP 0.8 -0.8 0.059 0.03T 0.061
-0.5 -0.5 0.061 0.041 0.062
-0.2 -0.2 0.054 0.048 0.055
0.2 0.2 0.046 0.046 0.045
0.5 0.5 0.046 0.040 0.044
0.8 0.8 0.053 0.044 0.054
Anselin 0 -0.8 0.070 0.049 0.053
0 -0.5 0.063 0.048 0.053

0 -0.2 0.055 0.050 0.051

0 0.2 0.049 0.048 0.052

0 0.5 0.049 0.049 0.054

0 0.8 0.053 0.064 0.060
General -0.8 -0.5 0.053 0.033 0.062
-0.8 -0.2 0.048 0.038 0.061
-0.8 0 0.047 0.041 0.060
-0.8 0.2 0.047 0.045 0.060
-0.8 0.5 0.055 0.052 0.061
-0.8 0.8 0.055 0.070 0.062
-0.5 -0.8 0.071 0.039 0.062
-0.5 -0.2 0.051 0.043 0.058
-0.5 0 0.048 0.043 0.057
-0.5 0.2 0.048 0.045 0.057
-0.5 0.5 0.051 0.050 0.059
-0.5 0.8 0.053 0.070 0.064
-0.2 -0.8 0.072 0.048 0.057
-0.2 -0.5 0.064 0.048 0.056
-0.2 0 0.050 0.046 0.053
-0.2 0.2 0.049 0.048 0.056
-0.2 0.5 0.049 0.051 0.057
-0.2 0.8 0.053 0.066 0.059
0.2 -0.8 0.068 0.046 0.046
0.2 -0.5 0.061 0.047 0.046
0.2 -0.2 0.051 0.044 0.045
0.2 0 0.049 0.044 0.046
0.2 0.5 0.046 0.047 0.050
0.2 0.8 0.052 0.061 0.059
0.5 -0.8 0.075 0.042 0.039
0.5 -0.5 0.063 0.042 0.038
0.5 -0.2 0.048 0.040 0.038
0.5 0 0.044 0.039 0.036
0.5 0.2 0.040 0.038 0.039
0.5 0.8 0.053 0.050 0.055
0.8 -0.8 0.115 0.041 0.040
0.8 -0.5 0.101 0.040 0.042
0.8 -0.2 0.076 0.038 0.038
0.8 0 0.057 0.034 0.038
0.8 0.2 0.046 0.032 0.040
0.8 0.5 0.046 0.036 0.049

Notes: (a) 10,000 replications. (b) N = 100,T

5 J=6,0=0.5and A =0.5.
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