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Abstract

We present a random effects logistic approach for estimating the efficacy of treatment

for compliers in a randomized trial with treatment non-adherence and longitudinal binary

outcomes. We use our approach to analyze a primary care depression intervention trial. The

use of a random effects model to estimate efficacy supplements intent-to-treat longitudinal

analyses based on random effects logistic models that are commonly used in primary care

depression research. Our estimation approach is an extension of Nagelkerke et al. (2000,

Statistics in Medicine)’s instrumental variables approximation for cross-sectional binary out-

comes. Our approach is easily implementable with standard random effects logistic regression

software. We show through a simulation study that our approach provides reasonably ac-

curate inferences for the setting of the depression trial under model assumptions. We also

evaluate the sensitivity of our approach to model assumptions for the depression trial.

Keywords: random effects, logistic regression, exclusion restriction, encouragement stud-

ies, mental health.

1. Introduction

The central goal of a clinical trial is to make inferences about how treatment should be

conducted in a general population of patients who will require treatment in the future [1].

Frequent complications for achieving this goal include the sample of patients in the trial being

unrepresentative of the general population and the way in which the treatment is administered

in the trial being different than the way it would be administered in the general population.

Another common challenge for predicting the effect of future treatment programs based on

a clinical trial is non-adherence to assigned treatment regime. Non-adherence is a common

feature of trials with human subjects because adherence cannot be enforced for ethical reasons.

Non-adherence causes difficulties for predicting the effect of future treatment programs when

adherence patterns for future treatment programs are expected to differ from adherence patterns

in the trial. For the future treatment program of making the treatment generally available to

the population after a successful trial, adherence might be higher than in the trial because

the treatment is accepted as efficacious as a result of the successful trial or adherence might be

lower than in the trial because patients in the general population are given less encouragement to
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take the treatment than patients in the trial [2]. When adherence patterns for future treatment

programs are expected to differ from adherence patterns in the trial, a key quantity for accurately

predicting the effect of a future treatment program based on the trial results is the “efficacy” of

the treatment in the trial. The efficacy is a measure of how effective the treatment was relative

to the control for those patients (or a subset of those patients) who adhered to the treatment

regimen in the trial ([3, 4]; see also Section 10 of this paper). This paper develops a method for

estimating efficacy for a study with longitudinal binary outcomes and applies it to a primary

care depression treatment study.

Two commonly used methods for analyzing clinical trials are 1) intent-to-treat (ITT) anal-

yses that compare patients assigned to the treatment arm to patients assigned to the control

arm and 2) as treated (AT) analyses that compare patients who actually received the treatment

to patients who did not receive the treatment. Both methods of analysis have flaws for ana-

lyzing efficacy. The ITT analysis does not aim to measure the efficacy of treatment actually

received. Instead, the ITT analysis measures the programmatic effectiveness of offering, but not

enforcing, treatment in the trial. When there is non-adherence, the programmatic effectiveness

will generally differ from the efficacy. Note also that when the pattern of adherence for future

treatment programs is expected to differ from that of the trial, the programmatic effectiveness

of offering treatment in the trial that is measured by the ITT analysis will not generally be the

same as the programmatic effectiveness of future treatment programs. In contrast to the ITT

analysis, an AT analysis does aim to measure the efficacy of treatment actually received, but an

AT analysis is biased when patients who would adhere to the treatment regimen if randomized

to it are not comparable to patients who would not adhere to the treatment regimen if random-

ized to it. Often, the propensity for a successful outcome among those who would adhere to the

treatment if offered it (would be adherers) is greater than among those who would not adhere

to the treatment if offered it (would be non-adherers) when both groups do not receive treat-

ment (e.g., [5, 6]). In contrast, in the depression study we consider, we find evidence that the

propensity for a successful outcome when not offered treatment is less in would be adherers than

would be non-adherers. Unlike AT analyses, instrumental variables (IV) methods for estimating

efficacy do not require would be adherers and would-be non-adherers to be comparable to obtain
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consistent estimates. Instead, IV methods require an “exclusion restriction” that specifies that

the randomization assignment only affects the outcome through its effect on treatment received.

IV methods have been developed for several types of studies and data [7, 8, 9]. This paper

develops an IV method for estimating efficacy for longitudinal binary outcomes using a random

effects logistic regression model.

The study that motivated our work is a randomized trial of an “encouragement” intervention

to improve adherence to prescribed depression treatments among depressed elderly patients

in primary care practices [10]. Each practice was randomized to either this encouragement

intervention, the test treatment (henceforth referred to as the treatment), or to usual care, the

control treatment (henceforth referred to as the control). The encouragment intervention is to

have a depression specialist (typically a master’s level clinician) closely collaborate with the

depressed patient and the patient’s primary care physician to facilitate patient and clinician

adherence to a treatment algorithm and provide education, support and ongoing assessment to

the patient. The study measured patients’ Hamilton depression scores at baseline and three

follow-up visits at 4, 8 and 12 months. A patient was considered to have adhered to the

encouragement intervention if the patient had seen a depression specialist in the prior four

months of follow-up. Patients in practices randomized to the usual care group did not have

access to the depression specialist. One clinical question of interest is what is the effect of a

patient’s contact with the depression specialist over the past four months on the probability of

a 50% or more reduction in a patient’s Hamilton score from baseline. The binary outcome of

whether or not there is a 50% or more reduction in a patient’s Hamilton score from baseline has

been advocated by a government panel as a standard for research on primary care treatment of

depression [11]. The “transient” effect of the experimental treatment (the effect of contact with

the depression specialist over the past four months) is focused on rather than the cumulative

effect of treatment from baseline because of the expectation that the effect of contact with the

depression specialist does not extend beyond the next visit four months later.

A random effects logistic model was used for the intent-to-treat analysis of the depression

study described above in [10]. Random effects logistic models are commonly used in primary care

depression treatment research, e.g., [12], because they provide subject-specific inferences. See
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Zeger et al. [13, 14] for motivation for and discussion of estimating subject-specific parameters.

Our goal is to provide an analysis of efficacy that supplements the ITT analysis. We use a

random effects logistic model to analyze efficacy. Random effects models for analyzing efficacy

have several benefits. First, conditioning on random effects in estimating efficacy makes the effi-

cacy estimates comparable to ITT estimates from a random effects model; this was an important

motivation for using a random effects logistic model to estimate efficacy for the depression study.

Second, random effects models provide a means of accommodating a certain type of informative

dropout through a shared parameter model, e.g., [15, 16]. Third, although it is not the focus

of this study, random effects models enable information to be borrowed from other subjects for

making more accurate treatment decisions for a given patient based on limited longitudinal data

for the given patient, e.g., [17, 18].

The methodological contributions of our paper are to formulate a random effects logistic

model for analyzing efficacy and provide an easily implementable method for estimating it. Our

approach to estimation is an extension of the approximate IV method for cross-sectional logistic

models proposed by Nagelkerke et al. [19] and examined by Ten Have et al. [20]. A valuable

feature of our approximate IV approach is that it can easily be implemented using standard

random effects logistic regression software, e.g., proc NLMIXED in SAS with macros available

from the authors. We show that our approximate IV approach produces approximately valid

results for the setting of the depression study under model assumptions through a simulation

study in Section 8. We also evaluate the sensitivity of our results to various model assumptions.

The depression study we consider is a “clustered encouragement design,” meaning that the

randomization was done at the cluster level of primary care practices rather than the individual

level. Frangakis et al. [21] develop a framework and methods for studying clustered encourage-

ment designs for a cross-sectional setting. In setting up our model, we consider both designs in

which the sample is a simple random sample and randomization is done at the individual level

and designs in which the sample is a clustered sample and randomization is done at the cluster

level. For the depression study, there is only a small correlation between outcomes within prac-

tices. In the simulation study of Section 8 that is based on the setup of the depression study, a

version of our estimation method which ignores the clustering performs better than a version of
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our estimation method which takes the clustering into account.

We focus here on a depression study but the type of data for which our model is designed, lon-

gitudinal binary outcome data from a randomized trial with non-adherence, is common. Another

example is a randomized trial of treatments for acute myeloid leukemia patients [22]. Litera-

ture on estimating efficacy for longitudinal studies with treatment non-adherence includes the

following. Robins [8], using g-estimation for linear or log-linear models, focused on estimating

cumulative effects of time-varying treatments on final outcome among those who adhere, in con-

trast to our focus on transient effects on intermediate outcomes. Sato [22] applied g-estimation

for linear models without random effects to estimate additive cumulative effects of treatment

on repeated measures binary outcomes in a randomized trial. Frangakis et al. [23] developed

methodology for estimating the transient effect of a longitudinal treatment using the principal

stratification framework for causal inference [24]. Frangakis et al. [23]’s approach differs from

ours in that they make population-averaged inferences whereas we make subject-specific infer-

ences using our random effects model. Yau and Little [25] assumed constant compliance status

and adherence across time in fitting a random effects linear model in the principal stratification

framework. A number of logistic or probit models have been proposed for causal inference based

on cross-sectional binary outcomes, e.g., [26, 27, 28, 19, 20, 29].

Our paper is organized as follows. We present descriptive statistics for the depression study

in Section 2; causal notation in Section 3; assumptions in Section 4; the model for potential

outcomes in Section 5; the estimation approach in Section 6; strategies for assessing assumptions

in Section 7; simulation results in Section 8; data analysis results for the depression study in

Section 9; discussion of how efficacy is useful in predicting the effect of future treatment programs

in Section 10; and general discussion in Section 11.

2. Depression Study

The depression study involved 539 patients in 20 primary care practices. Full details of the

study are described in Bruce et al. [10]. The practices were paired in the randomization but in

order to focus on main aspects of our methodology, we ignore the pairing in our analysis.

The following are descriptive statistics for the study. The differences in the proportion of

successful outcomes between randomized groups diminishes across time, as does the proportion
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receiving treatment in the randomized to treatment group. Specifically, the percentages of

randomized to treatment patients with a 50% or more reduction in Hamilton score since baseline

at 4, 8 and 12 months are 42.7, 46.2 and 52.1% respectively. The corresponding percentages

in the randomized to usual care group are 29.1, 35.5 and 42.0 % respectively. The analogous

percentages of successful outcomes for those who actually received the treatment are 43.0, 45.5

and 55%, whereas in the group that did not receive the treatment, including those randomized

to usual care, the percentages are 29.8, 37.8 and 41.4%. The percentage of the randomized

to treatment group that actually receives the treatment declines somewhat across the three

follow-up visits: 92.9, 80.9 and 79.7% respectively. The data set is available by request from the

authors. We now develop notation for defining the efficacy of receiving the treatment of seeing

the depression specialist.

3. Notation

We use the potential outcomes model for causal inference [30, 31] to define the efficacy of

an intervention. We shall assume that the clinical trial has a Zelen randomized single consent

design [32, 33]. A single consent design has the following features: 1) the control is the best

standard method of care (called usual care in the depression study); 2) everyone who does not

take the test treatment (including those who are assigned to the test treatment group but do not

adhere) receives the control which is the best standard method of care; and 3) the test treatment

is not available to patients assigned to the control arm. We shall also assume that adherence

with the test treatment is all or none. We consider a longitudinal study with a balanced design

and T > 1 time points (T = 3 in the depression study).

Treatment received and randomization variables. The observed randomization variable is

Ri = 1 if patient i(= 1, . . . , N) was randomized to the treatment group and Ri = 0 if patient

i was randomized to the control group. In the depression study, the treatment entails meeting

with the depression specialist and the control arm is usual care. The observed treatment-received

variable is defined as follows: Ait = 1 if the treatment was actually received by patient i during

the four months prior to time t (t = 4, 8 or 12 months), i.e., Ait = 1 if patient i actually met

with the depression specialist in the four months prior to time t, and Ait = 0 otherwise. For the

single consent design that we consider, Ait = 0 when Ri = 0 because patients assigned to the
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control arm do not have access to the treatment.

Compliance status variables. To define the time-varying compliance classes of patients, we

first define potential treatment-received variables. Let A
(1)
it = a ∈ {0, 1} denote whether the

ith patient would choose to adhere to the intervention during the four month period prior to

time t if she or he were to be randomly assigned to the treatment arm (r = 1) and let A
(0)
it be

the corresponding potential treatment-received variable if the ith patient were to be assigned

to the control arm (r = 0). For a clustered design, A
(r)
it denotes whether the ith patient would

choose to adhere to the intervention if the ith patient’s cluster was randomly assigned to arm r.

The compliance class of a patient classifies a patient by (A
(0)
it , A

(1)
it ) [7]. For the single consent

design, the control group does not have access to the treatment so that A
(0)
it = 0 for all patients

and the compliance classes can be defined in terms of A
(1)
it . We denote the compliance class

indicator variable as Cit = c where c = 1 for compliers (A
(1)
it = 1) and c = 0 for never-takers

(A
(1)
it = 0). Compliers are those patients who would receive the treatment if assigned to it, and

never-takers are those patients who would never receive the treatment even if assigned to it.

Note that these compliance classes are only partially observed; they are observed if Ri = 1 but

unobserved if Ri = 0. In the terminology of Frangakis and Rubin [24], the vector of compliance

classes for patient i, Ci = (Ci1, . . . , CiT ), is a principal stratification with respect to adherence

to treatment assignment.

Observed and potential outcome variables. The potential outcomes are Y
(1)
it , the binary

outcome (50% or more improvement in baseline Hamilton score) that would have been observed

had patient i (patient i’s cluster for a clustered design) been randomly assigned to the treatment

(r = 1) arm, and Y
(0)
it , the binary outcome that would have been observed had patient i (patient

i’s cluster for a clustered design) been randomly assigned to the control (r = 0) arm. The

corresponding observed outcome is Yit = y ∈ {0, 1}, which denotes the outcome that was

observed for patient i at time t. Note that we specify a pair of potential outcomes for each of

T time points for a patient, but observe only one potential outcome at each time point for a

patient.

Observed and potential missed visits and drop-out variables. The potential missed visit and

potential drop-out variables are O
(r)
it = o ∈ {0, 1} and D

(r)
it = d ∈ {0, 1}, which denote whether a
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research visit (for Oit) or drop-out (for Dit) would have occurred at time t had patient i (patient

i’s cluster for a clustered design) been randomly assigned to arm r assuming that the patient

has not dropped out of the trial by time t − 1. The corresponding observed missed visit and

drop out variables are Oit = o ∈ {0, 1} and Dit = d ∈ {0, 1}, which denote whether a research

visit (drop-out) occurred at time t for patient i. We define Ti as the last time a visit occurred

for patient i, Ti ≤ T .

Covariates. The non-treatment covariates include baseline and visit indicator variables. The

vector of baseline covariates for patient i is denoted by Xi. For the depression study, the elements

of Xi are baseline Hamilton depression score and baseline suicide ideation score. The vector of

time variables is denoted by Tt. For the depression study, Tt consists of three dummy variables

for the three time points (4, 8 and 12 months). We tried specifying Tt as an intercept and a

linear term for time but found that this model did not fit well relative to the saturated model

with dummy variables for visits.

Random effects. We define a vector of unobserved random effects, τ i, for the outcome model

for patient i. The elements of this vector include a random intercept, τ0 i, and if necessary

random polynomial terms such as a random slope τ1 i for time. The design matrix that links the

random effects to the outcomes is Zi with t-th row Zit. For a clustered design, we also consider

a vector of random effects for the hth cluster, ιh, with design matrix Vh.

Clusters. For a clustered design, we use the notation that there are n clusters, nh members

of the hth cluster, and the ith member of the hth cluster is indexed by hi, e.g., the baseline

covariates for the ith member of the hth cluster are Xhi and the randomization assignment is

Rhi. The cluster of a given subject j is denoted by Pj, i.e., Phi = h. For conciseness, we use the

notation for an unclustered design below except when we discuss the clustered design explicitly.

4. Assumptions

Standard assumptions for interpreting or estimating causal effects when there is treatment

nonadherence are: 1) Stable Unit Treatment Value Assumption (SUTVA); 2) randomization of

treatment assignment; 3) exclusion restriction; and 4) monotonicity. The standards assumptions

need to be augmented with additional assumptions that are needed for the logistic link function,

longitudinal and missing data, and random effects. We test some of these assumptions and
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address sensitivity of our approach to others in Sections 7-9.

4.1 Sampling Assumptions

For an unclustered design, we assume that the vectors

Gi = (Y
(0)
i1 , Y

(1)
i1 , . . . , Y

(0)
iT , Y

(1)
iT , A

(0)
i1 , A

(1)
i1 , . . . , A

(0)
iT , A

(1)
iT ,

O
(0)
i1 , O

(1)
i1 , . . . , O

(0)
iT , O

(1)
iT , D

(0)
i1 , D

(1)
i1 , . . . , D

(0)
iT , D

(1)
iT ,

Ri, Ci1, . . . , CiT , Yi1, . . . , YiT , Ai1, . . . , AiT ,Xi,Zi, τ i),

i = 1, . . . , n, are i.i.d., each with the same distribution as the random vector

(Y
(0)
1 , Y

(1)
1 , . . . , Y

(0)
T , Y

(1)
T , A

(0)
1 , A

(1)
1 , . . . , A

(0)
T , A

(1)
T , O

(0)
1 , O

(1)
1 , . . . , O

(0)
T , O

(1)
T ,

D
(0)
1 , D

(1)
1 , . . . , D

(0)
T , D

(1)
T , R,C1, . . . , CT , Y1, . . . , YT , A1, . . . , AT ,X,Z, τ ), (1)

where Yit = Y
(Ri)
it , Ait = A

(Ri)
it and Yt = Y

(R)
t , At = A

(R)
t . For a clustered design, we assume that

the random vectors (Gh1, . . . ,Ghnh
, nh, ιh), h = 1, . . . , n, are i.i.d. All subsequent probability

and expectation statements will be in terms of the random vector (1), where statements like

P (Yt | Ai, Ri) are shorthand for P (Yt | A = Ai, R = Ri).

4.2 SUTVA Assumption

The Stable Unit Treatment Value Assumption (SUTVA) assumes that the model’s repre-

sentation of potential variables is adequate to describe the effect of the interventions that are

under consideration [34]. Here, our potential outcome variables Y
(r)
it allow only for differences in

treatment assigned r for patient i for an unclustered design and only for differences in treatment

assigned r for cluster Pi in a clustered design. For this representation to satisfy SUTVA for the

types of randomized trials being considered, we must assume that (1) there is a single value

of the potential outcome Y
(r)
it regardless of the randomization assignment of any other patient

i′ 6= i in an unclustered design and regardless of the randomization assignment of any other

cluster h′ 6= Pi in a clustered design; and (2) there is a single value of the potential outcome

Y
(r)
it regardless of the method of treatment assignment or administration.

Assumption (1) allows us to use scalar notation for the treatment-assigned indices of the

potential outcomes that refer to patient i rather than vectors of treatment assigned indices when

defining potential outcomes for patient i. Assumption (2), often called the SUTVA consistency
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assumption, enables us to relate the observed and potential outcomes:

Yit = RiY
(1)
it + (1 −Ri)Y

(0)
it .

A similar assumption enables us to relate the observed and potential missed visit and drop-out

variables, Oit = RiO
(1)
it + (1 −Ri)O

(0)
it , and Mit = RiM

(1)
it + (1 −Ri)M

(0)
it .

4.3 Exclusion Restriction for Never Takers

We assume that for never takers at time t (patients with A
(1)
it = 0), random assignment

to the treatment versus the control arm has no effect on potential outcomes, missed visits and

drop-out:

If A
(1)
it = 0, then Y

(1)
it = Y

(0)
it ; O

(1)
it = O

(0)
it ; D

(1)
it = D

(0)
it (2)

(2) is called an exclusion restriction for never takers because it excludes an effect of randomization

assignment on outcomes for never takers. This exclusion restriction is more likely to hold

with blinding of treatment assignments to patients and clinicians, which is not the case for

the depression study. We assess the robustness of our approach to violations of the exclusion

restriction assumption in Section 9.2.2. See Hirano et al. [27] for further discussion of exclusion

restriction assumptions.

4.4 Missing Data Assumptions

We assume that the observed missed visit and drop-out processes (O1, . . . , OT , D1, . . . , DT )

are independent of the outcomes (Y1, . . . , YT ) = (Y
(R)
1 , . . . , Y

(R)
T ) (these represent the observed

outcomes and the outcomes that would have been observed if not for missingness) conditional

on the observables (X,Z, R):

Pr (Y1, . . . , YT , O1, . . . , OT , D1, . . . , DT | X,Z, R) =

Pr (Y1, . . . , YT | X,Z, R) Pr (O1, . . . , OT , D1, . . . , DT | X,Z, R) (3)

Assumption (3) is a case of covariate-dependent drop-out in the terminology of [35]. Frangakis

and Rubin [36] and Mealli et al. [37] provide alternative assumptions about missing data that

allow for missingness to be nonignorable conditional on (X,Z, R) but ignorable once partially

unobserved compliance status is also conditioned on. We consider an alternative assumption

that allows for a certain type of informative drop-out in Section 9.2.5.
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4.5 Randomization Assumption

For an unclustered design, assignment to the treatment arm is assumed to be random and

hence ignorable, i.e., letting G
−Ri

i denote the vector Gi of Section 3.1 excluding Ri,

Pr(R1, . . . , Rn | G−R1

1 , . . . ,G−Rn

n ) = Pr(R1, . . . , Rn), (4)

For a clustered design, assignment to the treatment arm is assumed to be random among clusters

and hence ignorable when cluster membership is conditioned on,

Pr(R11, . . . , R1n1
, . . . , Rn1, . . . , Rnnn

| G−R1

11 , . . . ,G
−R1n1

1n1
, . . . ,G−Rn1

n1 , . . . ,G−Rnn

nnn
, P11, . . . , Pnnn

) =

Pr(R11, . . . , R1n1
, . . . , Rn1, . . . , Rnnn

| P11, . . . , Pnnn
);

see section 2 under clusters for our notation for clustered designs.

4.6 Monotoncity Assumption

The monotonicity assumption is that A
(1)
it ≥ A

(0)
it for all i and t, i.e., there are no patients

who do the opposite of what they are assigned (i.e., no defiers). For the single consent design,

the group assigned to the control arm does not have access to the treatment; thus, monotonicity

holds by design.

4.7 Random Effects Assumptions

The random effects vector τ is assumed to have mean zero conditional on compliance status.

For the random effects distribution, we assume τ |C is iid MVN(0,Σ) where MVN denotes the

multivariate normal distribution. We assume that the random effects design matrix Zi contains

only functions of the baseline covariates Xi and the time variables T. For the depression study,

we will focus on the case in which τ i contains only a random intercept τ0 i, and consequently,

Σ = σ2
τ and Zi is a T × 1 vector of ones. In Section 9.2.6, we examine multidimensional random

effects vectors for the depression study and find that there is no significant evidence that a

multidimensional random effect provides a better model than a random intercept.

We make a version of the usual conditional independence assumption for random effects

models. We assume that conditional on the random effects τ , the observed covariates (X,Z),

and the partially unobserved compliance statuses C = (C1, . . . , CT ), the potential outcomes

corresponding to an arm r are independent,

Pr(Y
(r)
1 = y1, . . . , Y

(r)
T = yT | τ ,X,Z,C) =

T
∏

t=1

Pr(Y
(r)
t = yt | τ ,X,Z,C). (5)
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For clustered designs, we make an analogous assumption to (5) that involves both the patient

level random effects τ hi and the cluster level random effects ιh.

5. Model

The assumptions of Section 4 suffice to identify the intention to treat effect for compliers

without any further parametric assumptions, following a similar argument to that of Imbens

and Angrist [38]. However, to have interpretable parameters, it is useful to consider auxiliary

parametric assumptions. The parametric model for potential outcomes we consider is a lon-

gitudinal random effects extension of the cross-sectional logistic model that was presented for

treatment non-adherence in randomized trials by Nagelkerke et al. [19] and further investigated

by Ten Have et al. [20]. The model is as follows:

Pr(Y
(r)
t = 1 | τ ,X, R,C,Z) = expit(τ TZ +αTTt + βTX + γtCt + ψtrCt), (6)

where expit(.) = exp(.)/[1 + exp(.)]. The model makes the assumption that the probability

distribution of the potential outcomes Y
(0)
t , Y

(1)
t at time t is independent of compliance status

at times 1, . . . , t− 1, t+ 1, . . . , T given compliance status at time t, i.e.,

Y
(0)
t , Y

(1)
t ⊥⊥C1, . . . , Ct−1, Ct+1, . . . , CT |Ct. (7)

This assumption is further discussed in Section 10.

We now discuss the interpretation of the parameters in (6) under the assumptions in Section

4. The parameter ψt is the log odds ratio comparing the effect of assignment to the treatment

arm compared to assignment to the control arm on the outcome at time t among those patients

who would adhere to the treatment at time t if assigned to the treatment arm, conditioning on

the random effect τ :

ψt = logit
[

Pr(Y
(1)
t = 1 | τ ,X,Z, Ct = 1,C)

]

(8)

−logit
[

Pr(Y
(0)
t = 1 | τ ,X,Z, Ct = 1,C)

]

In other words, ψt is an intention to treat effect for compliers at time t. Because compliers receive

the treatment if assigned to the treatment arm and do not receive the treatment if assigned to

the control arm, the intention to treat effect for compliers ψt can under certain conditions be

interpreted as the efficacy of treatment received for compliers at time t [39, 3]; see Section 10.1
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for further discussion of the interpretation of ψt. Because the group assigned to the control

arm does not have access to the treatment in the single consent design, the intention to treat

log odds ratio ψt for those patients who would adhere to the treatment at time t if assigned

to the treatment arm (Cit = 1) equals the intention to treat log odds ratio for those patients

who actually receive the treatment at time t (Ait = 1) [40]. The parameter γt is a log odds

ratio parameter for compliance status at time t that reflects how outcomes between compliers

and never takers at time t would compare if both groups were assigned to the control arm. The

parameter α is a vector of fixed effects for the time variables Tt and the parameter β is a vector

of the fixed effects log odds ratio parameters for the baseline covariates. Because of the exclusion

restriction for never takers assumption (2), we do not include a parameter for r(1 − Ct) in the

model (6).

Under the SUTVA consistency assumption of Section 4.2, Pr(Y
(r)
t = Yt | R = r) = 1. Given

this SUTVA consistency assumption, the sampling assumptions in Section 4.1 and the missing

data assumptions in Section 4.4, the model (6) produces the following model for the observed

outcomes:

Pr(Yt = 1 | τ i,X i,Ai, Ri,Ci,Zi)

= expit
(

τ T
i Zit +αTTt + βTXi + γtCit + ψtAit

)

. (9)

6. Estimation

Under the missing data assumption (3), the other assumptions in Section 4 and the model (9),

the likelihood function for an unclustered design conditioning on Xi, Ri,Ai,Zi is the following:

N
∏

i=1

∫

∑

(c1,...,cTi
)

ωi(c1, . . . , cTi
)

Ti
∏

t=1

(πYit,ct
(τ ))Yit(1 − πYit,ct

(τ ))1−Yitfτ (τ | Στ )dτ , (10)

where ωi(c1, . . . , cTi
) = Pr(C1 = c1, . . . , CTi

= cTi
| Xi, Ri,Ai,Zi); πYit,ct

(τ ) = Pr(Yt = 1 |

τ ,Xi, Ri,Ai,Zi, Ct = ct);
∑

(c1,...,cTi
) is the sum over all 2Ti compliance patterns for patient i;

and f(τ |Στ ) is the normal density with covariance matrix Στ [Note: In (10) and all subsequent

likelihood expressions,
∏Ti

t=1 denotes the product over all observations for patient i that are not

missing]. Note that for Ri = 0, ωi(c1, . . . , cTi
) = Pr(A1 = c1, . . . , ATi

= cTi
| Xi, R = 1,Zi) and

for Ri = 1, ωi(Ai1, . . . , AiTi
) = 1. Thus, letting κi(a1, . . . , aTi

) = Pr(A1 = a1, . . . , ATi
= aTi

|
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Xi, R = 1,Zi), the likelihood function for an unclustered design conditioning on Xi, Ri,Zi is the

following:





n
∏

i=1|Ri=1

∫

κi(Ai1, . . . , AiTi
)

Ti
∏

t=1

(πYit,Ait
(τ ))Yit(1 − πYit,Ait

(τ ))1−Yitfτ (τ | Στ )dτ



 ×





n
∏

i=1|Ri=0

∫

∑

(c1,...,cTi
)

κi(c1, . . . , cTi
)

Ti
∏

t=1

(πYit,ct
(τ ))Yit(1 − πYit,ct

(τ ))1−Yitfτ (τ | Στ )dτ



 (11)

Given a model for Pr(A1 = a1, . . . , ATi
= aTi

| Xi, R = 1,Zi), (11) can be maximized using

approximate maximum likelihood methods, such as Gaussian quadrature or Monte Carlo EM.

However, such methods are not easily implemented using standard software. We focus in this

paper on an approximate IV estimation method that is easily implemented using standard

random effects logistic regression software. Our approximate IV method is a random effects

extension of the approximate IV approach of Nagelkerke et al. [19] for cross-sectional logistic

models.

6.1 Approximate Instrumental Variables Estimation

To motivate our approach, first consider a linear version of model (9) for Yt:

E(Yt | τ i,Xi,Ai, Ri,Ci,Zi) = τ T
i Zit +αTTt + βTXi + γtCit + ψtAit. (12)

Letting Wit = Ri[Ait −E(At | Xi, R = 1)] and uit be a mean zero error term, we have

Yit = τ T
i Zit +αTTt + βTXi + γtCit + ψtAit + uit

= τ T
i Zit +αTTt + βTXi + γtWit + ψtAit + γt(Cit −Wit) + uit.

Note that for patients i with Ri = 1, Wit = Ait − E(At | Xi, R = 1) and Cit −Wit = E(At |

Xi, R = 1) and for patients i with Ri = 0, Wit = 0 and Cit −Wit = Cit. Consequently, 1)

Cit−Wit is uncorrelated with Ait conditional on Wit, Xi and Ri and 2) Cit−Wit is uncorrelated

with Wit conditional on Ait, Xi and Ri. A basic property of the linear regression model is

that if E(Y |X1, . . . , Xp) = β0 + β1X1 + . . . + βpXp and Cov(Xp, Xp−1 | X1, . . . , Xp−2) = 0,

then E(Y |X1, . . . , Xp−1) = β∗0 + β∗1X1 + . . . + β∗
p−2Xp−2 + βp−1Xp−1. Therefore, we can obtain

consistent estimates of the coefficients γ = (γ1, . . . , γT ) and ψ = (ψ1, . . . , ψT ) in (12) by fitting

a uniform correlation linear mixed effects model of Yit on the fixed effects Tt, Xi, Wit and Ait
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with random effects design matrix Zi. Note that the standard errors from such a linear mixed

effects model may not be accurate because

γ1(Ci1 −Wi1) + ui1, . . . , γTi
(CiTi

−WiTi
) + uiTi

, (13)

are not necessarily independent as they are assumed to be in the uniform correlation mixed

effects model. Note also that the missing data assumption (3) implies that missingness at time

t is independent of Yt conditional on Wt,A,X,Z (conditioning on Wt,A,X,Z is equivalent to

conditioning on R,A,X,Z). This property of the missing data implies that the above approach

provides consistent estimates of γ and ψ in the presence of missing data.

We call the above approach an instrumental variables approach because the randomization

indicator is used as an “instrument” to extract variation in Ait that is unrelated to omitted

confounding variables associated with adherence (the extracted variation is the variation in A it

due to Ri) and this variation is used to obtain a consistent estimate of ψ (for an overview of

IV methods, see [9]). In Nagelkerke et al.’s (2000) graph theory explanation, Wit “intercepts”

the effect of omitted confounding variables associated with adherence, permitting consistent

estimation of ψ.

Our approximate IV estimation method extends the above approach to the logistic regression

model. Yit can be represented in the following way based on the model (9):

Yit = I(τ T
i Zit +αTTt + βTXi + γtCit + ψtAit + uit > 0)

= I(τ T
i Zit +αTTt + βTXi + γtWit + ψtAit + γt(Cit −Wit) + uit > 0), (14)

where uit has a logistic distribution. Our estimation method is to fit a logistic mixed effects

regression model of Yit on the fixed effects Tt, Xi, Wit and Ait with random effects design

matrix Zi. We call this estimation method an “approximate” IV approach because, for the

logistic regression model (9), this method does not necessarily produce consistent estimates as

in the linear regression model (12). The difficulty in the logistic regression model is that even

though Cit −Wit is uncorrelated with Ait conditional on Wit, Xi, Tt and Ri, the association

between Yit and Ait conditional on Wit Xi, Tt, Ri and Cit − Wit that is measured by the

logistic regression coefficient ψt is not generally equal to the association between Yit and Ait

conditional on Wit, Xi, Tt and Ri [41, 42]. To gain insight into the difference between these
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two associations, we cite some results for the related simpler setting of a logistic regression

model E(Y | T,X) = expit(θ0 + θ1T + θ2X) for which Cov(T,X) = 0. Guo and Geng [42]

show that E(Y | T ) = expit(θ′0 + θ1T ) if θ2 = 0 and Gail et al. [41] show that the asymptotic

bias in using logistic regression of Y on T to estimate θ1 is proportional to θ2
2 multiplied by a

function of θ0 and θ1 for θ2 near zero. These results suggest that the magnitude of the bias in

estimating the coefficients in (9) by using the approximate IV approach of logistic mixed effects

regression of Yit on fixed effects Tt,Xi,Wit, and Ait with random effects design matrix Zi should

be small for γt near zero and increase for γt of larger magnitude. For the simulation based on

the depression study data in Section 8, we find that in fact there is only small bias for γt = −0.5

and γt = −1 but there is somewhat larger bias for γt = −2. Nagelkerke et al. [19] and Ten Have

et al. [20] showed through simulations that the cross sectional version of this approximate IV

approach exhibits good bias and confidence interval coverage properties for a range of levels of

unmeasured confounding due to non-adherence (γt). However, under strong confounding (γt has

large magnitude), the bias and confidence interval coverage deteriorate.

To implement the above approximate IV approach, we need to know Wit = Ri[Ait −E(At |

Xi, R = 1)]. We follow the usual instrumental variables approach and substitute an estimate

Ŵit = Ri[Ait − Ê(At | Xi, R = 1)] for Wit. We estimate E(At | Xi, R = 1) using a logistic

regression model fitted to treatment-received in the randomized to treatment group:

Pr(At = 1 | Xi, Ri = 1) = expit
(

κTTt + ξTXi

)

. (15)

Our approximate IV estimator is then obtained by maximizing the following random effects

logistic regression likelihood function over the parameters Σ∗
τ ,α

∗,β∗,γ∗,ψ∗:

n
∏

i=1

∫ Ti
∏

t=1

(πYit
(τ ∗))Yit(1 − πYit

(τ ∗))1−Yitfτ ∗(τ ∗ | Σ∗
τ )dτ ∗, (16)

where πYit
(τ ∗) = expit(τ ∗TZit +α

∗TTt +β
∗T Xi +γ∗t Ŵit +ψ∗

tAit) and f(τ ∗ | Σ∗
τ ) is the density

N(0,Στ∗). We estimate γ = (γ1, γ2, . . . , γT ),ψ = (ψ1, ψ2, . . . , ψT ) by our estimates γ̂∗, ψ̂∗ from

(16). The integration was performed with the non-adaptive quadrature facility in SAS PROC

NLMIXED with 20 quadrature points. SAS macros for our estimation approach are available

from the authors. For models in which there are only random intercepts, such as the one we

fit to the depression study data, our estimation approach can also be easily implemented in
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STATA (using xtlogit) and R (using the glmmML package). We use a quadrature method to

approximately maximize (16) rather than a method based on Laplace approximations because

there are few observations per subject, a setting for which Laplace approximation methods can

work poorly [43]; see Section 8.2 for further discussion. A technical report available from the

authors motivates our approximate IV estimator in a different way by showing that (16) is an

approximation to the likelihood (10).

Note that Στ ∗ in (16) does not correspond to Στ in (10) when Ci1 −Wi1, . . . CiT −WiT

are correlated (see discussion below (13)). To obtain an estimate of Στ , we consider the con-

ditional likelihood for the subset of randomized to treatment arm patients, conditioning on

(Ai1, . . . , AiTi
):

N
∏

i=1|Ri=1

∫

(πYit
(τ ))Yit(1 − πYit

(τ ))1−Yitf(τ |Στ )dτ , (17)

where πYit
(τ ) = expit(τ TZit +α

TTt +βTXi +λtAit); λt = γt +ψt; and f(τ | Στ ) is the normal

density with covariance matrix Στ . Thus, Στ can be estimated by approximately maximizing

the conditional likelihood (17) using quadrature.

6.2 Model and Estimation for Clustered Encouragement Design

To account for clustering of outcomes, we use the following probability model in place of (6):

Pr(Y
(r)
t | τ hi, ιh,Xhi, Rhi,Chi,Zhi,Vh, Phi) =

expit(τ T
hitZhit + ιThVht +αTTt + βTXhi + γtChit + ψtrChit) (18)

We can use the approximate IV approach of Section 6.1 to estimate ψ by fitting a logistic mixed

effects regression model of Yhit on fixed effects Tt, Xhi, Ŵhit and Ahit with nested random effects

τ hi (with design matrix Zhi) and ιh (with design matrix Vh). The corresponding approximate

marginal likelihood function to (16) is

n
∏

h=1

∫ nh
∏

i=1

∫ Ti
∏

t=1

(π̂Yhit
(τ , ι))Yhit(1 − π̂Yhit

(τ , ι))1−Yhitfτ ∗(τ∗ | Στ ∗)f∗ι (ι
∗ | Σι∗)dτ

∗dι∗, (19)

where π̂Yhit
(τ ) = expit(τ ∗T

i Zhit + ι
∗T
h Vht +α

∗T Tt +β
∗TXhi +γ∗t Ŵhit +ψ∗

tAhit). (19) cannot be

maximized using proc nlmixed in SAS or glmmML in R because it involves nested random effects.

(19) can be approximately maximized by Breslow and Clayton [44]’s “penalized quasilikelihood,”

which is based on Laplace approximations and is implemented in glimmix in SAS and glmmPQL

17



in R. As we shall see in Section 7, because there is only a small amount of clustering for

the depression study and there are at most three observations per subject (which makes the

Laplace approximations perform poorly), the estimation method which ignores clustering and

uses quadrature to approximately maximize (16) works better than the estimation method which

accounts for clustering and uses Laplace approximations to approximately maximize (19).

7. Assessment of the Validity of the IV Analyses

We based conclusions about the validity of the IV analysis for the depression study on six

steps: 1) a simulation study to determine whether our approximate IV method produces accurate

results for the setting of the depression study; 2) analysis of the sensitivity of the conclusions

to the exclusion restriction assumption by including pre-specified direct randomization effects

in (6). 3) analyses of the sensitivity to the normal random effects assumption by varying the

number of quadrature points; 4) assessment of the assumption (7); 5) assessment of missing data

assumptions; and 6) analysis of the sensitivity of conclusions to alternative specifications of the

random vector τ i.

For the simulation study for the step 1 assessment of validity, we generated data from the

model for outcomes from Sections 3-4, with probability distribution (9) and τ i = τ0i, and the

following random effects model for compliance:

Pr(Ci1 = ci1, . . . , CiT = ciT | Xi, η0i) =

Ti
∏

t=1

expit(κTTt + ξTXi + η0i), (20)

where η0i ∼ N(0, σ2
η). The random effects η0i and τ0i are assumed to be uncorrelated in ac-

cordance with our interpretation of τ0i as a mean zero random effect conditional on compliance

status (see Section 4.7). To account for clustering, a simulation study was also carried out using

the probability model (18) for potential outcomes.

8. Simulations

In order to assess the accuracy of our approximate IV approach for the setting of the depres-

sion study, we performed simulations under the model in Section 7 using parameters estimated

from the depression study. The parameters in the simulation model were set based on estimates

from maximizing (16), using (15) to estimate Pr(At = 1 | Xi, R = 1), for the depression study

data. The variance component στ was set based on the estimate from maximizing (17). For all

simulations reported, we varied γt in the set γt ∈ {−0.5,−1.0,−2.0}. Varying γt changes the
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strength of the confounding due to treatment non-adherence.

For the outcome model, the following parameters were specified: 1) the variance component

of the random intercept τ0 i, στ = 2.0; 2) αT = (−0.5,−0.2,−1) for the dummy variables

corresponding to 4, 8 and 12 month visits respectively; 3) ψ1 = 1.0, ψ2 = 0.9, ψ3 = 1.0; and 4)

the model has no baseline covariates. For the compliance model in (20) with a random intercept

η0 i, the following parameters were specified: 1) the variance component of η0 i, ση = 7.0; 2) κT =

(3.78, 2.65, 3) for the dummy variables corresponding to 4, 8 and 12 month visits respectively;

and 3) the model has no baseline covariates. The number of patients at baseline was 500,

approximately the same sample size as the depression study. Additionally, the following design-

related probabilities were specified: randomization was 0.5 and drop-out during each period t

was 0.10. For each setting considered, the number of simulations done was 1000. Simulation

results for the log odds ratio at time 12 months are presented for three estimation approaches:

1) ITT comparison between the randomized to treatment group and the randomized to control

groups using a random effects logistic model; 2) AT comparison between the group that actually

received the treatment and the group that did not receive the treatment using a random effects

logistic model; and 3) the approximate IV approach estimate of ψ3 described in Section 6.

For each of these estimation approaches, the following simulation statistics averaged over

1000 iterations are presented in Table 1 with respect to true ψ3 = 1.0: 1) mean ITT, AT, and

IV estimates and 2) the proportion of times the approximate 95% confidence interval covers

ψ3 = 1.0 (labeled coverage). Another set of 1000 iterations with true ψ3 = 0.0 was run and

the proportion of times the approximate 95% confidence interval covers ψ3 = 0.0 is reported

(labeled size – this is the size of the nominal α = 0.05 test of ψ3 = 0).

8.1 Simulations from Model without Clustering by Practice

Table 1 shows the results of simulations with no clustering by practice. For stronger con-

founding due to non-adherence (γt ∈ {−1.0,−2.0}), the AT estimates of ψ3 are of smaller

magnitude than the corresponding ITT and IV estimates as in the depression study results in

Table 3. The approximate IV approach has reasonable coverage (between 92% and 96%) and

size (between 0.04 and 0.07) for all all three levels of γt. The test size and coverage are worst

for the strongest level of confounding (γt = −2). The bias of the IV estimator is reasonably
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small (−0.04 and −0.06) for the weaker levels of confounding (γt = −0.5 and −1.0 respectively)

but is more substantial (−0.21) for the strongest level of confounding. These results about the

approximate IV approach performing best for a small magnitude of confounding due to non-

adherence are consistent with the analysis of Section 6 and the results of Nagelkerke et al. [19]

and Ten Have et al. [20] for the cross-sectional logistic case.

For all levels of confounding, the bias of the IV estimates for the estimand ψ3 = 1.0 is much

less than the ITT and AT estimates and the mean square error of the IV estimator is smaller

than the ITT and AT estimates. Furthermore, 95% confidence interval coverage and size of the

nominal α = 0.05 test are much better for the approximate IV approach than for the ITT and

AT approaches. Whereas for the IV estimator, the coverage is between 92 and 96% and the size

is between 0.04 and 0.07, for the AT method, the coverage is between 7 and 85% and the size

is between 0.14 and 0.89. For the ITT estimator, the size is 0.05 but coverage does not exceed

81%.

The IV estimates of γt also perform adequately, although less well than the estimates of ψt.

There is a positive bias in the estimates of γ3 of 0.16, 0.32 and 0.73 for γ3 = −0.5,−1.0 and

−2.0 respectively. The coverage of 95% confidence intervals for γ3 are 0.94, 0.92 and 0.82 for

γ3 = −0.5,−1.0 and −2.0 respectively.

Table 1. Simulation results for unclustered design: mean parameter estimate, mean squared

error (MSE) and coverage of 95% confidence interval for true ψ3 = 1.0; and size of test of

ψ3 = 0 for true ψ3 = 0.

γt -0.5 -1.0 -2.0

Statistic ITT AT IV ITT AT IV ITT AT IV

Mean Est. 0.64 0.69 0.96 0.62 0.39 0.94 0.54 0.30 0.79

MSE 0.24 0.21 0.19 0.26 0.49 0.20 0.35 1.84 0.28

Coverage 0.81 0.85 0.96 0.78 0.60 0.95 0.76 0.07 0.92

Size 0.05 0.14 0.04 0.05 0.37 0.05 0.05 0.89 0.07
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8.2. Simulations with Clustering by Practice

To estimate the amount of clustering of outcomes by practice for the depression study, we

used Breslow and Clayton [44]’s penalized quasi-likelihood (PQL) via the glmmPQL function in

R to approximately maximize the analogue of (17) for a clustered design with a random intercept

ι0q for practice. We estimate that σι = 0.46 with a 95% confidence interval of (0.23, 0.91). To

estimate the amount of clustering of treatment received by practice for the depression study,

we used glmmPQL to estimate a logistic mixed effects model for treatment received for the

randomized to treatment practices with random intercepts for practices and individual patients.

We estimate the standard deviation of the random intercept for practice to be 1.12 with a 95%

confidence interval of (0.50, 2.53). We consider two estimation methods for a clustered design:

(1) approximately maximize (16) by quadrature (described as the quadrature method below) and

(2) approximately maximize (19) by penalized quasi-likelihood (described as the PQL method

below). To examine the performance of these two estimation methods for the setting of the

depression study, we simulated compliance statuses from a mixed effects logistic compliance

model with practice and patient random intercepts and outcomes from the probability model

(18), with parameters for both models based on estimates from the depression study. For the

compliance model, we used the same settings as described at the beginning of Section 8 and

a standard deviation of 1.12 for the practice random intercepts. For the outcome model, we

used the same settings as described at the beginning of Section 8 and a standard deviation of

σι = 0.46 for the practice random intercepts.

Table 2 compares the performance of the quadrature and PQL methods for the simulation

study. The first feature of note is that the quadrature method (1)’s performance remains rea-

sonable and does not deteriorate in terms of bias and coverage compared to Table 1. The second

feature of note is that the quadrature method performs better than the PQL method in terms

of bias and confidence interval coverage for all three settings of γt, even though the quadra-

ture method does not take into account the practice level clustering. This is partly because

the amount of practice level clustering is small, but we found that even for a larger amount of

practice clustering, σι = 2.0, the quadrature method remained better. The poor performance

of PQL for the setting of the depression study is likely related to the presence of small cluster
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sizes for which the Laplace approximations underlying the PQL method are inaccurate [43] (the

nested clusters of each patient’s observations are small, of size at most three, and some of the

practice clusters are small). In light of the results in Table 2, we used the quadrature method

for the data analysis of the depression study.

Table 2. Simulation results for a clustered design setting similar to the depression study, with

practice level random effects: mean parameter estimate for ψ3 = 1.0; mean squared error

(MSE); and coverage of 95% confidence interval for estimation method Quad that uses

quadrature and ignores clustering and estimation method PQL that takes into account

clustering and uses penalized quasi-likelihood.

γt -0.5 -1.0 -2.0

Estimate Quad PQL Quad PQL Quad PQL

Mean Estimate 1.02 0.82 0.97 0.79 0.84 0.69

MSE 0.23 0.20 0.26 0.23 0.31 0.31

Coverage 0.95 0.90 0.94 0.88 0.93 0.85

9.0 Results for Depression Study

This section presents data analysis results for the depression study described in Section 2.

Section 9.1 presents the results of the IV analysis for the study and compares the IV analysis

to ITT and AT analyses. Section 9.2 assesses some of the assumptions of the IV approach as

described in Section 7.

9.1 IV Analysis and Comparisons to ITT, AT

The IV analysis was carried out using the approximate IV estimation method of Section 6

with Xi comprised of baseline Hamilton and suicide ideation score and Tt comprised of dummy

variables for the time of the visit (4, 8 or 12 months). Table 3 shows the IV, ITT and AT log

odds ratio estimates for random effects logistic models. From the IV analysis, there is strong

evidence that contact with a depression specialist is efficacious for compliers – p-values = 0.001,

0.02 and 0.01 for 4, 8 and 12 months respectively. Furthermore, the IV analysis estimates that

the efficacy for compliers is substantial – the estimated efficacy odds ratio for compliers (i.e.,
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the intent to treat odds ratio for compliers) is 2.97, 2.44 and 2.66 for 4, 8 and 12 months. The

point estimates from the IV analysis are quite similar for all three time periods, whereas those

from the other methods vary substantially over the time periods. Under the assumed exclusion

restriction and model assumptions, the IV analysis provides a better picture of how the efficacy

of the treatment varies over time because it does not incorporate changes in compliance over

time, as does the ITT analysis, or changes in the confounding due to nonadherence over time,

as does the AT analysis.

A comparison of the three sets of estimates shows the advantages of IV over AT as an

estimate of efficacy under the assumed exclusion restriction. Under the exclusion restriction,

the efficacy of treatment received for compliers should be of at least as large a magnitude as the

programmatic effectiveness of offering treatment that is estimated by ITT. The IV estimates are

in fact of larger magnitude than the ITT estimates for all three time periods. However, the AT

estimates are of smaller magnitude than the ITT estimates for 4 and 8 months. Also, under the

exclusion restriction, the p-values for the efficacy and ITT tests of zero treatment effect should

be similar [45, 19, 8]. The ITT and IV tests of zero treatment effect in fact give similar p-values

at all three time points, but there is a substantial difference between the AT and ITT p-values

at 8 months.

The AT estimate is not an accurate estimate of efficacy because it is confounded by omitted

variables associated with non-adherence. The relationship between the AT and IV estimates

suggests that compliers are less likely than never takers, conditional on baseline covariates, to

have their Hamilton score fall by 50% or more from baseline if both groups are given usual care.

The estimates of γt, which represents the confounding in the AT estimate due to non-adherence

at time t, are −0.44, −1.11 and −0.44 for 4, 8 and 12 months respectively.

9.2 Assessment of the Validity of the IV Analyses

We employed the six steps listed in Section 6.0 for performing this assessment

9.2.1 Simulation study to assess accuracy of approximate IV method

A simulation study from the same setting as the depression study that used the parameter

estimates from the depression study was described in Section 8. The confidence interval coverage

and test size for the approximate IV approach based on approximately maximizing (16) by
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Table 3. Visit-specific depression specialist vs. usual care log odds ratios for the depression

study with standard errors and p-values in parentheses.

Month ITT AT IV

4 1.01 0.94 1.09

(0.31; .001) (0.30; .001) (0.33; .001)

8 0.74 0.49 0.89

(0.31; .02) (0.30; .11) (0.38; .02)

12 0.73 0.79 0.98

(0.32; .02) (0.31; .01) (0.40; .01)

quadrature were found to be reasonable for the levels of confounding γt ∈ {−0.5,−1.0,−2.0}.

The bias was found to be negative for all γt in this set with a small magnitude of bias for γt ∈

{−0.5,−1.0} but a somewhat larger magnitude of bias (−0.20) for γt = −2.0. The estimates of γt

for the depression study are −0.44, −1.11 and −0.44 with 95% confidence intervals (−2.04, 1.17),

(−2.36, 0.14) and (−1.69, 0.82) for the time points 4, 8 and 12 months respectively. A level of

confounding due to non-adherence as large in magnitude as γt = −2 (which would mean that the

odds ratio comparing compliers to never takers when both are assigned to usual care is 0.14) is

considered unlikely by the clinical researchers conducting the study, especially when compared to

odds ratios of smaller magnitude for treatment, time and baseline effects, which do not exceed

1.1 on the log scale. Thus, the simulation study provides evidence that the approximate IV

approach is reasonably accurate under the model assumptions for the depression study because

1) the simulation study shows that the approximate IV approach is reasonably accurate for

γt ∈ {−0.5,−1.0,−2.0} and 2) the data analysis and a priori beliefs suggest that |γt| ≤ 2.0.

9.2.2 Sensitivity to exclusion restriction

An important assumption in model (6) is the exclusion restriction for never takers. A model

for the outcomes that departs from the exclusion restriction for never takers is
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Pr(Y
(r)
t = 1 | τ ,X, R,C,Z)

= expit
(

τ TZt +αTTt + βTX + γtCt + ψtrCt + φtr(1 − Ct)
)

. (21)

The parameter φt represents the direct effect of randomization at time t for never takers; the

exclusion restriction assumes φt = 0. For pre-specified φt, maximizing (16) with πY it(τ
∗) =

expit(τ ∗T Zit +α∗T Tt + β∗TXi + γ∗t Ŵit + ψ∗
tAit + φtRi(1 −Ait)) provides estimates of ψt with

the same properties as our approximate IV approach under the assumption that φt is specified

correctly. To examine the sensitivity of our estimates to the exclusion restriction assumption,

we considered prespecified values of the direct randomization parameter φt of 0.10 and 0.50; 0.50

is a substantial direct randomization effect when compared to the original IV estimates of ψt in

Table 3 that range from 0.89 to 1.09. For φt = 0.1, the new estimates of ψ1, ψ2 and ψ3 are 1.08,

0.86 and 0.96 respectively, a drop of between 2 to 3% from the estimates in Table 3. For φt = 0.5,

the new estimates of ψ1, ψ2 and ψ3 are 1.05, 0.77 and 0.86 respectively, a drop of between 4 to

13% from the estimates in Table 3. Note that the sensitivity of the estimates to violations of

the exclusion restriction is higher for the time periods with higher rates of nonadherence (8 and

12 months). By looking at models (6) and (21), we see that, in general, the sensitivity of the

estimates based on model (6) to violations of the exclusion restriction will be higher when the

rate of non-adherence is higher. For the depression study, the approximate IV results are not

highly sensitive to plausible departures from the exclusion restriction.

We have prespecified the parameter φt in (21) but φt can actually be estimated by making

it a free parameter. However, such estimates have large standard errors, e.g., the estimate of

φ1 has a standard error that is more than 34 times as large as that of the estimate of ψ1 from

model (6). In addition, inferences about φt may be highly sensitive to the assumed logistic link

(see [46] for discussion of this type of sensitivity for a nonrandom sampling model).

9.2.3 Assessment of Normal Random Effects Assumption

As a sensitivity analysis of the assumption of a normal random effects distribution, we varied

the number of quadrature points from 5 to 30. Doing so altered the shape of the random effects

distribution away from normality [47]. The IV estimates based on only 10 quadrature points

differed by less than 2% from the IV estimates based on 20 points in Table 3. Increasing the

number of quadrature points beyond 20 to 30 did not alter the results beyond a few percentage
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points. Reducing the number of quadrature points to below 10 resulted in dramatic changes in

estimates.

9.2.4 Assessment of the Form of Dependence of Outcomes on Compliance Status

Vector Assumption

The assumption (7) can be tested by nesting it within the following model for Pr(Y
(r)
t ) that

accommodates departures from assumption (7):

Pr(Y
(r)
1 | τ ,X, R,C,Z) = expit(τ TZt +αTTt + βTX + γ11C1 + γ12C2 + γ13C3 + ψ1rC1),

Pr(Y
(r)
2 | τ ,X, R,C,Z) = expit(τ TZt +αTTt + βTX + γ21C1 + γ22C2 + γ23C3 +

ψ21rC1 + ψ22rC2),

Pr(Y
(r)
3 | τ ,X, R,C,Z) = expit(τ TZt +αTTt + βTX + γ31C1 + γ32C2 + γ33C3 +

ψ31rC1 + ψ32rC2 + ψ33rC3). (22)

Under model (22) and the model assumptions in Section 4, the conditional likelihood for the

subset of patients with Ri = 1 and no missed visits, conditioning on Ri = 1 and Ai, is the

random effects logistic likelihood

n
∏

i=1|Ri=1,Oi1=Oi2=Oi3=1

∫

(πYit
(τ ))Yit(1 − πYit

(τ ))1−Yitf(τ | Στ )dτ , (23)

where

πYit(τ ) = expit(τ TZit +αTTt + βTXi + ζt1Ai1 + ζt2Ai2 + ζt3Ai3), (24)

and ζ11 = ψ1+γ11, ζ12 = γ12, ζ13 = γ13, ζ21 = ψ21+γ21, ζ22 = ψ22+γ22, ζ23 = γ23, ζ31 = ψ31+γ31,

ζ32 = ψ32+γ32, ζ33 = ψ33+γ33. Under the assumption (7), we have ζ12 = ζ13 = ζ21 = ζ23 = ζ31 =

ζ32 = 0. Thus, we can test assumption (7) by testing H0 : ζ12 = ζ13 = ζ21 = ζ23 = ζ31 = ζ32 = 0.

We fit the random effects logistic likelihood (23) with πYit(τ ) given by (24) for the patients

randomized to the treatment arm with no missed visits (there are 179 such patients) and found

that the test of H0 : ζ12 = ζ13 = ζ21 = ζ23 = ζ31 = ζ32 = 0 has a p-value of 0.95, thus

providing no evidence against assumption (7). The above test has limitations. First, the test

only addresses the validity of assumption (7) for the randomized to treatment potential outcomes

and does not address the validity for the randomized to control potential outcomes. Second, the

test has no power against certain alternatives, e.g., ψ21 6= 0, γ21 6= 0 but ψ21 + γ21 = 0. Third,
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in the context of the depression study, the test has small power because A1, A2, A3 are fairly

highly correlated for the randomized to treatment group (correlations range from 0.51 to 0.79);

the standard errors for ζ12, ζ13, ζ21, ζ23, ζ31, ζ32 range from 1.06 to 1.40. Development of better

testing approaches is a valuable topic for future research.

9.2.5 Assessment of Drop-out Assumptions

We have assumed that the drop-out process is noninformative, meaning that drop-outs are

independent of the outcomes conditional on the observables (X,Z, R). The use of a random

effects model enables a certain type of informative drop-out to be modeled through a shared

random effects parameter, e.g., [15, 16]. The shared parameter model we consider assumes that

drop-out and longitudinal outcomes are independent conditional on the observables (X,Z, R)

and the random effect τ . We model Ti (the last time point at which patient i was observed) by

a continuation ratio logit model as in Ten Have et al. [16]:

Pr(Ti = t | Ti > t− 1, τi,Xi, R) = expit(λtτi + θTTt + υTXi +$R), (25)

t = 2, 3. To fit the shared parameter model, we maximized the following function over the

parameters σ∗τ ,α
∗,β∗,γ∗,ψ∗,λ∗,θ∗,υ∗, $∗:

n
∏

i=1

∫ Ti
∏

t=1

(π̂Yit
(τ∗))Yit(1 − π̂Yit

(τ∗))1−Yitfτ∗(τ∗ | σ∗τ )fTi
(Ti; τ

∗,Xi, R)dτ∗,

where π̂Yit
(τ∗) = expit(τ ∗+α∗T Tit+β

∗TXi +γ
∗
t Ŵit +ψ

∗
tAit), f(τ∗ | σ∗τ ) is the density N(0, στ∗)

and f(Ti; τ
∗,Xi, R) is the probability that subject i’s last time point was Ti conditional on τi = τ∗

given by the continuation logit ratio model (25). The shared parameter model estimates of ψ1,

ψ2 and ψ3 are 1.08, 0.88 and 1.00 respectively, negligible changes from Table 3. The coefficients

λ2, λ3 on τ in the continuation ratio logit model (25) for Ti are not significant (p-values of

0.07 and 0.25 respectively). The shared parameter model represents one type of informative

dropout; there are other types of informative dropout, some of which cannot be tested based

on the observed data [35]. Development of better methods for testing missing data assumptions

and accommodating nonignorable missing data are valuable topics for future research.

9.2.6 Multidimensional Random Effects

We have assumed that the random effects vector τ i consists of just a random intercept

τ0i. The random effects can be made multidimensional to model variability in the pattern of
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patients’ outcome probabilities over time. To examine variability in the pattern of patients’

outcome probabilities over time, we considered the random effect vector (τ0i, τ1i) where τ0i is a

random intercept, τ1i is a random slope for time and Zit = (1 t). The estimate variance of τ1i

is 0.07 with a standard error of 0.04. Thus, there is evidence of little variability in the slope of

patients’ outcome probabilities over time. We also considered random slopes for the covariates

in Xi, baseline Hamilton and suicide ideation score. For both covariates, the estimated variance

of the random effect was less than 0.1 and not significantly different from zero.

10.0 Usefulness of Efficacy for Predicting the Effect of Future Treatment Programs

As noted in the introduction, the main goal of a clinical trial is to predict the comparative

effect of future treatment programs. For example, a primary motivation for our analysis of

the efficacy of the encouragement intervention for the depression study is to provide guidance

for a cost-benefit analysis of implementing the encouragement intervention more widely. The

model we study in this paper (6) provides an explanation for the results of the trial in terms

of the difference between randomized groups stratified by compliance status [4]. Although

the quantities in the model do not directly predict the effect of future treatment programs,

these quantities can be important building blocks for making such predictions [48]. This section

illustrates, in particular, how the efficacy of treatment received for compliers (i.e., the ITT effect

for the strata of compliers) can be an important quantity for extrapolating from the results of

the trial to predict the effect of future treatment programs. The results presented in this section

are similar in spirit to those of Joffe and Brensinger [49], who provide an illustration of how

structural mean model explanatory analyses of randomized trials can be used to predict the

effect of future treatment programs.

Consider a situation in which a decision is being made as to whether to make the treatment

available to a general population after the trial. Assume that the patients in the trial are

representative of the general population. Let Y
∗(1)
it represent the potential outcome for patient i

at time t if the treatment is made available to the general population after a trial took place that

yielded the same results as the actual trial but did not involve patient i (i.e., in place of patient

i, the trial involved a different patient with identical outcomes to patient i; the motivation for

excluding patient i from the trial in these potential outcomes is to avoid carryover effects from
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the trial). Correspondingly, let Y
∗(0)
it represent the potential outcome at time t for patient i

if the treatment is not made available to the general population after a trial took place that

yielded the same results as the actual trial but did not involve patient i. Let A
∗(1)
it and A

∗(0)
it

represent the corresponding potential treatment receiveds if the treatment is made available/not

made available to the general population. Consider the following assumptions:

(a) Similar to the trial, the treatment cannot be received if it is not made available, i.e.,

A
∗(0)
it = 0 for all i.

(b) Other than potentially having a different effect on treatment received, assignment to the

treatment/control arm is no different than having the treatment made available/not made

available to the general population. Also treatment administration is the same in and out

of the trial. Consequently,

If A
∗(r)
it = A

(r)
it , then Y

∗(r)
it = Y

(r)
it . (26)

Note that if (26) fails to hold for compliers in the trial, then the interpretation of the

ITT effect for the strata of compliers in the trial as the efficacy of treatment received for

compliers in the trial is questionable; see Section 10.1 below.

(c) An exclusion restriction for never takers outside the trial holds that is similar to the

exclusion restriction for never takers in the trial (2):

If A
∗(1)
it = 0, then Y

∗(1)
it = Y

∗(0)
it . (27)

We will now show that, under assumptions (a)-(c), and the assumptions in Section 4, the

efficacy for compliers in the trial is a key quantity for extrapolating from the ITT effect in the

trial to predict the effect of making the treatment available to the general population versus

not making it available. The average ITT effect in the trial under the assumptions in Section 4

equals P (A
(1)
it = 1)E[Y

(1)
it − Y

(0)
it | A

(1)
it = 1]. Note that in this section we will focus on marginal

average effects for simplicity of presentation but the same general principles apply to the odds

ratio conditional on random effects that we have estimated in this paper. The average effect of

making the treatment available to the general population versus not making it available is equal
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to:

E[Y
∗(1)
it − Y

∗(0)
it ] = P (A

∗(1)
it = 1, A

(1)
it = 1)E[Y

∗(1)
it − Y

∗(0)
it | A

∗(1)
it = 1, A

(1)
it = 1] +

P (A
∗(1)
it = 1, A

(1)
it = 0)E[Y

∗(1)
it − Y

∗(0)
it | A

∗(1)
it = 1, A

(1)
it = 0] +

P (A
∗(1)
it = 0, A

(1)
it = 1)E[Y

∗(1)
it − Y

∗(0)
it | A

∗(1)
it = 0, A

(1)
it = 1] +

P (A
∗(1)
it = 0, A

(1)
it = 0)E[Y

∗(1)
it − Y

∗(0)
it | A

∗(1)
it = 0, A

(1)
it = 0].

Under the assumptions (a)-(c) above, we have

E[Y
∗(1)
it − Y

∗(0)
it ] = P (A

∗(1)
it = 1, A

(1)
it = 1)E[Y

∗(1)
it − Y

∗(0)
it | A

∗(1)
it = 1, A

(1)
it = 1] +

P (A
∗(1)
it = 1, A

(1)
it = 0)E[Y

∗(1)
it − Y

∗(0)
it | A

∗(1)
it = 1, A

(1)
it = 0]

= Average ITT effect in trial −

[P (A
(1)
it = 1) − P (A

∗(1)
it = 1, A

(1)
it = 1)]E[Y

(1)
it − Y

(0)
it | A

(1)
it = 1] +

P (A
∗(1)
it = 1, A

(1)
it = 1) ×

{E[Y
(1)
it − Y

(0)
it | A

∗(1)
it = 1, A

(1)
it = 1] −E[Y

(1)
it − Y

(0)
it | A

(1)
it = 1]} +

P (A
∗(1)
it = 1, A

(1)
it = 0)E[Y

∗(1)
it − Y

∗(0)
it | A

∗(1)
it = 1, A

(1)
it = 0]. (28)

From (28), the difference between 1) the average causal effect of the treatment program of

making the treatment available to the general population versus not making it available and 2)

the average ITT effect in the trial, depends on the following:

(i) the efficacy for compliers in the trial, E[Y
(1)
it − Y

(0)
it | A

(1)
it = 1];

(ii) the proportion of compliers in the trial who would not take the treatment if offered it

outside the trial;

(iii) the difference between the efficacy for compliers in the trial who would take the treatment

if offered it outside the trial and the efficacy for compliers in the trial who would not take

the treatment if offered it outside the trial;

(iv) the proportion of never takers in the trial who would take the treatment if offered it outside

the trial;
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(v) the average causal effect of taking the treatment outside the trial for never takers in the

trial who would take the treatment if offered it outside the trial.

The efficacy for compliers, (i) in the list above, is thus an important quantity for extrapolating

from the results of the trial to predict the effect of making the treatment available to the general

population versus not making it available. Also, note that for a treatment whose efficacy has

small variation across the population, we would expect (v) to be close to the efficacy for compliers

and (iii) to have small magnitude. Although the setting considered in this section is simple,

the principle it illustates of how efficacy can be a useful quantity for predicting the effects of

future treatment programs carries over to many more complicated settings; see [48] for further

discussion.

10.1 Interpretation of ψt as efficacy

Here we comment further on the interpretation of ψt as the efficacy of treatment received

for compliers. The parameter ψt measures the effect of assignment to the treatment versus

assignment to the control on the outcome for compliers at time t, see (9). For t = 1, it is

reasonable to interpret ψ1 as the efficacy of treatment received at time 1 on the outcome at time

for compliers at time 1 when the stability assumption (26) holds between the trial and future

treatment program potential outcomes. Under (26), assignment to the treatment either has no

direct effect for the compliers beyond its indirect effect on treatment received or exactly the same

direct effect in and out of the trial. In the former case, we can view the effect of assignment to

treatment versus control for the compliers as the pure effect of treatment received.

For t > 1, it may be misleading to think of ψt as the efficacy of treatment received at time

t if 1) there is time varying compliance so that some compliers at time t are never takers at

time t− 1 and 2) outcomes at time t are affected by the whole sequence of treatment receiveds

up to time t. Under these circumstances, ψt is affected by the compliance behavior at time

periods before t of compliers at time t and cannot be clearly interpreted. A condition under

which it remains reasonable to think of ψt as the efficacy of treatment received at time t for

t > 1 is when the treatment only has a “transient” effect. A formal transience assumption is the

following. Let Y
∗(a1 ,...,at)
it denote the potential outcome for patient i at time t if the treatment is

made available (at′ = 1) or is not made available (at′ = 0) at times t′ = 1, . . . , t. Then a formal
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transience assumption is

Y
∗(a1 ,...,at)
it = Y

∗(a
′

1
,...,a

′

t−1
,at)

it (29)

Such a transience assumption is plausible for the depression study because of clinical researchers’

expectation that the effect of treatment (contact with the depression specialist) does not ex-

tend beyond the next visit four months later. The assumption (7) is stronger in some sense

than the transience assumption (29) because it can be violated not only if the treatment

has cumulative effects but also because the strata of patients with compliance status vector

(C1, . . . , CT ) might not be comparable to a different strata of patients with compliance sta-

tus vector (C
′

1, . . . , C
′

t−1, Ct, C
′

t+1, . . . , C
′

T ) in the sense that E(Y
(0)
t | C1, . . . , CT ) 6= E(Y

(0)
t |

C
′

1, . . . , C
′

t−1, Ct, C
′

t+1, . . . , C
′

T ) (analogously E(Y
∗(0,...,0)
t | C1, . . . , CT ) 6=

E(Y
∗(0,...,0)
t | C

′

1, . . . , C
′

t−1, Ct, C
′

t+1, . . . , C
′

T )).

11.0 Discussion

We have presented a random effects logistic regression approach for estimating the efficacy of

treatment for compliers in a randomized study with longitudinal binary outcomes and treatment

non-adherence. Our simulation results suggest that while an approximation, our approximate IV

approach performs sufficiently well to provide reliable inferences for the setting of the depression

study. Our approach is easily implementable using standard software such as SAS with macros

available from the authors.

For the depression study considered, our efficacy estimates differ considerably from the as-

treated estimates and are more reasonable in their relation to the ITT estimates than the AT

estimates under the assumed exclusion restriction. Our efficacy estimates from the IV analysis

paint a somewhat different picture of how the efficacy varies over time than the ITT and AT

estimates – the IV analysis suggests that there is not much variation over time whereas the

ITT and AT estimates suggests some variation over time. This pattern in the IV, ITT and AT

estimates would be expected if there is a stable causal mechanism for the effect of treatment

received on outcome but, as in our study, the amount of adherence changes over time.

We have formulated our model as a model for the effect of treatment received for the par-

tially unobserved class of patients who would comply with an assignment to treatment. Our

formulation is an example of the principal stratification approach to causal inference of Fran-
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gakis and Rubin [24] in which causal inferences are made for groups (principal strata) whose

membership is not affected by the randomization assignment. Here, the vector of compliance

statuses is not affected by the randomization assignment. We could also have formulated our

model as a model for the effect of treatment received for the observed class of patients who ac-

tually receive treatment. The latter approach to formulating models has been taken by Robins

and coworkers in many contributions to causal inference, e.g., [8]. In settings such as ours in

which subjects randomized to the control group cannot receive the active treatment, there is

a formal equivalence between the estimands generated from conditioning on compliance status

and those generated from conditioning on observed treatment received [50].

A principal benefit of our use of a random effects model for the depression study is that

it provided an analysis of efficacy that is comparable to the ITT analysis that was done using

random effects logistic models. Another valuable feature of the random effects model is that it

enabled a certain type of informative drop-out to be accommodated (Section 9.2.5). A useful

feature of random effects models that we did not discuss is that they enable information to be

borrowed from other subjects for making more accurate treatment decisions for a given subject

based on limited longitudinal data [17, 18].

Because the study design considered here involved only baseline randomization and our

IV approach requires variability of treatment assignment to estimate causal effects, we cannot

estimate the variability of treatment efficacy among patients without strong parametric assump-

tions. However, for study designs with sequential randomization (discussed by [51]), a random

effects model that allows for variability in treatment efficacy can be formulated and such a model

can be estimated by methods similar to this paper’s.

Several issues concerning random effects models for longitudinal binary outcomes merit fur-

ther research attention: 1) It would be desirable to have a more accurate estimation method

than our approximate IV approach especially if there is strong confounding due to treatment

nonadherence. Such an approach could be based on maximizing (11); 2) The study we consid-

ered was a clustered encouragement design but the cluster effects were small. Further study

and development of appropriate methods for clustered encouragement designs with large clus-

ter effects would be valuable; 3) It would be useful to develop methods to incorporate missing
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data assumptions that violate (3) and to develop methods of sensitivity analysis to missing

data assumptions; and 4) Methods for accommodating departures from the exclusion restriction

would be valuable. Such departures have been accommodated in cross-sectional contexts, e.g.,

[27, 28, 50].
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