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Random-E®ects Regression Analysis of

Clustered Grouped-Time Survival Data

Summary

Random-e®ects regression modeling is proposed for analysis of correlated grouped-time survival

data. Two analysis approaches are considered. The ¯rst treats survival time as an ordinal out-

come, which is either right-censored or not. The second approach treats survival time as a set of

dichotomous indicators of whether the event occurred for time periods up to the period of the event

or censor. For either approach both proportional hazards and proportional odds versions of the

random-e®ects model are developed, while partial proportional hazards and odds generalizations

are described for the latter approach. For estimation, a full-information maximum marginal likeli-

hood (MML) solution is implemented using numerical quadrature to integrate over the distribution

of multiple random e®ects. The quadrature solution allows some °exibility in the choice of distri-

butions for the random e®ects; both normal and rectangular distributions are considered in this

article. An analysis of a dataset where students are clustered within schools is used to illustrate

features of random-e®ects analysis of clustered grouped-time survival data.

Short Running Title: Random-e®ects survival model

Keywords: censored observations, proportional hazards model; discrete survival data; frailty;

heterogeneity; clustering



2

1 Introduction

Models for grouped-time survival data are useful for analysis of failure-time data when subjects

are measured repeatedly at ¯xed intervals in terms of the occurrence of some event, or when

determination of the exact time of the event is only known within grouped intervals of time. For

example, in school-based prevention studies students are typically measured annually regarding

their smoking, alcohol, and other substance use during the past year. An important question is

then to determine the degree to which an intervention prevents or delays substance use initiation.

These studies often utilize a cluster randomization scheme so that the schools, rather than the

individual students, are randomized to intervention conditions. In analysis of such grouped-time

initiation (or survival) data, use of grouped-time regression models that assume independence of

observations1;2;3 is therefore problematic because of this clustering of students within schools. More

generally, this same issue arises for other types of cluster randomization trials in which subjects

are observed nested within various types of clusters (e.g., hospitals, ¯rms, clinics, counties), and

thus cannot be assumed to be independent. To account for the data clustering, random-e®ects

models (also called multilevel, hierarchical linear, or mixed models) provide a useful approach for

simultaneously estimating the parameters of the regression model and the variance components

that account for the data clustering4;5;6;7.

For continuous-time survival data that are clustered, several authors8;9;10;11;12;13;14 have de-

veloped mixed-e®ects survival models. These models are often termed frailty models or survival

models including heterogeneity, and recent review articles describe many of these models15;16. An

alternative approach for dealing with correlated data uses the generalized estimating equations

(GEE) method described by Liang and Zeger21 to estimate model parameters. In this regard, Lee,

Wei, and Amato22 and Wei, Lin, and Weissfeld23 have developed continuous-time survival models.

Application of these continuous-time models to grouped or discrete-time survival data is gener-

ally not recommended because of the large number of ties that result. Instead, models speci¯cally

developed for grouped or discrete-time survival data have been proposed. Both Han and Hausman17

and Scheike and Jensen18 have described proportional hazards models incorporating a log-gamma

distribution speci¯cation of heterogeneity. Also, Ten Have19 developed a discrete-time proportional

hazards survival model incorporating a log-gamma random e®ects distribution, additionally allow-

ing for ordinal survival and failure categories. Ten Have and Uttal20 used Gibbs sampling to ¯t
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continuation ratio logit models with multiple normally distributed random e®ects. In terms of a

GEE approach, Guo and Lin24 have developed a multivariate model for grouped-time survival data.

Several authors have noted the relationship between ordinal regression models (using comple-

mentary log-log and logit link functions) and survival analysis models for grouped and discrete

time17;25;26. Similarly, others3;27;28 have described how dichotomous regression models can be used

to model grouped and discrete time survival data. The ordinal approach simply treats survival

time as an ordered outcome that is either right-censored or not. Alternatively, in the dichotomous

approach each survival time is represented as a set of indicators of whether or not an individual

failed in each time unit (until a person either experiences the event or is censored). As a result,

the dichotomous approach is more useful for inclusion of time-dependent covariates and relaxing of

the proportional hazards assumption.

In this paper, we will generalize these ¯xed-e®ects regression models for categorical responses

by including random e®ects to account for the data clustering. The resulting models are equiva-

lent to dichotomous and ordinal random-e®ects regression models29, albeit with the extension of

the ordinal model to allow for right-censoring of the response. These models allow multiple ran-

dom e®ects and a general form for model covariates. Assuming either a proportional or partial

proportional hazards or odds model, a maximum marginal likelihood solution is described using

multi-dimensional quadrature to numerically integrate over the distribution of random-e®ects.

The current article is most closely related to the work of Han and Hausman17, Ten Have19, and

Scheike and Jensen18, however there are important di®erences. One di®erence is that these authors

used a log-gamma distribution for a single random e®ect. This speci¯cation of the (univariate)

random e®ects distribution leads to a closed form solution, whereas we use quadrature to numer-

ically integrate the (multivariate) random e®ect distribution. Although the closed-form solution

is mathematically appealing, the quadrature solution does allow us to consider multiple random

e®ects as well as various distributional forms for the random e®ects, including normally-distributed

random e®ects. Pickles and Crouchley15 and Preisler30 also proposed use of quadrature to estimate

survival models with normally distributed random e®ects, though their models were not as general

as the models considered here. Normally-distributed random e®ects are common in many other

types of random-e®ects models, and the case can be made for normally-distributed random e®ects

as a more natural choice (see discussion and commentary of Lee and Nelder31). In particular, as

noted by Longford (in the discussion of Lee and Nelder31) for models with multiple random e®ects
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\the normal is the only well-established multivariate distribution with a full range of correlation

structures." Also, as noted by Preisler30 because the random and ¯xed e®ects are on the same

scale, interpretation of parameters is more straightforward.

Another important distinction is that these authors dealt with relatively few clustered obser-

vations (i.e., 2 or 3). In particular, Ten Have 19 noted that estimation was prohibitive in terms

of time when the number of clustered observations gets large (i.e., say 10 or more). For cluster

randomization trials, this can be a severe limitation. Alternatively, as illustrated by the example,

our approach can accommodate many observations per cluster and varying numbers of observations

per cluster. Finally, our model can be generalized to accommodate multiple levels of nesting of

the random e®ects (e.g., for repeated observations within subjects within schools). For such nested

random e®ects, Gibbons and Hedeker32 describe an approach for 3-level dichotomous outcomes

that can be used to extend the models described here.

The article is organized as follows: Section 2 presents the random-e®ects grouped-time model,

including an extension to allow for non-proportional hazards or odds; Section 3 describes the full-

information maximum likelihood estimation procedure; Section 4 illustrates use of the model for

clustered data; Section 5 contains some closing remarks.

2 Random-e®ects Grouped-Time Survival Analysis Model

Using the terminology of multilevel analysis6, let i denote the level-2 units (i = 1; : : : ; N) and let

j denote the level-1 units (j = 1; : : : ; ni). If subjects are nested within clusters, the subjects and

clusters represent the level-1 and level-2 units, respectively. Alternatively, if there are multiple

failure times per subject, then the level-2 units are the subjects and the level-1 units are the

repeated failure times. Suppose that there is a continuous random variable for the uncensored time

of event occurrence (which may not be observed), however assume that time (of assessment) can

take on only discrete positive values t = 1; 2; : : : ;m. For each level-1 unit, observation continues

until time tij at which point either an event occurs or the observation is censored, where censoring

indicates being observed at tij but not at tij + 1. De¯ne Pijt to be the probability of failure, up to

and including time interval t, that is,

Pijt = Pr [tij · t] (1)

and so the probability of survival beyond time interval t is simply 1¡ Pijt.
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Because 1¡Pijt represents the survivor function, McCullagh25 proposed the following grouped-

time version of the continuous-time proportional hazards model:

log[¡ log(1¡ Pijt)] = ®0t + x0ij¯ : (2)

This is the so-called complementary log-log function, which can be re-expressed in terms of the

cumulative failure probability, Pijt = 1 ¡ exp(¡ exp(®0t + x0ij¯)). In this model, xij is a p £ 1

vector including covariates that vary either at level 1 or 2, however they do not vary with time

(i.e., they do not vary across the ordered response categories). They may, however, represent the

average of a variable across time or the value of the covariate at the time of the event.

Since the integrated hazard function equals ¡ log(1¡ Pijt), this model represents the covariate

e®ects (¯) on the log of the integrated hazard function. The covariate e®ects are identical to those in

the grouped-time version of the proportional hazards model described by Prentice and Gloeckler2.

As such, the ¯ coe±cients are also identical to the coe±cients in the underlying continuous-time

proportional hazards model. Furthermore, as noted by Allison3, the regression coe±cients of the

model are invariant to interval length. Augmenting the coe±cients ¯, the intercept terms ®0t are

a set of m constants that represent the logarithm of the integrated baseline hazard (i.e., when

x = 0). As such, these terms represent cutpoints on the integrated baseline hazard function;

these parameters are often referred to as threshold parameters in descriptions of ordinal regression

models. While the above model is the same as that described in McCullagh25, it is written so

that the covariate e®ects are of the same sign as the Cox proportional hazards model. A positive

coe±cient for a regressor then re°ects increasing hazard with greater values of the regressor.

Adding random e®ects to this model, we get

log[¡ log(1¡ Pijt)] = ®0t + x0ij¯ +w0ijÀi ; (3)

or

Pijt = 1¡ exp(¡ exp(®0t + x0ij¯+w0ijÀi)) = 1¡ exp(¡ exp zijt) ; (4)

where Ài is the r £ 1 vector of unknown random e®ects for the level-2 unit i, and wij is the

design vector for the r random e®ects. The distribution of the r random e®ects Ài is assumed to

be multivariate with mean vector 0 and covariance matrix §À. An important special case is when

the distribution is assumed to be multivariate normal. For convenience, the random e®ects are
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often expressed in standardized form. Speci¯cally, let À = Sµ, where SS0 = §À is the Cholesky

decomposition of §À . The model for zijt then is written as:

zijt = ®0t + x0ij¯+w0ijSµi : (5)

As a result of the transformation, the Cholesky factor S is estimated instead of the covariance

matrix §À . As the Cholesky factor is essentially the square-root of the covariance matrix, this

allows more stable estimation of near-zero variance terms.

The model given in (5) can accommodate separate random-e®ect variance terms for groups

of either level-1 or level-2 units. For example, suppose that treatment group is a level-2 variable

(i.e., at the cluster level) and there is interest in allowing varying random-e®ect variance terms by

groups. If there are two treatment groups, wij is then speci¯ed as a 2 £ 1 vector of dummy codes

indicating membership in groups 1 and 2, respectively, and S is a 2 £ 1 vector of independent

random-e®ect standard deviations for these two groups. In this case, µi is a scalar that is pre-

multiplied by the vector S. Similarly, in a longitudinal context, educational testing models (see

Bock33) allow separate random-e®ect variance terms by items, which represent groupings of level-1

units (i.e., item responses nested within subjects). In either case, the model is speci¯ed with S as

a r £ 1 vector that is pre-multiplied by the transpose of a r £ 1 vector of indicator variables wij ,

and so S pre-multiplies a scalar random e®ect µi instead of a r £ 1 vector of random e®ects µi.

2.1 Proportional Odds Model

As applied to survival data, the proportional odds model is described by Bennett34. For grouped-

time, the random-e®ects proportional odds model is written in terms of the logit link function

as

log[Pijt=(1¡ Pijt)] = zijt (6)

or alternatively as Pijt = 1=[1 + exp(¡zijt)]. The choice of which link function to use is not always

clear-cut. Bennett34 noted that the proportional odds model is useful for survival data when the

hazards of groups of subjects are thought to converge with time. This contrasts to the proportional

hazards model where the hazard rates for separate groups of subjects are assumed proportional at

all timepoints. However, this type of non-proportional hazards e®ect can often be accommodated

in the complementary log-log link model by including interactions of covariates with the baseline
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hazard cutpoints35. Also as Doksum and Gasko36 note, large amounts of high quality data are often

necessary for link function selection to be relevant. Since these two link functions often provide

similar ¯ts, Ten Have19 suggests that the choice of which to use depends upon whether inference

should be in terms of odds ratios or discrete hazard ratios. Similarly, McCullagh25 notes that link

function choice should be based primarily on ease of interpretation.

2.2 Pooling of Repeated Observations and Non-proportional Hazards

Thus far, survival time has been represented as an ordered outcome tij that is designated as

censored or not. An alternative approach for grouped-time survival data, described by Allison3,

D'Agostino et al., 27, Singer and Willett28 and others, treats each individual's survival time as a

set of dichotomous observations indicating whether or not an individual failed in each time unit

until a person either experiences the event or is censored. Thus, each survival time is represented

as a tij £ 1 vector of zeros for censored individuals, while for individuals experiencing the event

the last element of this tij £ 1 vector of zeros is changed to a one. These multiple person-time

indicators are then treated as distinct observations in a dichotomous regression model. In the

case of clustered data, a random-e®ects dichotomous regression model is used. This method has

been called the pooling of repeated observations method by Cupples37. It is particularly useful

for handling time-dependent covariates and ¯tting non-proportional hazards models because the

covariate values can change across each individuals' tij timepoints.

For this approach, de¯ne pijt to be the probability of failure in time interval t, conditional on

survival prior to t:

pijt = Pr [tij = t j tij ¸ t] (7)

Similarly, 1¡ pijt is the probability of survival beyond time interval t, conditional on survival prior

to t. The proportional hazards model is then written as

log[¡ log(1¡ pijt)] = ®0t + x0ijt¯ +w0ijSµi ; (8)

and the corresponding proportional odds model is

log[pijt=(1¡ pijt)] = ®0t + x0ijt¯ +w0ijSµi ; (9)
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where now the covariates x can vary across time and so are denoted as xijt. Augmenting the model

intercept ®01, the remaining intercept terms ®0t (t = 2; : : :m) are obtained by including as regressors

m¡1 dummy codes representing deviations from the ¯rst timepoint. Because the covariate vector x

now varies with t, this approach automatically allows for time-dependent covariates, and relaxing

the proportional hazards assumption only involves including interactions of covariates with the

m¡ 1 timepoint dummy codes.

Under the complementary log-log link function, the two approaches characterized by (3) and (8)

yield identical results for the parameters that do not depend on t, namely the regression coe±cients

of time-independent covariates and the Cholesky factor38;39. For the logit link, similar, but not

identical, results are obtained for these parameters. Comparing these two approaches, notice that

for the ordinal approach each observation consists of only two pieces of data: the (ordinal) time

of the event and whether it was censored or not. Alternatively, in the dichotomous approach each

survival time is represented as a vector of dichotomous indicators, where the size of the vector

depends upon the timing of the event or censoring. Thus, the ordinal approach can be easier to

implement and o®ers savings in terms of the dataset size, especially as the number of timepoints

gets large, while the dichotomous approach is superior in its treatment of time-dependent covariates

and relaxing of the proportional hazards or odds assumption.

Relaxing the proportional hazards or odds assumption in the ordinal model is possible; for ¯xed-

e®ects models this has been discussed by Terza40, Peterson and Harrell41, and Cox42. Similarly, for

clustered ordinal data, Hedeker and Mermelstein43 have developed and described a random-e®ects

partial proportional odds model. For this, the model can be rewritten as:

zijt = ®0t + (u¤ij)
0®¤t + x0ij¯+w0ijSµi ; (10)

or absorbing ®0t and ®¤t into ®t,

zijt = u0ij®t + x0ij¯ +w0ijSµi ; (11)

where, uij is a (l+ 1) £ 1 vector containing (in addition to a 1 for ®0t) the values of observation ij

on the set of l covariates for which interactions with the cutpoints of the integrated baseline hazard

are desired. Here, ®t is a (l+ 1) £ 1 vector of regression coe±cients associated with the l variables

(and the intercept) in uij.

Note that because the dichotomous and ordinal approaches only yield identical results under the

proportional hazards model (i.e., the complementary log-log link and covariates with e®ects that
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do not vary across time), di®erences emerge for covariates allowed to have varying e®ects across

time under these two approaches. For covariates of this type, the dichotomous approach is generally

preferred because it models the covariate's in°uence in terms of the conditional probability of failure

given prior survival (i.e., the hazard function), rather than the cumulative probability of failure

(i.e., the integrated or cumulative hazard function) as in the ordinal model.

3 Maximum Marginal Likelihood Estimation

For the dichotomous approach, the maximum likelihood solution as described in Hedeker and

Gibbons29 and implemented in the MIXOR software program44 can be used without modi¯cation.

For the ordinal treatment of surival times, the solution must be extended to accomodate right-

censoring of the ordinal outcome. For this, let ±ij = 0 if level-1 unit ij is a censored observation

and equal to 1 if the event occurs (fails). Thus, tij denotes the value of time ( t = 1; : : : ;m) when

either the ijth unit failed or was censored. It is assumed that the censoring and failure mechanisms

are independent. With the above mixed-e®ects regression model, the probability of a failure at

time t for a given level-2 unit i, conditional on µ (and given ®t;¯, and S) is:

Pr(tj = t \ ±j = 1 j µ;®t;¯;S) = Pjt ¡ Pj;t¡1 (12)

where Pj0 = 0 and Pj;m+1 = 1. The corresponding probability of being right censored at time t

equals the cumulative probability of not failing at that time, 1¡ Pjt.
Let ti denote the vector pattern of failure times from level-2 unit i for the ni level-1 units

nested within. Similarly, let ±i denote the vector pattern of event indicators. The joint probability

of patterns ti and ±i, given µ, assuming independent censoring is equal to the product of the

probabilities of the level-1 responses:

`(ti; ±i j µ;®t;¯;S) =
niY

j=1

mY

t=1

h
(Pijt ¡ Pij;t¡1)±ij (1¡ Pijt)1¡±ij

idijt
(13)

where dijt = 1 if tij = t (and = 0 if tij 6= t).

The marginal density of ti and ±i in the population is expressed as the following integral of the

conditional likelihood, `(¢), weighted by the prior density g(¢):

h(ti; ±i) =
Z

µ
`(ti; ±i j µ;®t;¯;S) g(µ) dµ (14)
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where g(µ) represents the multivariate distribution of the standardized random e®ects vector µ

in the population. The marginal log-likelihood for the patterns from the N level-2 units is then

written as logL =
PN
i log h(ti; ±i). Maximizing this likelihood then provides maximum marginal

likelihood estimates. The derivation for all model parameters is provided in the appendix, as is a

discussion of computer implementation of the estimation procedure.

3.1 Numerical Quadrature

Many authors have assumed a log-gamma distribution for the random e®ects to obtain a closed

form solution. Alternatively, as mentioned, the case can be made for normally-distributed random

e®ects. Here, we use numerical integration to integrate over the distribution of the random e®ects

µ to allow estimation of a model with normally-distributed random e®ects. The integration is

approximated by a summation on a speci¯ed number of quadrature points Q for each dimension of

the integration; thus, for the transformed µ space, the summation goes over Qr points.

For the normal density, optimal points and weights for the Gauss-Hermite quadrature are given

in Stroud and Sechrest45. If another distribution is assumed, other points and density weights may

be used. For example, if a rectangular or uniform distribution is assumed, then Q points are set at

equal intervals over an appropriate range (for each dimension) and the quadrature weights equal

to 1=Q. Other distributions are possible: Bock and Aitkin33 discuss the possibility of empirically

estimating the random-e®ect distribution. In the example below, results are compared assuming

a normal and a uniform distribution, thus providing some information about the sensitivity of the

results to the assumed normal distribution.

3.2 Estimation of random e®ects and marginal probabilities

In some cases, it may be of interest to estimate values of the random e®ects µi within the sample.

A reasonable choice for this is the expected \a posteriori" (EAP) or empirical Bayes estimator ¹µi

(see Bock and Aitkin33). For the univariate case, this estimator ¹µi, given the vector of survival

times ti censor indicators ±i, and covariate matrices Xi and U i, is given by:

¹µi = E(µi j ti; ±i;Xi;U i) =
1

h(ti; ±i)

Z

µ
µi `(ti; ±i j µ;®t;¯; ¾) g(µ) dµ : (15)
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The variance of this estimator is obtained similarly as:

V (¹µi j ti; ±i;Xi;U i) =
1

h(ti; ±i)

Z

µ
(µi ¡ ¹µi)

2 `(ti; ±i j µ;®t;¯; ¾) g(µ) dµ : (16)

At convergence, these quantities can be obtained using an additional round of quadrature. They

might then be used, for example, to evaluate the failure probabilities for particular level-2 units.

Also, Ten Have19 suggests how these empirical Bayes estimates can be used in performing residual

diagnostics.

To obtain estimated marginal probabilities, an additional step is required. First, so-called

\cluster-speci¯c" probabilities46;47 are estimated for speci¯c values of covariates and random e®ects

µi using ẑijt = u0ij®̂t+x
0
ij

^̄ +w0ijŜµi. These are referred to as cluster-speci¯c probabilities because

they indicate response probabilities conditional on the random cluster e®ects µi. Denoting these

cluster-speci¯c probabilities as P̂cs, marginal probabilities P̂m are then obtained by integrating

over the random-e®ect distribution, namely P̂m =
R
µ P̂cs g(µ) dµ. Again, numerical quadrature can

be used for this. These estimated marginal probabilities can then be compared to the observed

marginal proportions to examine model ¯t, either for the whole sample or strati¯ed by covariates.

Analogous to the situation for the probabilities, there is a distinction between cluster-speci¯c

and marginal, or population-averaged, model parameters that is important to note. As the models

presented in this article are mixed-e®ects models, the parameters ®t and ¯ (and their estimates) are

cluster-speci¯c parameters that indicate the covariate e®ects adjusted or conditional on the random

cluster e®ects µi. Alternatively, marginal parameter estimates, like those obtained from GEE mod-

els, indicate the (averaged) e®ect for the population of clusters. As noted by Neuhaus, Kalb°eisch,

and Hauck46, the values of the subject-speci¯c parameters will exceed the marginal parameters,

in absolute value, as the variance attributable to the random e®ects increases. Also, as noted

by these authors, interpretation is more satisfactory for cluster-speci¯c estimates of within-cluster

covariates, and for marginal estimates of cluster-level covariates. In many cluster-randomization

trials, the degree of data clustering is not large and so the two types of estimates will not di®er

greatly in scale. Alternatively, this issue is more critical in the analysis of longitudinal data where

observations are nested within individuals and the degree of data clustering is usually large.
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4 Example: Smoking Prevention Project

4.1 The Data Set

The Television School and Family Smoking Prevention and Cessation Project (TVSFP) study48 was

designed to test independent and combined e®ects of a school-based social-resistance curriculum

and a television-based program in terms of tobacco use prevention and cessation. The initial study

sample consisted of seventh-grade students who were pretested in January, 1986. Students who

took the pretest (Wave A) completed an immediate post-intervention questionnaire in April, 1986

(Wave B), a one-year follow-up questionnaire (April, 1987; Wave C), and a second year follow-up

(April, 1988; Wave D). The study involved students of schools from Los Angeles and San Diego. A

cluster randomization design was used to assign schools to the design conditions, while the primary

outcome variables were at the student level. In the analyses below, a subset of the TVSFP data was

used. We concentrated on students from Los Angeles schools, where the schools were randomized

to one of four study conditions: (a) a social-resistance classroom curriculum (SR); (b) a media

(television) intervention (TV), (c) a combination of SR and TV conditions; and (d) a no-treatment

control group. These conditions form a 2 x 2 factorial design of SR (yes or no) by TV (yes or no).

One outcome of interest from the study is the onset of cigarette experimentation. At each of the

four timepoints, students answered the question: \have you ever smoked a cigarette?" In analyzing

the data below, because the intervention was implemented following the pretest, we focused on the

three post-intervention timepoints and included only those students who had not answered yes to

this question at pretest. Thus, our analysis examines the degree to which the intervention prevented

or delayed students from initiating smoking experimentation. Because the intervention was also

aimed at smoking cessation for individuals who had initiated smoking, here we are examining only

a part of the intervention aims.

In all, there were 1556 students included in the analysis of smoking initiation. Of these students,

approximately forty percent (n = 634) answered yes to the smoking question at one of the three

post-intervention timepoints, while the other sixty percent (n = 922) either answered no at the last

timepoint or were censored prior to the last timepoint. The breakdown of cigarette onset for gender

and condition subgroups is presented in Table 1. In terms of the clustering, these 1556 students

were from 28 schools with between 13 to 151 students per school (¹n = 56, sd = 38) Thus, the data

are highly unbalanced with large variation in the number of clustered observations.
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4.2 A Comparison of Models

Several proportional hazards models utilizing the complementary log-log link function were ¯t to

these data. Results from these analyses for cigarette onset are given in Table 2. For all models,

gender is included as a dummy variable expressing the male versus female di®erence. For the

condition terms, because the SR by TV interaction was observed to be non-signi¯cant in all analyses,

only a main e®ects model is presented. The ¯rst three columns of Table 2 list results ignoring

the clustering of students in schools, while the last three columns list results for random-e®ects

modeling incorporating a random school e®ect. Within each set, comparisons are made between

the dichotomous and ordinal data analysis approaches. Additionally, for the sake of comparison,

the ¯rst column lists results from an ordinary Cox regression analysis carried out using SAS PROC

PHREG (with the TIES=EXACT option). Finally, the ¯nal two columns list results allowing for

the nesting of students within schools assuming a normal and uniform distribution, respectively,

for the random-e®ects distribution.

For the ¯xed-e®ects models, it is apparent that the Cox regression results are replicated exactly

by either dichotomous or ordinal regression approaches. While the likelihood values are not iden-

tical, the di®erences in deviances (-2 logL) are. The results from the random-e®ects analyses are

similar to those obtained from ordinary analysis at the student-level, and again the results for the

dichotomous and ordinal approaches do not di®er in terms of the time-invariant e®ects. Assuming

either a normal or uniform distribution for the random e®ects yields near-identical estimates and

standard errors for the model terms and for the value of the deviance. Of course, the estimated

standard deviation of the random e®ect distribution changes depending on the assumed distribu-

tional form. Generally, the intervention was not e®ective in in°uencing students onset of cigarette

experimentation. The e®ects for both SR and TV are close to zero and non-signi¯cant. Likelihood-

ratio tests for the joint in°uence of the SR and TV e®ects (based on the deviances given at the

bottom of Table 2) are clearly non-signi¯cant. While the e®ects of these school-level covariates are

similar in the models with and without the random school e®ects, the standard errors are apprecia-

bly larger in the random-e®ects models, relative to the models ignoring the clustering of students.

In terms of the gender e®ect, there is no evidence of a signi¯cant e®ect in any of the models, though

the positive estimate is consistent with increased hazard for males, relative to females.

The variability attributable to schools that is estimated in the random-e®ects models is small

and, based on a likelihood-ratio test, the addition of the random-e®ect variance term is not signif-
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icant. It should be noted, however, that this test usually has very little power for detecting small,

but important, values of the random-e®ect variance. Thus, for the purpose of assessing the impor-

tance of the variation attributable to data clustering, this test should not be relied upon in a strict

sense. Furthermore, from a design perspective, because schools were the treatment assignment

level, the random school e®ect should remain in the model regardless of its signi¯cance. For mod-

els assuming normally distributed random-e®ects, the estimated school variance can be expressed

as an approximate intraclass correlation, ¾2
À=(¾

2
À + ¾2), where ¾2 represents the variance of the

latent continuous event time variable. For the complementary log-log link the standard variance

¾2 = ¼2=6, while for the logit link ¾2 = ¼2=3 (see Agresti49). Applying this formula, for these data

the estimated intraclass correlation equals .002 under the proportional hazards model. This value

is consistent with results from a previous paper by our group50, in which, based on the same study

dataset, intraclass correlations were evaluated across variable type, time, race, and gender. In that

paper, the range of intraclass correlations equaled .001 to .14 for a smoking behavior variable. Also,

while in the present example conclusions do not di®er between the ¯xed and random-e®ects mod-

els, a previous report7 shows that conclusions can change even at relatively low levels of intraclass

correlation (e.g., .02).

In order to test the proportional hazards assumption, interactions with the timepoint dummy-

codes were introduced into the dichotomous random-e®ects model. For the intervention terms,

this resulted in a likelihood-ratio Â2 = 4:1 for the four parameters (2 intervention terms by 2

dummy-codes), indicating that the proportional hazards assumption is acceptable. Alternatively,

for gender, a likelihood-ratio Â2 = 8:0, on two degrees of freedom, rejects the proportional hazards

assumption (p < :02). Allowing the gender e®ect to vary across time yields estimates of .306 (se

= .142), -.146 (se = .221), and -.151 (se = .279) for the gender di®erence at waves B, C, and

D, respectively. Thus, as can be seen from Table 1, males have signi¯cantly increased hazard for

smoking onset at Wave B, but not at Waves C and D.

To examine model ¯t, estimates from the mixed-e®ects non-proportional hazards model were

compared to Kaplan-Meier estimates of the survival function by gender. These are plotted in Figure

1. The marginal estimates are obtained as described in section 3.2 using quadrature to integrate

over the random school e®ects. As can be seen, these model-based marginal estimates agree very

well with the Kaplan-Meier estimates. Consistent with the analysis, the plot shows an increased

hazard for males initially that diminishes across time.
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5 Discussion

Random-e®ects categorical regression models are proposed for analysis of clustered grouped-time

survival data, using either a proportional or partial proportional hazards or odds assumption. Max-

imum marginal likelihood methods are used to estimate the model parameters. For this solution,

quadrature is utilized to numerically integrate over the distribution of random e®ects. For mod-

els without time-dependent covariates, and assuming proportional hazards or odds, the data are

analyzed utilizing an ordinal random-e®ects regression model. In this approach, survival times

are represented as ordinal outcomes that are right-censored or not. Alternatively, to relax the

proportional hazards assumption and/or to include time-dependent covariates, survival times are

represented as sets of binary indicators of survival and analyzed using a dichotomous random-e®ects

regression model.

The solution via quadrature can involve summation over a large number of points when the

number of random-e®ects is increased. An issue, then, is the number of necessary quadrature points

to insure accurate estimation of the model parameters. As Jansen52 noted in the unidimensional

quadrature solution for a random-e®ects ordinal model, the estimation is a®ected very little when

the number of points is 5 or greater. Also, as suggested by Bock, Gibbons and Muraki53 in the

context of a dichotomous factor analysis model, the number of points in each dimension can be

reduced as the dimensionality is increased. These authors noted that as few as three points per

dimension were su±cient for a ¯ve-dimensional solution. In the present example, we used between

5 and 20 quadrature points and observed little change beyond 5 points, though this might be due

to the small degree of data clustering that was evident in the example. In general, to completely

resolve this issue for a particular data set a sensitivity analysis varying the number of quadrature

points may be advisable.

The use of Gibbs sampling and related methods54 provides an alternative way of handling the

integration over the random e®ect distribution. As mentioned, Ten Have and Uttal20 used Gibbs

sampling for a discrete-time survival model with multiple random e®ects. While the quadrature

solution is relatively fast and computationally tractable for models with few random e®ects, Gibbs

sampling may be more advantageous for models with many random e®ects. For example, if there

is only one random e®ect, the quadrature solution requires only one additional summation over Q

points relative to the ¯xed e®ects solution. For models with r > 1 random e®ects, however, the
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quadrature is performed over Qr points, and so becomes computationally burdensome for r > 5 or

so. Recently, however, Bock and Schilling55 described a method of adaptive quadrature that uses a

fewer number of points per dimension (e.g., 3 or so) that are adapted to the location and dispersion

of the distribution to be integrated. They examined dichotomous factor analysis models with 5

and 8 factors (i.e., random e®ects) and found similar results as compared to a Gibbs sampling

approach.

While only three waves of data were considered in the dataset presented, the model can readily

accommodate grouped-time data from many more timepoints. For instance, Han and Hausman17

used the ordinal logistic model to analyze unemployment duration data from 40 weekly intervals,

while Teachman, Call, and Carver26 used the same model to analyze unemployment data from

14 timepoints (12 months for the ¯rst year and 1 month each for the next two years). Since the

cutpoints for each time interval are estimated, the number of timepoints considered may depend on

the sparseness of the data. In some cases, data may need to be recoded into fewer time intervals.

Note, though, that the timepoints are only assumed to be ordinally related, and so, equally spaced

timepoints are not necessary.

The methods and analyses described in this article are valid under the standard assumption

of non-informative censoring. For the TVSFP dataset this may not be plausible to the degree

that students who were censored at time t (observed \surviving" at t but not observed at t + 1)

were unrepresentative of all students (with the same covariate values) who \survived" at t. For

example, it is possible that censored students at t were not observed at t + 1 because they were

more engaged in delinquent behavior (i.e., missing school, dropping out of school, etc.), relative to

students who survived at t (and were measured at t + 1), and so could have a higher probability

of initiating smoking or alcohol at t + 1. One way of assessing whether this type of informative

censoring in°uences the results, suggested by Allison56, is to perform a sensitivity analysis that

treats censoring at t as being equal to experiencing the event at t + 1. When this was done,

parameter estimates did change somewhat, however the general conclusions remained consistent.

Notice that with only three timepoints, it is the treatment of censoring at the ¯rst two timepoints

(Waves B and C) that is of issue. As can be seen from Table 1, for gender the percentages of

censored observations are very similar at these two timepoints. For the intervention groups the

percentages di®er somewhat, though not greatly.

Our example illustrated the utility of the random-e®ects approach for clustered grouped-time
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survival data. In particular, random-e®ects models are useful in accounting for variability at-

tributable to data clustering, while concurrently estimating e®ects of model covariates. The degree

of data clustering is re°ected by the estimated random-e®ects variance term, which can be ex-

pressed as an intraclass correlation estimate. Although, in the present article the conclusions did

not change with the inclusion of the random e®ects, such changes can occur even with relatively

small intra-cluster correlation7. As methods and software are increasingly available for many types

of outcome variables (e.g., normal, dichotomous, ordinal, nominal, counts), analysis of data from

cluster randomization trials can now appropriately include the design components under which

such data were obtained.
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Appendix

Maximum Marginal Likelihood Estimation

Estimation follows the procedure outlined for the mixed-e®ects ordinal regression model de-

scribed in Hedeker and Gibbons29 and implemented in MIXOR44 with a few additions. First, the

conditional likelihood `(ti; ±i j µ;®t;¯;S) takes into account right censoring and, as a result, the

event indicator vector ±i. Further, the model presented in this article has been extended to permit

non-proportional hazards or odds. Finally, the random-e®ect variance terms are allowed to vary

by groups of i or j units.

To simplify the notation in the derivation that follows, the conditional likelihood is denoted as

`i and the marginal density as hi. Di®erentiating ¯rst with respect to the parameters that vary

with t, we get for a particular vector ®k (k = 1; : : : ;m),

@ logL

@®k
=

NX

i=1

h¡1
i

@hi
@®k

:

where,

@hi
@®k

=

Z

µ

niX

j=1

mX

t=1

dijt

"
±ij

(@Pijt)atk ¡ (@Pij;t¡1)at¡1;k

Pijt ¡ Pij;t¡1
¡ (1¡ ±ij)

(@Pijt)atk
1¡ Pijt

#
`i g(µ)uij dµ ; (17)

and atk = 1 if t = k (and = 0 if t6= k). For the logit formulation @Pijt = Pijt(1¡ Pijt), while for

the complementary log-log formulation @Pijt = (exp zijt)(1¡ Pijt).
Let ´ represent an arbitrary parameter vector; then for ¯ and the vector v(S) which contains

the unique elements of the Cholesky factor S, we get:

@ logL

@´
=

NX

i=1

h¡1
i

Z

µ

niX

j=1

mX

t=1

dijt

"
±ij
@Pijt ¡ @Pij;t¡1

Pijt ¡ Pij;t¡1
¡ (1¡ ±ij)

@Pijt
1¡ Pijt

#
`i g(µ)

@zijt
@´

dµ ; (18)

where

@zijt
@¯

= xij ;
@zijt

@(v(S))
= Jr(µ wij) ;

and Jr is the transformation matrix of Magnus57 which eliminates the elements above the main

diagonal. If S is a r £ 1 vector of independent random e®ect variance terms (i.e., if wij is a r £ 1

vector of level-1 or level-2 grouping variables), then @zijt=@S = wijµ in the equation above.

Fisher's method of scoring can be used to provide the solution to these likelihood equations as

described in Hedeker and Gibbons29. In general, the scoring solution converges must faster than the
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EM algorithm when applied to random-e®ects models58. Additionally, the Fisher scoring solution

provides standard errors for all model parameters.

Computer Implementation

The procedure described in this article has been implemented for use in an extended-version of

the original MIXOR program1 The program starts by reading in for each level-2 unit the ni £ 1

time and status vectors ti and ±i, the ni £ r random-e®ect design matrixW i, and the ni£ p matrix

of covariates Xi. Provisional starting values for the model parameters must be speci¯ed prior to

the start of the iterative procedure. These are estimated by the program using an approximate

¯xed-e®ects ordinal regression solution for coe±cient vector ¯ and intercepts ®0t (t = 1; : : : ;m).

Starting values for the Cholesky factor S of the random-e®ects covariance matrix are speci¯ed arbi-

trarily as a diagonal matrix, with each diagonal element set equal to some fraction of the assumed

residual variance value. At each iteration and for each level-2 unit, the solution goes over the Qr

quadrature points, with summation replacing the integration over the random-e®ect distribution.

The conditional probabilities `(ti; ±i j µ;®t;¯;S) are obtained substituting the random-e®ect vec-

tor µ by the current r-dimensional vector of quadrature points Bq. The marginal density for each

level-2 unit is then approximated as

h(ti; ±i) ¼
QrX

q

`(ti; ±i j Bq;®t;¯;S) A(Bq) :

At each iteration, computation of the ¯rst derivatives and information matrix then proceeds sum-

ming over level-2 units and quadrature points. In the summation over the Qr quadrature points,

substitutions are made in the equations for the ¯rst derivatives and information matrix as fol-

lows: the µ random-e®ect vector is substituted by the current vector of quadrature points Bq, and

the evaluation of the multivariate standard density g(µ) is substituted by the current quadrature

weight A(Bq). Following the summation over level-2 units and quadrature points, parameters are

corrected according to the scoring solution, and the entire procedure is repeated until convergence.

With 20 quadrature points for the one dimensional examples described in this article, convergence

(corrections of less than .0001 for all parameters) was typically obtained within 40 iterations.

1This program can be obtained from http://www.uic.edu/ehedeker/mix.html.
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Table 1 - Onset of Cigarette Experimentation Across 3 waves

Frequencies (and percentages) for Gender and Condition subgroups

Wave B Wave C Wave D

with event censored total with event censored total with event censored total

Males 156 83 742 89 134 503 63 217 280

(21.0) (11.2) (17.7) (26.6) (22.5) (77.5)

Females 130 105 814 117 154 579 79 229 308

(16.0) (12.9) (20.2) (26.6) (25.6) (74.4)

Control 66 60 401 53 69 275 34 119 153

(16.5) (15.0) (19.3) (25.1) (22.2) (77.8)

SR only 75 27 392 53 61 290 49 127 176

(19.1) ( 6.9) (18.3) (21.0) (27.8) (72.2)

TV only 71 54 410 60 79 285 38 108 146

(17.3) (13.2) (21.1) (27.7) (26.0) (74.0)

SR and TV 74 47 353 40 79 232 21 92 113

(21.0) (13.3) (17.2) (34.1) (18.6) (81.4)
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Table 2 - Grouped-Time Onset of Cigarette Experimentation

1556 students clustered within 28 schools

Proportional Hazards Model Estimates (standard errors)

Without Clustering With Clustering

SAS Dichot Ordinal Ordinal

Parameter PHREG Dichot Ordinal normal RE normal RE uniform RE

intercept ®1 -1.652 -1.652 -1.656 -1.656 -1.656

(.094) (.094) (.107) (.107) (.107)

intercept ®2 -1.613 -.939 -1.616 -.943 -.943

(.096) (.084) (.126) (.107) (.107)

intercept ®3 -1.344 -.428 -.1.346 -.431 -.431

(.106) (.081) (.130) (.096) (.096)

Male ¯1 .056 .056 .056 .057 .057 .057

(.080) (.080) (.080) (.124) (.124) (.124)

SR ¯2 .041 .041 .041 .045 .045 .045

(.080) (.080) (.080) (.104) (.104) (.104)

TV ¯3 .023 .023 .023 .021 .021 .021

(.080) (.080) (.080) (.094) (.094) (.093)

school sd ¾À .051 .051 .012

(.161) (.161) (.036)

¡2 logL

full model 3166.7 3187.5 3187.5 3187.4 3187.4 3187.4

with ¯2 = ¯3 = 0 3167.0 3187.8 3187.8 3187.7 3187.7 3187.7

Dichot = dichotomous complementary log-log regression

Ordinal = ordinal complementary log-log regression

RE = random-e®ects distribution




