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Abstract

In this paper, we introduce Random Erasing, a new data aug-
mentation method for training the convolutional neural net-
work (CNN). In training, Random Erasing randomly selects
a rectangle region in an image and erases its pixels with ran-
dom values. In this process, training images with various
levels of occlusion are generated, which reduces the risk of
over-fitting and makes the model robust to occlusion. Ran-
dom Erasing is parameter learning free, easy to implement,
and can be integrated with most of the CNN-based recogni-
tion models. Albeit simple, Random Erasing is complemen-
tary to commonly used data augmentation techniques such
as random cropping and flipping, and yields consistent im-
provement over strong baselines in image classification, ob-
ject detection and person re-identification. Code is available
at: https://github.com/zhunzhong07/Random-Erasing.

1 Introduction

The ability to generalize is a research focus for the convolu-
tional neural network (CNN). When a model is excessively
complex, such as having too many parameters compared to
the number of training samples, over-fitting might happen
and weaken its generalization ability. A learned model may
describe random error or noise instead of the underlying
data distribution (Zhang et al. 2017). In bad cases, the CNN
model may exhibit good performance on the training data,
but fail drastically when predicting new data. To improve
the generalization ability of CNNs, many data augmentation
and regularization approaches have been proposed, such as
random cropping (Krizhevsky, Sutskever, and Hinton 2012),
flipping (Simonyan and Zisserman 2015), dropout (Srivas-
tava et al. 2014), and batch normalization (Ioffe and Szegedy
2015).

Occlusion is a critical influencing factor on the general-
ization ability of CNNs. It is desirable that invariance to var-
ious levels of occlusion is achieved. When some parts of an
object are occluded, a strong classification model should be
able to recognize its category from the overall object struc-
ture. However, the collected training samples usually exhibit
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limited variance in occlusion. In an extreme case when all
the training objects are clearly visible, i.e., no occlusion hap-
pens, the learned CNN will probably work well on testing
images without occlusion, but, due to the limited generaliza-
tion ability of the CNN model, may fail to recognize objects
which are partially occluded. While we can manually add
occluded natural images to the training set, it is costly and
the levels of occlusion might be limited.

To address the occlusion problem and improve the gener-
alization ability of CNNs, this paper introduces a new data
augmentation approach, Random Erasing. It can be easily
implemented in most existing CNN models. In the training
phase, an image within a mini-batch randomly undergoes
either of the two operations: 1) kept unchanged; 2) we ran-
domly choose a rectangle region of an arbitrary size, and
assign the pixels within the selected region with random val-
ues (or the ImageNet (Deng et al. 2009) mean pixel value).
During Operation 2), an image is partially occluded in a
random position with a random-sized mask. In this manner,
augmented images with various occlusion levels can be gen-
erated. Examples of Random Erasing are shown in Fig. 1.

Two commonly used data augmentation approaches, i.e.,
random flipping and random cropping, also work on the im-
age level and are closely related to Random Erasing. Both
techniques have demonstrated the ability to improve the im-
age recognition accuracy. In comparison with Random Eras-
ing, random flipping does not incur information loss during
augmentation. Different from random cropping, in Random
Erasing, 1) only part of the object is occluded and the overall
object structure is preserved, 2) pixels of the erased region
are re-assigned with random values, which can be viewed as
adding block noise to the image.

Working primarily on the fully connected (FC) layer,
Dropout (Srivastava et al. 2014) is also related to our
method. It prevents over-fitting by discarding (both hidden
and visible) units of the CNN with a probability p. Ran-
dom Erasing is somewhat similar to performing Dropout
on the image level. The difference is that in Random Eras-
ing, 1) we operate on a continuous rectangular region, 2)
no pixels (units) are discarded, and 3) we focus on making
the model more robust to noise and occlusion. The recent
A-Fast-RCNN (Wang, Shrivastava, and Gupta 2017) pro-
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(a) Image classification (b) Person re-ID (c) Object detection (d) Different augmentation methods 

Figure 1: Examples of Random Erasing in image classification (a), person re-identification (re-ID) (b), object detection (c) and
comparing with different augmentation methods (d). In CNN training, we randomly choose a rectangle region in the image
and erase its pixels with random values or the ImageNet mean pixel value. Images with various levels of occlusion are thus
generated.

poses an occlusion invariant object detector by training an
adversarial network that generates examples with occlusion.
Comparison with A-Fast-RCNN, Random Erasing does not
require any parameter learning, can be easily applied to other
CNN-based recognition tasks and still yields competitive ac-
curacy with A-Fast-RCNN in object detection.

To summarize, Random Erasing has the following advan-
tages:

• A lightweight method that does not require any extra pa-
rameter learning or memory consumption. It can be in-
tegrated with various CNN models without changing the
learning strategy.

• A complementary method to existing data augmentation
and regularization approaches. When combined, Random
Erasing further improves the recognition performance.

• Consistently improving the performance of recent state-
of-the-art deep models on image classification, object de-
tection, and person re-identification.

• Improving the robustness of CNNs to partially occluded
samples. When we randomly adding occlusion to the
CIFAR-10 testing dataset, Random Erasing significantly
outperforms the baseline model.

2 Related Work
Overfitting is a long-standing problem for the convolutional
neural network (CNN). In general, methods of reducing the
risk of overfitting can be divided into two categories: regu-
larization and data augmentation.

Regularization. Regularization is a key component
in preventing over-fitting in the training of CNN mod-
els. Various regularization methods have been proposed
(Krizhevsky, Sutskever, and Hinton 2012; Wan et al. 2013;
Ba and Frey 2013; Zeiler and Fergus 2013; Xie et al. 2016;
Kang et al. 2017). Dropout (Krizhevsky, Sutskever, and
Hinton 2012) randomly discards (setting to zero) the out-
put of each hidden neuron with a probability during the
training and only considers the contribution of the remain-
ing weights in forward pass and back-propagation. Latter,

Wan et al. (Wan et al. 2013) propose a generalization of
dropout approach, DropConect, which instead randomly se-
lects weights to zero during training. In addition, Adaptive
dropout (Ba and Frey 2013) is proposed where the dropout
probability for each hidden neuron is estimated through a bi-
nary belief network. Stochastic Pooling (Zeiler and Fergus
2013) randomly selects activation from a multinomial dis-
tribution during training, which is parameter free and can
be applied with other regularization techniques. Recently,
a regularization method named “DisturbLabel” (Xie et al.
2016) is introduced by adding noise at the loss layer. Distur-
bLabel randomly changes the labels of small part of samples
to incorrect values during each training iteration. PatchShuf-
fle (Kang et al. 2017) randomly shuffles the pixels within
each local patch while maintaining nearly the same global
structures with the original ones, it yields rich local varia-
tions for training of CNN.

Data augmentation. Data augmentation is an explicit
form of regularization that is also widely used in the train-
ing of deep CNN (Krizhevsky, Sutskever, and Hinton 2012;
Simonyan and Zisserman 2015; He et al. 2016a). It aims at
artificially enlarging the training dataset from existing data
using various translations, such as, translation, rotation, flip-
ping, cropping, adding noises, etc. The two most popular
and effective data augmentation methods in training of deep
CNN are random flipping and random cropping. Random
flipping randomly flips the input image horizontally, while
random cropping extracts random sub-patch from the in-
put image. As an analogous choice, Random Erasing may
discard some parts of the object. For random cropping, it
may crop off the corners of the object, while Random Eras-
ing may occlude some parts of the object. Random Erasing
maintains the global structure of object. Moreover, it can be
viewed as adding noise to the image. The combination of
random cropping and Random Erasing can produce more
various training data.

Blocking-based approach. Our work is also closely re-
lated to blocking-based approaches (Murdock et al. 2016;
Fong and Vedaldi 2017; Wei et al. 2017; Wang, Shrivas-
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tava, and Gupta 2017; Kumar Singh and Jae Lee 2017).
Murdock et al. (Murdock et al. 2016) propose “Blockout”,
a method for simultaneous regularization and model selec-
tion via masked weight matrices on CNN layers. The hyper-
parameters need to learn during training. In contrast, our ap-
proach is applied on image-level and does not need any ex-
tra parameter learning. Fong and Vedaldi (Fong and Vedaldi
2017) blur an image to suppress the SoftMax probability
of the target class to learn saliency region. In contrast, our
approach does not rely on any supervision information. In
(Wei et al. 2017), by erasing the most discriminative region,
a sequence of models is trained iteratively for weakly super-
vised semantic segmentation. In comparison, our approach
only needs to train a single model once. Recently, Wang et
al. (Wang, Shrivastava, and Gupta 2017) learn an adversary
with Fast-RCNN (Girshick 2015) detection to create hard
examples on the fly by blocking some feature maps spa-
tially. Instead of generating occlusion examples in feature
space, Random Erasing generates images from the original
images with very little computation which is in effect and
does not require any extra parameters learning. Singh and
Lee (Kumar Singh and Jae Lee 2017) randomly hide patches
(with black pixels) in a training image to force the network
to seek discriminative parts as many as possible for object
localization. Instead, our approach randomly selects a rect-
angle region in an image and erases its pixels with random
values. Comparison with the above mentioned methods, our
approach aims to reduce the risk of over-fitting, which is
model-agnostic, does not require extra parameter learning
and can be easily applied to various vision tasks. Our method
and Cutout (DeVries and Taylor 2017) are contemporary
works. Different from Cutout, we evaluate our method on
more vision tasks. We also investigate the impact of differ-
ent erasing values and different aspect ratios of the erased
region.

3 Datasets
For image classification, we evaluate on four image classifi-
cation datasets, including two well-known datasets, CIFAR-
10 and CIFAR-100 (Krizhevsky and Hinton 2009), a new
dataset Fashion-MNIST (Xiao, Rasul, and Vollgraf 2017),
and a large-scale dataset ImageNet2012 (Deng et al. 2009).
CIFAR-10 and CIFAR-100 contain 50,000 training and
10,000 testing 32×32 color images drawn from 10 and 100
classes, respectively. Fashion-MNIST consists of 60,000
training and 10,000 testing 28x28 gray-scale images. Each
image is associated with a label from 10 classes. Ima-
geNet2012 consists of 1,000 classes, including 1.28 million
training images and 50k validation images. For CIFAR-10,
CIFAR-100 and Fashion-MNIST, we evaluate top-1 error
rates in the format “mean ± std” based on 5 runs. For Im-
ageNet2012, we evaluate the top-1 and top-5 error rates on
the validation set.

For object detection, we use the PASCAL VOC 2007
(Everingham et al. 2010) dataset which contains 9,963 im-
ages of 24,640 annotated objects in training/validation and
testing sets. We use the “trainval” set for training and “test”
set for testing. We evaluate the performance using mean av-
erage precision (mAP).

Algorithm 1: Random Erasing Procedure

Input : Input image I; Image size W and H; Area of
image S; Erasing probability p; Erasing area
ratio range sl and sh; Erasing aspect ratio
range r1 and r2.

Output: Erased image I∗.
Initialization: p1 ← Rand (0, 1).

1 if p1 ≥ p then
2 I∗ ← I;
3 return I∗.

4 else
5 while True do
6 Se ← Rand (sl, sh)×S;
7 re ← Rand (r1, r2);

8 He ←
√
Se × re, We ←

√

Se

re
;

9 xe ← Rand (0,W ), ye ← Rand (0, H);
10 if xe +We ≤ W and ye +He ≤ H then
11 Ie ← (xe, ye, xe +We, ye +He);
12 I(Ie) ← Rand (0, 255);
13 I∗ ← I;
14 return I∗.

15 end

16 end

17 end

For person re-identification (re-ID), the Market-1501
dataset (Zheng et al. 2015) contains 12,936 images with
751 identities for training, 19,732 images with 750 identi-
ties and 3,368 query images for testing. DukeMTMC-reID
(Zheng, Zheng, and Yang 2017; Ristani et al. 2016) includes
16,522 training images of 702 identities, 2,228 query images
of the other 702 identities and 17,661 gallery images. For
CUHK03 (Li et al. 2014), we use the new training/testing
protocol proposed in (Zhong et al. 2017). There are 767
identities in the training set and 700 identities in the test-
ing set. We conduct experiment on both “detected” and “la-
beled” sets. Rank-1 accuracy and mean average precision
(mAP) are evaluated on these three datasets.

4 Our Approach

This section presents the Random Erasing data augmenta-
tion method for training the convolutional neural network
(CNN). We first describe the detailed procedure of Random
Erasing. Next, the implementation of Random Erasing in
different tasks is introduced. Finally, we analyze the differ-
ences between Random Erasing and random cropping.

4.1 Random Erasing

In training, Random Erasing is conducted with a certain
probability. For an image I in a mini-batch, the probability
of it undergoing Random Erasing is p, and the probability
of it being kept unchanged is 1− p. In this process, training
images with various levels of occlusion are generated.

Random Erasing randomly selects a rectangle region Ie in
an image, and erases its pixels with random values. Assume
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that the size of the training image is W × H . The area of
the image is S = W ×H . We randomly initialize the area of

erasing rectangle region to Se, where Se

S
is in range specified

by minimum sl and maximum sh. The aspect ratio of erasing
rectangle region is randomly initialized between r1 and r2,
we set it to re. The size of Ie is He =

√
Se × re and We =

√

Se

re
. Then, we randomly initialize a point P = (xe, ye) in

I . If xe+We ≤ W and ye+He ≤ H , we set the region, Ie =
(xe, ye, xe+We, ye+He), as the selected rectangle region.
Otherwise repeat the above process until an appropriate Ie
is selected. With the selected erasing region Ie, each pixel
in Ie is assigned to a random value in [0, 255], respectively.
The procedure of selecting the rectangle area and erasing
this area is shown in Alg. 1.

4.2 Random Erasing for Image Classification and
Person Re-identification

In image classification, an image is classified according to
its visual content. In general, training data does not provide
the location of the object, so we could not know where the
object is. In this case, we perform Random Erasing on the
whole image according to Alg. 1.

Recently, the person re-ID model is usually trained in
a classification network for embedding learning (Zheng,
Yang, and Hauptmann 2016). In this task, since pedestri-
ans are confined with detected bounding boxes, persons are
roughly in the same position and take up the most area of the
image. In this scenario, we adopt the same strategy as image
classification, as in practice, the pedestrian can be occluded
in any position. We randomly select rectangle regions on the
whole pedestrian image and erase it. Examples of Random
Erasing for image classification and person re-ID are shown
in Fig. 1(a, b).

4.3 Random Erasing for Object Detection

Object detection aims at detecting instances of semantic ob-
jects of a certain class in images. Since the location of each
object in the training image is known, we implement Ran-
dom Erasing with three schemes: 1) Image-aware Random
Erasing (IRE): selecting erasing region on the whole image,
the same as image classification and person re-identification;
2) Object-aware Random Erasing (ORE): selecting erasing
regions in the bounding box of each object. In the latter, if
there are multiple objects in the image, Random Erasing is
applied on each object separately. 3) Image and object-aware
Random Erasing (I+ORE): selecting erasing regions in both
the whole image and each object bounding box. Examples of
Random Erasing for object detection with the three schemes
are shown in Fig. 1(c).

4.4 Comparison with Random Cropping

Random cropping is an effective data augmentation ap-
proach, it reduces the contribution of the background in the
CNN decision, and can base learning models on the pres-
ence of parts of the object instead of focusing on the whole
object. In comparison to random cropping, Random Eras-
ing retains the overall structure of the object, only occluding
some parts of object. In addition, the pixels of erased region

are re-assigned with random values, which can be viewed as
adding noise to the image. When jointly employing random
cropping and Random Erasing during training, more vari-
ous images can be generated for data augmentation. In our
experiment (Section 5.2), we show that these two methods
are complementary to each other for improving the discrim-
inative ability of CNN. The examples of Random Erasing,
random cropping, and the combination of them are shown in
Fig. 1(d).

5 Image Classification

5.1 Experiment Settings

In all of our experiment, we compare the CNN models
trained with or without Random Erasing. For the same deep
architecture, all the models are trained from the same weight
initialization. Note that some popular regularization tech-
niques (e.g., weight decay, batch normalization and dropout)
and various data augmentations (e.g., flipping, padding and
cropping) are employed. The compared CNN architectures
are summarized as below.

Architectures and Settings. Four architectures are
adopted on CIFAR-10, CIFAR-100 and Fashion-MNIST:
ResNet (He et al. 2016a), pre-activation ResNet (He et al.
2016b), ResNeXt (Xie et al. 2017), and Wide Residual Net-
works (Zagoruyko and Komodakis 2016). We use the 20, 32,
44, 56, 110-layer network for ResNet. The 18-layer network
is also adopted for pre-activation ResNet. We use ResNeXt-
29-8×64 and WRN-28-10 in the same way as (Xie et al.
2017) and (Zagoruyko and Komodakis 2016), respectively.
The training procedure follows (He et al. 2016a). Specially,
the learning rate starts from 0.1 and is divided by 10 after
the 150th and 225th epoch. We stop training by the 300th
epoch. If not specified, all models are trained with data aug-
mentation: randomly performs horizontal flipping, and takes
a random cropping with 32×32 for CIFAR-10 and CIFAR-
100 (28×28 for Fashion-MNIST) from images padded by 4
pixels on each side. For Imagenet-2012 (Deng et al. 2009),
we follow the training strategy of ResNet and conduct exper-
iment on ResNet-34, ResNet-50 and ResNet-101. Random
cropping, random flipping and label smoothing regulariza-
tion (Szegedy et al. 2016) are used during model training.

5.2 Classification Evaluation

Classification accuracy on different datasets. We first
evaluate Random Erasing on medium-scale datasets. The re-
sults on CIFAR-10 ,CIFAR-100 and Fashion-MNIST with
different architectures are shown in Table 1. We set p = 0.5,
sl = 0.02, sh = 0.4, and r1 = 1

r2
= 0.3. Results indicate

that models trained with Random Erasing have significant
improvement, demonstrating that our method is applicable
to various CNN architectures. For CIFAR-10, our method
improves the accuracy by 0.49% using ResNet-110. In par-
ticular, our approach obtains 3.08% error rate using WRN-
28-10, which improves the accuracy by 0.72% and achieves
new state of the art. For CIFAR-100, our method obtains
17.73% error rate which gains 0.76% than the WRN-28-
10 baseline. Our method also works well for gray-scale im-
ages: Random erasing improves WRN-28-10 from 4.01% to
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Table 1: Test errors (%) with different architectures on CIFAR-10, CIFAR-100 and Fashion-MNIST. RE: Random Erasing.

Model
CIFAR-10 CIFAR-100 Fashion-MNIST

Baseline RE Baseline RE Baseline RE

ResNet-20 7.21 ± 0.17 6.73 ± 0.09 30.84 ± 0.19 29.97 ± 0.11 4.39 ± 0.08 4.02 ± 0.07

ResNet-32 6.41 ± 0.06 5.66 ± 0.10 28.50 ± 0.37 27.18 ± 0.32 4.16 ± 0.13 3.80 ± 0.05

ResNet-44 5.53 ± 0.08 5.13 ± 0.09 25.27 ± 0.21 24.29 ± 0.16 4.41 ± 0.09 4.01 ± 0.14

ResNet-56 5.31 ± 0.07 4.89 ± 0.07 24.82 ± 0.27 23.69 ± 0.33 4.39 ± 0.10 4.13 ± 0.42

ResNet-110 5.10 ± 0.07 4.61 ± 0.06 23.73 ± 0.37 22.10 ± 0.41 4.40 ± 0.10 4.01 ± 0.13

ResNet-18-PreAct 5.17 ± 0.18 4.31 ± 0.07 24.50 ± 0.29 24.03 ± 0.19 4.31 ± 0.06 3.90 ± 0.06

WRN-28-10 3.80 ± 0.07 3.08 ± 0.05 18.49 ± 0.11 17.73 ± 0.15 4.01 ± 0.10 3.65 ± 0.03

ResNeXt-8-64 3.54 ± 0.04 3.24 ± 0.03 19.27 ± 0.30 18.84 ± 0.18 4.02 ± 0.05 3.79 ± 0.06

p

(a) probability p

sh

(b) area ratio sh

r

(c) aspect ratio r1

Figure 2: Test errors (%) under different hyper-parameters on CIFAR-10 with using ResNet18 (pre-act).

Table 2: Test errors (%) on ImageNet-2012 validation set.

Model
Baseline Random Erasing

Top-1 Top-5 Top-1 Top-5

ResNet-34 25.22 8.01 24.89 7.71
ResNet-50 23.39 6.89 22.75 6.69
ResNet-101 20.98 5.73 20.43 5.30

3.65% in top-1 error on Fashion-MNIST.

We then evaluate our approach on large-scale dataset. Re-
sults on ImageNet-2012 with different architectures are re-
ported in Table 2. Our method consistently improves the re-
sults on all three architectures, demonstrating the effective-
ness of our method on large-scale dataset.

The impact of hyper-parameters. When implementing
Random Erasing on CNN training, we have three hyper-
parameters to evaluate, i.e., the erasing probability p, the
area ratio range of erasing region sl and sh, and the aspect
ratio range of erasing region r1 and r2. To demonstrate the
impact of these hyper-parameters on the model performance,
we conduct experiment on CIFAR-10 based on ResNet18
(pre-act) under varying hyper-parameter settings. To sim-
plify experiment, we fix sl to 0.02, r1 = 1

r2
and evaluate

p, sh, and r1. We set p = 0.5, sh = 0.4 and r1 = 0.3 as
the base setting. When evaluating one of the parameters, we
fixed the other two parameters. Results are shown in Fig. 2.

Notably, Random Erasing consistently outperforms the

Figure 3: Test errors (%) under different levels of occlu-
sion on CIFAR-10 based on ResNet18 (pre-act). The model
trained with Random Erasing is more robust to occlusion.

ResNet18 (pre-act) baseline under all parameter settings.
For example, when p ∈ [0.2, 0.8] and sh ∈ [0.2, 0.8], the
average classification error rate is 4.48%, outperforming the
baseline method (5.17%) by a large margin. Random Eras-
ing is also robust to the aspect ratios of the erasing region.
Specifically, our best result (when r1 = 0.3, error rate =
4.31%) reduces the classification error rate by 0.86% com-
pared with the baseline. In the following experiment for im-
age classification, we set p = 0.5, sl = 0.02, sh = 0.4, and
r1 = 1

r2
= 0.3, if not specified.

Four types of random values for erasing. We evalu-
ate Random Erasing when pixels in the selected region are
erased in four ways: 1) each pixel is assigned with a random
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Table 3: Test errors (%) on CIFAR-10 based on ResNet18 (pre-act) with four types of erasing value. Baseline: Baseline model,
RE-R: Random Erasing model with random value, RE-M: Random Erasing model with mean value of ImageNet 2012, RE-0:
Random Erasing model with 0, RE-255: Random Erasing model with 255.

Erasing Value Baseline RE-R RE-M RE-0 RE-255

Test Errors(%) 5.17 ± 0.18 4.31 ± 0.07 4.35 ± 0.12 4.62 ± 0.09 4.85 ± 0.13

Table 4: Comparing Random Erasing with dropout and ran-
dom noise on CIFAR-10 with using ResNet18 (pre-act).

Method Test error (%) Method Test error (%)

Baseline 5.17 ± 0.18 Baseline 5.17 ± 0.18
Ours 4.31 ± 0.07 Ours 4.31 ± 0.07

Dropout Test error (%) Noise Test error (%)

λ1 = 0.001 5.37 ± 0.12 λ2 = 0.01 5.38 ± 0.07
λ1 = 0.005 5.48 ± 0.15 λ2 = 0.05 5.79 ± 0.14
λ1 = 0.01 5.89 ± 0.14 λ2 = 0.1 6.13 ± 0.12
λ1 = 0.05 6.23 ± 0.11 λ2 = 0.2 6.25 ± 0.09
λ1 = 0.1 6.38 ± 0.18 λ2 = 0.4 6.52 ± 0.12

Table 5: Test errors (%) with different data augmenta-
tion methods on CIFAR-10 based on ResNet18 (pre-act).
RF: Random flipping, RC: Random cropping, RE: Random
Erasing.

Method RF RC RE Test errors (%)

Baseline

11.31 ± 0.18
� 8.30 ± 0.17

� 6.33 ± 0.15
� 10.13 ± 0.14

� � 5.17 ± 0.18
� � 7.19 ± 0.10

� � 5.21 ± 0.14
� � � 4.31 ± 0.07

value ranging in [0, 255], denoted as RE-R; 2) all pixels are
assign with the mean ImageNet pixel value i.e., [125, 122,
114], denoted as RE-M; 3) all pixels are assigned with 0, de-
noted as RE-0; 4) all pixels are assigned with 255, denoted
as RE-255. Table 3 presents the result with different erasing
values on CIFAR10 using ResNet18 (pre-act). We observe
that, 1) all erasing schemes outperform the baseline, 2) RE-
R achieves approximately equal performance to RE-M, and
3) both RE-R and RE-M are superior to RE-0 and RE-255.
If not specified, we use RE-R in the following experiment.

Comparison with Dropout and random noise. We com-
pare Random Erasing with two variant methods applied on
image layer. 1) Dropout: we apply dropout on image layer
with probability λ1. 2) Random noise: we add different lev-
els of noise on the input image by changing the pixel to a
random value in [0, 255] with probability λ2. The probabil-
ity of whether an image undergoes dropout or random noise
is set to 0.5 as Random Erasing. Results are presented in
Table 4. It is clear that applying dropout or adding random
noise at the image layer fails to improve the accuracy. As the
probability λ1 and λ2 increase, performance drops quickly.

When λ2 = 0.4, the number of noise pixels for random noise
is approximately equal to the number of erasing pixels for
Random Erasing, the error rate of random noise increases
from 5.17% to 6.52%, while Random Erasing reduces the
error rate to 4.31%.

Comparing with data augmentation methods. We
compare our method with random flipping and random crop-
ping in Table 5. When applied alone, random cropping
(6.33%) outperforms the other two methods. Importantly,
Random Erasing and the two competing techniques are
complementary. Particularly, combining these three meth-
ods achieves 4.31% error rate, a 7% improvement over the
baseline without any augmentation.

Robustness to occlusion. Last, we show the robustness of
Random Erasing against occlusion. In this experiment, we
add different levels of occlusion to the CIFAR-10 dataset in
testing. We randomly select a region of area and fill it with
random values. The aspect ratio of the region is randomly
chosen from the range of [0.3, 3.33]. Results as shown in
Fig. 3. Obviously, the baseline performance drops quickly
when increasing the occlusion level l. In comparison, the
performance of the model training with Random Erasing
decreases slowly. Our approach achieves 56.36% error rate
when the occluded area is half of the image (l = 0.5), while
the baseline rapidly drops to 75.04%. It demonstrates that
Random Erasing improves the robustness of CNNs against
occlusion.

6 Object Detection

6.1 Experiment Settings

Experiment is conducted based on the Fast-RCNN (Gir-
shick 2015) detector. The model is initialized by the Ima-
geNet classification models, and then fine-tuned on the ob-
ject detection data. We experiment with VGG16 (Simonyan
and Zisserman 2015) architecture. We follow A-Fast-RCNN
(Wang, Shrivastava, and Gupta 2017) for training. We apply
SGD for 80K to train all models. The training rate starts with
0.001 and decreases to 0.0001 after 60K iterations. With this
training procedure, the baseline mAP is slightly better than
the report mAP in (Girshick 2015). We use the selective
search proposals during training. For Random Erasing, we
set p = 0.5, sl = 0.02, sh = 0.2, and r1 = 1

r2
= 0.3.

6.2 Detection Evaluation

We report results with using IRE, ORE and I+ORE dur-
ing training Fast-RCNN in Table 6. The detector is trained
with VOC07 trainval and the union of VOC07 and VOC12
trainval. When training with VOC07 trainval, the baseline is
69.1% mAP. The detector learned with IRE scheme achieves
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Table 6: VOC 2007 test detection average precision (%). ⋆ refers to training schedule in (Wang, Shrivastava, and Gupta 2017).

Method train set mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv

FRCN 07 66.9 74.5 78.3 69.2 53.2 36.6 77.3 78.2 82.0 40.7 72.7 67.9 79.6 79.2 73.0 69.0 30.1 65.4 70.2 75.8 65.8

FRCN⋆ 07 69.1 75.4 80.8 67.3 59.9 37.6 81.9 80.0 84.5 50.0 77.1 68.2 81.0 82.5 74.3 69.9 28.4 71.1 70.2 75.8 66.6

A-Fast-RCNN 07 71.0 74.4 81.3 67.6 57.0 46.6 81.0 79.3 86.0 52.9 75.9 73.7 82.6 83.2 77.7 72.7 37.4 66.3 71.2 78.2 74.3

Ours (IRE) 07 70.5 75.9 78.9 69.0 57.7 46.4 81.7 79.5 82.9 49.3 76.9 67.9 81.5 83.3 76.7 73.2 40.7 72.8 66.9 75.4 74.2

Ours (ORE) 07 71.0 75.1 79.8 69.7 60.8 46.0 80.4 79.0 83.8 51.6 76.2 67.8 81.2 83.7 76.8 73.8 43.1 70.8 67.4 78.3 75.6

Ours (I+ORE) 07 71.5 76.1 81.6 69.5 60.1 45.6 82.2 79.2 84.5 52.5 78.7 71.6 80.4 83.3 76.7 73.9 39.4 68.9 69.8 79.2 77.4

FRCN 07+12 70.0 77.0 78.1 69.3 59.4 38.3 81.6 78.6 86.7 42.8 78.8 68.9 84.7 82.0 76.6 69.9 31.8 70.1 74.8 80.4 70.4

FRCN⋆ 07+12 74.8 78.5 81.0 74.7 67.9 53.4 85.6 84.4 86.2 57.4 80.1 72.2 85.2 84.2 77.6 76.1 45.3 75.7 72.3 81.8 77.3

Ours (IRE) 07+12 75.6 79.0 84.1 76.3 66.9 52.7 84.5 84.4 88.7 58.0 82.9 71.1 84.8 84.4 78.6 76.7 45.5 77.1 76.3 82.5 76.8

Ours (ORE) 07+12 75.8 79.4 81.6 75.6 66.5 52.7 85.5 84.7 88.3 58.7 82.9 72.8 85.0 84.3 79.3 76.3 46.3 76.3 74.9 86.0 78.2

Ours (I+ORE) 07+12 76.2 79.6 82.5 75.7 70.5 55.1 85.2 84.4 88.4 58.6 82.6 73.9 84.2 84.7 78.8 76.3 46.7 77.9 75.9 83.3 79.3

Table 7: Person re-identification performance with Random Erasing (RE) on Market-1501, DukeMTMC-reID, and CUHK03
based on different models. We evaluate CUHK03 under the new evaluation protocol in (Zhong et al. 2017).

Method Model RE
Market Duke CUHK03 (L) CUHK03 (D)

Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP

IDE

ResNet-18
No 79.87 57.37 67.73 46.87 28.36 25.65 26.86 25.04
Yes 82.36 62.06 70.60 51.41 36.07 32.58 34.21 31.20

ResNet-34
No 82.93 62.34 71.63 49.71 31.57 28.66 30.14 27.55
Yes 84.80 65.68 73.56 54.46 40.29 35.50 36.36 33.46

ResNet-50
No 83.14 63.56 71.99 51.29 30.29 27.37 28.36 26.74
Yes 85.24 68.28 74.24 56.17 41.46 36.77 38.50 34.75

TriNet

ResNet-18
No 77.32 58.43 67.50 46.27 43.00 39.16 40.50 37.36
Yes 79.84 61.68 71.81 51.84 48.29 43.80 46.57 43.20

ResNet-34
No 80.73 62.65 72.04 51.56 46.00 43.79 45.07 42.58
Yes 83.11 65.98 72.89 55.38 53.07 48.80 53.21 48.03

ResNet-50
No 82.60 65.79 72.44 53.50 49.86 46.74 50.50 46.47
Yes 83.94 68.67 72.98 56.60 58.14 53.83 55.50 50.74

SVDNet ResNet-50
No 84.41 65.60 76.82 57.70 42.21 38.73 41.85 38.24
Yes 87.08 71.31 79.31 62.44 49.43 45.07 48.71 43.50

an improvement to 70.5% mAP and the ORE scheme ob-
tains 71.0% mAP. The ORE performs slightly better than
IRE. When implementing Random Erasing on overall im-
age and objects, the detector training with I+ORE obtains
further improved in performance with 71.5% mAP. Our ap-
proach (I+ORE) outperforms A-Fast-RCNN (Wang, Shri-
vastava, and Gupta 2017) by 0.5% in mAP. Moreover, our
method does not require any parameter learning and is easy
to implement. When using the enlarged 07+12 training set,
the baseline is 74.8% which is much better than only using
07 training set. The IRE and ORE schemes give similar re-
sults, in which the mAP of IRE is improved by 0.8% and
ORE is improved by 1.0%. When applying I+ORE during
training, the mAP of Fast-RCNN increases to 76.2%, sur-
passing the baseline by 1.4%.

7 Person Re-identification

7.1 Experiment Settings

Three baselines are used in person re-ID, i.e., the ID-
discriminative Embedding (IDE) (Zheng, Yang, and Haupt-
mann 2016), TriNet (Hermans, Beyer, and Leibe 2017), and
SVDNet (Sun et al. 2017). IDE and SVDNet are trained with

the Softmax loss, while TriNet is trained with the triplet
loss. The input images are resized to 256 × 128. We use
the ResNet-18, ResNet-34, and ResNet-50 architectures for
IDE and TriNet, and ResNet-50 for SVDNet. We fine-tune
them on the model pre-trained on ImageNet (Deng et al.
2009). We also perform random cropping and random hori-
zontal flipping during training. For Random Erasing, we set
p = 0.5, sl = 0.02, sh = 0.2, and r1 = 1

r2
= 0.3.

7.2 Person Re-identification Performance

Random Erasing improves different baseline models.
As shown in Table 7, when implementing Random Eras-
ing in these baseline models, Random Erasing consistently
improves the rank-1 accuracy and mAP. Specifically, for
Market-1501, Random Erasing improves the rank-1 by
3.10% and 2.67% for IDE and SVDNet with using ResNet-
50. For DukeMTMC-reID, Random Erasing increases the
rank-1 accuracy from 71.99% to 74.24% for IDE (ResNet-
50) and from 76.82% to 79.31% for SVDNet (ResNet-50).
For CUHK03, TriNet gains 8.28% and 5.0% in rank-1 ac-
curacy when applying Random Erasing on the labeled and
detected settings with ResNet-50, respectively. We note that,
due to lack of adequate training data, over-fitting tend to oc-
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cur on CUHK03. For example, a deeper architecture, such
as ResNet-50, achieves lower performance than ResNet-34
when using the IDE mode on the detected subset. How-
ever, with our method, IDE (ResNet-50) outperforms IDE
(ResNet-34). This indicates that our method can reduce the
risk of over-fitting and improves the re-ID performance.

8 Conclusion

In this paper, we propose a new data augmentation approach
named “Random Erasing” for training the convolutional
neural network (CNN). It is easy to implemented: Random
Erasing randomly occludes an arbitrary region of the input
image during each training iteration. Experiment conducted
on CIFAR10, CIFAR100, Fashion-MNIST and ImageNet
with various architectures validate the effectiveness of our
method. Moreover, we obtain reasonable improvement on
object detection and person re-identification, demonstrating
that our method has good performance on various recogni-
tion tasks. In the future work, we will apply our approach to
other CNN recognition tasks, such as, image retrieval, face
recognition and fine-grained classification.
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