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Abstract

Many massive graphs (such as WWW graphs and Call graphs)
share certain universal characteristics which can be described by so-
called the “power law”. In this paper, we will first briefly survey the
history and previous work on power law graphs. Then we will give
four evolution models for generating power law graphs by adding one
node/edge at a time. We will show that for any given edge density and
desired distributions for in-degrees and out-degrees (not necessarily
the same, but adhered to certain general conditions), the resulting
graph will almost surely satisfy the power law and the in/out-degree
conditions. We will show that our most general directed and undirected
models include nearly all known models as special cases. In addition,
we consider another crucial aspects of massive graphs that is called
“scale-free” in the sense that the frequency of sampling (w.r.t. the
growth rate) is independent of the parameter of the resulting power
law graphs. We will show that our evolution models generate scale-free
power law graphs1.

1 Introduction

The number of Internet host as of January 2000 topped 70 million and is

estimated to be growing at 63% per year [39]. The number of web pages

indexed by large search engines now exceeds 500 million and it is estimated

that over 4,000 web sites are created everyday. Is it possible to determine
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simple structural properties for such massive and dynamic graphs as the In-

ternet and the World Wide Web? For example, are these graphs connected?

If not, what is the size and diameter of the largest component? Are there

interesting structural properties which govern or influence the development

and use of these physical and virtual networks?

Of course, answering these questions exactly is quite likely not possi-

ble. However, in many other areas of the physical, biological, and social

sciences and in engineering where the size and dynamic nature of the data

sets similarly do not allow for exact answers, progress in understanding has

nonetheless been achieved through an iterative interplay between experimen-

tal data and modeling, where both the data and the modeling often have

a random or statistical basis. Such an interplay is in its early stages for

the study of several massive, dynamic graphs such as the World Wide Web.

The starting point of this interplay began when several groups indepen-

dently made an important observation: the degree distributions of several

different massive graphs, including the WWW graph, follow a power law

[7, 8, 24, 10]. In a power law degree distribution, the fraction of nodes with

degree d is proportional to 1/dα for some constant α ≥ 0. In this paper we

present and analyze a general random graph evolution model which yields

graphs with power law degree distributions. Below we will first review the

empirical findings for graphs with power law degree distributions followed

by an overview of previous modeling work for such graphs. Then we will

discuss the models and results presented in this paper. In particular, we will

examine the three important aspects of power law graphs, (1) analyzing the

evolution of graphs, (2) the asymmetry of in-degrees and out-degrees, (3)

the “scale invariance” of power law graphs.
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2 History of power law graphs

2.1 Early history

The history of power laws can be traced back to statistical analysis in a

variety of fields, including linguistics, academic citation, physical sciences,

or even in nature or economy. In 1926, Lotka [27] plotted the distribution

of authors in the decennial index of Chemical Abstracts (1907-1916), and

he found that the number of authors is inversely proportional to the square

of the number of papers published by those authors (which is often called

Lotka’s law or inverse square law and Yule’s law [48]). Zipf [50] observed that

the frequency of English words follows a power law function. That is, the

word frequency that has rank i among all word frequencies is proportional

to 1/ia where a is close to 1. This is called Zipf’s law or Zipf’s distribution.

As Simon [43] noted in an influential paper in 1957, this distribution is also

common to various phenomena, such as word frequencies in large samples of

prose, city sizes and income distributions. There has been a large number of

research papers on power laws in natural language [33, 40, 44], bibliometrics

[15, 18, 20, 23, 42] social sciences [36, 21, 30] and nature [32, 31, 41].

2.2 Empirical power laws

Power laws in massive graphs have recently been reported in a variety of

context. In 1999, Kumar et al. [24] reported that a web crawl of a pruned

data set from 1997 containing about 40 million pages revealed that the

in-degree and out-degree distributions of the web followed a power law.

Albert and Barabasi [7, 8] independently reported the same phenomenon

on the approximately 325 thousand node nd.edu subset of the web. Both

reported a power of approximately 2.1 for the in-degree power law and 2.7
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for the out-degree (although the degree sequence for the out-degree deviates

from the power law for small degree). More recently, these figures have

been confirmed for a Web crawl of approximately 200 million nodes [10].

Thus, the power law fit of the degree distribution of the Web appears to be

remarkably stable over time and scale.

Faloutsos et al. [19] have also observed a power law for the degree distri-

bution of the Internet network. They reported that the distribution of the

out-degree for the interdomain routing tables fits a power law with a power

of approximately 2.2 and that this power remained the same over several

different snapshots of the network. At the router level the out-degree dis-

tribution for a single snapshot in 1995 followed a power law with a power of

approximately 2.6.

In addition to the Web graph and the Internet graph, several other mas-

sive graphs exhibit a power law for the degree distribution. The graph

derived from telephone calls during a period of time over one or more carri-

ers’ networks is called a call graph. Using data collected by Abello et al. [1],

Aiello et al. [3] observe that their call graphs are power law graphs. Both

the in-degrees and the out-degrees have a power of 2.1. The graphs derived

from the U.S. power grid and from the co-stars graph of actors (where there

is an edge between two actors if they have appeared together in a movie)

also obey a power law [7] Thus, a power law fit for the degree distribution

appears to be a ubiquitous and robust property for many massive real-world

graphs.

2.3 Modeling Power Law Graphs

As discussed above, many of the graphs above are so large and dynamic

that answering simple structural questions exactly by empirical means is
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very difficult or infeasible. It is important, therefore, to develop models

which match empirically observed behavior and yet are themselves amenable

to structural analysis. Good models often guide further empirical analysis

which often subsequently requires the models to be refined, and so on.

To begin our discussion of modeling power law graphs, first note that the

standard random graph models, G(n, p), G(n, |E|), and G̃n, will not suffice

(see, for example, [6]). In these models, the choice of edges have a high degree

of independence. Hence, the distribution of degrees decays exponentially

from the expected or average degree.

In order for a power law degree distribution to emerge, the choice of

edges must be correlated. To achieve this correlation, two basic approaches

have been taken thus far. We will review them in turn. The first basic

approach is exemplified in Aiello et al. [3]. They do not attempt to explain

how graphs with a power law degree distribution arise. Rather, they focus

on classes of graphs with a power law degree distribution and they derive

the structures and properties (such as connected components [3], diameters

[28], etc.) as a function of the power. Chung and Lu [12, 13] further extend

the analysis to random graphs with arbitrary degree distribution. Newman

et al. [38] take a similar approach but use different methods of analysis.

Other remarkable works in this direction include Molloy and Reed [34, 35],

and �Luczak [29]. Certain questions are likely to prove more amenable to

analysis using the later approach than the former and vice versa. Thus, the

two approaches are complementary.

The second approach to modeling power law graphs attempts to model

the evolution of such graphs and the manner in which the power law degree

distribution arises. We will briefly overview the history along the follow-

ing three aspects of power law graphs, (1) the evolution of graphs, (2) the
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asymmetry of in-degrees and out-degrees, (3) the “scale-free” phenomenon.

2.3.1 The evolution of power law graphs

For example, in [7], Barabasi and Albert describe the following graph evolu-

tion process. They start with a small initial graph. At each time step they

add a new node and an edge between the new node and each of m random

nodes in the existing graph, where m is a parameter of the model. The

random nodes are not chosen uniformly. Instead, the probability of picking

a node is weighted according to its existing degree (the edges are assumed

to be undirected). That is, if there are et edges at time t and node v has

degree δv,t at time time t, then the probability of picking node v is δv,t/2et.

Using heuristic analysis (e.g., the analysis assumes that the discrete degree

distribution is differentiable) they derive a power law for the degree distribu-

tion with a power of 3, regardless of m. Clearly, the fact that the power is 3

regardless of the parameter m is a drawback of the model. Moreover, it can

easily be shown that all of edges (except, perhaps, those of the small initial

graph) of a resulting graph can be decomposed into m disjoint forests (i.e.,

the graph has arboricity m). Presumably, most massive real-world graphs

with power law degree distributions have a richer structure than this. As we

will see, by inserting the appropriate parameters into our general model, our

analysis does yield a degree distribution power law with power 3. A power

law with power 3 for the degree distribution of this model was independently

derived by Bollobás et al. [9].

The main intuition behind the development of a power law degree dis-

tribution for this model is as follows. Nodes which acquire a relatively large

degree early on in the process have an “advantage” and continue to accu-

mulate added degree because of the preferential selection of nodes with high
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degree. Barabasi and Albert show that if the preferential selection of high

degree nodes is replaced by a uniform selection of nodes then the power law

behavior of the degree distribution does not result. Moreover, if the number

of nodes is fixed, as opposed to constantly increasing, then the power law

degree distribution again fails to occur.

Kumar et al. also describe a random graph evolution process [25]. Unlike

that of [7], their random graphs are directed. Their model has the advantage

that the power in the power-law is a function of a parameter of the model.

Their model is as follows. A node and an edge are added at every time step.

With probability 1−α, a directed self-loop is added to the new node. With

probability α, an edge is added from the new node to a randomly selected

node. The node is selected in proportion to its current in-degrees. That is,

since there are t edges at time t, the probability of picking node v at time t is

δin
v,t/t where δin

v,t is the in-degree of v at time t. They analyze this evolution

process with a heuristic analysis and they derive a power law for the degree

distribution with a power of 1/α. As we will see, this model is a special case

of our general model for which our analysis yields a power of 1 + 1/α. The

above model has a similar drawback as that of [7]: the resulting random

graph is a tree.

2.3.2 Asymmetry of in-degrees and out-degrees

Kumar et el. [25] provide a general model which they call the (α, β) model

which has the advantage that the in-degree and the out-degree both follow

a power law. The powers in the power law for the in-degree and out-degree

need not be the same; they can be controlled independently by α and β. As

before a node and an edge are added at every time step. Let wt be the node

added at step t. At each time step, two nodes are chosen from the existing
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graph. Node u is selected according to its out degree, i.e., the probability

that u is chosen is δout
u,t /t. Node v is selected according to its in degree, i.e.,

the probability that v is chosen is δin
v,t/t. Then two coins are tossed. The

“origin” coin is “u” with probability α and “wt” with probability 1 − α.

The “destination” coin is “v” with probability β and “wt” with probability

1 − β. The new edge is added from the outcome of the origin coin to the

outcome of the destination coin. That is, an edge is added from: u to v

with probability αβ; from u to wt with probability α(1 − β); from wt to v

with probability (1−α)β, and from wt to wt with probability (1−α)(1−β).

They claim an out-degree power law with a power of 1/α and an in-degree

power law with a power of 1/β. (As with their first model, the (α, β) model

is a special case of our model. Our analysis yields power laws with powers

1 + 1/α and 1 + 1/β for the out-degree and in-degree, respectively. )

While the above model allows for different powers laws for the in-degree

and out-degree and yields graphs which do not have small arboricity, it has

the following restrictive property. Suppose that at time step t, the origin

and destination coins are wt and v, respectively. In this case, wt will have

out-degree 1 and in-degree 0 at time t + 1. Hence, wt cannot be chosen as

node v in time step t + 1 and thus its in-degree will be 0 at time t + 2.

Continuing in this manner, wt will always have in-degree 0. Thus, with

high probability, a constant fraction (approximately (1 − α)β) of the nodes

will have in-degree 0. Likewise, with high probability, a constant fraction

(approximately α(1 − β)) of the nodes will have out-degree 0. While some

real-world power law graphs may have this property, it is likely that some,

e.g., the Web, do not, and a more general model would be desirable. Also

note that this model is restricted to graphs with density 1 since one node

and one edge are added at every time step.
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Recently, Kumar at el. [26] proposed three evolution models — “linear

growth copying”, “exponential growth copying”, and “linear growth vari-

ants”. The Linear growth coping model adds one new vertex with d out-links

at a time. The destination of i-th out-link of the new vertex is either copied

from the corresponding out-link of a “prototype” vertex (chosen randomly)

or a random vertex. They showed that the in-degree sequence follows the

power law. These models were designed explicitly to model the World Wide

Web. Indeed, they show that their model has a large number of complete

bipartite subgraphs, as has been observed in the WWW graph, whereas sev-

eral other models, including that of [3], do not. This (and the linear growth

variants model) has the similar drawback as the first model in [25]. The

out-degree of every vertex is always a constant. Edges and vertices in the

exponential growth copying model increases exponentially. This exponential

growth copying model does not have the same drawback as the other two

models have. However, it is not clear whether its out-degrees satisfy the

power law distribution.

2.3.3 Scale-free property for power law graphs

Power-laws or heavy tailed distributions are often associated with self-

similarity and scaling laws. Indeed, by comparing the web crawls of [7, 8] and

[10, 24] we see that the same power law appears to govern various subgraphs

of the web as well as the whole. However, while some subgraphs obey the

same power law and appear to be self-similar, clearly, there exists subgraphs

of the web which would not obey the power law (e.g., the subgraph defined

by all nodes with out-degree 100). The natural problem is thus: formally

define and analyze a scale-free property for power law graphs. While there

may be several types of scaling behavior exhibited by power law graphs, to
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the best of our knowledge, we give the first such definition and show that

our model exhibits this scale-free property.

3 Our Results

Below we will describe a sequence of graph evolution models. The first

three, Models A, B, and C, are for directed graphs and are increasingly

more general. The first two are primarily illustrative although they may

have merits as models in their own right due to their parsimony. Model

C incompasses all of the directed graph models above, except that of [26].

We also describe a fourth model, Model D, which is the natural analogue of

Model C for undirected graphs.

Consider the following simple model which we call model A. At each time

step, a new node is added with probability 1 − α. The node starts with in-

weight 1 and out-weight 1. Whenever the node is the origin (destination) of a

new edge, the out-weight (in-weight) is increased by 1. That is, the in-weight

(out-weight) of a node u at time t is just win
u,t = 1 + δin

u,t (wout
u,t = 1 + δout

u,t ).

With probability α a random edge is added to the existing nodes. The

origin (destination) of the new edge is chosen proportional to the current

in-weights (out-weights) of the nodes. That is, u (v) is chosen as the origin

(destination) of the new edge at time t with probability wout
u,t /t (win

v,t/t). Note

the expected number of edges in the graph is αt and the expected number

of nodes is (1−α)t. Call the ratio of the former to the latter ∆ = α/(1−α)

as it is a measure of the density of the graph. As a corollary to our general

result, we will show that this model yields a power law with power 2+1/∆ for

both the in-degrees and the out-degrees. Thus, this model allows for graphs

of varying density. For this model we also derive the joint distribution for
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the in-degrees and out-degrees. We show that the number of nodes with

in-degree i and out-degree j is proportional to (i + j)3+1/∆.

Note that when an edge is added among existing nodes, the probabilities

concerning which edge is added are functions of the current degree distri-

bution. Thus, the probability distribution of the new degree distribution

is a function of the current degree distribution. This is difficult to solve

recursively since the current degree distribution, itself, has a probability

distribution. However, this means that the expected value of the new de-

gree distribution is a function of the current degree distribution. Moreover,

as we will see, the change in the degree distribution from from step to step

is bounded. Thus, we observe that the evolution of the degree distribution

is a semi martingale where deviation from the expected value of the final

degree distribution occurs with exponentially small tails. Due to linearity

of expectation, we are able to solve for the expected value of the final de-

gree distribution recursively. These recursive equations and their solutions

are non-standard, to the best of our knowledge, and may be of independent

interest.

One drawback of model A is that the density parameter ∆ and the

power in the power law cannot be controlled independently. They are both

functions of the parameter α. Moreover, the in and out degree have the same

power. A simple modification to model A yields model B which overcomes

both drawbacks. When a new node is added with probability 1−α at a time

step, it will be given in-weight γin and out-weight γout. Thus, the in-weight

(out-weight) of a node u at time t is just win
u,t = γin+δin

u,t (wout
u,t = γout+δout

u,t ).

As before, when an edge is added with probability α, the origin of the edge

is chosen with probability proportional to the current out-weights and the

destination is chosen with probability proportional to the current in-weights.
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We will show that this graph evolution process yields graphs with power law

degree distributions with powers 2+γin/∆, and 2+γout/∆ for the in-degrees

and out-degrees, respectively. Note that the powers for the in-degrees and

out-degrees and the density can all be controlled separately. This is the

simplest model of which we are aware for which this is the case. Moreover,

the model does not suffer from any of the other drawbacks mentioned above

such as small arboricity or a constant fraction of nodes with no incoming

edges.

While the above model may indeed be the simplest with which to model a

real-world power law graph on the basis of measurements of the density of the

graph and the powers for the in-degrees and out-degrees, it may not capture

other features of the graph which are measurable. Hence, we would also like

a more general model which, for example, would include the above model as

well as that of [25]. Consider now model C. Suppose that at each time step

four numbers me,e,mn,e,me,n,mn,n are drawn according to some probability

distribution. We assume that the four random variables are bounded. These

four random variables need not be independent. In this time step me,e edges

are added between existing nodes in the graph. Of course, as before, the

origin and destination of these edges are chosen independently according to

the current out-degrees and in-degrees, respectively. Likewise, mn,e edges are

added from the new node to existing nodes chosen independently according

to the current in degrees. Likewise, me,n edges are added from existing

nodes (chosen independently according to the current out-degrees) to the

new node. Finally, mn,n directed self loops are added to the new node.

We will ignore nodes which are born with no indegree or outdegree (i.e., at

the time step the node is born mn,n = me,n = mn,e = 0), or alternatively

we will not include degree zero in the degree distribution. Of course, each

12



of these random variables has a well-defined expectation which we denote

µe,e, µn,e, µe,n, µn,n, respectively. We show that this general process still

yields a power law degree distribution. We derive a power of 2 + (µn,n +

µn,e)/(µe,n + µe,e) for the out-degree. Consider the rightmost ratio in this

expression. By definition, the first element of a superscript refers to the

origination of the random edges. Hence, the numerator of this ratio is the

expected number of edges per step with the new new node as the origin and

the denominator is the expected number of edges per step with an existing

node as the origin. We also derive a power of 2+(µn,n+µe,n)/(µn,e+µe,e) for

the in-degree. Analogously to the expression for outdegree, recall that the

the second element of a superscript refers to the destination of the random

edges. Hence, the numerator of this ratio is the expected number of edges per

step with the new new node as the destination and the denominator is the

expected number of edges per step with an existing node as the destination.

Note that the first, simple model of [25] has µn,e = α, µn,n = 1 − α and

µe,e = µe,n = 0. Substituting this into our result gives an in-degree power

of 2 + (1−α)/α = 1 + 1/α. The (α, β) model of [25] gives µe,e = αβ, µn,e =

(1 − α)β, µe,n = α(1 − β), µn,n = (1 − α)(1 − β). Using our general results

this gives an out-degree power of 1 + 1/α and an in-degree power of 1 + /β.

Also note that our model A has µe,e = α, µe,n = µn,e = 0 and µn,n = 1 −α.

This yields a power of 1 + 1/α, as claimed, for both the in- and out-degrees.

Model C can easily be generalized to include the parameters of the initial

weights of the new nodes given in Model B but we omit that here.

Finally, we also describe a general undirected model which we denote

Model D. It is a natural variant of Model C. At each time step three numbers

(me,e,mn,e,mn,n) are drawn according to some probability distribution. We

assume that the three random variables are bounded. In this time step
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me,e undirected edges are added between existing nodes in the graph. The

endpoints of these edges are chosen independently according to the current

total degrees. Likewise, mn,e edges are added between the new node and

existing nodes chosen independently according to the current total degrees.

Finally, mn,n undirected self loops are added to the new node. We show

that this undirected graph evolution process also yields a power law degree

distribution. We derive a power of 2 + (2µn,n + µn,e)/(µn,e + 2µe,e). Note

that model of Barabasi and Albert [7] has µn,n = µe,e = 0 and µn,e = m.

Substituting this into our general result gives a power of 3 which matches

their heuristically derived bound. Note that the natural undirected version

of model A has µn,e = 0 and thus a power of 2 + µn,n/µe,e = 1 + 1/α. As

with model C, initial weights can easily be incorporated into Model D.

We remark that our conditions for Model C and D are much weaker than

the previous known models. For example, previous known models assume

that the way in which edges are added are identical at each time. In our

models, to analyze the asymptotic value of the expectation of the degree

distribution, we only need to assume edges are added in an “asymptotically

similar” way.

Scale Invariance The evolution of massive graphs can be viewed as a

process of growing graphs by adding nodes and edges at a time. One way

is to divide the time into almost equal units and combine all nodes born in

the same unit time into one super-node. The bigger time unit one chooses,

the smaller size of the result graph has. This procedure is similar to scaling

maps in space. The property is called scale-free. A model is called scale-free

if it generates the scale-free power graphs with high probability. In other

words, an evolution model is time scale invariant if we change the time scale
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by any given factor and examine the scaled graph, then the original graph

and the scaled graph should satisfy the power law with the same powers for

the in-degrees and out-degrees. Suppose that a “unit” of time is scaled by

a factor of c. In other words, we combine all nodes born in previous c-units

into one super node. This has the same effect adding edges c-times in a

large one unit. A detailed definition will be given below.

Briefly, we scale time in our model and then show that the degree dis-

tribution of Model C is invariant with respect to the time scaling. To begin

the discussion, consider a Model C evolution process with parameters µn,n,

µn,e, µe,n, and µe,e and a bound B on the number of edges added per time

step. Suppose the evolution process is run for T time steps and let GT be

the graph generated. Label nodes by the time step in which they are added

to the graph. To scale this evolution process by a factor of σ, we begin by

aggregating time steps into super steps of σ consecutive time steps. That

is, super-step 1 consists of time steps 1 through σ, super-step 2 consists of

times steps σ + 1 through 2σ, and so on (where we assume for convenience

that σ divides T ). The scaled graph Hσ(GT ) is created from GT as fol-

lows. A node in GT with step label i is mapped to the node in Hσ(GT )

with super step label �i/σ�. (If there is no node in GT with time label in

super step τ then no node is created in Gσ
T with label τ .) An edge in GT

from node i to node j gets mapped to an edge in Hσ(GT ) from node �i/σ�
to node �j/σ�. The morphism Hσ on this evolution process of Model C

defines a natural evolution process, which, strictly speaking, is not covered

by Model C. Nonetheless, we will show that this evolution process has the

same power law asymptotically as a Model C evolution process with param-

eters µ′n,n = σµn,n, µ′n,e = σµn,e µ′e,n = σµe,n µ′e,e = σµe,e and size bound

σB. Given our general results on Model C, the latter Model C process has
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the same power law as the first Model C process (e.g., the power for the

out-degree is 2 + (µn,n + µn,e)/(µe,n + µe,e) ) and therefore the time scaled

process defined by the morphism Hσ has the same power law as the first

Model C process. Thus, the power law degree distribution of a Model C

evolution process is invariant with respect to the time scaling defined above.

The rest of the paper is organized as follows. In section 4, we will

define Models A,B,C,D, and state our Theorems (Theorems 1,2,3,4) on the

power law degree distribution of these models. We also state the scale-free

property of these models (Theorem 5). In section 5, we prove Theorem 1

while Theorem 3 and 5 are proved in Section 6. The proofs of Theorems 2

and 4 are omitted.

Variations of the model We have also considered a variant of our

model which can be described as follows. As in model C, a four-tuple of ran-

dom variables (me,e,mn,e,me,n,mn,n) is sampled every time step. However,

rather than adding me,e edges to the existing graph by choosing a separate

origin and destination (according to degree) for each edge, we choose a single

origin according to degree and choose a separate destination according to de-

gree for each edge. The recurrence for the expected out-degree distribution

is slightly different than that for model C but nonetheless the asymptotic

power of the power law is the same: 2 + (µn,n + µn,e)/(µe,n + µe,e). And

again we see that the ratio can be described as the expected number of edges

with the new node as the origin over the expected number of edges with an

existing node as the origin. More generally, several nodes can be choosen

according to degree and from each such nodes several outgoing edges can

be added in the usual degree-biased way. The important quantity is µe,e.

Analogously, the destination can be a single node choosen according to de-
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gree and the origins for all me,e edges can be choosen according to degree.

In this case, the outdegree is identical to that of model C and the indegree

is asymptotically the same. Similar variants apply to the undirected model.

A recent paper has studied a similar model to that above. First, consider

a simplified model of the undirected graph model variant above. Either

a new node is born with a random number edges to the existing graph

(mn,n = me,e = 0 and mn,e ≥ 0) with probability 1 − α, or edges are added

between a single node in the graph and a random number of other nodes in

the graph (mn,n = mn,e = 0 and me,e ≥ 0) with probability α. If µ̃n,e is

the expected value of mn,e in the former case and µ̃e,e is the expected value

of me,e in the later case then the power law degree distribution has power

2 + (1 − α)µ̃n,e/((1 − α)µ̃n,e + 2αµ̃e,e). A directed version of this model is

analogous.

The model of Cooper and Frieze [14] effectively takes this simplified

model as a starting point and then allows all choices of nodes for origins or

destinations in the existing graph to be either sampled according to degree

or sampled uniformly. The choice is determined by a biased coin. When the

sampling of nodes is according to degree with probability one, the models of

[14] reduce to those above. Cooper and Frieze also argue that their model

produces asymptotically the same degree sequence as that of [26].

4 A General Graph Evolution Process

4.1 Notations and definitions

In [3], a random graph model was proposed which can be viewed as a special

case of sparse random graphs with given degree sequences. This model

involves two parameters, called logsize, denoted by α and log-log growth
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Figure 1: The in-degree of call graph Figure 2: Simulation using model A

rate, denoted by β. A random graph under consideration has the following

degree distribution: Suppose there are y vertices of degree x where x and y

satisfy

log y = α − β log x

Such graphs are called power law graphs with parameters (α, β). As it turns

out that the parameters capture some universal characteristics of massive

graphs. Furthermore, from these parameters, various properties of the graph

can be derived. For example, for certain ranges of the parameters, we can

compute the expected distribution of the sizes of the connected components

which almost surely occur with high probability [3].

For a directed graph, the in-degree and out-degree sequence may follow

power laws with different powers, as shown in massive graphs such as the

Web graphs.

A robust way to generate a power law graph is to consider a random

process, which grows the graph by adding one node and some edges at a

18



time. Now we will give the definition of four models.

4.1.1 Model A

Model A is the basic model which the subsequent models rely upon. It starts

with no node and no edge at time 0. At time 1, a node with in-weight 1

and out-weight 1 is added. At time t + 1, with probability 1 − α a new

node with in-weight 1 and out-weight 1 is added. With probability α a new

directed edge uv is added to the existing nodes. Here the origin u is chosen

with probability proportional to the current out-weight wout
u,t

def
= 1 + δout

u,t

and the destination v is chosen with probability proportional to the current

in-weight win
v,t

def
= 1 + δin

v,t. We note that δout
u,t and δin

v,t denote the out-degree

of u and the in-degree of v at time t, respectively.

The total in-weight (out-weight) of graph in model A increases by 1 at a

time. At time t, both total in-weight and total out-weight are exactly t. So

the probability that a new edge is added onto two particular nodes u and v

is exactly

α
(1 + δout

u,t )(1 + δin
v,t)

t2
.

The complete analysis will be given completely in next section.

4.1.2 Model B

Model B is a slight improvement of Model A. Two additional positive con-

stant γin and γout are introduced. Different powers can be generated for

in-degrees and out-degrees. In addition, the edge density can be indepen-

dently controlled.

Model B starts with no node and no edge at time 0. At time 1, a

node with in-weight γin and out-weight γout is added. At time t + 1, with

probability 1−α a new node with in-weight γin and out-weight γout is added.
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With probability α a new directed edge uv is added to the existing nodes.

Here the origin u (destination v) is chosen proportional to the current out-

weight wout
u,t

def
= γout + δout

u,t while the current in-weight is win
v,t

def
= γin + δin

v,t.

Here δout
u,t is the out-degree of u and δin

v,t is the in-degree of v at time t,

respectively.

In model B, at time t the total in-weight win
t and the out-weight wout

t ) of

the graph are random variables. The probability that a new edge is added

onto two particular nodes u and v is

α
(γout + δout

u,t )(γin + δin
v,t)

win
t wout

t

.

4.1.3 Model C

Now we consider Model C, this is a general model with four specified types

of edges to be added.

Assume that the random process of model C starts at time t0. At t = t0,

we start with an initial directed graph with some vertices and edges. At

step t > t0, a new vertex is added and four numbers me,e,mn,e,me,n,mn,n

are drawn according to some probability distribution. (Indeed, any bounded

distribution is allowed here. It can even be a function of time t as long as

the limit distribution exists as t approaches infinity.) We assume that the

four random variables are bounded. Then we proceed as follows:

• Add me,e edges randomly. The origins are chosen with the probability

proportional to the current out-degree and the destinations are chosen

proportional to the current in-degree.

• Add me,n edges into the new vertex randomly. The origins are chosen

with the probability proportional to the current out-degree and the
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destinations are the new vertex.

• Add mn,e edges from the new vertex randomly. The destinations are

chosen with the probability proportional to the current in-degree and

the origins are the new vertex.

• Add mn,n loops to the new vertex.

Each of these random variables has a well-defined expectation which we

denote by µe,e, µn,e, µe,n, µn,n, respectively. We will show that this general

process still yields power law degree distributions and the powers are simple

rational functions of µe,e, µn,e, µe,n, µn,n.

4.1.4 Model D

Model A, B and C are all power law models for directed graphs. Here we

describe a general undirected model which we denote by Model D. It is a

natural variant of Model C.

We assume that the random process of model C starts at time t0. At t =

t0, we start with an initial undirected graph with some vertices and edges.

At step t > t0, a new vertex is added and three numbers me,e,mn,e,mn,n

are drawn according to some probability distribution. We assume that the

three random variables are bounded. Then we proceed as follows:

• Add me,e edges randomly. The vertices are chosen with the probability

proportional to the current degree.

• Add me,n edges randomly. One vertex of each edge must be the new

vertex. The other one is chosen with the probability proportional to

the current degree.

• Add mn,n loops to the new vertex.
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4.1.5 General notations

For all (directed) graph models A, B, C, D, we denote nt to be the number

of vertices at time t. Let et be the number of edges at time t.

For graph models A, B, C, let din
i,t and dout

j,t denote the random variables

as the number of vertices with in-degree i and out-degree j, respectively.

Let djoint
i,j,t be the random variable as the number of vertices with in-degree i

and out-degree j.

For (undirected) graph model D, let di,t denote the random variable as

the number of vertices with degree i.

4.2 Results and applications

We first state the theorems that will be proved in latter sections.

Theorem 1 For model A, the distribution of in-degree and out-degree se-

quences follow the power law distribution with power 1+ 1
α . The joint distri-

bution of in-degree and out-degree sequence follows the power law distribution

with power 2 + 1
α . More precisely, we have

Pr(|djoint
i,j,t − ai,jt| > λ

√
t + 2) < e−λ2/8,

P r(|din
i,t − bit| > λ

√
t + 2) < e−λ2/2,

P r(|dout
j,t − cjt| > λ

√
t + 2) < e−λ2/2.

where ai,j, bi, cj satisfy

ai,j = (1 − α)
(i + j − 2)!αi+j−2∏i+j

l=2(1 + lα)
=

( 1
α − 1)Γ( 1

α + 2)

(i + j)
1
α

+2
+ oi+j(1)

bi = (1 − α)
(i − 1)!αi−1∏i

l=1(1 + lα)
=

( 1
α − 1)Γ( 1

α + 1)

i
1
α

+1
+ oi(1)

cj = (1 − α)
(j − 1)!αj−1∏j

l=1(1 + lα)
=

( 1
α − 1)Γ( 1

α + 1)

j
1
α

+1
+ oj(1)
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For all i,j,t, the expected values E(djoint
i,j,t ), E(din

i,t) and E(dout
j,t ) satisfy

|E(djoint
i,j,t ) − ai,jt| < 2

|E(din
i,t) − bit| < 2

|E(dout
j,t ) − cjt| < 2.

Theorem 2 For model B, the distribution of in-degree sequence follows the

power law distribution with power 2 + γin

∆ , and the distribution of out-degree

sequence follows the power law distribution with power 2 + γout

∆ . Here ∆ =
α

1−α is the asymptotic edge density. More precisely, we have

Pr(|din
i,t − b′it| > 2λ

√
t) < e−λ2/2,

P r(|dout
j,t − c′jt| > 2λ

√
t) < e−λ2/2.

where b′i, c
′
j satisfy

b′i = (1 − α)(
1

γin
+

1
∆

)
i+1∏
l=1

l − 2 + γin

l + γin

α

= (1 − α)(
1

γin
+

1
∆

)
Γ(γin

α + 1)
Γ(γin − 1)

1

i
γin

∆
+2

+ oi(1)

c′j = (1 − α)(
1

γout
+

1
∆

)
j+1∏
l=1

l − 2 + γout

l + γout

α

= (1 − α)(
1

γout
+

1
∆

)
Γ(γout

α + 1)
Γ(γout − 1)

1

j
γout

∆
+2

+ oj(1)

Theorem 3 For model C, almost surely the out-degree sequence follows the

power law distribution with the power 2 + µn,n+µn,e

µe,n+µe,e where µ’s are as de-

fined in 2.1.3.) Almost surely the in-degree sequence follows the power law

distribution with the power 2 + µn,n+µe,n

µn,e+µe,e . More precisely, we have

Pr(|din
i,t − b′′i t| > 2Mλ

√
t) < e−λ2/2,
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Pr(|dout
j,t − c′′j t| > 2Mλ

√
t) < e−λ2/2.

where b′′i , c
′′
j satisfy

b′′i =
b′′

i
2+ µn,n+µe,n

µn,e+µe,e

+ oi(1),

c′′j =
c′′

j2+ µn,n+µe,n

µn,e+µe,e

+ oj(1).

Here b′′, c′′,M are constants determined by the joint distribution of me,e,

mn,e, me,n, mn,n of this model, but independent of i and t. (See the proof

in section 4 for definitions of b′′, c′′,M .)

Theorem 4 For model D, almost surely the degree sequence follows the

power law distribution with the power 2 + 2µn,n+µn,e

µn,e+2µe,e . More precisely, we

have

Pr(|din
i,t − a′it| > 2M ′λ

√
t) < e−λ2/2,

where a′i satisfies

a′i =
a′

i2+
2µn,n+µn,e

µn,e+2µe,e

+ oi(1).

Here a′,M ′ are constants determined by distribution of (me,e, mn,e, mn,n)

of this model, but independent of i and t.

Theorem 3 has an important application on “Scale-free” property.

Theorem 5 Model A, B, C, D are scale-free. Especially almost all previous

models [7, 8, 24, 25] are scale-free.

Remarks: Theorem 1 and 2 hold for all ranges of i, j, t. Theorems 3 and 4

hold for t ≥ t0, where t0 depends on the initial graphs and the asymptotic

behavior of the variables involved in the evolution process. In general, din
i,t

and dout
j,t concentrate on their expected values within an interval of length
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t1/2+ε, for any ε > 0. We note that the desirable range of i (or j) for

Theorems 1-4 is i � t1/(2p), where p is the power in the power law model as

stated in Theorems 1-4.

5 Proof of theorem 1

For models A,B,C,D, we denote Gt the probability space associated to each

graph Gt at time t. As t increases, Gt can be defined recursively. For each

t, let τt be a random variable of Gt.

{τt} is said to satisfy the c-Lipschitz condition. if

|τt+1(Ht+1) − τt(Ht)| ≤ c

whenever Ht+1 is obtained from Ht by adding some edges or some vertices

at time t + 1.

This concept is very similar to the vertex or edge Lipschitz condition in

classical random graph theory (see [5]). We will use the following fact which

is from the standard martingale theory.

Lemma 1 If τ satisfies the c-Lipschitz condition, then we have for every

λ > 0

Pr[|τt − E(τt)| > λ
√

t] < 2e−
λ2

2c2

In particular, τt is almost surely very close to its expected value E(τt) with

an error term o(t
1
2
+ε) for any ε > 0, as t approaches infinity.

Proof of Theorem 1: Both {din
i,t} and {dout

j,t } satisfy 1-Lipschitz condition.

{djoint
i,j,t } satisfies 2-Lipschitz condition. By Lemma 1, it is enough to compute

the corresponding expected values. Here we compute E(djoint
i,j,t ) in detail.
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At time 0, there is nothing in graph. At time 1, a node with a loop is

added. So we have

djoint
1,1,1 = 1 and djoint

i,j,1 = 0 for i > 1 or j > 1

i = 1, j = 1 is special. For t ≥ 1, we have

djoint
1,1,t+1 =




djoint
1,1,t + 1 w.p. 1 − α

djoint
1,1,t − 1 w.p. α(2

djoint
1,1,t

t (1 − djoint
1,1,t

t ) +
djoint
1,1,t

t2 )

djoint
1,1,t − 2 w.p. α((

djoint
1,1,t

t )2 − djoint
1,1,t

t2
)

djoint
1,1,t otherwise

In general, we have

djoint
i,j,t+1 =




djoint
i,j,t + 2 w.p.

(i−1)djoint
i−1,j,t

t

(j−1)djoint
i,j−1,t

t

djoint
i,j,t + 1 w.p. α

(i−1)djoin
i−1,j,t

t (1 − (j−1)djoin
i,j−1,t

t )

+α
(j−1)djoin

i,j−1,t

t (1 − (i−1)djoin
i−1,j,t

t ) + α
(i−1)(j−1)djoin

i−1,j−1,t

t2

djoint
i,j,t − 1 w.p. α

idjoin
i,j,t

t (1 − jdjoin
i,j,t

t ) + α
jdjoin

i,j,t

t (1 − idjoin
i,j,t

t ) + α
ijdjoin

i,j,t

t2

djoint
i,j,t − 2 w.p. α

ij(djoin
i,j,t )2

t2
− α

ijdjoin
i,j,t

t2

djoint
i,j,t otherwise

Let Nt = (djoint
i,j,t )all i,j denote the degree distribution at time t. We have

E(djoint
1,1,t+1|Nt) = djoint

1,1,t + 1 − α − α(
2
t
− 1

t2
)djoint

1,1,t

For (i, j) �= (1, 1), similarly, we have

E(djoint
i,j,t+1|Nt) = djoint

i,j,t +
α

t
((i − 1)(1 − j

t
)djoint

i−1,j,t +

(j − 1)(1 − i

t
)djoint

i,j−1,t − (i + j − ij

t
)djoint

i,j,t )

Hence we have the following recurrence formula:

E(djoint
1,1,t+1) = E(djoint

1,1,t )(1 − α(
2
t
− 1

t2
)) + 1 − α
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For (i, j) �= (1, 1), we have

E(djoint
i,j,t+1) = E(djoint

i,j,t )(1 − α
(i + j)

t
+ α

ij

t2
)

+
(i − 1)α

t
(1 − j

t
)E(djoint

i−1,j,t)

+
(j − 1)α

t
(1 − i

t
)E(djoint

i,j−1,t)

To examine the asymptotic behavior of E(djoint
i,j,t ), we want to express

E(djoint
i,j,t ) = ai,jt + ci,j,t,

where ci,j,t = o(t) is a lower order term. To choose an appropriate value

for ai,j, we substitute it into above recurrence formula and let t approach

infinity. We obtain

a1,1 =
1 − α

1 + 2α

For (i, j) �= (1, 1) we have

ai,j = α
(i − 1)ai−1,j + (j − 1)ai,j−1

1 + (i + j)α

The solution to the above recurrence is the following:

ai,j =
(1 − α)(i + j − 2)!αi+j−2∏i+j

k=2(1 + kα)

=
( 1

α − 1)Γ( 1
α + 2)

(i + j)
1
α

+2
+ oi+j(1)

for all i, j.

It suffices to establish an upper bound for ci,j,t. In fact, we will show

that ci,j,t ≤ 2. This will be proved by induction. When i = j = 1, c1,1,t

satisfies the following recurrence formula

c1,1,t+1 = c1,1,t(1 − α(
2
t
− 1

t2
)) + α

1 − α

1 + 2α

1
t
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Since c1,1,1 = 3α
1+2α < 2, by induction on t, we have

c1,1,t+1 ≤ 2(1 − α(
2
t
− 1

t2
)) + α

1 − α

1 + 2α

1
t
≤ 2.

For i ≥ 2 or j ≥ 2, ci,j,t’s satisfy the following recurrence formula:

ci,j,t+1 = (1 − α
it + jt − ij

t2
)ci,j,t +

(i − 1)α
t

(1 − j

t
)ci−1,j,t +

(j − 1)α
t

(1 − i

t
)ci,j−1,t +

α

t
(ijai,j − (i − 1)jai−1,j − i(j − 1)ai,j−1)

Now we use induction on i, j, t to show |ci,j,t| ≤ 2. By induction hypothesis,

we assume that |ci,j,t| < 2, |ci−1,j,t| < 2, |ci,j−1,t| < 2. Now we have

|ci,j,t+1| ≤ 2(1 − α
it + jt − ij

t2
) +

(i − 1)α
t

(1 − j

t
)2

+
(j − 1)α

t
(1 − i

t
)2 +

α

t
2

= 2 − 2α

t
(1 − 1

t
) − 2α(i − 1)(j − 1)

t2

≤ 2.

Thus we finished the induction step. (Here we use the fact that ijai,j − (i−
1)jai−1,j − i(j − 1)ai,j−1 <

∑
ij ijaij = 2.)

The other two recurences can be proved analogously. Actually, bi and cj

can be derived from ai,j by observing that

din
i,t =

∑
j≥0

djoint
i,j,t and dout

j,t =
∑
i≥0

djoint
i,j,t .

�

The proof of Theorem 2 is similar and will be omitted. Next section, we

will prove Theorems 3 and 5.

6 The proofs of Theorems 3 and 5

We first prove the following lemma.
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Lemma 2 If a sequence at satisfies the recursive formula

at+1 = (1 − bt

t
)at + ct for t ≥ t0

where limt→∞ bt = b > 0 and limt→∞ ct = c exists. Then limt→∞ at
t exists

and

lim
t→∞

at

t
=

c

1 + b

Proof: Since limt→∞ bt = b > 0, there exists a t1 satisfying bt > 0 for all

t > t1. Notice
c

1 + b
(t + 1) = (1 − b

t
)

c

1 + b
t + c.

We have

|at+1 − c

1 + b
(t + 1)| = |(1 − bt

t
)(at − c

1 + b
t) + (bt − b)

c

1 + b
+ ct − c|

≤ |at − c

1 + b
t| + st

where st = |(bt − b) c
1+b + ct − c| → 0 as t approaches infinity.

Now we use this inequality recursively. We have

|at − c

1 + b
t| ≤ |at1 −

c

1 + b
t1| +

t−1∑
k=t1

sk = o(t).

Hence the limit limt→∞ at
t exists and limt→∞ at

t = c
1+b . �

We now proceed to prove Theorem 3.

Proof of Theorem 3: Only bounded number of edges are added at a time

in model C. Let’s denote this bound by M . Now both din
i,t and dout

j,t satisfy

M -Lipschitz condition. By Lemma 1, it is enough to show that following

limits exist.

lim
t→∞

E(din
i,t)

t
=

b′′

i
2+ µn,n+µe,n

µn,e+µe,e

+ oi(1). (1)

lim
t→∞

E(dout
j,t )
t

=
c′′

j2+ µn,n+µn,e

µe,n+µe,e

+ oj(1). (2)
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where b′′, c′′ are some constants independent of i, j.

We will prove the equation (1). The proof of (2) is similar and will be

omitted.

We assume that at time t, with probability pt
i′j′k′l′ , me,e = i′,mn,e =

j′,me,n = k′,mn,n = l′. The probability that a vertex of in-degree i − s

becomes a vertex i is exactly
(

i′ + j′

s

)
(
i − s

et
)s(1 − i − s

et
)i′+j′−s. (3)

The probability that a vertex of in-degree i becomes a vertex of in-degree

i + s is exactly (
i′ + j′

s

)
(

i

et
)s(1 − i

et
)i′+j′−s. (4)

The new vertex is a vertex of in-degree i is exactly

∑
k′+l′=i,i′,j′

pt
i′j′k′l′ ,

which is assume to be well-behaved. So its limit as t approaches ∞ exists.

We denote it by pi.

By linearity of the conditional expectation, we have

E(din
i,t+1|Gt) =

∑
s≥1

din
i−s,t

∑
i′,j′,k′l′

(
i′ + j′

s

)
(
i − s

et
)s(1 − i − s

et
)i′+j′−spt

i′j′k′l′

−din
i,t

∑
s≥1

∑
i′,j′,k′l′

(
i′ + j′

s

)
(

i

et
)s(1 − i

et
)i′+j′−spt

i′j′k′l′

+din
i,t +

∑
k′+l′=i,i′,j′

pt
i′j′k′l′

= din
i,t


1 − i

et

∑
i′,j′,k′l′

(i′ + j′)pt
i′j′k′l′(1 + o(1))




+din
i−1,t

i − 1
et

∑
i′,j′,k′l′

(i′ + j′)pt
i′j′k′l′(1 + o(1)) + p+

i (1 + o(1))
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= din
i,t

(
1 − i

µn,e + µe,e + o(1)
(µn,e + µe,e + µe,n + µn,n)t

)
)

+ din
i−1,t(1 − i

µn,e + µe,e + o(1)
(µn,e + µe,e + µe,n + µn,n)t

) + p+
i (1 + o(1))

Since me,e,mn,e,me,n,mn,n are bounded by M , we have pi = 0, for

i > M . We derive the following recurrence formula.

E(din
i,t+1) = E(din

i,t)(1 − i
µn,e + µe,e + o(1)

(µn,e + µe,e + µe,n + µn,n)t
)

+E(din
i−1,t)

(1 + o(1))(i − 1)(µn,e + µe,e)
(µn,e + µe,e + µe,n + µn,n)t

) + o(1) (5)

for i > M .

By induction on i and Lemma 2, equation (5) implies limt→∞
E(din

i,t)

t

exists. Let denote it by b′′i . b′′i satisfies

b′′i =
b′′i−1(i−1)(µn,e+µe,e)

µn,e+µe,e+µe,n+µn,n

1 + i(µn,e+µe,e)
(µn,e+µe,e+µe,n+µn,n)

=
i − 1

i + 1 + µe,n+µn,n

µn,e+µe,e

b′′i−1

Hence, we have,

b′′i =
i − 1

i + 1 + µe,n+µn,n

µn,e+µe,e

b′′i−1

= b′′M
i∏

k=M+1

k − 1
k + 1 + µe,n+µn,n

µn,e+µe,e

= b′′M
(i − 1)!Γ(M + 2 + µe,n+µn,n

µn,e+µe,e )

(M − 1)!Γ(i + 2 + µe,n+µn,n

µn,e+µe,e )

≈ b′′

i2+
µe,n+µn,n

µn,e+µe,e

where

31



b′′ = b′′M
Γ(2M+2+ µe,n+µn,n

µn,e+µe,e )

(2M−1)! is a constant.

Equation (1) is proved.

By Lemma 1, almost surely the out-degree sequence of Gt satisfies the

power law distribution with power 2 + µe,n+µn,n

µn,e+µe,e .

Similarly, we can show almost surely the in-degree sequence of Gt satisfies

the power law distribution with power 2 + µn,e+µn,n

µe,n+µe,e . �

The proof of Theorem 4 is similar to this one and will be omitted.

Next, we will prove Theorem 5.

Proof of Theorem 5: Model A and previous models [7, 8, 24, 25] are

the special cases of Model C. We will prove that Model C has the scale-free

property. The proofs for Models A, B and D are similar and will be omitted.

We suppose that the evolution GT is scaled by a factor of σ. (See section

1 for the definition.) The scaled evolution Hσ(GT ) is not exactly covered by

Model C. But it is naturally approximated by an evolution GT ′ of Model C

with parameters µ′n,n = σµn,n, µ′n,e = σµn,e µ′e,n = σµe,n µ′e,e = σµe,e and

size bound σM . Given our general results on Model C, the latter Model C

process has the same power law as the first Model C process (e.g., the power

for the out-degrees is 2 + (µn,n + µn,e)/(µe,n + µe,e) ). Hence, it is enough

to show that both the scaled evolution Hσ(GT ) and the approximating evo-

lution GT ′ have the same power for the out-degrees (and in-degrees).

The evolution Hσ(GT ) only differs from GT ′ in the way of adding edges.

At each time unit, edges are added simultaneously in GT ′ while some edges

in Hσ(GT ) are added simultaneously and some are added sequentially. By

examining the proof of Theorem 3, we find that the probabilities given in

equations (3) and (4) are different. However, the main terms (occurred

at s=1) stay the same. From the proof of Theorem 3, we conclude that
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both evolutions give the same power for the out-degrees as well as for the

in-degrees. �

7 Problems and remarks

In this paper, we use techniques in random graph theory to analyze power

law graphs. The analysis of the evolution of power law graph are consid-

erably harder than that for the earlier model of random graphs with given

degree sequence [3, 34, 35] since nodes which acquire a relatively large de-

gree early on in the process have an advantage and are substantially different

from the nodes that are added later on. Furthermore, the error estimates

that are induced by large degrees might dominate some behavior that occur

in the large part of graphs with small degrees. Numerous problems remain

unsolved several of which we mention here:

• In model A, we obtained the joint distribution of in- and out-degree.

In general, it is true that limt→∞
djoint

i,j

t exists via the martingale theory.

We denote it by f(i, j). What is the asymptotic behavior of f(i, j)?

Question: Is there a simple asymptotic form of f(i, j) (such as the in

Theorem 1) for models B, C, D?

• We only consider cases of adding nodes and edges at a time. This

is consistent with some applications like a co-stars graph. However,

for many other application, such as web graphs, there are often some

destructions—deleting edges and nodes. Those destructions would

affect the power law to some extent. Some cases were considered in

Kleinberg et al.’s paper [22]. Simulations (and heuristic calculations)

suggest that the in-degrees also follows the power law (see [22]). It

33



would be of interest to analyze the more general model when deleting

edges are allowed.

Question: Can results for model C and D be extended allowing deleting

nodes in the random process?
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