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( Random Excitation of a System With 

M A N Y  physical systems exhibit bilinear hysteresis of 
the type shown in Fig. 1. Hysteresis may be due to the presence 
of Coulomb friction in the system, or it  may be due to elasto- 
plastic behavior of the material in the system. As an example of 
hysteresis due to Coulomb friction, consider a steel-framed build- 
ing with masonry walls. The masonry is held in place primarily 
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by its own weight and the resulting frictional forces developed 
between the masonry blocks. If the building is caused to vibrate, 
both the masonry and the structural steel work contribute to the 
stiffness of the building. For small amplitudes of motmion, the 

Bilinear Hysteresis 
A n  analysis i s  made of the response of a system with bilinear hysteresis to valzdom 
excitation. I t  i s  shown that for moderately large infiuts, the additional dampirzg created 
by the bilinear hysteresis decreases the mean squared dejlection comfiared with that for a 
linear system with the same viscous damping. However, for large inputs, the decrease 
i n  the stiffness of the system due to the bilinear hysteresis causes the mean squared de- 
JEection to increase ozler that for the equiznlent linear system. 

shearing forces in the masonry are insufficient to overcome the 
frictional forces, and the masonry contributes considerable shear 
rigidity to the building. As the amplitude of the motion is in- 
creased a point will be reached a t  which the shearing forces in 
the masonry exceed the frictional forces, and relative sliding will 
then occur. During this portion of the motion the shear rigidity 
of the building is that of the structural steel work; though the 
masonry no longer contributes to the rigidity of the structure, the 
relative sliding of the masonry blocks dissipates energy, thereby 
providing an additional source of damping. Such a system 
would exhibit bilinear hysteresis of the type shown in Fig. I .  In 
the past it  has been assumed tacitly that such damping would be 
beneficial and give an additional factor of safety. As the follow- 
ing analysis will show, hysteresis damping of this type may 
actually lead to larger displacements than aoald occur in the 
linear system. 

Formulation of Problem 
Consider a dynamic system, the restoring force of which 

exhibits bilinear hysteresis, subjected to a stationary random 
Gaussian excitation having a white power spectrum; i.e., 

where 

F(x ,  p, t )  is the hysteresic restoring force of Fig. 1 
F(x ,  p, t )  is such that as p --, 0, F(x ,  p, t )  + .1: 

Contributed by the Applied Mechanics Division for presentation at 
the Winter-Annual Meeting, New York, N. Y., November 27- 
December 2, 1960, of THE AMERICAN SOCIETY OF MECHANICAL 
ENGINEERS. 

Discussion of this paper should be addressed to the Secretary, 
BSME, 29 West 39th Street, New York, N. Y., and will be accepted 
until one month after final publication of the paper itself in the 
JOURNAL OF APPLIED MECHANICS. Manuscript received by SSME 
Applied Mechanics Division, February 15,1960. Paper No. 60-WA- -- 

Ic/m = wo2 

wot = T 

Y ( t ) / k  = X ~ ( T )  

P/wo = B 
Using (2), equation ( I )  becomes 

x" + Dx' + ~ ( x ,  p, T )  = x,(T) 1 3 )  

If in ( 3 )  p = 0 and B is small, the solution may be written 

= R(T) cOs IT + ~ ( T ) I  (4) 

L' -wR(T)  sin [T + &T)]  ( 5 )  

where IZ and 0 are slowly varying functions of 7 .  If in (3) p # 0 
but is small, the essent,ially slowly varying nature of t,he soh~tion 
will be preserved. 

Method of Solution 
The method of solution to be used in this paper is to replace 

equation ( 3 )  by an equivalent linear differential equation, which 
may then be solved quite readily. Rewrite equation (3)  in the 
following form: 

where ~ ( x ,  x ' ,  7 )  is the equation deficiency. If in ( 6 )  C(L, L', 7) is 
neglected, the equation is linear and may be solved readily. The 
smaller r(x ,  x1;7),  the smaller the error in neglecting it. Hence 
the logical choice of the system constants P,, and weq2 are those 
values which minimize the equation deficicnry. For mathemati- 

I 
Fig. 1 Bilinear hysteresis 



cal expediency the minimization of the mean squared error will be 
used. T ~ L I S  

e2(x1 x', 7 )  = [(a - P e q ) ~ '  + F(x1 PI 7 )  - weq2xI2 ( 7 )  

where the bar superscript denotes average with respect to time. 
Minimizing (7) with respect to Peq and weq2, gives 

?;ow, for a stationary, differentiable random process, the velocity 
and displacement are uncorrelated a t  the same time; thus 

- 
xx' = 0 

H e n ~ e  equations (8) and (9) become 

If in equatign ( 6 )  e(x, x', 7 )  is neglected, the equation is linear; 
further, if B and p are small) Per, will also be small, hence the 
sol~~tion may be mitten: 

= R ( T )  COS + ec7)l 
x' = -w,,R(r) sin [weq7 + O ( T ) ]  

(13) 

where R and 0 are slowly varying functions of 7 .  Since R and 0 
are slowly varying quantities, the integrands in (11)  and (12)  
may be replaced by their average values over one cycle. Hence 

a., = a + [$ L2' - w, R sin #F(R cos +, p, 7)d+ I 

where P(R)dR is the probability that R lies in the range R to R 
+ dR. 

If in equation ( 6 )  p  is set equal to zero, the equation is linear, 
and since x,(T) is Gaussian X ( T )  and ~ ' ( 7 )  will also be Gaussian. 
Further, if the damping is small, such that equations ( 4 )  and ( 5 )  
hold, then the probability density function ( P ) R  will be the 
Rayleigh distribution. In  the nonlinear system the statistics of 
the solution will not, in general, be Gaussian; however, if the 
nonlinearity is small the statistics will be approximately Gaussian. 

Hence 

wherr - 
( ~ 2  = x2 1 (22)*\% 

Equations (21)  and (22 )  now become 

Evaluation oi S ( R )  and C(R) 
Let 

[1/2wpq2R21 (14)  cos 0* = ( 1  - g) 
weqZ = [& 12. R cos #F(R cos #, p, r)d# [ l h @ ] - (  ( 15 )  1 Using Fig. 1, S ( R )  and CI(R) may be evaluated readil? 

wherr 
S ( R )  = [Lo* [pro - pR + R cos sin 

$' = [ ~ e q ~  + 81 (16)  

sin #F(R cos $', p, r)d$ (18)  

These integrals have been evaluated previously by the a.uthor1 
Using (17)  and (18)  equations (14)  and (15)  become 

If the process is an ergodic one, the time averages may be re- 
placed by the stochastic averages, hence equations (19) and (20)  
may be written 
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C ( R )  = [L@ [W - pR + R cos $1 cos #d$ 
?r 

+ f [ - P X O  + fi(L - p)  COB $'] ros #d#1 (29 )  

Therefore 

= R 

Substit,uting (28)  into (24)  
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rsing (26 ) ,  (31 )  may be integrated to give 

%here erfc is the complimentary error function. Lei 

~ h e r r  a,, = Gz when p  = 0 .  Using (33) ,  (32 )  becomes 

Equation ( 3 4 )  may be expressed in a more convenient form for 
plotting as 

(Peg - s ) w e q / p  = Z(TX) - ' /~  erfc (A-1/ ' )  (35 )  

The funrtion defined by equation (35 )  is shown in Fig. 2. It will 
be observed that the function is zero when A is zero, reaches its 
maximum a t  about A equal to 3, then tends asymptotically to 
zero. 

Substituting (30 )  into equation (25 ) :  

+ Sm Ra[lr - p ( r  - e* + l/z sin 2 6 ' * ) ] e - ~ ~ / ~ ~ ' d R ]  (36 )  
1'; 

R/xo = P (37 )  

Substituting (37) into ( 3 6 )  and integrating thelsecond term by 
parts, gives 

Equation ( 3 8 )  may be mitten in a more convenient~form for 
plotting as 

The integral (39) has been evaluated numerically and the results 

I . . . . , . ,  m . . . . . . , , ,  

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 - 
A 

Fig. 2 

are plotted in Fig. 3.  It will be observed that the function starts 
a t  zero for X equal to zero, increases with A, and tends asymp- 
totically to 1  as X tends to infinity. 

Mean Sqllared Displacement 
If in equation ( 6 ) ,  the deficiency term i (x ,  x', T )  is neglected, the 

equation is linear and may be solved readily. 
If X ( w )  is the power spectrum of x ( T ) ,  X , (w)  is the porn-er spec- 

trum of x,(T).  Then 

If x8(r)  has a white spectrum of density 4D/cycle, then 

Let 
4 - 

D/@ = uo2 = x2 

when p  = 0 .  Hence 

u2 s - = 2 / 2 = -  

uo2 0e9~Pc.I 

A 

Fig. 3 

Asymptotic lo 101 p-/ 

Fig. 4 
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Method of Solving Equation (43) 
In  (43) ,  weq2 and p,, are functions of X = n2y2; therefore, as- 

sume a value of A, obtain ueq2 and p,, from Figs. 2 and 3, solve 
(43 )  for y2, then n2 = X/y2.  Repeat for diierent values of A, plot 
y against n .  

Results. Fig. 4 shows the results for the case where p = = 

0.02. It will be observed that bilinear hysteresis has the following 
effects: 

1 For small values of n, there is no effect. 
2 For moderate values of n, there is an appreciable reduction 

in the rms deflection. 
3 For large values of n, y tends asymptotically to 1 / (1  - p)'I2. 

From the foregoing analysis it  nil1 be seen that the effects of 

bilinear hysteresis are beneficial for small or moderately large 
random inputs. For large inputs, however, the effect of bilinear 
hysteresis is to increase root mean square deflection compared 
with that for the linear system p = 0. The explanation of this 
apparent paradox is that for large inputs, the damping tend8 
asymptotically to the linear damping 0 while the effective stiff- 
ness of the system tenjs asymptotically to ( 1  - p) .  The com- 
bination of damping 0 and stiffness ( 1  - p )  results in a mean 
squared deflection which is 1 / (1  - p )  times the mean squared 
deflection for the linear system ( p  = 0). In the case of an 
elastoplastic structure, p = 1, the results would be disastrous. 
It must therefore be concluded that too much reliance should not 
be placed in the usefulness of bilinear hysteresis as a means of 
increasing the effective damping in structures subjected to ran- 
dom exritation such as earthquakes. 
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