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Abstract. Given a Lipschitz continuous multifunction F on R
n, we con-

struct a probability measure on the set of all solutions to the Cauchy
problem ẋ ∈ F (x) with x(0) = 0. With probability one, the derivatives
of these random solutions take values within the set extF (x) of extreme
points for a.e. time t. This provides an alternative approach in the analysis
of solutions to differential inclusions with non-convex right hand side.

Mathematics Subject Classification. Primary 34A60; Secondary 34G25,
49J24, 60B05.

Keywords. Differential inclusions, Lipschitz selections, Extremal solutions,
Random solutions.

1. Introduction

Let x �→ F (x) ⊂ R
n be a Lipschitz continuous multifunction with compact

values. Consider the Cauchy problem

ẋ(t) ∈ F (x(t)) t ∈ [0, T ], (1.1)
x(0) = 0. (1.2)

The main goal of this paper is to construct a probability measure P on the
space of continuous functions C([0, T ]; Rn) which is supported on the set F of
Carathéodory solutions of (1.1) and (1.2). Moreover, calling Fext the family
of solutions of

ẋ(t) ∈ ext F (x(t)) (1.3)

with initial data (1.2), the following properties should hold:

(P1) With probability one, trajectories of (1.1) and (1.2) satisfy (1.3). Namely

P (Fext) = 1. (1.4)
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(P2) The support of P is dense on F . Namely: for every open set U ⊂
C([0, T ]; Rn),

U ∩ F �= ∅ ⇐⇒ P (U) > 0. (1.5)

In the special case where the sets F (x) are segments in the plane, a
probability measure satisfying (1.4) and (1.5) was first constructed in [10].
In the present paper we develop a different approach, which applies to any
Lipschitz continuous multifunction with compact values in R

n. In the following,
Kn denotes the family of all nonempty, compact subsets of Rn, endowed with
the Hausdorff metric. Our main result is

Theorem 1. Let F : Rn �→ Kn be a Lipschitz continuous multifunction. Then
there exists a probability measure P on the set F of Carathéodory solutions of
(1.1) and (1.2) such that the properties (P1)–(P2) hold.

Incidentally, this yields yet another proof of the results in [2,18]. Extremal
trajectories of differential inclusions are of interest for various applications
[11,15]. Since the seminal paper by Cellina [9], Baire category has provided a
key tool for proving the existence of solutions of (1.3). This approach consists
of two main steps.

(i) Replacing F (x) by its closed convex hull, prove that the convexified prob-
lem

ẋ(t) ∈ coF (x(t)), (1.6)

has a nonempty, closed set of solutions.
(ii) Prove that the family of solutions to (1.3) is a subset of second category

of the family of all solutions to (1.6). Hence, by Baire’s theorem, it is
nonempty.
Various applications of this technique can be found in [5–7,11–15,20,23].

We remark that in [5] a “set-valued” extension of the Baire category theorem
was introduced, replacing “points” with “compact sets”. This can be applied
also in cases where F is not Lipschitz continuous and the set Fext of solutions
to (1.3) is not dense on F . In addition, the recent paper [4] proved that, for a
generic (in the sense of Baire category) continuous guiding function t �→ ω(t) ∈
R

n, all trajectories of

ẋ(t) ∈ Fω(t)(x(t)), x(0) = 0, (1.7)

satisfy (1.3) as well. Here

Fω(x) .=
{

y ∈ F (x); 〈y, ω〉 = max
y′∈F (x)

〈y′, ω〉
}

(1.8)

is the set of vectors in F (x) maximizing the inner product with ω.
As shown in Oxtoby’s book [19], measure theory and Baire category share

many similarities. A natural question, proposed by the first author some years
ago, is whether solutions of the differential inclusion (1.3) can be obtained by
an alternative argument, replacing Baire category with probability theory.

We recall the approach followed in [10]. Without loss of generality, assume
that the multifunction F has convex values. Let ω denote Brownian motion
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on the surface of the unit sphere Sn−1 ⊂ R
n, with initial data uniformly

distributed on Sn−1. Of course, by symmetry this implies that the random
variable ω(t) is still uniformly distributed on Sn−1 for every t > 0. The space
W of all such Brownian paths is used as the basic probability space. For each
sample path t �→ ω(t), consider the set of solutions Fω(·) of the differential
inclusion (1.7). Assume that, for a.e. path ω(·) ∈ W, the Cauchy problem (1.7)
has a unique solution xω(·), with derivative contained in extF (xω(t)). Then
the push-forward of the probability measure on W under the map ω(·) �→ xω(·)
yields a probability measure on F with the desired properties.

This approach was implemented in [10], in the special case where each
set F (x) is a segment in the plane. It is doubtful whether this technique can
be extended to general Lipschitz continuous multifunctions F on R

n. The key
issue here is the behavior of the extremal faces Fω. For the method to work,
the guiding functions ω(·) should “wiggle” much faster than the unit normal
vectors to the flat faces of the sets F (x). In the case considered in [10], the set

Q(x) = {ω ∈ R
2; |ω| = 1, Fω(x) contains more than one point}

varies with x in a Lipschitz continuous way. Since Brownian paths are only
Hölder continuous, one can show that for a.e. random path ω(·), the set of
times

{t ∈ [0, T ]; ω(t) ∈ Q(xω(t))} (1.9)

has measure zero. As a consequence, the analysis in [10] shows that the dif-
ferential inclusion (1.7) has single-valued right hand side for a.e. time t, and
a unique solution. However, for a general Lipschitz continuous multifunction
F on R

n, the corresponding set Q(x) of vectors normal to its flat faces varies
with x in a highly irregular way, possibly not Lipschitz continuous. It is far
from clear whether the set of times (1.9) has measure zero, for a.e. Brownian
path ω(·).

For the above reason, we develop here an entirely different approach,
based on piecewise Lipschitz approximate selections. The construction of the
probability measure is described in Sect. 2, while the remaining two sections
contain details of the proof.

We remark that, in the case where the multifunction F is only continuous
(but not Lipschitz), a well known counterexample by Plis [21] shows that the
set of solutions of (1.1) and (1.2) may not be dense on the set of solutions
to (1.2) and (1.3). Because of this, there is no hope of achieving both prop-
erties (P1)–(P2). However, we conjecture that the statement of Theorem 1
remains valid for a general continuous multifunction F , provided that (P2) is
replaced by the weaker property
(P2′) Let f be a continuous map such that f(x) ∈ coF (x) for all x ∈ R

n,
and let U ⊆ C([0, T ] ; R

n) be an open set containing all solutions to the
Cauchy problem

ẋ = f(x), x(0) = 0. (1.10)

Then P (U) > 0.
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2. Construction of the probability measure

We denote by B = B1 the closed unit ball in R
n with boundary ∂B = Sn−1,

while σ is the normalized, n − 1-dimensional surface measure on ∂B. More
generally, we write Br = {x ∈ R

n ; |x| ≤ r} for the closed ball with radius r
centered at the origin. By A, extA and coA we denote respectively the closure,
the set of extreme points, and the closed convex hull of a set A. A general
introduction to the theory of multifunctions and differential inclusions can be
found in the classical monograph [1]. For basic notions of probability theory
we refer to [18].

The first ingredient in our construction is the Laplace–Beltrami operator
Δ on the surface of the unit sphere ∂B ⊂ R

n. For each unit vector w ∈ ∂B,
we let G(z, t, w) be the solution to

Gt = ΔG, G(z, 0) = δw. (2.1)

Here δw denotes the Dirac distribution consisting of a unit mass at the point
w. In other words, G(·, t, w) is the density at time t (w.r.t. the normalized
surface measure σ on ∂B) of the probability measure describing a diffusion
process on ∂B, starting at the point w.

By standard properties of parabolic equations, it is well known that z �→
G(z, t, w) is smooth and strictly positive for all t > 0. Moreover, the Markov
semigroup property holds:

G(z, s + t, w) =
∫

∂B

G(z, t, w′)G(w′, s, w) dw′ for all z, w ∈ ∂B, s, t > 0.

(2.2)

The second ingredient is the measure of curvature on the boundary ∂K
of a compact convex set K ⊂ R

n. For any unit vector ω ∈ ∂B, let ψK(ω) ∈ K
be the point such that 〈

ψK(ω), ω
〉

= max
y∈K

〈y, ω〉. (2.3)

It is well known [22] that for a.e. ω ∈ ∂B the point ψK(ω) is uniquely defined,
and is an extreme point of K. The curvature measure on ∂K is defined by

νK(A) = σ({ω ∈ ∂B; ψK(ω) ∈ A})

for every Borel set A ⊆ R
n. By definition, νK is the push-forward of the

normalized surface measure σ by the map ψK : ∂B �→ K. Observe that νK

is a probability measure on K supported on the closure extK of the set of
extreme points of K.

More generally, let f be a continuous function defined on the surface of
the unit sphere, such that

f ≥ 0,

∫
∂B

f dσ = 1. (2.4)

Then we can consider the probability measure μ = f ·σ on ∂B having density f
w.r.t. the normalized surface measure σ. In turn, for every compact set K, the
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push-forward ψK ◦ μ is a probability measure on K, with support contained
in extK.

Lemma 1. Let f : ∂B �→ R be a continuously differentiable function which
satisfies (2.4), and consider the measure μ

.= f ·σ. Then the barycenter Eμ[ψK ]
of the probability measure ψK ◦ μ on K is a Lipschitz continuous function of
K. More precisely, there exists a Lipschitz constant L depending only on f
such that ∣∣∣Eμ[ψK ] − Eμ[ψK′

]
∣∣∣ ≤ L · dH(K,K ′). (2.5)

for any two compact convex sets K,K ′ ⊂ R
n.

For a proof, see Proposition 2.4 in [16].
In the special case f ≡ 1, the point Steiner(K) .= Eσ[ψK ] obtained by

taking the barycenter of the measure of curvature on ∂K is called the Steiner
point of K. It is well known that the map K �→ Steiner(K) is uniformly
Lipschitz continuous w.r.t. the Hausdorff distance, with a constant depending
only on the dimension n of the space.

We shall repeatedly use Lemma 1 to provide the Lipschitz continuity of
selections having the form

fδ,w(x) .= Eμ[ψF (x)] ∈ F (x), (2.6)

where μ is the probability measure having density G(·, δ, w) w.r.t. the uniform
surface measure on ∂B.

The third ingredient in our construction is the Choquet-type functional
φ : Rn × Kn �→ R ∪ {−∞}, defined by

φ(y,K) .= sup
{∫ 1

0

|w(s) − y|2 ds;w : [0, 1] �→ K,

∫ 1

0

w(s) ds = y

}
, (2.7)

with the understanding that φ(y,K) = −∞ if y /∈ coK. One can interpret
φ(y,K) as the maximum variance among all random variables supported inside
K whose mean value is y. We observe that φ(y,K) = φ(y, coK). The following
results were proved in [3].

Lemma 2. The map (y,K) �→ φ(y,K) is upper semicontinuous in both
variables; for each fixed K ∈ Kn the function y �→ φ(y,K) is strictly con-
cave down on coK. Moreover, one has

φ(y,K) = 0 if and only if y ∈ extK. (2.8)

Following [3], we consider the functional

Φ(x) .=
∫ T

0

φ(ẋ(t), F (x(t))) dt, (2.9)

defined for any solution x(·) of (1.1). Using Lemma 2 one obtains

Lemma 3. Let P be a probability measure on the set F of solutions to (1.1).
Then P (Fext) = 1 if and only if

EP [Φ(x)] = 0. (2.10)
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Indeed, (2.10) holds if and only if Φ(x) = 0 for P -a.e. x ∈ F . By Lemma 2
this happens if and only if a.e. trajectory x(·) (w.r.t. the probability P ) satisfies
(1.3) at a.e. t ∈ [0, T ]. �

We are now ready to construct a probability measure P on F with the
desired properties (1.4) and (1.5). This will be obtained as a limit of a sequence
of probability measures PN defined inductively. We start with an increasing
sequence of integer numbers

1 = n1 < n2 < n3 < · · · (2.11)

For each k we have a partition of the interval [0, T ] into nk equal subintervals:

Ik,�
.= ]tk,�−1, tk,�], tk,� =

	T

nk
. (2.12)

We assume that nk+1 is a multiple of nk, so that each partition is a refinement
of the previous one. In addition, we consider a decreasing sequence of real
numbers

1 = β1 > β2 > β3 > · · · (2.13)

with βk → 0 as k → ∞. Our basic probability space will be a product of
countably many copies of the unit sphere ∂B = Sn−1. More precisely, for
k ≥ 1 let

Ωk
.= ∂B × · · · × ∂B︸ ︷︷ ︸

nk times

, Ω .=
∏
k≥1

Ωk. (2.14)

Points in Ω will be written as w = (w1, w2, . . .) ∈ Ω, with wk ∈ Ωk for every
k ≥ 1. In turn, points in Ωk are denoted by wk = (wk,1, . . . , wk,nk

), with
wk,� ∈ ∂B for every k, 	.

The probability distribution P on the space Ω is defined by induction on
k.

(i) If A ⊆ Ω1 = ∂B, then

P{w1 ∈ A} = σ(A).

(ii) Let the probability distribution of wj,� be given, for all j ≤ k − 1. Then
the probability distribution of wk,� is defined as follows.

– The random variables wk,�, 	 = 1, . . . , nk are mutually indepen-
dent, given wk−1,�′ , 	′ = 1, . . . , nk−1.

– If Ik,� ⊂ Ik−1,�′ , then, given wk−1,�′ , the random variable wk,�

is distributed on the unit sphere with density G
(
·, βk−1 − βk,

wk−1,�′
)
.

Next, we construct a map Λ : Ω �→ F as a pointwise limit of maps
Λk : Ω �→ F , defined as follows.

For a fixed k ≥ 1, let wk = (wk,1, . . . , wk,nk
) be given. We then define

Λk : Ωk �→ F to be the map such that

Λk(wk) = Λk(wk,1, . . . , wk,nk
) = x(·), (2.15)
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where x : [0, T ] �→ R
n is the solution to

x(0) = 0, ẋ(t) = fβk,wk,j (x) if t ∈ Ik,j , j = 1, . . . , nk. (2.16)

Here the vector field fβk,wk,j (x) is the selection from the convex-valued mul-
tifunction F , defined at (2.6). By Lemma 1 the right hand side of the ODE in
(2.16) is a Lipschitz continuous function of x. Hence the solution exists and is
unique.

Finally, we define the map Λ : Ω �→ F by setting

Λ(w) .= lim
k→∞

Λk(wk). (2.17)

The probability distribution on F is obtained as the push-forward of the prob-
ability distribution P on Ω via the map Λ.

In the next section we shall prove that, if the sequences nk, βk are suitably
chosen, then the limit in (2.17) exists almost surely, and the properties (P1)–
(P2) are satisfied.

To help the reader, we give here an intuitive explanation of the above
construction. Recalling (2.6), for any given β > 0 and w ∈ ∂B, one has a
Lipschitz continuous selection x �→ fβ, w(x) ∈ F (x). For a.e. unit vector w,
the point ψF (x)(w) maximizing the inner product with w is an extreme point
of F (x). Recalling (2.7) we thus have

lim
β→0

φ(fβ, w(x); F (x)) = φ(ψF (x)(w); F (x)) = 0.

By choosing βk sufficiently small, we thus guarantee that the speed ẋ of our
random solution stays close to an extreme point most of the time.

To achieve convergence as k → ∞ we observe that, if 0 < β′ < β, then
by the property (2.2) of the heat kernel, one has

fβ,w(x) =
∫

∂B

fβ′,w′
(x) dμ(w′),

where μ is the probability measure on the unit sphere ∂B with density G(·, β−
β′, w) w.r.t. the uniform surface measure σ. This fact can be exploited as
follows. For a given integer N , let w1, . . . , wN ∈ Sn−1 be independent random
variables, with probability distribution having density G(·, β′ − β,w) w.r.t.
the uniform surface measure. Denote by xN (·) the solution to the random
differential inclusion

x(0) = 0, ẋ(t) = fβ,wj (x(t)) t ∈
]
(j − 1)τ

N
,

jτ

N

]
.

Then we have the convergence

lim
N→∞

E

[
sup

t∈[0,τ ]

|xN (t) − x̄(t)|
]

= 0,

where x̄ is the solution to

x(0) = 0, ẋ(t) = fβ,w(x(t)).
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Relying on the above analysis, choosing the integers nk in (2.11) and (2.12)
such that nk → ∞ fast enough, we shall achieve the almost sure convergence
of our random solutions.

3. The main estimates

Since extF = ext(coF ), without loss of generality we can assume that all sets
F (x) are compact, convex. Moreover, we shall assume the uniform bound

F (x) ⊆ B1 for all x ∈ BT . (3.1)

For every solution of (1.1) and (1.2), this implies

x(t) ∈ BT for all t ∈ [0, T ]. (3.2)

To motivate the next lemma we observe that, if δ > 0 is very small then the
barycenter fδ,w(x) of the measure μ in (2.6) will be very close to ψF (x)(w). In
particular, if ψF (x)(w) ∈ extF (x) (which is true for a.e. w), then

φ(fδ,w(x); F (x)) ≈ 0.

Lemma 4. For any ε, ε′ > 0, there exists β̄ > 0 such that the following holds.
For every x ∈ BT , w′ ∈ ∂B, 0 < β ≤ β̄, one has

Ew

[
sup

|y−x|<β

φ(fβ,w(y); F (y))

]
< ε. (3.3)

Here Ew denotes expectation w.r.t. the random variable w ∈ ∂B, having den-
sity G(·, ε′, w′) w.r.t. the uniform surface measure σ on ∂B.

Proof. If the conclusion does not hold, we can find ε0 > 0 and sequences
xn ∈ BT , w′

n ∈ ∂B and βn → 0 such that

Ew
n

[
sup

|y−xn|<βn

φ(fβn,w(y); F (y))

]
≥ ε0 for all n ≥ 1. (3.4)

Here Ew
n denotes expectation w.r.t. the random variable w ∈ ∂B, having

density G(·, ε′, w′
n).

By possibly taking a subsequence, we can assume the convergence w′
n →

w′, xn → x.
If ψF (x)(w) is an extreme point of F (x), then

lim
n→∞ fβn,w(x) = ψF (x)(w). (3.5)

In turn, the upper semicontinuity of φ in (2.7) yields

lim sup
n→∞

sup
|y−x|<βn

φ(fβn,w(y)) ≤ φ(ψF (x)(w), F (x)). (3.6)

For a.e. w ∈ ∂B, ψF (x)(w) is an extreme point of F (x), hence the right
hand side of (3.6) vanishes. By the Lebesgue dominated convergence theorem
we conclude

lim
n→∞ Ew

n

[
sup

|y−xn|<βn

φ(fβn,w(y); F (y))

]
= Ew

n [φ(ψF (x)(w), F (x))] = 0.
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This yields a contradiction with (3.4), proving the lemma. �

The next lemma will be used to prove the convergence of the probability
measures in (2.17). At this stage, the Lipschitz continuity of the multifunction
F is essential.

Lemma 5. Let the multifunction F be Lipschitz continuous. Assume 0 < β′ < β
and let any w1, . . . , wn ∈ ∂B be given. Let z : [0, T ] �→ BT be the solution to
the Cauchy problem

z(0) = 0, ż(t) = fβ,wk(z(t)) if t ∈ In,k
.=

]
k − 1

n
T,

k

n
T

]
. (3.7)

Then, for any ε0 > 0, there exist an integer m which is a multiple of n and
such that the following holds.

Let w′
1, . . . , w

′
m ∈ ∂B be independent random variables such that, if

Im,j ⊂ In,k, then w′
j has density G(·, β − β′, wk) w.r.t. the uniform surface

measure σ. Consider the solution x : [0, T ] �→ BT of

x(0) = 0, ẋ(t) = fβ′,w′
j (x(t)) if t ∈ Im,j

.=
]
j − 1
m

T,
j

m
T

]
. (3.8)

Then, taking the expectation w.r.t. the distribution of w′
1, . . . , w

′
m, one has

E

[
sup

t∈[0,T ]

|x(t) − z(t)|
]

≤ ε0. (3.9)

Proof. 1. Without loss of generality we can assume that, for every x ∈ BT
.=

{x ∈ R
n; |x| ≤ T}, the set F (x) is contained inside the closed unit ball B1.

As a consequence, for t ∈ [0, T ] all solutions of (3.7) and (3.8) take values
inside the ball BT . Let L ≥ 1 be a common Lipschitz constant for all vector
fields fβ,w and fβ′,w′

on BT . Notice that L depends only on β, β′, and on the
multifunction F . Moreover, let

η(t) .=
ε

L
(eLt − 1)

be the solution to the scalar Cauchy problem

η̇ = Lη + ε, η(0) = 0.

Since all solutions x, z remain uniformly bounded, to prove (3.9) it suffices to
show that, for any ε > 0, we can choose m large enough so that

Prob. {|x(t) − z(t)| > η(t) + ε for some t ∈ [0, T ]} ≤ ε. (3.10)

Notice that here the solution z(·) is given, while x(·) is a random solution
determined by w′

1, . . . , w
′
m. The probability of the set on the left hand side of

(3.10) depends on the distribution of the random variables w′
j in (3.8).

2. Choose an integer Nε such that Nε is a multiple of n and moreover
2LT

Nε
<

ε

2
. (3.11)

Then choose δ > 0 small enough so that

Nε δ < ε. (3.12)
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For any unit vector w, call μw the measure with density G(·, β′ − β,w) w.r.t.
to the uniform surface measure σ. By the law of large numbers, there exists N
large enough so that T/N < ε and moreover the following holds. If w′

1, . . . , w
′
N

are independent variables, distributed on the unit sphere according to the same
probability measure μw, then

Prob.

{∣∣∣∣∣
1
N

N∑
i=1

fw′
i(x) −

∫
fw′

(x)dμw

∣∣∣∣∣ ≥ ε

2

}
< δ, (3.13)

Notice that, by a compactness argument, the integer N can be chosen so that
(3.13) remains uniformly valid for every w ∈ ∂B1 and every x ∈ BT .

3. Choosing m = NεN , we claim that (3.9) holds. Indeed, consider the
times

τk
.= k

T

Nε
, k = 0, 1, . . . , Nε.

By induction, assume that for some k = 0, . . . , Nε − 1 one has

|x(τk) − z(τk)| ≤ η(τk). (3.14)

Then

|x(τk+1) − z(τk+1)|

≤ |x(τk) − z(τk)| + (τk+1 − τk)

∣∣∣∣∣
1

N

N∑
i=1

fw′
i(x(τk)) −

∫
fw′

(x(τk))dμw

∣∣∣∣∣
+ (τk+1 − τk)

∣∣∣∣
∫

fw′
(x(τk))dμw −

∫
fw′

(z(τk))dμw

∣∣∣∣ + 2L(τk+1 − τk)2

≤ η(τk) +
T

Nε

∣∣∣∣∣
1

N

N∑
i=1

fw′
i(x(τk)) −

∫
fw′

(x(τk))dμw

∣∣∣∣∣ +
T

Nε
L

[
η(τk) +

2T

Nε

]
.

By (3.13) and (3.11), with probability ≥ 1 − δ we thus have

|x(τk+1) − z(τk+1)| ≤ η(τk) +
T

Nε

ε

2
+

T

Nε

[
Lη(τk) +

ε

2

]
≤ η(τk+1). (3.15)

Since x(0) = z(0) = 0, with probability ≥ 1 − Nεδ we thus have

|x(τk) − z(τk)| ≤ η(τk) for all k = 0, 1, . . . , Nε. (3.16)

Recalling that |ẋ| ≤ 1, ż| ≤ 1 and 2T/Nε < ε, from (3.16) it follows

Prob. {|x(t) − z(t)| > η(t) + ε for some t ∈ [0, T ]}
≤ Prob. {|x(τk) − z(τk)| > η(τk) for some k = 1, . . . , Nε} (3.17)
≤ Nε δ ≤ ε.

This proves (3.10), and hence the lemma. �

The next result is an integral version of the upper semicontinuity property
of the functional φ introduced at (2.7).
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Lemma 6. Let (Ω, μ) be a probability space and consider a measurable map
Λ : ω �→ zω(·) from Ω into F . Then the push-forward of the measure μ by the
map Λ yields a probability distribution on the set F of solutions to (1.1) and
(1.2). Assume that

Eμ

[∫ T

0

φ(ż(t), F (z(t))) dt

]
< ε. (3.18)

Then there exists δ > 0 such that the following holds. If Λ̃ : ω �→ xω(·) is
another map from Ω into F such that

Eμ

[
sup

t∈[0,T ]

|xω(t) − zω(t)|
]

≤ δ, (3.19)

then

Eμ

[∫ T

0

φ(ẋω(t), F (xω(t))) dt

]
< 2ε. (3.20)

Proof. By assumption, the functional

y(·) �→ Φ(y) .=
∫ T

0

φ(ẏ(t), F (y(t))) dt

introduced at (2.9) is upper semicontinuous on the compact set of trajectories
F ⊂ C0([0, T ];Rn). Hence there exists a decreasing sequence of continuous
functionals (Φ�)� ≥ 1 such that

Φ(y) = inf
�≥1

Φ�(y),

for all y ∈ F .
The assumption (3.18) implies that, for some k,

Eμ [Φk(z)] < ε. (3.21)

Since the functional Φk is continuous and uniformly bounded on F , we can
find δk > 0 and M such that

‖y − z‖C0 ≤ δk =⇒ |Φk(y) − Φk(z)| <
ε

2
, (3.22)

Φk(y) ≤ M,

for all y, z ∈ F . Choose δk > 0 as so that (3.22) holds and assume that
‖x − z‖C0 ≤ δk. Then by (3.21) we obtain

Eμ

[∫ T

0

φ(ẋ(t), F (x(t))) dt

]

= Eμ[Φ(x)]

≤ Eμ[Φk(x)] ≤
∫

Φk(zω) dμ(ω) +
∫

|Φk(xω) − Φk(zω)| dμ(ω)

< ε +
ε

2
+ 2M · μ({ω ∈ Ω; ‖xω − zω‖C0([0,T ]) > δk}). (3.23)
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We now observe that

Eμ

[
sup

t∈[0,T ]

|xω(t) − zω(t)|
]

≥ δk · μ({ω ∈ Ω; ‖xω − zω‖C0([0,T ]) > δk}).

Hence, if in (3.19) we choose δ < εδk/4M , then the right hand side of (3.23)
is smaller than 2ε. This yields (3.20). �

4. Proof of Theorem 1

To prove Theorem 1 we need to show that, by suitably choosing the integers
nk and the numbers βk, the construction described in Sect. 2 yields in the
limit a probability distribution on F satisfying (P1)–(P2).

1. Assume that the integers n1 < · · · < nk−1 and the positive constants
β1 > β2 > · · · > βk−1 have already been chosen, satisfying

E

[∫ T

0

φ(ẋk−1(t), F (xk−1(t)) dt

]
≤ 21−k, (4.1)

Using Lemma 6 with z replaced by xk−1, we can find δk > 0 with δk ≤ δk−1/2
such that

E

[
sup

t∈[0,T ]

|x(t) − xk−1(t)|
]

≤ 2δk (4.2)

implies

E

[∫ T

0

φ(ẋ(t), F (x(t))) dt

]
≤ 22−k. (4.3)

Using Lemmas 4 and 5, we can choose βk ∈ ]0, βk−1[ and an integer nk,
with nk/nk−1 integer, such that the following holds. Calling xk(·) the solution
to the Cauchy problem with random right hand side (2.16), one has

E

[∫ T

0

φ(ẋk(t), F (xk(t)) dt

]
≤ 2−k, (4.4)

E

[
sup

t∈[0,T ]

|xk(t) − xk−1(t)|
]

≤ δk, (4.5)

2. It remains to show that with the above choices the properties (P1)–
(P2) are satisfied. To prove (P1) we observe that, by (4.5) the sequence of
random variables xk = Λk(wk) ∈ F is Cauchy, and converges to a random
variable x ∈ F with probability one. Moreover, this limit x satisfies (4.2) for
every k. Hence (4.3) holds. Since k is arbitrary, this shows that w ∈ Fext with
probability one. This proves (P1).

3. Toward a proof of (P2), let U ⊂ C([0, T ]; Rn) be an open set containing
some solution of the differential inclusion, say z(·) ∈ F . Since U is open, there
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exist a radius ρ > 0 such that

sup
t∈[0,T ]

|x(t) − z(t)| ≤ 2ρ =⇒ x(·) ∈ U .

We claim that, for every k sufficiently large,

ηk
.= Prob.

(
sup

t∈[0,T ]

|xk(t) − z(t)| ≤ ρ

)
> 0. (4.6)

Indeed, for any β > 0 consider the compact convex sets

F β(x) .= co{fβ,w(x); w ∈ ∂B1} ⊆ F (x).

As β → 0 one has the convergence

F β(x) → F (x)

in the Hausdorff distance, uniformly for x ∈ BT . We regard the equation

ẋ(t) = fβ,w(t)(x(t)) (4.7)

as a control system, where t �→ w(t) ∈ ∂B1 plays the role of the control
function. By standard approximation results, we can choose β
 > 0 sufficiently
small and a piecewise constant control t �→ w
(t) such that the solution x
(·)
of

ẋ(t) = fβ�,w�(t)(x(t)), x(0) = 0, (4.8)

satisfies

sup
t∈[0,T ]

|x
(t) − z(t)| <
ρ

3
. (4.9)

In turn, for every k sufficiently large, by a standard approximation result [8]
there exists a piecewise constant control w̃ : [0, T ] �→ ∂B1, say

w̃(t) = w̃� t ∈ Ik,�, 	 = 1, . . . , nk,

with Ik,� as in (2.12), such that the following holds. The solution x̃(·) of

ẋ(t) = fβk,w̃(t)(x(t)), x(0) = 0,

satisfies

sup
t∈[0,T ]

∣∣x̃(t) − x
(t)
∣∣ <

ρ

3
. (4.10)

By continuity, there exists ε > 0 such that, if w(·) is any other piecewise
constant control such that

w(t) = w� t ∈ Ik,�,

and |w� − w̃�| < ε for every 	, then the corresponding solution x(·) satisfies

sup
t∈[0,T ]

|x(t) − x̃(t)| <
ρ

3
. (4.11)

Observing that for every ε > 0 one has

Prob.{|w� − w̃�| < ε for every 	 = 1, . . . , nk} > 0,

combining the three inequalities (4.9)–(4.11) we prove the claim (4.6).



23 Page 14 of 16 A. Bressan and V. Staicu NoDEA

4. We now recall that, given the random variables wk,1, . . . , wk,nk
∈ ∂B1,

the random trajectory xk(·) is uniquely determined by solving the Cauchy
problem (2.16). For every given values of the random variables wk,�, our con-
struction yields an estimate on the conditional expectation:

E[‖x(·) − xk(·)‖C0 ] ≤ 21−k.

In particular, we have

E[‖x(·) − xk(·)‖C0 | |wk,� − w̃�| < ε for every 	 = 1, . . . , nk] ≤ 21−k.

(4.12)

Choosing k large enough so that 21−k < ρ/2, we obtain a corresponding esti-
mate on the conditional probability:

Prob.(‖x(·) − xk(·)‖C0 ≤ ρ | |wk,� − w̃�| < ε for every 	 = 1, . . . , nk) >
1
2
.

In turn, this implies

Prob.{x(·) ∈ U} ≥ Prob.(‖x(t) − z(t)‖C0 ≤ 2ρ)
≥ Prob.(|wk,� − w̃�| < ε for every 	 = 1, . . . , nk)

×Prob.(‖x(·) − xk(·)‖C0 ≤ ρ | |wk,� − w̃�| < ε for every 	 = 1, . . . , nk)
> 0,

completing the proof. �
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