
Research Article

Random Fault Attacks on a Class of Stream Ciphers

Harry Bartlett ,1 Ed Dawson,1 Hassan Qahur Al Mahri,1 Md. Iftekhar Salam,2

Leonie Simpson,1 and Kenneth Koon-Ho Wong1

1Science and Engineering Faculty, Queensland University of Technology, Brisbane, Australia
2School of Electrical and Computer Engineering, Xiamen University Malaysia, Selangor, Malaysia

Correspondence should be addressed to Harry Bartlett; h.bartlett@qut.edu.au

Received 21 December 2018; Accepted 19 May 2019; Published 1 July 2019

Academic Editor: Vincenzo Conti

Copyright © 2019 Harry Bartlett et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we show that stream ciphers with a particular form of ciphertext output function are vulnerable to differential fault
attacks using random faults. The CAESAR competition candidates Tiaoxin-346 and AEGIS-128L both fall into this category, and
we show that our attack can be used to recover the secret key of Tiaoxin-346 and the entire state of AEGIS-128L with practical
complexity. In the case of AEGIS-128L, the attack can be applied in a ciphertext-only scenario. Our attacks are more practical than
previous fault attacks on these ciphers, which assumed bit-flipping faults. Although we also consider other ways of mitigating our
attacks, we recommend that cipher designers avoid the form of ciphertext output function that we have identified.

1. Introduction

In this paper, we apply a random fault attack to a particular
type of stream cipher. The type of stream cipher we consider
is word-based and produces two ciphertext words at each
time interval using an output function for each of these
ciphertext words that includes both linear and quadratic
terms. In particular, one part of the internal state appears
as a linear term in the output function producing one of
the ciphertext words and in a quadratic term in the output
function producing the other ciphertext word. We show that
an output function of this type is a straightforward target for
random fault attacks.

Two of the third-round candidates in the recent Compe-
tition for Authenticated Encryption: Security, Applicability,
and Robustness (CAESAR), Tiaoxin-346 [1–3] and AEGIS-
128L [4, 5], have output functions of the type we describe,
with AEGIS-128L being selected in the final portfolio of this
competition. Dey et al. [6] noted that the presence of a bitwise
AND operation in the output function of these two ciphers
makes them vulnerable to bit-flipping fault attacks. We have
identified additional features in these two ciphers that permit
exploitation using a less restrictive random fault attack. In
particular, the following features combine to provide this
vulnerability:

(i) Two ciphertext words are generated at each time step

(ii) The function used to compute each of the ciphertext
words includes the bitwise AND of two of the under-
lying internal state words

(iii) The function used to compute one of the ciphertext
words also includes the bitwise XOR of one of the
state words that was used in the AND of the other
ciphertext word.

We treat Tiaoxin-346 and AEGIS-128L as case studies of
stream ciphers of this type. In this paper, we demonstrate
that a random fault attack is practical against each of these
ciphers.This work is an extension of research on Tiaoxin-346
previously published in [7].

1.1. Notation. In this paper, let 𝑃, 𝐶, and 𝑆 denote the
plaintext, ciphertext, and internal state of the stream cipher,
respectively. For encryption, the plaintext 𝑃 is divided into
𝑙𝑝 blocks, with each plaintext block composed of two words.

Let 𝑃𝑡 denote the plaintext block to be encrypted at time 𝑡,
with 𝑃𝑡 = 𝑃𝑡[0] ‖ 𝑃t[1]. Similarly, the ciphertext 𝐶𝑡 is given
by 𝐶𝑡 = 𝐶𝑡[0] ‖ 𝐶𝑡[1], with 𝐶𝑡[0] and 𝐶𝑡[1] denoting the
two ciphertext words produced at time 𝑡 as a result of the
encryption of 𝑃𝑡.

Hindawi
Security and Communication Networks
Volume 2019, Article ID 1680263, 12 pages
https://doi.org/10.1155/2019/1680263

https://orcid.org/0000-0003-4347-0144
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/1680263

2 Security and Communication Networks

Let 𝑆𝑡 denote the internal state of the cipher at time 𝑡.
Suppose the internal state of the cipher consists of 𝑛 words.
Then, 𝑆𝑡 = 𝑆𝑡[0] ‖ 𝑆𝑡[1] ‖ . . . ‖ 𝑆𝑡[𝑛 − 1]. Suppose 𝑆𝑡[𝑢]
denotes a particular state word that is common to the output
functions of both ciphertext words 𝐶𝑡[0] and 𝐶𝑡[1]. The type
of output functionwe consider in this paper has the following
form:

𝐶𝑡 [0] = 𝑙0 (𝑆𝑡) ⊕ 𝑞0 (𝑆𝑡) = 𝑙∗0 (𝑆𝑡) ⊕ 𝑆𝑡 [𝑢] ⊕ 𝑞0 (𝑆𝑡) (1)

𝐶𝑡 [1] = 𝑙1 (𝑆𝑡) ⊕ 𝑞1 (𝑆𝑡)

= 𝑙1 (𝑆𝑡) ⊕ (𝑞∗1 (𝑆𝑡) ⊗ 𝑆𝑡 [𝑢]) ,
(2)

where 𝑙0(𝑆𝑡) and 𝑙1(𝑆𝑡) are linear (XOR) combinations of state
words used to form 𝐶𝑡[0] and 𝐶𝑡[1], respectively, and 𝑙∗0 (𝑆𝑡)
is the reduced linear combination of state words formed by
excluding the state word 𝑆𝑡[𝑢] from 𝑙0(𝑆𝑡). That is, 𝑙0(𝑆𝑡) =
𝑙∗0 (𝑆𝑡) ⊕ 𝑆𝑡[𝑢]. Similarly, 𝑞0(𝑆𝑡) and 𝑞1(𝑆𝑡) are (quadratic)
functions consisting of the bitwise product (AND) of two
state words, and 𝑞∗1 (𝑆𝑡) is the reduced term obtained by

excluding the state word 𝑆𝑡[𝑢] from 𝑞1(𝑆𝑡).
Both of the ciphers we consider use the AES round

function [8] in their calculations. In our work, we use 𝑇𝑟 to
denote one AES round transformation without XOR-ing the
subkey; that is,

𝑇𝑟 (𝑋) = 𝑀𝑖𝑥𝐶𝑜𝑙𝑢𝑚𝑛𝑠 (𝑆ℎ𝑖𝑓𝑡𝑅𝑜𝑤𝑠 (𝑆𝑢𝑏𝐵𝑦𝑡𝑒𝑠 (𝑋))) . (3)

Importantly, we note that this transformation is invertible.
We will use this property when extending our attack from a
single state word to either multiple words or the entire state
at a given time point.

2. Fault Attacks

Responses of cryptographic algorithms to faults, either acci-
dental or intentional, differ from one implementation to
another. Attacks that exploit the output of an implementation
after an error is induced during the device operation are
called fault attacks [9]. Boneh et al. [9] first used fault attacks
to attack an implementation of RSA. Since then, fault attacks
have been widely used against many encryption schemes,
including DES [10] and AES [11]. Fault attacks can be very
powerful, such that an entire AES key can be retrieved using
only a single fault injection [12].

The effect of fault attacks on a cryptosystem depends on

(i) the number of bits affected: one bit, a few bits, one
byte, a few bytes, or multiple bytes

(ii) themodification type: stuck-at-zero, stuck-at-one, flip
a bit, or a random fault

(iii) fault precision: how precisely the fault location and its
timing can be controlled

(iv) fault duration: whether the fault is transient or per-
manent.

Combinations of these parameters determine the feasibility
of a fault attack. For example, if an attack is performed under

the assumption that a fault results in flipping every bit in
a targeted variable, the assumption implies a very strong
adversary.This bit-flipping approach is considered unrealistic
in practice [13]. Fault models in which a random fault is
injected, such that the adversary does not know in advance
the effect of the fault on a variable value, are widely used.
Random fault attacks are considered more realistic than bit-
flipping fault attacks [13], since less precise control of the fault
outcome by the attacker is required.

The fault attacks described in this section can be applied
during the encryption phase of any cipher that has the
structure described in Section 1. Note that these attacks
require an adversary to observe multiple faulty and fault-
free ciphertext pairs resulting from the encryption of a given
plaintext using the same key and initialization vector.This is a
nonce-reuse condition, which may be specifically prohibited
by the cipher designer. Suchnonce reusewas necessary for the
bit-flipping attack byDey et al. in their attacks onTiaoxin-346
andAEGIS [6] and similarly is necessary for the random fault
attack presented in this paper. The success of these attacks
demonstrates the unsuitability of this type of algorithm for
use in any environment where nonce reuse may occur.

For simplicity, we first outline the fault attack using bit-
flipping faults, taking an approach based on that of Dey
et al. in [6]. We then present a fault attack that follows
a similar approach but which makes use of the additional
ciphertext word produced at each time interval and requires
only random faults.

2.1. Bit-Flipping Fault Attacks. Suppose an adversary intro-
duces fault 𝑒 in state word 𝑆𝑡[𝑢] resulting in the complemen-
tation of the entire word.That is, 𝑒 = 111 ⋅ ⋅ ⋅ 111 and the faulty
state word 𝑆𝑡[𝑠] is defined as

𝑆𝑡 [𝑠] = 𝑆𝑡 [𝑢] ⊕ 𝑒 = 𝑆𝑡 [𝑢], (4)

where 𝑆𝑡[𝑢] denotes the bitwise complement of 𝑆𝑡[𝑢]. The
fault-free and faulty ciphertext words 𝐶𝑡[1] and 𝐶𝑡[1] are
defined in the following:

𝐶𝑡 [1] = 𝑙1 (𝑆𝑡) ⊕ (𝑞∗1 (𝑆𝑡) ⊗ 𝑆𝑡 [𝑢]) (5)

𝐶𝑡 [1] = 𝑙1 (𝑆𝑡) ⊕ (𝑞∗1 (𝑆𝑡) ⊗ 𝑆𝑡 [𝑢]) . (6)

From (5) and (6), it is clear that 𝐶𝑡[1] XORed with 𝐶𝑡[1]
allows the attacker to recover the value of the term 𝑞∗1 (𝑆𝑡), as
shown in the following:

𝐶𝑡 [1] ⊕ 𝐶𝑡 [1] = (𝑞∗1 (𝑆𝑡) ⊗ 𝑆𝑡 [𝑢])

⊕ (𝑞∗1 (𝑆𝑡) ⊗ 𝑆𝑡 [𝑢])

= 𝑞∗1 (𝑆𝑡) ⊗ (𝑆𝑡 [𝑢] ⊕ 𝑆𝑡 [𝑢]) = 𝑞∗1 (𝑆𝑡) .

(7)

2.2. Random Fault Attacks. We adapt the bit-flipping fault
attack outlined in Section 2.1 to recover the value of 𝑞∗1 (𝑆𝑡)
using only random faults. This is a more realistic assumption
than the stringent requirements on the attacker’s capabilities

Security and Communication Networks 3

needed for bit-flipping fault attacks. Specifically, the inclusion
of state word 𝑆𝑡[𝑢] by XOR in the computation of 𝐶𝑡[0] and
by AND with 𝑞∗1 (𝑆𝑡) in the computation of 𝐶𝑡[1] (see (1) and
(2)) is a vulnerability that can be exploited by an adversary
in a random fault attack; specifically, inserting such faults in
𝑆𝑡[𝑢] allows the value of 𝑞∗1 (𝑆𝑡) to be recovered.

In its basic form, this attack provides partial state recov-
ery, but repeated applications may allow full state recovery.
In the case studies presented in Sections 3.2 and 4.2 of this
paper, we show that partial state recovery (complete recovery
of one of three state components) is possible for Tiaoxin-346
and full state recovery is possible for AEGIS-128L.

Suppose now that fault 𝑒 is a randomly generated value
unknown to the attacker. Let the random fault 𝑒 affect the
contents of 𝑆𝑡[𝑢] such that the faulty state word 𝑆𝑡[𝑠] =
𝑆𝑡[𝑢]⊕𝑒. In this case, the fault-free and faulty ciphertext words
𝐶𝑡[0] and 𝐶𝑡[0] are determined as shown in the following:

𝐶𝑡 [0] = 𝑙∗0 (𝑆𝑡) ⊕ 𝑆𝑡 [𝑢] ⊕ 𝑞0 (𝑆𝑡) (8)

𝐶𝑡 [0] = 𝑙∗0 (𝑆𝑡) ⊕ 𝑆𝑡 [𝑠] ⊕ 𝑞0 (𝑆𝑡) . (9)

The attacker can obtain the value of the randomerror 𝑒 simply
by calculating 𝐶𝑡[0] XOR 𝐶𝑡[0] (from (8) and (9)), as shown
in the following:

𝐶𝑡 [0] ⊕ 𝐶𝑡 [0] = 𝑆𝑡 [𝑢] ⊕ 𝑆𝑡 [𝑠] = 𝑆𝑡 [𝑢] ⊕ 𝑆𝑡 [𝑢] ⊕ 𝑒
= 𝑒.

(10)

That is, if the attacker has access to the ciphertext pair
(𝐶𝑡[0], 𝐶𝑡[0]), the value of the random error introduced in
state word 𝑆𝑡[𝑢] can be obtained from the faulty and fault-free

ciphertext alone. Further, we observe that, replacing 𝑆𝑡[𝑢] by
𝑆𝑡[𝑢] ⊕ 𝑒, (7) becomes

𝐶𝑡 [1] ⊕ 𝐶𝑡 [1] = 𝑞∗1 (𝑆𝑡) ⊗ 𝑒. (11)

Thus, once the random fault value 𝑒 is known, this can be used
to find the value of certain bits in 𝑞∗1 (𝑆𝑡), namely, those bits in

𝑞∗1 (𝑆𝑡) where the corresponding bits of 𝑒 have a value of one.
This is a limitation of our approach. Unlike the bit-

flipping fault attack described byDey et. al. [6], using random
faults does not necessarily recover all of the bits in 𝑞∗1 (𝑆𝑡)with
a single fault. However, this limitation can be addressed by
performing the random fault injection attack multiple times,
injecting a different random fault each time, until all the bits
in 𝑞∗1 (𝑆𝑡) are recovered.

The process for recovering the contents of 𝑞∗1 (𝑆𝑡) using
random fault injection is summarised in Algorithm 1. In
Section 3.2 and Section 4.2, we apply this attack to Tiaoxin-
346 andAEGIS-128L, respectively. In the case of Tiaoxin-346,
the attack can be repeated six times in total to recover the
entire contents of the state component𝑇6 at time 𝑡. Under the
known-plaintext scenario (as assumed, for example, byDey et
al), this then allows the secret key to be recovered completely.
In the case of AEGIS-128L, the attack can be repeated (under
either the known-plaintext or the ciphertext-only scenario)
to recover the contents of all state words at time 𝑡; from that
point, the cipher can then be used to encrypt and verify any
variant plaintext that the attacker may wish to send.

3. Case 1: Tiaoxin-346

Tiaoxin-346 is a third-round authenticated encryption
stream cipher candidate in the CAESAR cryptographic com-
petition. It uses a 128-bit key 𝐾, and a 128-bit initialization
vector 𝑉. An input plaintext 𝑃, of arbitrary length 𝑚𝑠𝑔𝑙𝑒𝑛,
where 0 ≤ 𝑚𝑠𝑔𝑙𝑒𝑛 ≤ 2128 − 1, is encrypted to form ciphertext
𝐶, providing confidentiality. The ciphertext 𝐶 is of the same
length as the plaintext 𝑃. Integrity assurance is provided by
an authentication tag 𝜏 of length 128 bits. Tiaoxin-346 also
provides integrity assurance for associated data𝐷which does
not require confidentiality. Tiaoxin-346 supports associated

data of arbitrary length, 𝑎𝑑𝑙𝑒𝑛, where 0 ≤ 𝑎𝑑𝑙𝑒𝑛 ≤ 2128 − 1.

3.1. Structure. Tiaoxin-346 has a similar structure to feed-
back shift register-based stream ciphers.The internal state has
three components𝑇3,𝑇4, and𝑇6 consisting of three, four, and
six 128-bit register stages, respectively. This gives the cipher a
total internal state size of 13 × 128 = 1664 bits.

At the start of the intialisation phase, various stages
of the cipher are loaded with copies of the secret key 𝐾,
the initialisation vector 𝑉, and certain specified constants
(namely, zero,𝑍0, and𝑍1). In particular, note that each of the
components 𝑇3, 𝑇4, and 𝑇6 has two stages set to the value of
𝐾 and one stage set to the value of 𝑉 at this time.

Tiaoxin-346 uses the state update function
𝑈𝑝𝑑𝑎𝑡𝑒(𝑇𝑡3, 𝑇𝑡4, 𝑇𝑡6,𝑀𝑡3,𝑀𝑡4,𝑀𝑡6) to update the internal
state. Here, 𝑀3,𝑀4, and 𝑀6 are the external inputs to
the states 𝑇3, 𝑇4, and 𝑇6, respectively; depending on the
operational phase of the cipher, these may be defined in
terms of the defined constants, the associated data, or the
plaintext. We note that their values during the initialization
and associated data loading phases are determined by
constants or associated data, both of which are known to the
adversary. More precisley, the state of Tiaoxin-346 at time
𝑡 + 1 is defined as

𝑇𝑡+1𝑠 [𝑖]

=
{{{{
{{{{
{

𝑇𝑟 (𝑇𝑡𝑠 [𝑠 − 1]) ⊕ 𝑇𝑡𝑠 [0] ⊕ 𝑀𝑡𝑠 for 𝑖 = 0
𝑇𝑟 (𝑇𝑡𝑠 [0]) ⊕ 𝑍0 for 𝑖 = 1
𝑇𝑡𝑠 [𝑖 − 1] otherwise,

(12)

where 0 ≤ 𝑖 ≤ 𝑠 − 1 and 𝑠 ∈ {3, 4, 6}. Thus, all stages
except for the first two stages in each component are updated
by shifting, while the first two stages of each component are
updated nonlinearly using the 𝑇𝑟 transformation from AES.

3.1.1. Encryption Process. The encryption phase begins after
the associated data processing phase is completed. The three
components 𝑇3, 𝑇4, and 𝑇6 have been loaded with the
associated data at the beginning of the encryption phase.
Figure 1 shows the encryption process of Tiaoxin-346. As
shown in Figure 1, the plaintext 𝑃 is divided into two-word
blocks 𝑃𝑡 = 𝑃𝑡[0] ‖ 𝑃𝑡[1] which are successively loaded into
the internal state of each component. Each ciphertext block
𝐶𝑡 is then computed after loading the corresponding plaintext
block.

4 Security and Communication Networks

T
t
3 [0]

Tr Tr Tr Tr Tr Tr

T
t
4 [0] T

t
4 [1] T

t
4 [2] T

t
4 [3] T

t
6 [0] T

t
6 [1] T

t
6 [2] T

t
6 [3] T

t
6 [4] T

t
6 [5]T

t
3 [1] T

t
3 [2]

P
t
[0] P

t
[1]

Z0 Z0 Z0

T
t+1
3 [0] T

t+1
3 [1] T

t+1
3 [2] T

t+1
4 [0] T

t+1
4 [1] T

t+1
4 [2] T

t+1
4 [3] T

t+1
6 [0] T

t+1
6 [1] T

t+1
6 [2] T

t+1
6 [3] T

t+1
6 [4] T

t+1
6 [5]

C
t
[0] C

t
[1]

P
t
[0]⨁P

t
[1]

Figure 1: Tiaoxin-346 encryption procedure.

In more detail, the plaintext words are loaded by defining
the external inputs 𝑀3, 𝑀4, and 𝑀6 to the state update
function as𝑀𝑡3 = 𝑃𝑡[0],𝑀𝑡4 = 𝑃𝑡[1], and𝑀𝑡6 = 𝑃𝑡[0] ⊕𝑃𝑡[1].
The ciphertext words are then computed as

𝐶𝑡 [0] = 𝑇𝑡+13 [0] ⊕ 𝑇𝑡+13 [2] ⊕ 𝑇𝑡+14 [1]

⊕ (𝑇𝑡+16 [3] ⊗ 𝑇𝑡+14 [3])
(13)

𝐶𝑡 [1] = 𝑇𝑡+16 [0] ⊕ 𝑇𝑡+14 [2] ⊕ 𝑇𝑡+13 [1]

⊕ (𝑇𝑡+16 [5] ⊗ 𝑇𝑡+13 [2]) .
(14)

Note that 𝐶𝑡 depends on 𝑃𝑡, since the plaintext blocks 𝑃𝑡[0]
and 𝑃𝑡[1] were XORed into 𝑇𝑡+13 [0] and 𝑇𝑡+16 [0] during the
state update process.

3.2. Key Recovery Attack Using Random Faults. The fault
attack described in Section 2.2 can be applied during the
encryption phase of Tiaoxin-346. Recall that this attack
requires an adversary to observemultiple faulty and fault-free
ciphertext pairs which are encrypted using the same key and
initialization vector.

In our generic attack, the ciphertext words are calculated
according to (1) and (2) from Section 1.1. Comparing this
general form to (13) and (14), we can make the identification

𝑆𝑡 [𝑢] = 𝑇𝑡+13 [2]

𝑙∗0 (𝑆𝑡) = 𝑇𝑡+13 [0] ⊕ 𝑇𝑡+14 [1]

𝑞0 (𝑆𝑡) = 𝑇𝑡+16 [3] ⊗ 𝑇𝑡+14 [3]

𝑙1 (𝑆𝑡) = 𝑇𝑡+16 [0] ⊕ 𝑇𝑡+14 [2] ⊕ 𝑇𝑡+13 [1]

𝑞∗1 (𝑆𝑡) = 𝑇𝑡+16 [5]

(15)

to verify that our attack applies to this cipher. By applying
Algorithm 1, we are therefore able to recover the value of

𝑞∗1 (𝑆𝑡) = 𝑇𝑡+16 [5]. By repeating this process at consecutive
time steps, we can progressively recover the state words

𝑇𝑡+26 [5], 𝑇𝑡+36 [5], 𝑇𝑡+46 [5], 𝑇𝑡+56 [5], and 𝑇𝑡+66 [5]. Since 𝑇𝑡+16 [𝑖] =
𝑇𝑡6[𝑖 − 1] = for 𝑖 = 2, ⋅ ⋅ ⋅ , 5 and the invertibility of

𝑇𝑟 guarantees that 𝑇𝑡+16 [0] can be uniquely recovered from

𝑇𝑡+26 [1], this enables us to recover the entire contents of 𝑇𝑡+16 .
The process for recovering the contents of 𝑇6 with these
random faults is shown in Figure 2.

If the plaintext words 𝑃0[0] and 𝑃0[1] are known (as,
for example, Dey et al. [6] assume), it is then possible to
recover the secret key for Tiaoxin-346. To do this, we first

apply the above attack to recover the contents of 𝑇16 . The

state words 𝑇06 [0] to 𝑇06 [4] can be recovered from 𝑇16 [1]
to 𝑇16 [5] by the process described above, while 𝑇06 [5] can

be recovered from 𝑇06 [0], 𝑇16 [0], and the message word

𝑀06 = 𝑃0[0] ⊕ 𝑃0[1]. Note again that all the message words
used during initialisation are public, so the updates of state

component 𝑇6 can be reversed from 𝑇06 all the way to the
beginning of the initialization phase and the key can then be
obtained from the intial loaded contents of 𝑇6[0]. Similarly,
the initialization vector can be obtained from𝑇6[2]; since this
value is public, this provides a confirmation of a successful
attack.

From this point, all components in the state of Tiaoxin-
346 can be initialized with the known key and IV, and the
cipher can then be clocked forwards to encrypt and verify any
message chosen by the attacker.

In light of the above comments, the security of this
cipher against our key recovery attack depends entirely on
maintaining the secrecy of the initial plaintext block. In
cases where the message format requires particular header
information to be included at the start of the message, this
may be problematic.

Security and Communication Networks 5

Insert multi-byte faults in

Insert multi-byte faults in

Insert multi-byte faults in

Insert multi-byte faults in

Insert multi-byte faults in

Insert multi-byte faults in to recover

T
t+1
6 [0]

T
t+1
3 [2] T

t+1
6 [5]

to recover T
t+2
3 [2] T

t+2
6 [5]

to recover T
t+3
3 [2] T

t+3
6 [5]

to recover T
t+4
3 [2] T

t+4
6 [5]

to recover T
t+5
3 [2] T

t+5
6 [5]

to recover T
t+6
3 [2] T

t+6
6 [5]

Z0

T
t+1
6 [1] T

t+1
6 [2] T

t+1
6 [3] T

t+1
6 [4] T

t+1
6 [5]

T
t+2
6 [0] T

t+2
6 [1] T

t+2
6 [2] T

t+2
6 [3] T

t+2
6 [4] T

t+2
6 [5]

T
t+3
6 [0] T

t+3
6 [1] T

t+3
6 [2] T

t+3
6 [3] T

t+3
6 [4] T

t+3
6 [5]

T
t+4
6 [0] T

t+4
6 [1] T

t+4
6 [2] T

t+4
6 [3] T

t+4
6 [4] T

t+4
6 [5]

T
t+5
6 [0] T

t+5
6 [1] T

t+5
6 [2] T

t+5
6 [3] T

t+5
6 [4] T

t+5
6 [5]

T
t+6
6 [0] T

t+6
6 [1] T

t+6
6 [2] T

t+6
6 [3] T

t+6
6 [4] T

t+6
6 [5]

Tr
−1

Figure 2: Recovering the contents of 𝑇6 by injecting random faults in 𝑇3.

3.3. Experimental Results. Experiments were conducted to
analyse the feasibility of the fault attack described in Sec-
tion 3.2.The experiments were performed as computer simu-
lations using Python 3.6 on a standard desktop computer.The
faulty 128-bit words were generated using the Python built-in
random number function.

We first investigated the success rate for recovering

the state word 𝑇𝑡+16 [5] using multiple random faults. As
discussed above, we assume here that the adversary is able
to observe multiple faulty and fault-free ciphertext pairs that
are encrypted using the same key and initialisation vector.
The investigation considered a multibyte fault model; that is,
we assume that the error 𝑒 potentially affects all bytes of the
state word 𝑇𝑡+13 [2] in the faulty ciphertext. In the following
discussion, “number of faults” refers to the number of faulty
ciphertexts of this type observed. Each of the results below
is based on 10,000 simulated trials for the given number of
faults.

For a given number of random faults, the number of
bits recovered by the attack is a random variable. The
probability of recovering a specified number of bits increases
with the number of faults but decreases as the specified
number of bits increases. Table 1 presents the average number
of bits recovered for different numbers of faults and the
corresponding estimated probability, based on 10,000 trials,
of recovering that average number of bits using the given
number of faults.

As shown in Table 1, with seven or more faults, an
adversary can recover an average of 126 or more of the 128

bits of 𝑇𝑡+16 [5], with a probability higher than 90%. With ten
faults, 127 bits can be recovered, with a probability of 99.32%.
In all such cases, the adversary needs to guess the remaining

bits to recover the entire state word 𝑇𝑡+16 [5].
Table 2 presents the probability of recovering all 128 bits of

𝑇𝑡+16 [5] for a givennumber of faults. For ten ormore faults, the

Table 1: Average Number of Recovered Bits.

Number of
Faults

Average
Number of

Bits
Recovered

(𝑛)

Probability of
Recovering 𝑛

Bits

1 64 53.71%

2 96 54.61%

3 111 65.86%

4 120 59.57%

5 124 63.45%

6 126 67.63%

7 126 91.88%

8 127 91.07%

9 127 97.49%

10 127 99.32%

Table 2: Success Rate for Recovering All the Bits of 𝑇𝑡+16 [5].

Number of Faults Success Rate

5 1.73%

6 12.81%

7 37.24%

8 61.72%

9 78.30%

10 87.64%

11 93.69%

12 96.78%

13 98.61%

14 99.16%

6 Security and Communication Networks

1: Load key and initialization vector and perform the initialization phase.
2: Encrypt plaintext 𝑃𝑡 to compute the fault free ciphertexts 𝐶𝑡[0] and 𝐶𝑡[1].
3: Repeat Step 2 but inject a random multi-byte fault 𝑒 in the state word 𝑆𝑡[𝑢].
Proceed to compute the faulty ciphertext words 𝐶𝑡[0] and 𝐶𝑡[1].

4: Observe the faulty and fault free ciphertext words and apply Equation (10)
to recover the value of the random fault 𝑒.

5: For any bits in the random fault 𝑒 equal to one, observe the values in the
corresponding bit positions in the faulty and fault free ciphertext and apply
Equation (11) to recover the corresponding bits of 𝑞∗1 (𝑆𝑡).

6: Repeat steps 3 to 5 until all of the bits in 𝑞∗1 (𝑆𝑡) are recovered.

Algorithm 1: Algorithm for Random Fault Attack on Certain Ciphers.

Table 3: Partial Recovery of 𝑇𝑡+16 [5] and 𝑇𝑡+16 with Different Numbers of Faults.

Recovery of 𝑇𝑡+16 [5] Recovery of 𝑇𝑡+16
Number of Faults Number of Bits to Recover Success Rate Number of Faults Bits to Guess Guessing Complexity Success Rate

4 113 99.3% 24 90 290 95.9%

5 119 99.2% 30 54 254 95.3%

6 122 99.7% 36 36 236 98.2%

7 124 99.7% 42 24 224 98.2%

8 125 99.8% 48 18 218 98.8%

probability of recovering all bits was over 85%, while 14 faults
were required to obtain a 99% probability for recovering all

128 bits of 𝑇𝑡+16 [5].
To explore the trade-off between number of recovered

bits and required number of faults, we also investigated the
number of bits it was possible to recover with a 99% success
rate for specific numbers of random faults. The left-hand
side of Table 3 presents the number of bits of 𝑇𝑡+16 [5] that
can be recovered for a given number of faults when at least
99% success probability is stipulated, together with the actual
success rate observed in each case. For instance, an adversary

can recover 124 bits of state𝑇𝑡+16 [5]with over 99% probability
of success by introducing seven faults, and the remaining four

bits must then be guessed with a guessing complexity of 24.
The right-hand side of Table 3 gives the corresponding

results for determining the entire contents of component

𝑇𝑡+16 , including the relevant complexity for guessing the
bits that have not already been recovered. Recall that the
adversary needs to repeat the same process five more times

to recover the state words 𝑇𝑡+26 [5], 𝑇𝑡+36 [5], 𝑇𝑡+46 [5], 𝑇𝑡+56 [5],
and 𝑇𝑡+66 [5] in order to achieve this goal. Note from this
table that the overall probability of recovering the required
number of bits in all six words is over 95% in all cases,and
that the complexity of guessing remains practical with 48, 42,
or 36 faults. However, the complexity of guessing increases
significantly and becomes infeasible for any further reduction
in the number of faults beyond 36 faults.

4. Case 2: AEGIS-128L

AEGIS has been selected in the final portfolio of the CAE-
SAR cryptographic competition. AEGIS has three different

variants, namely, AEGIS-128, AEGIS-256, and AEGIS-128L.
In this section, we discuss AEGIS-128L, as this cipher pro-
duces two ciphertext words at each time instant, similar to
Tiaoxin-346. This is not the case for AEGIS-128 and AEGIS-
256 which only produce one ciphertext word at each time
instant.

4.1. Structure. The internal state of AEGIS-128L consists of
eight 128-bit register stages 𝑆𝑡[0], 𝑆𝑡[1] . . . 𝑆𝑡[7] and has a total
size of 8 × 128 = 1024 bits. The internal state is updated
at each time instant using a nonlinear state update function
StateUpdate128L(𝑆𝑡,𝑀𝑡0,𝑀𝑡1). This update function has two

external inputs, 𝑀𝑡0 and 𝑀𝑡1, and nonlinearity is provided by
applying the transformation function 𝑇𝑟 to the contents of
each register stage, as shown in Figure 3. Under this update
function, the state of AEGIS-128L at time 𝑡 + 1 is defined as

𝑆𝑡+1 [𝑖] =
{{{{
{{{{
{

𝑇𝑟 (𝑆𝑡 [7]) ⊕ 𝑆𝑡 [0] ⊕ 𝑀𝑡0 for 𝑖 = 0
𝑇𝑟 (𝑆𝑡 [3]) ⊕ 𝑆𝑡 [4] ⊕ 𝑀𝑡1 for 𝑖 = 4
𝑇𝑟 (𝑆𝑡 [𝑖 − 1]) ⊕ 𝑆𝑡 [𝑖] otherwise,

(16)

where 0 ≤ 𝑖 ≤ 7.

4.1.1. Encryption Process. Figure 3 shows the state update and
encryption process of AEGIS-128L. AEGIS-128L performs
the encryption phase following the associated data processing
phase. As with Tiaoxin-346, each 256-bit plaintext block is
split into two words, 𝑃𝑡 = 𝑃𝑡[0] ‖ 𝑃𝑡[1], and is encrypted
to obtain the corresponding ciphertext block 𝐶𝑡 = 𝐶𝑡[0] ‖
𝐶𝑡[1]. This process is repeated at total of 𝑙𝑝 times to encrypt
the entire plaintext message.

Security and Communication Networks 7

S
t
[0]

Tr Tr Tr Tr Tr Tr Tr Tr

S
t
[1] S

t
[2] S

t
[3] S

t
[4] S

t
[5] S

t
[6] S

t
[7]

M
t
[0] M

t
[1]

S
t+1

[0] S
t+1

[1] S
t+1

[2] S
t+1

[3] S
t+1

[4] S
t+1

[5] S
t+1

[6] S
t+1

[7]

z
t+1

[0]

z
t+1

[1]

Figure 3: AEGIS-128L state update and encryption.

Encryption begins by computing the keystream words 𝑧𝑡0
and 𝑧𝑡1 as

𝑧𝑡0 = 𝑆𝑡 [1] ⊕ 𝑆𝑡 [6] ⊕ (𝑆𝑡 [2] ⊗ 𝑆𝑡 [3]) (17)

𝑧𝑡1 = 𝑆𝑡 [2] ⊕ 𝑆𝑡 [5] ⊕ (𝑆𝑡 [6] ⊗ 𝑆𝑡 [7]) . (18)

Following the keystream computation, the ciphertext words
are then computed by XOR-ing the plaintext words with the
corresponding keystream words as follows:

𝐶𝑡 [0] = 𝑃𝑡 [0] ⊕ 𝑧𝑡0
= 𝑃𝑡 [0] ⊕ 𝑆𝑡 [1] ⊕ 𝑆𝑡 [6] ⊕ (𝑆𝑡 [2] ⊗ 𝑆𝑡 [3])

(19)

𝐶𝑡 [1] = 𝑃𝑡 [1] ⊕ 𝑧𝑡1
= 𝑃𝑡 [1] ⊕ 𝑆𝑡 [2] ⊕ 𝑆𝑡 [5] ⊕ (𝑆𝑡 [6] ⊗ 𝑆𝑡 [7]) .

(20)

After the ciphertext has been computed, the internal state
of AEGIS-128L is updated using the state update function
StateUpdate128L(𝑆𝑡, 𝑃𝑡[0], 𝑃𝑡[1]). That is, the input plaintext
words 𝑃𝑡[0] and 𝑃t[1] are used as the external input for the
following time step during the encryption phase of AEGIS-
128L.

4.2. State Recovery Attack Using Random Faults. We now
show that the fault-based attack described in Section 2.2 can
also be applied to the encryption phase of AEGIS-128L. Recall
again that the ciphertext words in our generic attack are
calculated according to (1) and (2) from Section 1.1.

Comparing this general form to (19) and (20), we see that
there are two alternative ways of identifying the generic form
with these cipher-specific equations. Identifying 𝐶0 and 𝐶1

from the generic form with 𝐶0 and 𝐶1 (respectively) in (19)
and (20), we have

𝑆𝑡 [𝑢] = 𝑆𝑡 [6]

𝑙∗0 (𝑆𝑡) = P𝑡 [0] ⊕ 𝑆𝑡 [1]

𝑞0 (𝑆𝑡) = 𝑆𝑡 [2] ⊗ 𝑆𝑡 [3]

𝑙1 (𝑆𝑡) = 𝑃𝑡 [1] ⊕ 𝑆𝑡 [2] ⊕ 𝑆𝑡 [5]

𝑞∗1 (𝑆𝑡) = 𝑆𝑡 [7]

(21)

which verifies that our attack applies to this cipher. Using this
identification in Algorithm 1 enables us to recover the value
of 𝑞∗1 (𝑆𝑡) = 𝑆𝑡[7]. Alternatively, we can identify 𝐶0 from the
generic form with 𝐶1 in (20) and 𝐶1 from the generic form
with 𝐶0 in (19), giving the identification

𝑆𝑡 [𝑢] = 𝑆𝑡 [2]

𝑙∗0 (𝑆𝑡) = 𝑃𝑡 [1] ⊕ 𝑆𝑡 [5]

𝑞0 (𝑆𝑡) = 𝑆𝑡 [6] ⊗ 𝑆𝑡 [7]

𝑙1 (𝑆𝑡) = 𝑃𝑡 [0] ⊕ 𝑆𝑡 [1] ⊕ 𝑆𝑡 [6]

𝑞∗1 (S𝑡) = 𝑆𝑡 [3] .

(22)

Applying Algorithm 1 with this identification enables us to
recover the value of 𝑞∗1 (𝑆𝑡) = 𝑆𝑡[3].

By repeating this process at time 𝑡 + 1, we can also

obtain the values of 𝑆𝑡+1[7] and 𝑆𝑡+1[3]. Together with the
values of 𝑆𝑡[7] and 𝑆𝑡[3], these enable us to determine the
values of 𝑆𝑡[6] and 𝑆𝑡[2] from (16) (this is possible because
the transformation function 𝑇𝑟 in (16) is invertible). If the
plaintext words 𝑃𝑡[0], 𝑃𝑡[1], 𝑃𝑡+1[0], and 𝑃𝑡+1[1] are also
known, then the process used by Dey et al. [6] can befollowed

8 Security and Communication Networks

Table 4: Average Number of Recovered Bits.

Number of
Faults

Average
Number of

Bits
Recovered

(𝑛)

Probability of
Recovering 𝑛

Bits

1 64 53.33%

2 96 55.11%

3 112 56.71%

4 120 59.39%

5 124 62.60%

6 126 67.73%

7 127 73.96%

8 127 91.03%

9 127 97.08%

10 127 99.11%

to obtain the whole state contents at time 𝑡 (except that the
values of 𝑆𝑡+1[7] and 𝑆𝑡+1[3] no longer need to be calculated,
as they are already known).

We note, however, that our attack can also be extended
to recover the entire state even when the attacker does
not have access to the plaintext: by recovering the values

of 𝑆𝑡+2[7] and 𝑆𝑡+3[7], one can successively determine the

values of 𝑆𝑡+1[6], 𝑆𝑡[5], 𝑆𝑡+2[6], 𝑆𝑡+1[5], and 𝑆𝑡[4]; likewise, by
recovering 𝑆𝑡+2[3] and 𝑆𝑡+3[3], we can determine 𝑆𝑡[1] and
𝑆𝑡[0], so that the entire state contents at time 𝑡 are known
without knowing any of the plaintext. Thus, this attack is
stronger than that reported by Dey et al., as it is a ciphertext-
only attack.

4.3. Experimental Results. As for Tiaoxin-346, experiments
were conducted to analyse the feasibility of the fault attack on
AEGIS-128L described in Section 4.2. The experiments were
again performed as computer simulations using Python 3.6
on a standard desktop computer and the faulty 128-bit words
were generated using the Python built-in random number
function.

We began by investigating the success rate for recovering
the state word 𝑆𝑡[3] using multiple random faults applied to
the state word 𝑆𝑡[2]. As discussed previously, we assume that
the adversary is able to observe multiple faulty and fault-
free ciphertext pairs that are encrypted using the same key
and initialisation vector. The investigation again considered
a multibyte fault model; that is, we assume that the error 𝑒
potentially affects all bytes of the state word 𝑆𝑡[2] in the faulty
ciphertext. As before, “number of faults” refers to the number
of faulty ciphertexts of this type observed and each of the
results below is based on 10,000 simulated trials for the given
number of faults.

As for Tiaxoin-346, the probability of recovering a spec-
ified number of bits increases with the number of faults
but decreases as the specified number of bits increases.
Table 4 presents the average number of bits recovered for
different numbers of faults and the corresponding probability

Table 5: Success Rate for Recovering All the Bits of 𝑆𝑡[3] or 𝑆𝑡[7].

Number of Faults Success Rate

5 1.53%

6 13.18%

7 37.01%

8 59.58%

9 78.14%

10 88.35%

11 94.04%

12 96.70%

13 98.38%

14 99.07%

of recovering that average number of bits using the given
number of faults.

As shown in Table 4, with eight or more faults, an
adversary can recover an average of 127 ormore of the 128 bits
of 𝑆𝑡[3], with a probability higher than 90%. With ten faults,
an average of 127 bits can be recovered, with a probability
of 99.11%. In all such cases, the adversary needs to guess
the remaining bit to recover the entire state word 𝑆𝑡[3]. As
the process for recovering bits from 𝑆𝑡[7] is identical to that
for recovering bits from 𝑆𝑡[3], similar probabilities can be
expected to apply to the recovery of 𝑆𝑡[7].

Table 5 presents the probability of recovering all 128 bits
of 𝑆𝑡[3] (or all 128 bits of 𝑆𝑡[7]) for a given number of faults.
For ten or more faults, the probability of recovering all bits
was over 85%, while 14 faults were required to obtain a 99%
probability for recovering all 128 bits of 𝑆𝑡[3] or 𝑆𝑡[7].

Finally, we again explored the trade-off between number
of recovered bits and required number of faults by investigat-
ing the number of bits it was possible to recover with a 99%
success rate for specific numbers of random faults. The left-
hand side of Table 6 presents the number of bits of 𝑆𝑡[3] or
𝑆𝑡[7] that can be recovered for a given number of faults when
at least 99% success probability is stipulated, together with
the actual success rate observed in each case. For instance, an
adversary can recover 124 bits of the stateword 𝑆𝑡[3]with over
99% probability of success by introducing seven faults, and
the remaining four bits must then be guessed with a guessing

complexity of 24.
The right-hand side of Table 6 gives the corresponding

results for determining the entire state contents 𝑆𝑡, for each
of the attacks discussed in Section 4.2. For the known-
plaintext scenario (also contemplated by Dey et al), the
adversary needs to repeat the attack process four times
in all in order to recover the entire state. Under these
conditions, the overall probability of recovering the required
number of bits in all four words is over 97% in all cases
and the complexity of guessing remains practical for as few
as 20 faults. However, the complexity of guessing increases
significantly and becomes infeasible for any further reduction
in the number of faults beyond 20 faults. For the ciphertext-
only attack, the adversary needs to repeat the attack process
eight times in all, increasing both the required number of

Security and Communication Networks 9

Table 6: Partial Recovery of 𝑆𝑡[3], 𝑆𝑡[7] and 𝑆𝑡 with Different Numbers of Faults.

Recovery of 𝑆𝑡[3] or 𝑆𝑡[7] Recovery of 𝑆𝑡
Known Plaintext attack Ciphertext Only attack

No. of Faults
No. of Bits to
Recover

Success Rate No. of Faults
Guessing

Complexity
Success
Rate

No. of Faults
Guessing

Complexity
Success Rate

4 113 99.4% 16 260 97.4% 32 2120 94.9%

5 119 99.4% 20 236 97.7% 40 272 95.5%

6 122 99.6% 24 224 98.6% 48 248 97.2%

7 124 99.7% 28 216 98.7% 56 232 97.5%

8 125 99.8% 32 212 99.3% 64 224 98.6%

faults and the associated guessing complexity. In this case, the
guessing complexity only remains practical for 64 or 56 faults;
however, the overall success rate for both of these choices is
again above 97%.

5. Impact of Random Fault Attacks on
Tiaoxin-346 and AEGIS-128L

In previous sections, we have considered ciphers with a
particular form of encryption function and have shown that
these ciphers are vulnerable to fault attacks using random
faults. We have shown that this attack enables one or more
state words to be recovered in any such cipher. Having
noted that the ciphers Tiaoxin-346 and AEGIS-128L each
exhibit this structure, we have simulated attacks on both
of these ciphers and shown that the secret key of Tiaoxin-
346 and the entire state contents of AEGIS-128L can be
recovered with practical complexity using fault attacks of this
sort. Note that we did not perform our experiments on the
hardware implementation of either cipher but instead used
computer simulations. However, other researchers [13, 14]
have demonstrated that it is feasible to apply this random
fault model in the hardware implementation of an algorithm.
Therefore, our fault attacks should be practical in both
ciphers.

In the following sections, we summarise and compare
the outcomes of these attacks for each of these ciphers,
before considering possible countermeasures and further
generalisations of our approach.

5.1. Summary of Outcomes. The discussions in Sections 3.2
and 4.2 show that it is straightforward to recover the contents
of a single state word in either cipher by inducing several
multibyte faults to a second state word. In terms of the general
ciphertext equations, (1) and (2), introducingmultibyte faults
to the common state word 𝑆𝑡[𝑢] allows us to recover the
state word 𝑞∗1 (𝑆𝑡) in each case. Tables 2 and 5 summarise the
probabilities of fully recovering the relevant state word for
various numbers of multibyte faults for each of these ciphers.
An alternative approach is to recover most of the state word
using the approach above and guess the remaining bits. This
provides a tradeoff between number of faults required and
guessing complexity, as summarised in the left-hand sections
of Tables 3 and 6.

In terms of recovering a single state word, the attacks
on the two ciphers are essentially similar. However, to be of
practical use, the attacksmust be extended to recovermultiple
words. Here, the different overall structures of the two ciphers
result in different possible outcomes. In the case of Tiaoxin-
346, extending the attack to recover six designated statewords
allows thewhole of component𝑇6 to be recovered; knowledge
of the first plaintext block then allows complete key recovery.
This attack can recover the secret key of Tiaoxin-346 using
36 random faults with a practical complexity of guessing,

namely, 236. The attack complexity can be further reduced
by increasing the number of faults: for instance, as shown in

Table 3, the attack complexity can be reduced to 224 and 218
for 42 and 48 faults, respectively.

In the case of ASEGIS-128L, there are two possible attack
scenarios, both of which allow the entire state to be recovered
at a specified time point. The more significant of these is a
ciphertext only attack, which requires eight state words to be
recovered: as shown in the right-hand section of Table 6, this

can be done using 56 faults with a guessing complexity of 232
or 64 faults with a guessing complexity of 224. On the other
hand, provided the attacker knows two successive blocks of
plaintext, a known plaintext attack is possible. This attack
requires only four state words to be recovered using random
faults and therefore requires fewer faults to be applied. In fact,
20 faults are sufficient to apply this attack, with an associated

guessing complexity of 236. Again, as shown in the central
section of Table 6, the guessing complexity can be lowered
by using more faults: for example, with 32 faults, the guessing

complexity is reduced to 212.
In summary, there are two main differences between the

full attacks for these two ciphers:

(1) The full attack on Tiaoxin-346 is a known-plaintext
attack and requires at least the first block of plaintext
to be known to the attacker, while AEGIS-128L can be
attacked with ciphertext only.

(2) Given the necessary plaintext, the attack on Tiaoxin-
346 allows full key recovery, whereas the attack on
AEGIS-128L allows state recovery only.

In terms of the full attacks discussed here, each of the
ciphers has specific structural features which allow these
attacks to be mounted. We discuss these features and their
security implications in Section 5.3 below.

10 Security and Communication Networks

Table 7: Comparison of Our Approach with Existing Approach.

Cipher Information Available Reference Fault Model No. of Faulty Ciphertexts Complexity

Tiaoxin-346 Known Plaintext
this work Random 36 236

[6] Bit Flipping 3 1

AEGIS-128L

Known Plaintext
this work Random 20 236

[6] Bit Flipping 4 1
Ciphertext Only

this work Random 56 232
[6]∗ Bit Flipping 8 1

∗This attack is an obvious extension of the work reported in [6].

5.2. Comparison to Existing Attacks. As discussed previously,
Dey et al. [6] also described differential fault attacks on
Tiaoxin-346 and AEGIS-128L, but using bit-flipping faults
rather than random faults. Table 7 compares the work of Dey
et al. [6] with our approach based on random faults.

As shown in Table 7, in each case, our technique requires
a much larger number of faults and a comparatively larger
complexity when compared to the corresponding attack of
Dey et al. [6]. However, our technique works under a random
fault model, whereas the other attacks work under a bit-
flipping fault model. The assumption of the random fault
model is more practical, as the inserted fault 𝑒 can be any 128-
bit value, whereas in the bit-flipping fault model, the fault 𝑒
must be 𝑒 = 111 ⋅ ⋅ ⋅ 1. This is a serious restriction of the latter
model.The random faultmodel has been shown to be feasible
in actual hardware, whereas the bit-flipping fault model is
largely theoretical [13].

Note again that both the fault attacks proposed in this
paper and those proposed by Dey et. al. [6] are differential
fault attacks; therefore, these attacks require the observa-
tion of multiple ciphertexts computed over the same key
and initialization vector. This falls under the nonce-reuse
scenario, which is prohibited by the designers of these
ciphers. The practical nature of our attacks confirms the
importance of adhering to this restriction. To the best of our
knowledge, there are no other nonce-reuse-based attacks on
these ciphers.

5.3. Mitigation Techniques. The ciphers we have considered
in this paper produce two ciphertext words at each time step.
The key observation that makes our fault attack possible for
these ciphers is that the same state word is used in both
ciphertext functions in the specific manner described in (1)
and (2), namely, appearing linearly in one equation and as
part of a quadratic term in the other equation. It is therefore
crucial, for any cipher which calculates multiple ciphertext
words at each time point, that the state words appearing in a
quadratic term within the calculation of one ciphertext word
do not also appear linearly in the equation for any other
ciphertext word.

Beyond this, each of the ciphers we have considered
has specific structural features which allow our attack to be
extended from individual state words to full state recovery
or key recovery. Addressing these features may also help to
improve the security of these ciphers.

In the case of Tiaxion-346, our attack can be extended
to a key recovery attack because of two combinations of
features. Firstly, the state update function is fully reversible
once the external inputs are known and the inputs during the
initialization and associated data loading phases are public
knowledge: as a consequence, the state update function can
be reversed through both the associated data loading and
initialization phases. Secondly, each component of the state
(𝑇3, 𝑇4, 𝑇6) is loaded at initialization with a complete copy
of the key 𝐾 and is then updated independently of the other
components: in combinationwith the reversibility of the state
update function, this means that an attacker only needs the
contents of a single component (in our case, 𝑇6) in order
to recover the entire key. By contrast, it is not possible to
reverse the state update function of AEGIS-128L without
partial knowledge of the earlier state contents. This means
that state recovery cannot lead to key recovery for this cipher.
AEGIS-128L also takes external input from the secret key
𝐾 during the 10 updates of the initialization phase, making
the process of reversing the state update function even more
difficult during this phase.

In Tiaoxin-346, reversibility of the state update func-
tion through the initialization phase could be prevented by
adopting the strategy used in AEGIS-128L of including the
secret key 𝐾 as an external input during this phase. This
would prevent an attacker from converting recovery of an
individual state component to full key recovery. Another
approach which would prevent full key recovery in this
cipher would be to perform the initial key loading in such
a way that the key is distributed across all the components
and cannot be recovered from the initial state of any single
component. Redesigning the state update function so as to
mix information between components during update oper-
ations might also ensure that an attacker must recover the
entire state contents in order to clock backwards and extract
the key. However, these latter approaches would not protect
against an attacker who was able to recover the entire state;
in order to guard against such an attacker, reversibility of the
update function must be prevented during the initialization
phase.

In the case of AEGIS-128L, key recovery is not possible,
but full recovery of the state allows the attacker to run the
cipher forward to encrypt and verify any variant plaintext he
or she chooses. Recovery of the state during encryption is
aided by the location of the state words that can be recovered
using random faults: if, for instance, the random fault attack

Security and Communication Networks 11

recovered 𝑆𝑡[4] and 𝑆𝑡[0] instead of 𝑆𝑡[7] and 𝑆𝑡[3], it would
not be possible to determine the contents of any other state
words without knowing the input message words 𝑀𝑡0 =
𝑃𝑡−1[0] and 𝑀𝑡1 = 𝑃𝑡−1[1]. The prevalence of the more easily

recovered words 𝑆𝑡[2], 𝑆𝑡[3], 𝑆𝑡[6], and 𝑆𝑡[7] in the keystream
equations ((17) and (18)) (note that only one input word in
each equation does not belong to this group) also makes it
easier to recover other state words in the known plaintext
scenario. By contrast, the ciphertext equations for Tiaoxin-
346 ((13) and (14)) contain multiple words from different
components as well as the words that can be recovered using
random faults; because of this structure, it is not possible to
recover any contents of components 𝑇3 and 𝑇4 from those of
𝑇6, even when the plaintext is known.

Based on the comments above, it is clear that a ciphertext
only state recovery attack would not be possible for AEGIS-
128L if the random fault attack were only able to recover
the state words 𝑆𝑡[0] and 𝑆𝑡[4]. This could be achieved by
simply replacing 𝑆𝑡[3] and 𝑆𝑡[7] by 𝑆𝑡[0] and 𝑆𝑡[4] in (17)
and (18). This change would also require a known plaintext
attacker to recover at least six state words before the final two
words could be determined from the keystream equations,
increasing the difficulty of the known plaintext attack. It
would be better, though, to avoid such attacks entirely by
applying the advice in the initial paragraph of this section.

As a further general comment, the success of our full
attacks in recovering either the full state or the complete
contents of a state component depends on being able to
retrieve the contents of state words from previous clocks
once the content of the targeted state words are known.
For example, in Tiaoxin-346, the information gained from

𝑇𝑡+16 [5] immediately applies to 𝑇𝑡6[4]. Also, in AEGIS-128L,

the information gained from attacking 𝑆𝑡[7] and 𝑆𝑡+1[7]
can be used to compute 𝑆𝑡[6]. If the states from previous
clocks cannot be easily derived from the fault attack target
state 𝑞∗1 (𝑆𝑡), relatively straightfoward state recovery strategies
like these would not be possible. An obvious example has
already been cited in relation to AEGIS-128L: if only 𝑆𝑡[0]
and 𝑆𝑡[4] could be recovered from the attack, it would not be
possible to compute the contents of other state words through
attacks at successive time points without knowledge of the
input words 𝑀𝑡0 and 𝑀𝑡1. Note also that the state recovery
process is deterministic in both ciphers due to 𝑇𝑟 being
invertible. Having a noninvertible nonlinear component in
the ciphertext equations may increase attack complexity,
at the expense of other possible weaknesses such as state
convergence.

5.4. Generalisations and Future Work. In the cases we have
considered above (Tiaoxin-346 and AEGIS-128L), the term
𝑞1(𝑆𝑡) is a simple quadratic term and the term 𝑞∗1 (𝑆𝑡) is a
single state word.Under this scenario, the random fault attack
recovers 𝑞∗1 (𝑆𝑡) directly. Itmight also be possible to extend the

form of (1) and (2) to cases where 𝑞1(𝑆𝑡) is a general nonlinear
boolean polynomial. In such cases, applying the random fault
attack may still provide partial information about the state
contents at time 𝑡. For example, if 𝑞1(𝑆𝑡) is a monomial in
more than two state words, we would be able to detect when

all words in the term 𝑞∗1 (𝑆𝑡) are 1. For a more general 𝑞1(𝑆𝑡),
bit correlations between state words in 𝑞∗1 (𝑆𝑡) and the output
ciphertext word could be exploited to recover the contents of
the individual state words.

6. Conclusion

In this paper, we have considered ciphers with a particular
form of encryption function, namely, those which produce
two ciphertext words at each time step and in which a
common state word appears linearly in the calculation of one
ciphertext word and as part of a quadratic term in calculating
the other ciphertext word. We have shown that these ciphers
are vulnerable to a differential fault attack using random faults
and that this attack enables one or more state words to be
recovered at a given time point. Depending on the particular
cipher involved, it may also be possible to extend this attack
to recover either the secret key or the entire state contents at
a specified time point.

The ciphers Tiaoxin-346 and AEGIS-128L were both
third-round candidates in the Competition for Authenticated
Encryption: Security, Applicability, and Robustness (CAE-
SAR), with AEGIS-128L being selected in the final portfolio
of this competition. Both of these ciphers have encryption
functions of the type discussed above. We have used these
ciphers as case studies, demonstrating that our random
fault attack can be extended to recover the secret key of
Tiaoxin-346 and the entire state contents of AEGIS-128L,
with practical complexity in each case. In the case of Tiaoxin-
346, the secret key can be recovered with 36 faults and a

guessing complexity of 236, while the entire state of AEGIS-
128L can be recovered with 56 faults and a complexity of 232
using ciphertext alone, and with 20 faults and a complexity of

236 in the known plaintext case.
In order to detemine these complexities, we simulated the

attacks on these ciphers in software. Although we did not
perform our experiments on the hardware implementation
of either cipher, other researchers [13, 14] have demonstrated
that it is feasible to apply this random fault model in the
hardware implementation of an algorithm. Therefore, our
fault attacks should be practical in both ciphers. We have also
compared our fault attacks on these ciphers against those of
Dey et al [6]; although our attacks require more multibyte
faults in each case, the random fault model assumed in our
attacks is much more practical than the bit-flipping faults
assumed by Dey et al in their attacks.

We have also considered the factors which facilitate the
extension of our random fault attack to enable full key
recovery or state recovery in Tiaoin-346 andAEGIS-128L and
have suggested possible countermeasures to prevent these full
attacks or make them more difficult. Ultimately, however,
the best protection against the random fault attacks we have
described is to avoid using an encryption function with the
form we have identified above.

Finally, we note again that our attack and that of Dey
et al both require the observation of multiple ciphertexts
computed over the same key and initialization vector. This
falls under the nonce-reuse scenario, which is prohibited
by the designers of these ciphers. Once again, the practical

12 Security and Communication Networks

nature of our attack confirms the importance of observing
this restriction.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] I. Nikolic, “Tiaoxin-346 Version 1.0. CAESAR competition,”
https://competitions.cr.yp.to/round1/tiaoxinv1.pdf.

[2] I. Nikolic, “Tiaoxin-346 Version 2.0. CAESAR competition,”
https://competitions.cr.yp.to/round2/tiaoxinv2.pdf.

[3] I. Nikolic, “Tiaoxin-346 Version 2.1. CAESAR competition,”
https://competitions.cr.yp.to/round3/tiaoxinv21.pdf.

[4] H. Wu and B. Preneel, “AEGIS, A Fast Authenticated
Encryption Algorithm (v1) CAESAR competition,” https://
competitions.cr.yp.to/round1/aegisv1.pdf.

[5] H. Wu and B. Preneel, “AEGIS, A Fast Authenticated
Encryption Algorithm (v1.1) CAESAR competition,” https://
competitions.cr.yp.to/round3/aegisv11.pdf.

[6] P. Dey, R. S. Rohit, S. Sarkar, andA. Adhikari, “Differential Fault
Analysis on Tiaoxin and AEGIS Family of Ciphers,” in Security
in Computing and Communications - SSCC 201, P. Mueller, S.
Thampi, B. M. Alam, R. Ko, R. Doss, and C. J. Alcaraz, Eds., vol.
625, Springer, Singapore, 2016.

[7] I. Salam, H. Q. Mahri, L. Simpson, H. Bartlett, E. Dawson, and
K. K.Wong, “Fault attacks onTiaoxin-346,” in Proceedings of the
the Australasian Computer Science Week (ASCW), ACMDigital
Library, 2018.

[8] J. Daemen and V. Rijmen, The Design of Rijndael, Springer,
Berlin, Heidelberg, Germany, 2002.

[9] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the importance
of checking cryptographic protocols for faults,” in Advances
in Cryptology—EUROCRYPT’97, W. Fumy, Ed., vol. 1233 of
Lecture Notes in Computer Science, pp. 37–51, Springer, Berlin,
Germany, 1997.

[10] E. Biham andA. Shamir, “Differential fault analysis of secret key
cryptosystems,” in Advances in Cryptology — CRYPTO ’97, vol.
1294 of Lecture Notes in Computer Science, pp. 513–525, Berlin,
Heidelberg, Germany, 1997.

[11] J. Blömer and J. Seifert, “Fault Based Cryptanalysis of the
Advanced Encryption Standard (AES),” in Financial Cryptog-
raphy, R. Wright, Ed., vol. 2742 of Lecture Notes in Computer
Science, pp. 162–181, Springer, Berlin, Heidelberg, Germany,
2003.

[12] M. Tunstall, D. Mukhopadhyay, and S. Ali, “Differential fault
analysis of the Advanced Encryption Standard using a single
fault,” in Information Security Theory and Practice. Security
and Privacy of Mobile Devices in Wireless Communication, C.
A. Ardagna and J. Zhou, Eds., vol. 6633 of Lecture Notes in
Computer Science, pp. 224–233, Springer, Berlin, Heidelberg,
Germany, 2011.

[13] A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache, “Fault
injection attacks on cryptographic devices: Theory, practice,

and countermeasures,” Proceedings of the IEEE, vol. 100, pp.
3056–3076, 2012.

[14] S. P. Skorobogatov and R. J. Anderson, “Optical fault induction
attacks,” in Cryptographic Hardware and Embedded System -
CHES 2002, B. S. Kaliski, K. Koç, and C. Paar, Eds., vol. 2523
of Lecture Notes in Computer Science, pp. 2–12, Springer, Berlin,
Heidelberg, Germany, 2003.

https://competitions.cr.yp.to/round1/tiaoxinv1.pdf
https://competitions.cr.yp.to/round2/tiaoxinv2.pdf
https://competitions.cr.yp.to/round3/tiaoxinv21.pdf
https://competitions.cr.yp.to/round1/aegisv1.pdf
https://competitions.cr.yp.to/round1/aegisv1.pdf
https://competitions.cr.yp.to/round3/aegisv11.pdf
https://competitions.cr.yp.to/round3/aegisv11.pdf

International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Advances in

OptoElectronics

Hindawi

www.hindawi.com

Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi

www.hindawi.com

 Journal of

Engineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi

www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi

www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

Submit your manuscripts at

www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

