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1 Introduction

This is the second part of our project dedicated to the puzzle of the Random Field Ising

Model. The first paper [1] was about nonperturbative CFT aspects, while here we will

focus on the Renormalization Group (RG) aspects and will propose a tentative resolution

of the puzzle. The two papers can be read largely independently.

As is well known, the usual ferromagnetic Ising model with the Hamiltonian H =

−J∑〈ij〉 sisj , where si = ±1 are spins on a regular d-dimensional lattice with nearest-

neighbor interactions, has a thermodynamic second-order phase transition in d > 2 which

is described by a non-Gaussian fixed point for d < 4. At the phase transition the correlation

length ξ →∞. This idealized Ising model assumes no impurities, but real materials always

have impurities. Sufficiently near the critical temperature we will have ξ > L, the average

distance between impurities,1 and we should start worrying about their effect. Will they

change the universality class or not?

Specifically, in this work we are interested in impurities which have a random and

frozen magnetic moment (i.e. some of the spins at assigned randomly chosen values +1 or

−1, while others are allowed to fluctuate.2 This is modeled by adding to the usual Ising

Hamiltonian a random magnetic field hi on each site:

H = −J
∑

〈ij〉

sisj +
∑

i

hisi . (1.1)

1The cleanest electronics-grade silicon has L ∼ 1000 lattice spacings (about one impurity per billion
atoms). Available ferromagnetic materials have even more impurities.

2This may be realizable in a ferromagnetic metal with randomly distributed magnetic impurities forming
a spin-glass state, due to the RKKY interaction whose sign depends on the distance. The most common
experimental realizations of the RFIM is a randomly diluted antiferromagnet in a weak external magnetic
field [2]. See [3] for other experimental realizations.

– 1 –



J
H
E
P
0
3
(
2
0
2
1
)
2
1
9

This equation defines our object of interest: the Random Field Ising Model (RFIM). The

real magnetic field h = (hi) is assumed to have a factorized probability distribution

P(h)Dh =
∏

P (hi)dhi, (1.2)

so that hi are independent identically distributed random variables. It is assumed that hi
has zero mean and a finite variance: h2

i = H.

Observables are computed in two steps, first averaging over spin fluctuations with a

fixed magnetic field, and then over the magnetic field (this is called quenched disorder

average). E.g. for the two-point function of spins:

〈sisj〉h =

∫
DhP(h)〈sisj〉h, (1.3)

where 〈sisj〉h is the thermodynamic average holding h fixed, and the overbar will always

denote a magnetic field average.

Near the phase transition, the lattice model (1.1) may be replaced by an effective

Landau-Ginzburg Hamiltonian

S[φ, h] =

∫
ddx

[
1

2
(∂µφ)2 + V (φ) + h(x)φ(x)

]
, (1.4)

V (φ) =
m2

2
φ2 +

λ

4!
φ4,

where the random magnetic field has short-range correlations: h(x)h(y) = Hδ(d)(x − y).

The relevance condition for the disordered coupling is ∆φ < d/2 (“Harris criterion”). Since

∆φ = d/2−1+η/2 and η is small, the Harris criterion is satisfied and the coupling h(x)φ(x)

is strongly relevant.3

Thus, the phase transition in RFIM is different from the usual Ising model in d di-

mensions. In 1979, Parisi and Sourlas [5] formulated a conjecture relating it instead to the

Ising model in d− 2 dimensions. It is convenient to split the Parisi-Sourlas conjecture into

two parts:

1. Emergence of SUSY: the RFIM transition is described by a conformal field theory

(CFT) in d dimensions, possessing a non-unitary supersymmetry with scalar super-

charges (Parisi-Sourlas SUSY);

2. Dimensional reduction: a Parisi-Sourlas supersymmetric CFT in d dimensions

(SCFTd) has the same critical exponents as an ordinary, non-supersymmetric CFT

in d− 2 dimensions.

3Alternatively, one could add the h(x)φ2(x) perturbation which is weakly relevant in 3d by the Harris
criterion, using the Ising fixed point dimension ∆(φ2) ≈ 1.41. This describes the phase transition in
a different lattice model: H = −

∑
〈ij〉

(J + δJij)sisj where δJij is a random perturbation called bond

disorder. Because the random φ2 perturbation is weakly relevant, the bond-disorder phase transition is
better understood than the RFIM phase transition studied here, see e.g. [4] for a recent discussion. Another
related difference with bond disorder is highlighted in footnote 30.

– 2 –
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The dimensionally reduced CFTd−2 has the same global symmetry Z2 as the parent SCFTd

and is expected to be the ordinary Ising fixed point in d− 2 dimensions. Hence, the RFIM

transition in d dimensions should have the same exponents as the ordinary Ising transition

in d− 2 dimensions.

As subsequent work has shown, this conjecture is subtle: it is not quite true, nor is

it however totally false. In spite of much work, there seems to be no agreement in the

literature about why this happens (see appendix A for the review). Here are some relevant

pro and contra results:

• It works in perturbative expansion near the upper critical dimension d = 6− ε.

• It fails in d = 3, 4: numerical simulations show a non-SUSY continuous phase transi-

tion in the 3d and 4d RFIM [6, 7]. Dimensional reduction also fails: the 1d Ising does

not even have a phase transition, while the 2d Ising exponents do not agree with 4d

RFIM [7].

• It might be correct in d = 5 where there is numerical evidence for both SUSY and

dimensional reduction [8, 9].

• Both SUSY and dimensional reduction work perfectly in a parallel story for the

random field iφ3 model relevant for the description of branched polymers, which

maps on the Lee-Yang universality class in d− 2 dimensions (see section A.4).

The first paper of our project [1]4 performed new checks of Part 2 of the Parisi-Sourlas

conjecture, using nonperturbative CFT techniques. We have not found any inconsistency

from this point of view.5 Since Part 2 held up to scrutiny, the problem must therefore lie

in Part 1. Here we will proceed to study Part 1, and try to understand why sometimes it

works and sometimes fails.

We will start in section 2 with a review of the Parisi-Sourlas dimensional reduction.

From many ways to the Parisi-Sourlas supersymmetry, we choose to base our exposition

on the method of replicas accompanied by the “Cardy transform”: a judicious linear trans-

formation of fields first proposed by Cardy in 1985 [15] but little used since. The Cardy

transform exhibits a Gaussian theory perturbed by various interactions, some of which are

weakly relevant and others are irrelevant in d = 6−ε dimensions. The “basic RG scenario”

(section 2.4) consists in taking the n→ 0 limit and dropping the formally irrelevant terms,

which naively results in a supersymmetric theory (and hence in dimensional reduction).

This SUSY theory and its fixed point are discussed in section 3, including a subtle point

(section 3.2) of how SUSY emerges at long distances in the basic scenario, even though the

Sn-invariant regulator breaks it.

After a short recap in section 4, we plunge into the heart of our study, which is to

examine the validity of the basic RG scenario assumptions. One of them (dropping the

4See also an online talk [10] for an introduction.
5First checks of dimensional reduction were based on perturbation theory (see appendix A.1). Nonper-

turbative arguments for dimensional reductions were advanced in [11–14]. Our work [1] is different from
these in that it does not rely on the use of Lagrangians.
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n-suppressed terms) is justified in section 6, after having understood Sn invariance in the

Cardy basis (section 5). Section 5 also introduces the key concept of the “leader” operator,

which is the lowest-dimension part of an Sn-singlet. Scaling dimension of the leader controls

that of the full perturbation, as we explain in section 7. From here on, we work in the

strict n = 0 limit and examine if any perturbation irrelevant in d = 6 − ε may become

relevant in lower d, by looking at the leaders of Sn-singlet perturbations. These leaders

are classified (section 8) into three classes: non-susy-writable, susy-writable and susy-null,

which have only triangular mixing among each other, simplifying the anomalous dimension

computations (section 9). We list all leaders up to dimension 12 in d = 6, which includes

one or more leaders in each of the three classes. Finally, using the computed one- or

two-loop anomalous dimensions, some of which are negative, we build a case for the loss

of SUSY via RG instability of the SUSY fixed point below some critical dimension value

dc (section 10). Section 11 is devoted to a discussion of our results and to a list of open

problems: developing our method further, applying it in different situations (like for the

branched polymers), and checking our conclusions with alternative techniques.

Prior work on the RFIM phase transition being vast, we gather an extensive review

of the literature in appendix A, which may be of independent interest. Other appendices

contain technical details referred to from the main text.

Note on phi’s. This paper will have a proliferation of phi’s. Stroked φ is the original field

in the random field Landau-Ginzburg Lagrangian (1.4). Stroked φi with an index denotes

replicated fields introduced in section 2.1. Loopy ϕ is a field from the Cardy transform

basis, section 2.3. All these live in R
d. Big Φ is the superfield (2.28) living in R

d|2. Finally,

hatted φ̂ is a scalar field in R
d−2 which appears in the dimensionally reduced action (2.39).

1.1 Executive summary for RFIM experts

The great length of this paper is justified by the complexity of the problem, and by our wish

to make our work accessible to the readers without prior RFIM experience. In this section

we will provide a quick summary of our main ideas and results, which on the contrary will

only be understandable to the RFIM experts. All facts mentioned here are discussed in

detail elsewhere in the paper (see the table of contents, the outline in the introduction,

and a roadmap in section 4).

Via the method of replicas, RFIM phase transition is described by the Lagrangian

(n→ 0)

∑n

i=1

[
1

2
(∂µφi)

2 + V (φi)

]
− H

2

(∑n

i=1
φi
)2
, V (φ) =

m2

2
φ2 +

λ

4!
φ4. (1.5)

Using the linear transformation of fields φ1 = ϕ + ω/2, φi = ϕ − ω/2 + χi (i = 2 . . . n),∑
χi = 0, the replicated Lagrangian is mapped to L0 + L1 + L2, where

L0 =∂µϕ∂µω−
H

2
ω2+

1

2

∑n

i=2
(∂µχi)

2+
m2

2

(
2ϕω +

∑n

i=2
χ2
i

)
+
λ

4!

(
4ωϕ3 + 6

∑n

i=2
χ2
iϕ

2
)
,

(1.6)

L1 terms vanish for n → 0 and can be safely dropped, while L2 terms are irrelevant and

may be dropped in d = 6− ε, ε≪ 1. The quartic interactions in L0 are weakly relevant for

– 4 –
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ε ≪ 1 and flow to an IR fixed point. Separating weakly relevant and irrelevant effects is

the main point of this transformation. Replacing −2 linearly independent bosons χi by two

scalar fermions ψ, ψ̄, Lagrangian L0 maps to an equivalent Parisi-Sourlas supersymmetric

Lagrangian

∂µϕ∂µω −
H

2
ω2 + ωV ′(ϕ) + ∂µψ∂µψ̄ + ψψ̄V ′′(ϕ) . (1.7)

This derivation of Parisi-Sourlas supersymmetry (Cardy, 1985) works provided all the L2

terms or any other Sn-invariant terms are irrelevant, as is the case for ε ≪ 1. Our work

investigates for the first time whether this is still the case for ε = O(1).

To do so we build all possible Sn-invariant polynomial operators (not necessarily those

included in the quartic replicated Lagrangian) and transform them into the field basis

ϕ, ω, χi. We prove that the RG behavior of the transformed Sn-invariant operator is de-

termined by the part of the lowest classical dimension (the leader). We compute one- or

two-loop anomalous dimensions of many leaders, up to classical dimension ∆ = 12, and

classifying them into three types by their symmetry:

• Susy-writable leaders, which make sense in the SUSY field basis ϕ, ω, ψ, ψ̄. E.g. the

leaders of Sn-invariant quadratic and quartic interactions
∑n
i=1 φ

2
i and

∑n
i=1 φ

4
i are,

see (1.6), 2ϕω +
∑n
i=2 χ

2
i → ϕω + 2ψψ̄ and 4ωϕ3 + 6

∑n
i=2 χ

2
iϕ

2 → 4ωϕ3 + 12ψψ̄ϕ2,

so these are susy-writable, as are any leaders involving only χ2
i .

• Susy-null leaders, which can be transformed to the SUSY field basis, but which vanish

after such a transformation because of ψ2 = ψ̄2 = 0. The first such leader is (F4)L =

(
∑n
i=2 χ

2
i )

2 → (2ψψ̄)2 = 0 of the Sn-invariant operator F4 =
∑n
i,j=1(φi − φj)4.

• Non-susy-writable leaders, which cannot even be transformed to the SUSY field basis,

because they involve χi raised to a power higher than 2. The first of them is the

leader (F6)L = (
∑n
i=2 χ

3
i )

2− 3
2(
∑n
i=2 χ

2
i )(
∑n
j=2 χ

4
j ) of the Sn-invariant operator F6 =∑n

i,j=1(φi − φj)6.

Susy-writable and susy-null leaders have O(n−2) symmetry in the field basis (ϕ, χi, ω),

which is the same as symmetry of L0, while non-susy-writable leaders break this symmetry

to Sn−1 ⊂ O(n− 2).

Susy-writable leader dimensions can be computed from the SUSY Lagrangian (1.7)

or, due to dimensional reduction, from the Wilson-Fisher Lagrangian in d− 2 dimensions.

On the contrary, susy-null and non-susy-writable leader dimensions are inaccessible from

the SUSY Lagrangian or via dimensional reduction, and have to be computed from La-

grangian (1.6).

We did not find any susy-writable leader which becomes relevant. On the other hand,

the first susy-null leader (F4)L and (F6)L have sizable negative two-loop dimensions 8 −
2ε− 8

27ε
2 + . . . and 12−3ε− 7

9ε
2 + . . ., and appear to become relevant around dc ≈ 4.5. We

thus predict that for d < dc the Parisi-Sourlas fixed point is destabilized, and the RFIM

transition is described by another, non-supersymmetric, fixed point (about which we have

nothing to say).

– 5 –
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2 Replicas and Cardy transform

Our work begins from two ideas, one standard and one less so. The standard idea is the

method of replicas, used in essentially all known to us renormalization group approaches

to this problem.6 The less standard idea is the Cardy transform, a linear transformation of

replica fields first considered by Cardy [15] in 1985 but little used since. We use it because

it reveals the Gaussian fixed point and clarifies the renormalization group picture.

2.1 Method of replicas

We use the version of the method of replicas appropriate for the study of correlation

functions.7 We are interested in quenched averaged correlators, defined first averaging over

φ and then over h:

〈A(φ)〉 =

∫
DhP(h)

1

Zh

∫
DφA(φ)e−S[φ,h]. (2.1)

Here S[φ, h] is given in (1.4), A(φ) is any function of the field φ, e.g. a product of φ at

several points, P(h) is the disorder distribution, and overbar denotes the disorder average.

We multiply the integrand in (2.1) by 1 = Zn−1
h /Zn−1

h , rename φ→ φ1, and represent

Zn−1
h in the numerator as the product of partition functions of ‘replica’ fields φ2, . . . , φn,

with the same action as φ1. We get:

〈A(φ)〉 =

∫
DhP(h)

1

Znh

∫
D~φA (φ1)e−

∑n

i=1
S[φi,h]. (2.2)

This equation is independent of n. Particularly nice is the limit n → 0, since the denom-

inator Znh → 1. With the usual provisos for going from integer to real n and commuting

the limit and the integral, we get a simpler formula:

〈A(φ)〉 = lim
n→0

∫
DhP(h)

∫
D~φA(φ1)e−

∑n

i=1
S[φi,h] . (2.3)

As mentioned our disorder is mean zero and with short-range spatial correlations:

h(x) =

∫
DhP(h)h(x) = 0 , h(x)h(x′) =

∫
DhP(h)h(x)h(x′) = H δ(x− x′) . (2.4)

The simplest distribution satisfying these properties is the Gaussian white noise:

P(h) ∝ e− 1
2H

∫
ddxh(x)2

. (2.5)

Assuming this distribution, the integral over h in (2.3) is Gaussian and can be performed.

We obtain:

〈A(φ)〉 = lim
n→0

∫
D~φA(φ1)e−Sn[~φ] =: 〈A(φ1)〉, (2.6)

Sn[~φ] =

∫
ddx





n∑

i=1

[
1

2
(∂µφi)

2 + V (φi)

]
− H

2

(
n∑

i=1

φi

)2


 . (2.7)

6One exception is [16], which develops RG for the probability distribution of magnetic impurities.
7This is sometimes called “second variant”, see e.g. [17], section 4.2.2.

– 6 –



J
H
E
P
0
3
(
2
0
2
1
)
2
1
9

This is a pleasing result: we can compute disorder-averaged correlation functions from

a theory where disorder is replaced by a coupling among n → 0 replicas. This can be

generalized to disorder-averaged products of several correlation functions, e.g.

〈A(φ)〉〈B(φ)〉〈C(φ)〉 = lim
n→0

∫
D~φA(φ1)B(φi)C(φj)e

−Sn[~φ] = 〈A(φ1)B(φi)C(φj)〉, (2.8)

as long as all the three indices 1, i, j are all different. Note that the replicated theory

contains formally φi with any index, so there is no contradiction in introducing 3 different

fields as in (2.8) which will be compensated by −3 fields when taking n → 0 limit. Such

occurrences of a negative number of fields are a necessary feature of this formalism; we will

encounter it soon in section 2.3.

2.2 Standard perturbation theory and the upper critical dimension

From the quadratic part of the action Sn one derives the propagator inverting the matrix

G−1 = k2
1−HM , (2.9)

where M is an n× n matrix whose all elements are unity. An easy computation gives

G =
1

k2
+

HM

k2(k2 − nH)
. (2.10)

This propagator is employed in most perturbative studies of RFIM. Notice that two terms

have a different scaling with k, which renders perturbative computations somewhat awk-

ward.8 One usually has to go through the diagrams looking for terms most singular in the

limit k → 0, hence most important at long distances, which come precisely from the second

term in (2.10). The effective expansion parameter for these terms, deemed most important

in IR, is therefore changed from λ to λH. The H having mass dimension 2, λH becomes

marginal at the upper critical dimension duc = 6.

This way of reasoning, while standard in much of RFIM work, seems like a departure

from the usual Wilsonian paradigm.9 Wilson taught us to think in terms of a Gaussian fixed

point at which fields have well-defined scaling dimensions. One then classifies perturbations

into strongly relevant, weakly relevant, and irrelevant. Strongly relevant perturbations are

tuned, irrelevant dropped, while the weakly relevant may drive the RG flow to a non-

Gaussian weakly-coupled fixed point nearby. This is much more systematic and powerful

than having to sift through diagrams. Cardy [15] showed that the disordered fixed point is

not an exception and can also be presented this way. We will now describe his construction,

which will form the basis for our work.

2.3 Cardy transform

As mentioned, different components of the propagator (2.10) have different scaling dimen-

sions. The idea of Cardy [15] is to make this manifest via a linear transformation in the

8Another displeasing feature is that the second term in (2.10) only acquires good scaling in the n → 0

limit.
9A related concept is that of ‘zero-temperature fixed point’ which we review in appendix A.5.
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field space. One then drops the irrelevant terms in the resulting effective Lagrangian, and

reaches the disordered fixed point by RG flowing from a Gaussian fixed point perturbed

by a weakly relevant perturbation.

The Cardy transform can be guessed by the following argument. First one decides

to treat φ1 differently from φ2, . . . , φn (perhaps motivated by eq. (2.3) for the disordered

correlated functions). One then writes

φi = ρ+ χi , (i = 2 . . . n) , with
n∑

i=2

χi = 0 , (2.11)

i.e. ρ = 1
n−1(φ2+. . .+φn). The quadratic part of (2.7) then separates nicely as (

∑′ ≡∑n
i=2):

1

2

[
(∂φ1)2 + (n− 1)(∂ρ)2 −H[φ1 + (n− 1)ρ]2

]
+

1

2

∑′
(∂χi)

2 . (2.12)

In the n→ 0 limit this simplifies even further as

1

2

[
(∂φ1)2 − (∂ρ)2 −H(φ1 − ρ)2

]
+

1

2

∑′
(∂χi)

2 = ∂ϕ∂ω − H

2
ω2 +

1

2

∑′
(∂χi)

2 , (2.13)

where we defined

ϕ =
1

2
(φ1 + ρ), ω = φ1 − ρ . (2.14)

The Cardy transform is given, for any n, by eqs. (2.11), (2.14), which equivalently can be

written as

φ1 = ϕ+ ω/2,

φi = ϕ− ω/2 + χi (i = 2 . . . n). (2.15)

From the quadratic part of (2.13), the transformed fields ω, ϕ, χi have well-defined scaling

dimensions in the n→ 0 limit:

∆ϕ =
d

2
− 2 , ∆χ =

d

2
− 1 , ∆ω =

d

2
. (2.16)

Note that it would be wrong to think of the ω2 term in (2.13) as a mass term, because the

kinetic term (∂ω)2 is missing. In fact all propagators are scale invariant:10

〈ϕkϕ−k〉 =
H

k4
, 〈ϕkω−k〉 =

1

k2
, 〈ωω〉 = 0, 〈(χi)k(χj)−k〉 =

1

k2

(
δij −

1

n− 1
Πij

)
.

(2.17)

The 1/k2 and 1/k4 are the same powers as in (2.10) but now they are nicely separated.

The dimension of ϕ is below the unitarity bound — one sign that we are dealing with a

non-unitary theory.

Applying the Cardy transform to the interaction term in (2.7), we obtain

V (ϕ+ ω/2) +
∑′

V (ϕ− ω/2 + χi) . (2.18)

10Here Πij is an (n − 1) × (n − 1) matrix whose all elements are 1. Note that the χχ propagator is
consistent with the constraint

∑n

i=2
χi = 0.
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Taylor-expanding the quartic potential,11 we organize the resulting terms by their scaling

dimension. Since ϕ has the smallest scaling dimension, the most relevant term is obtained

by keeping ϕ in the argument, which gives

[1 + (n− 1)]V (ϕ) = nV (ϕ) . (2.19)

This is an example of an “n-suppressed” term, i.e. term vanishing in the n → 0 limit.

The naive expectation is that such terms should not matter. Below we will discuss this in

detail, analyze various subtleties, and confirm the naive expectation. For the moment let

us focus on the terms which survive as n→ 0. The most relevant such terms appear when

we expand either to first order in ω or to second order in χi (the first order in χi vanishes

thanks to
∑′ χi = 0):

V ′(ϕ)
ω

2
+ (n− 1)V ′(ϕ)

(
−ω

2

)
= ωV ′(ϕ) + n-suppressed , (2.20)

1

2
V ′′(ϕ)

∑′
χ2
i .

These have the same scaling dimension ∆(V (ϕ)) + 2. We define the leading Lagrangian L0

including the quadratic terms and these most relevant terms, in the n→ 0 limit:

L0 = ∂ϕ∂ω − H

2
ω2 + ωV ′(ϕ) +

1

2

∑′ {
(∂χi)

2 + χ2
iV

′′(ϕ)
}
. (2.21)

Explicitly, for the quartic potential (including the mass term) this is

L0 = ∂ϕ∂ω−H
2
ω2 +

1

2

∑′
(∂χi)

2 +
m2

2

(
2ϕω +

∑′
χ2
i

)
+
λ

4!

(
4ωϕ3 + 6

∑′
χ2
iϕ

2
)
. (2.22)

We can now easily rederive the upper critical dimension duc = 6 in this language: the

quartic interactions have dimension 2d− 6 and become marginal at d = duc.
12

Expanding (2.18) to higher order, we get terms of higher scaling dimensions. We

include all such terms which survive in the n→ 0 limit into the subleading Lagrangian L1.

It is easy to see that the lowest nontrivial terms in L1 involve expanding to cubic order:

L1 ⊃ V ′′′(ϕ)×
{∑′

χ3
i , ω

∑′
χ2
i , ω

3
}
. (2.23)

Comparing to the V ′′(ϕ)
∑
χ2
i term present in L0, we see that these L1 terms have dimen-

sion 1,2 and 4 units higher, so they are irrelevant, at least in d = duc− ε. The terms in L1

proportional to V ′′′′(ϕ) (expanding to quartic order) would be even more irrelevant.

Finally, we gather in L2 all n-suppressed terms. They come from both the quadratic

part and the interactions, and some of them were already mentioned. E.g.

L2 ⊃ n
{

(∂ϕ)2, ϕω, (∂ω)2, V (ϕ), . . .
}
. (2.24)

11Only the quartic potential will be treated in this work, while the cubic potential (branched polymers
and the Lee-Yang universality class) will be dealt with in a future publication [18]. See section 11.1.3.

12For the branched polymers (the cubic potential) analogous considerations would give duc = 8.
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We stress that the Cardy transform being just a linear transformation of fields, it cannot in-

troduce any mistake compared to the original replicated Lagrangian, unless one drops some

terms. Any observable or correlation function which was computable from the replicated

Lagrangian can be equivalently computed in the Cardy basis (ϕ, ω, χi). E.g., applying

the Cardy transform to φ1, φi, φj , . . . in a general disordered correlator like (2.8), we can

express it as a linear combination of correlators of Cardy fields.

2.4 Basic RG scenario

Let us summarize the results so far. Starting from the random field action (1.4) we used

the method of replicas and the Cardy transform (2.15) to obtain a Lagrangian

LCardy = L0 + L1 + L2 , (2.25)

where

• L0 contains the terms which are relevant and do not vanish as n→ 0,

• L1 contains the terms which are irrelevant and do not vanish as n→ 0,

• L2 contains all n-suppressed terms.

Classification relevant/irrelevant is for small ε = duc − d and it is not a priori clear what

will be the fate of L1 terms for larger ε. Let’s assume that (a) L1 terms remain irrelevant

and can be discarded, and (b) that L2 can be simply dropped in the n→ 0 limit. We will

refer to these two assumptions as “basic RG scenario”. So we simply drop L1 and L2 and

assume that the IR physics of the disordered model is captured by L0 alone. Following

this scenario we will draw some interesting conclusions in sections 2.5 and 2.6, concerning

supersymmetry and dimensional reduction. Starting from section 3, we will start carefully

checking whether the two assumptions hold.

2.5 Parisi-Sourlas SUSY

Within the basic RG scenario, we need to understand the n → 0 limit of the Lagrangian

L0. Here the dependence on n appears only through the (n − 1) fields χi which sum

to zero, so we have effectively (n − 2) linearly independent fields. Since L0 is Gaussian

in χi, integrating them out would give a result proportional to
(
det[−∂2 + V ′′(ϕ)]

)− n−2
2 .

When n → 0 this reduces to det[−∂2 + V ′′(ϕ)], which is the usual result for a fermionic

Gaussian path integral (up to overall factors which cancel in the computation of correlation

functions). This motivates the substitution

1

2

n∑

i=2

χi[−∂2 + V ′′(ϕ)]χi
n→0−→ ψ[−∂2 + V ′′(ϕ)]ψ̄, (2.26)

where ψ and ψ̄ are two anticommuting real scalar fields. By taking the limit n→ 0 of L0 we

thus obtain a Lagrangian of two commuting real scalar fields ϕ, ω and two anticommuting
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ones ψ, ψ̄,13

LSUSY = ∂ϕ∂ω − H

2
ω2 + ωV ′(ϕ) + ∂ψ∂ψ̄ + ψψ̄V ′′(ϕ). (2.27)

This is the Parisi-Sourlas Lagrangian, which is invariant under a supersymmetry. This can

be made manifest using an orthosymplectic superspace with x as a bosonic and θ, θ̄ as two

real Grassmann coordinates. We can then combine all fields into one superfield

Φ(x, θ, θ̄) = ϕ(x) + θψ̄(x) + θ̄ψ(x) + θθ̄ω(x) . (2.28)

The action in superspace takes the form

Ssuperspace =

∫
ddxdθ̄dθ

[
−1

2
ΦD2Φ + V (Φ)

]
, (2.29)

where D2 := ∂2−H∂θ∂θ̄ is the super-Laplacian. It is straightforward to check that integrat-

ing over θ, θ̄ reduces (2.29) to
∫
ddxLSUSY. Parisi-Sourlas supersymmetry transformations

consist of (super)translations R
d|2 and of OSp(d|2) (super)rotations which leave the super-

space metric dx2 − 4
H dθdθ̄ invariant.

The conclusion is that, if the basic RG scenario holds, the critical point of a random

field theory is in the same universality class as the IR fixed point of the supersymmetric

Parisi-Sourlas action (2.29). This is Part 1 (Emergence of SUSY) of the Parisi-Sourlas

conjecture.

This way to see the emergence of supersymmetry is different from the original one [5]

based on classical solutions of a stochastic partial differential equation. The original argu-

ment had some caveats (the solution may not be unique, the fermionic determinant was

missing the absolute sign, etc.). The Cardy transform argument also has assumptions (can

we drop L1 and L2?), but as we will see the validity of these assumptions may be easier to

check.

Supersymmetry leads to various nice consequences for correlation functions.

E.g. 〈ϕ(x)ϕ(0)〉, 〈ϕ(x)ω(0)〉, 〈ω(x)ω(0)〉 correlators can be extracted from the single cor-

relator of superfields:

〈Φ(x, θ1, θ̄1)Φ(0, θ2, θ̄2)〉 = 〈ϕ(x)ϕ(0)〉+ θ1θ̄1〈ω(x)ϕ(0)〉+ θ1θ̄1θ2θ̄2〈ω(x)ω(0)〉+ . . . (2.30)

The l.h.s. being a function of x2 − 4
H (θ1 − θ2)(θ̄1 − θ̄2),this gives relations

〈ϕ(x)ω(0)〉 = 〈ψ̄(x)ψ(0)〉 = − 4

H

d

dx2
〈ϕ(x)ϕ(0)〉, 〈ω(x)ω(0)〉 = 0. (2.31)

While the IR scaling dimensions get corrections compared to the UV dimensions (2.16),

these supersymmetric relations imply that ∆ω = ∆ϕ + 2, ∆ψ = ∆ψ̄ = ∆ϕ + 1 remain true

in the IR.

13Note that this formulation only works for L0. In fact the Lagrangians L1 and L2 may contain operators
proportional to

∑′
χk

i for k > 2, which are ‘non-susy-writable’ (cannot be written in terms of ψ, ψ̄). This
will be discussed in detail below. In the following sections, to study the RG flow of L1 and L2, we will
therefore use the formulation in terms of the fields χi.
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We can also trace what this implies for physical observables, which are correlators of

φ’s. It is customary to consider connected and disconnected 2-point functions:

Gconn = 〈φ(x)φ(0)〉 − 〈φ(x)〉〈φ(0)〉, Gdisc = 〈φ(x)〉〈φ(0)〉. (2.32)

In the replica formalism these can be expressed as (see (2.8))

Gconn = 〈φ1(x)φ1(0)〉 − 〈φ1(x)φi(0)〉, Gdisc = 〈φ1(x)φi(0)〉. (2.33)

where i 6= 1 is arbitrary. Averaging over i = 2, . . . , n, Cardy-transforming, and using

〈ωω〉 = 0 as a consequence of SUSY, we get

Gconn = 〈ϕ(x)ω(0)〉, Gdisc = 〈ϕ(x)ϕ(0)〉. (2.34)

By (2.31), this gives a relation between Gconn and Gdisc.

We should warn the reader about various subtleties concerning the relations of the La-

grangians L0 and LSUSY. First, while the two are formally equivalent at the classical level,

differences may appear at the level of loop effects because the most natural Sn-invariant

UV regulator of L0 is not SUSY-invariant. We will resolve this subtlety in section 3.2.

Second, Lagrangians L0 and LSUSY have overlapping but not identical sets of correla-

tion functions. Any L0 correlator of operators made from ϕ, ω and O(n − 2)-invariant

objects quadratic in χi can be mapped to an LSUSY correlator via 1
2

∑′ χ2
i → ψψ̄,

1
2

∑′(∂χi)
2 → ∂ψ∂ψ̄ etc. E.g. we have the following relation

〈
1

2

∑′
χ2
i (x)

1

2

∑′
χ2
i (0)

〉
= 〈ψψ̄(x)ψψ̄(0)〉, (2.35)

as is easy to check in the free theory (λ = 0). We extend this to other bilinears and their

products in appendix C. Some uncontracted correlators can also be mapped, allowing for

tensorial coefficients: e.g.

〈χi(x)χj(0)〉 = −(δij + Πij)〈ψ(x)ψ̄(0)〉. (2.36)

However, this does not extend to general correlators. E.g. as we discuss in appendix C,

it does not seem possible to represent a general 4-point function 〈χiχjχkχl〉 as a linear

combination of 〈ψψψ̄ψ̄〉 correlators (where ψ’s and are ψ̄’s may be inserted in arbitrary

order at four points). So, while the Cardy basis still contains an infinitude of different

fields χi, necessary to faithfully represent general replicated observables (2.8), some of this

richness is gone in the SUSY theory which only has two fields ψ, ψ̄.14

We will call “susy-writable” those L0 theory operators whose correlators can be com-

puted by SUSY theory LSUSY. Not all Sn−1-invariant operators belong to this class, the

simplest examples being
∑′ χki for k > 2, see footnote 13. These operators are nontrivial,

e.g. their 2-point functions are nonzero. Yet there does not seem to be a way to compute

them using the SUSY fields.

14Going in the opposite direction, general SUSY correlators of ψ, ψ̄ at different points, like
〈ψ(x1) . . . ψ(xn)ψ̄(y1) . . . ψ̄(yn)〉, do not seem to have any particular meaning in the L0 theory.
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2.6 Dimensional reduction

Part 2 (Dimensional reduction) of the Parisi-Sourlas conjecture [5] states that the

supersymmetric theory (2.27), (2.29) is related to a theory in two less dimensions with

no disorder nor supersymmetry. More concretely it says that correlation functions of

the SUSY theory can be mapped to correlation functions of a (d − 2)-dimensional model

with the same interaction V (φ), by restricting the coordinates to a codimension two

hyperplane, and setting to zero the Grassmann variables. In [1] we tested the dimensional

reduction for the strongly coupled fixed point of the RG flow of the supersymmetric

theory. We argued that the map works at the level of axiomatic CFTs, due to particular

superconformal symmetry of the theory.

Let us illustrate how this works by considering the 2-point functions of Φ computed

at the IR fixed point of the action (2.29) with a given potential V (Φ) (e.g. a quartic or a

cubic). First by setting θ = θ̄ = 0 in (2.30) we have a general SUSY relation:

〈Φ(x1, 0, 0)Φ(x2, 0, 0)〉 = 〈ϕ(x1)ϕ(x2)〉. (2.37)

Next we pick a d − 2 hyperplane R
d−2 ⊂ R

d, for definiteness spanned by the first d − 2

components. Dimensional reduction means that by demanding x’s to lie in this hyperplane

we get a further equality:

〈ϕ(x1)ϕ(x2)〉 = 〈φ̂ (x1)φ̂ (x2)〉CFTd−2
, (xi ∈ R

d−2). (2.38)

The correlation function in the r.h.s. of (2.38) is computed in a (d−2)-dimensional confor-

mal field theory, the RG fixed point of the non-supersymmetric Landau-Ginzburg action

S =
4π

H

∫
dd−2x

[
1

2
(∂φ̂ )2 + V (φ̂ )

]
. (2.39)

The potential is the same as the initial random field action, but this theory lives in 2 dimen-

sions less and has no disorder fields. For simplicity we stated (2.38) for 2-point functions,

but it generalizes for higher point functions and for composite operator insertions [1].

With prior studies [11–14]15 and our own tests in [1], Part 2 of the Parisi-Sourlas

conjecture appears to be on rather solid ground, especially compared to Part 1. In this

paper, we will assume that Part 2 is true and we will use it as one of ingredients to

understand what may go wrong with Part 1. E.g. we will need to understand the spectrum

of Sn-invariant perturbations of L0 theory, to see if any of these become relevant. Those

of these perturbations which are susy-writable are captured by the SUSY theory. On

the other hand, by dimensional reduction, the spectrum of the SUSY fixed point can be

understood from the spectrum of the Wilson-Fisher fixed point, which is rather well known

(see sections 8.3 and 9.1). Of course, dimensional reduction does not say anything about

perturbations which are not susy-writable, and those will have to be studied independently.

15See also recent rigorous work [19, 20].
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3 RG flow in the basic scenario

In this section we will discuss in more detail the RG flow assuming the basic RG scenario

(i.e. dropping L1 and L2). We start in section 3.1 with some comments about the RG flow

in the “SUSY theory”, i.e. theory (2.27), (2.29) with field content ϕ,ψ, ψ̄, ω described by the

Lagrangian LSUSY or, equivalently, the superspace action Ssuperspace. Then in section 3.2 we

discuss the RG flow in the theory L0 with field content ϕ, ω, χi and Lagrangian (2.21). We

will see that the L0 theory is not quite equivalent to LSUSY (even in the fermion bilinear sec-

tor) because the Sn-invariant Wilsonian UV cutoff partially breaks supersymmetry. Upon

careful analysis we will see that these SUSY breaking effects disappear at long distances.

3.1 RG flow in LSUSY

In this section we will discuss the RG flow of the SUSY theory (2.27), (2.29). As already

mentioned, this theory is invariant under super-Poincaré, which is the semidirect product

of super-translations R
d|2 and super-rotations OSp(d|2):

super-Poincaré = R
d|2

⋊ OSp(d|2) . (3.1)

All these transformations leave the superspace distance x2 − 4
H θθ̄ invariant. Under super-

translations δθ = ε, δθ̄ = ε the fields transform as

δϕ = εψ − εψ̄, δψ = εω, δψ̄ = εω, δω = 0 . (3.2)

Superrotations act in superspace as

δxµ = εµθθ + εµθ̄θ̄ , δθ =
H

2
εµθ̄x

µ , δθ̄ = −H
2
εµθx

µ , (3.3)

and the corresponding field transformations leaving the action invariant are

δϕ = −H
2
xµεµθψ −

H

2
xµεµθ̄ψ̄, δω = εµθ∂

µψ + εµθ̄∂
µψ̄ ,

δψ̄ = −H
2
xµεµθω − ∂µϕεµθ, δψ =

H

2
xµεµθ̄ω + ∂µϕεµθ̄ . (3.4)

There are also bosonic Sp(2) transformations which rotate ψ, ψ̄ and leave ϕ, ω invariant;

we do not write them explicitly.

For the quartic potential and working in d = 6− ε, we write the SUSY Lagrangian as

LSUSY = ∂ϕ∂ω − H

2
ω2 + ∂ψ∂ψ̄ +m2

(
ωϕ+ ψψ̄

)
+
λ

4!
µε
(
4ωϕ3 + 12ψψ̄ϕ2

)
. (3.5)

(where we introduced the RG scale µ and made the coupling λ dimensionless). Standard

techniques allow us to compute the RG flow perturbatively. E.g. the one-loop beta function

for the dimensionless quartic coupling λ can be obtained in dimensional regularization as

βλ = −ελ+
3Hλ2

64π3
+O(λ3) . (3.6)
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From this we obtain a fixed point at

λ∗ =
64π3ε

3H
+O(ε2) . (3.7)

(The fixed point lies at m2=0 in dimensional regularization) One can check that the renor-

malization of the fields ϕ, ω, ψ, ψ̄ turns out to be equal, in agreement with supersymmetry.

We elaborate on these computations in appendices F and G. Another feature of the RG

flow is that the parameter H does not get renormalized, since it enters in SUSY transfor-

mations which cannot get deformed provided that the regulator preserves SUSY, as turns

out to be true for dimensional regularization (see appendix G). Other regulators will be

discussed below.

Finally, the SUSY RG flow is equivalent to the Wilson-Fisher flow in d̂ = 4− ε dimen-

sions with the Lagrangian:

LWF =
1

2

(
∂φ̂
)2

+
m2

2
φ̂

2
+
λ̂

4!
φ̂

4
(3.8)

upon identification of couplings

λ =
4π

H
λ̂. (3.9)

One can easily check that (3.6) and (3.7) map under these identification to the familiar

Wilson-Fisher expressions, in particular λ̂∗ = (16π2/3)ε + O(ε2). This, of course, is a

perturbative manifestation of dimensional reduction, and (3.9) follows from (2.39).

As mentioned in section 2.6, in this paper we assume dimensional reduction (Part 2 of

the Parisi-Sourlas conjecture) settled, so we assume full equivalence between SUSY RG flow

in d dimensions and Wilson-Fisher RG flow in d̂ = d − 2 dimensions, both perturbatively

and nonperturbatively. For d̂ > 2, the Wilson-Fisher RG flow goes to a fixed point for a

particular value of the bare mass, and the corresponding d = d̂ + 2 SUSY RG flow will

go to a SUSY fixed point for the same bare mass.16 On the other hand, for d̂ = 1, we

get the 1d Wilson-Fisher flow, which is just quantum mechanics with a quartic potential.

For whatever value of the mass, the quantum mechanical spectrum is discrete, and the IR

phase is massive. By the assumed exact correspondence, the 3d SUSY RG flow thus should

also flow to a massive phase, with exactly preserved supersymmetry. We conclude that a

nontrivial 3d SUSY RG fixed point does not exist. Note that the absence of a SUSY IR

fixed point does not imply spontaneous breakdown of SUSY.17

These simple observations show what exactly needs to be explained concerning Part 1

of the Parisi-Sourlas conjecture, depending on d. Down to 4d, the SUSY fixed point exists,

so we need to understand if it is stable or not with respect to the perturbations present in

the L0 + L1 + L2. If the SUSY fixed point is unstable, then the flow will be driven away

from it, and the RFIM phase transition will be described by another fixed point (about

16The Wilson-Fisher fixed point is believed to exist also for 1 < d̂ < 2, but we will not discuss this
intermediate case in detail; see [21].

17This point does not seem to be universally appreciated in the literature. E.g. ref. [22] says “even if
the RG flow is started with initial conditions obeying supersymmetry, a mechanism should be provided to
describe a spontaneous breakdown of supersymmetry.”
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which we will have nothing to say in this paper). The situation is different in 3d: the SUSY

fixed point does not exist there, so the RFIM phase transition must be for sure described

by some other fixed point. The only problem in 3d is to find this other fixed point, not to

explain the absence of SUSY.

Let us come back to the non-renormalization of H. It may look like we have a one-

parameter family of RG fixed points parametrized by the choice of H. However all of these

fixed points are trivially related to each other by rescaling the fields, so in practice there

is only one fixed point up to equivalence. Rescaling

ϕ→ r−1ϕ , ω → rω ψ, ψ̄ = inv, (3.10)

has the effect of rescaling H → r2H, λ → r−2λ. Since λH is left invariant, the fixed

point (3.7) is mapped to an equivalent one characterized by another value of H.

We will see in section 8.3 that ω2 can be seen as a member of superstress tensor mul-

tiplet,18 which explains why it is exactly marginal, and why adding it to the action can be

undone by changing the superspace metric, which is what rescaling (3.10) secretly is. Usu-

ally, when a CFT is deformed by an exactly marginal deformation, we get a different CFT

with different scaling dimensions and different OPE coefficients. This is clearly not the case

when deforming by ω2, since this leaves scaling dimensions invariant and OPE coefficients

change trivially due to rescaling, so we get a CFT equivalent to the one we started with. In

the renormalization group theory parlance, such deformations which can be undone by a

field redefinition are classified as “redundant” [23]. Usually redundant operators are those

which are proportional to the equations of motion, and they have zero correlation functions

at non-coincident points. Such operators and their scaling dimensions do not even appear

in CFT description. Operator ω2, although “redundant” in the sense described above, does

have nonzero correlators at non-coincident points, and is a bona fide CFT operator.

Finally let us discuss the SUSY RG flow in a Wilsonian scheme with a momentum

cutoff, as opposed to dimensional regularization. We have to regulate the theory in a

SUSY-preserving way, which requires some care in choosing momentum cutoffs. Before

cutoffs, the propagators are19

〈ϕkϕ−k〉 =
H

k4
, 〈ϕkω−k〉 =

1

k2
, 〈ωω〉 = 0, 〈ψkψ̄−k〉 = − 1

k2
. (3.11)

Momentum cutoff has to be imposed on the super-propagator. In position space, the super-

propagator must be a function of x2− 4
H θθ̄, while in supermomentum-space it is a function

of k2−Hαα where α, α are Grassmann coordinates Fourier-conjugated to θ, θ̄. This implies

that component propagators must be related by20

Gϕω(k) = Gψ̄ψ(k), Gϕϕ(k) = −H d

dk2
Gϕω(k). (3.12)

18More precisely ω2 is a linear combination of a superstress tensor component and a total derivative, see
eqs. (8.11) and (8.12).

19Dimensional regularization uses exactly these propagators and it is a SUSY-preserving scheme.
20It is also possible to obtain these relations directly from position space (2.31) without help of super-

Fourier transform. For this, represent the radially symmetric propagators as linear combinations of Gaus-
sians e−αx2

and do the usual Fourier transform.
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We see that eqs. (3.11) satisfy these, and cutoffs must be introduced in a way to preserve

these relations. E.g. we can choose

Gϕω(k) = Gψ̄ψ(k) =
FΛ(k2)

k2
, Gϕϕ(k) = H

(
FΛ(k2)

k4
− F ′

Λ(k2)

k2

)
, (3.13)

where FΛ(k2) is a function vanishing for k2 > Λ2, Λ the UV cutoff. Note the second term

in Gϕϕ(k), which is the price to pay for maintaining exact SUSY in a Wilsonian scheme.

E.g. if FΛ(k2) = Θ(Λ2− k2) we see that we need to add a term proportional to δ(k2−Λ2).

If the theory were regulated without this term, exact SUSY would be broken. E.g. H would

be renormalized as a result. This will be discussed in the next section.

3.2 Emergence of SUSY from the L0 theory

Let us now discuss RG flow in the L0 theory (2.21) with the quartic potential. As dis-

cussed in section 2.5, this theory can be mapped on LSUSY via replacement 1
2

∑′ χ2
i → ψψ̄,

1
2

∑′(∂χi)
2 → ∂ψ∂ψ̄. So at first glance this theory has the same flow as the SUSY theory

discussed in the previous section. However there is a subtlety: the cutoff is not quite the

same. The L0 theory (2.21) came from the replicated action (2.7) possessing Sn invari-

ance. The replicated action had an Sn-invariant regulator, and the L0 theory inherits this

regulator.

The kinetic part of the L0 theory had two pieces of different origin: ∂ϕ∂ω+ 1
2

∑′(∂χi)
2

which came from the kinetic term of (2.7) and −H
2 ω

2 which came from integrating out

the magnetic field. In a regulated theory, these two terms will have their own momentum

cutoffs which do not have to coincide. We can model this situation by writing the regulated

kinetic term in momentum space as

FΛ(k2)−1k2(ϕkω−k + ψkψ̄−k)−
HΛ(k2)

2
ωkω−k, (3.14)

where FΛ(0) = 1, HΛ(0) = H, both FΛ and HΛ go to zero at large momenta, and we

already performed the map to SUSY fields replacing 1
2

∑′ χi,kχi,−k → ψkψ̄−k. We get the

propagators:

Gϕω(k) = Gψψ̄(k) =
FΛ(k2)

k2
, Gϕϕ(k) = HΛ(k2)

[FΛ(k2)]2

k4
. (3.15)

Comparing these with (3.13), we see that SUSY is not in general respected. In fact, while

Gϕω = Gψ̄ψ agree as they should, the Gϕϕ propagators does not have the expected form.

Even if we choose FΛ(k2) = HΛ(k2) = Θ(Λ2 − k2), Gϕϕ is missing the δ(k2 − Λ2) piece.

Thus, to understand the RG flow of L0, we have to understand the RG flow of LSUSY

regulated in a non-SUSY invariant way. One might worry that a regulator breaking SUSY

can be very dangerous for its fate, but fortunately all is not lost. The point is that the

above regulator breaks SUSY only partially, and what remains will be enough to have the

full SUSY emerge in the IR.

The complete preserved subgroup of super-Poincaré is the semidirect product of the

super-translations and of the bosonic OSp(d|2) subgroup SO(d)× Sp(2):

R
d|2

⋊ [SO(d)× Sp(2)] . (3.16)
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This will be referred to as “partial SUSY”. That the usual bosonic translations, rotations,

and global fermionic Sp(2) are preserved by the propagators (3.15) is fairly obvious. A

more subtle fact is that the super-translations (3.2) are also preserved. Indeed, for the

superfield two-point function, partial SUSY imposes the requirement

〈Φ(x1, θ1, θ̄1)Φ(x2, θ2, θ̄2)〉 = A(x2
12) +B(x2

12)(θ1 − θ2)(θ̄1 − θ̄2) . (3.17)

Expanding in components we get Gϕϕ(x) = A(x2), Gφω(x) = Gψ̄ψ(x) = B(x2), Gωω =

0. This is precisely what eq. (3.15) says: that Gφω = Gψ̄ψ coincide while Gϕϕ may

be unrelated. The functions A and B are independent for the partial SUSY invariance,

while the full SUSY (3.1) requires the superfield two-point function to be a function of

x2
12 − 4

H (θ1 − θ2)(θ̄1 − θ̄2) and implies further relations (2.31).

We can also write the regulated kinetic term (3.14) in superspace as

∫
ddxdθdθ̄

[
−1

2
ΦF−1

Λ (∂2)∂2Φ +
1

2
ΦHΛ(∂2)∂θ∂θ̄Φ

]
, (3.18)

which makes it manifest that it preserves partial SUSY.

We are therefore led to consider RG flows which preserve only the partial SUSY (3.16)

(as well as the global Ising Z2 invariance which flips the sign of all fields). The most

general term invariant under (3.16) can be written as the superspace integral of a local

operator built from the superfield Φ, allowing contractions of the derivatives in x and θ

which preserve SO(d)×Sp(2) and not necessarily the full OSp(d|2). The two terms in (3.18)

are of such form. The structure of the effective Lagrangian is thus less constrained than

under the full SUSY.

However, and this is the key point which saves the day, at the relevant and marginal

level, we find only one new term which is invariant under partial SUSY and not under full

SUSY: this is the ω2 originating from Φ∂θ∂θ̄Φ. It is obviously invariant because ω does

not transform under supertranslations. All the other term allowed by partial SUSY and

breaking full SUSY are irrelevant.

Let us go through the list of candidates, starting from the SUSY mass term ϕω+ψψ̄.

It is fully super-rotation and super-translation invariant, but in fact already partial SUSY

(supertranslations) fixes the relative coefficient, as is easy to check from (3.2). Same for the

quartic interaction ωϕ3+3ψψ̄ϕ2. Terms ϕ2 or (∂ϕ)2 are not supertranslation invariant, very

fortunately so since they would completely ruin the structure of the quadratic Lagrangian

if generated.

Due to this lucky circumstance, we expect that the following will happen. The theory

LSUSY regulated in a partial-SUSY preserving way will flow, for an appropriate bare mass

value, to the fully SUSY fixed point in the IR, and the only effect will be a renormalization

of the coefficient of ω2: HIR 6= HUV.21

Let us see how this happens in detail in a toy model example. Let S(H) denote the

SUSY theory regulated in a fully SUSY-invariant way, H being the superspace parameter,

21As discussed in section 3.1, parameter H is unphysical (redundant) when sitting at a SUSY RG fixed
point. But a change in this parameter is physical along an RG flow which breaks SUSY.
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while S̃ the same theory regulated in a way which preserves only partial SUSY. We will

model the cutoff by adding to the action an irrelevant operator, a higher derivative term,

which makes the propagator decay faster in the UV (e.g. 1/k2 → 1/(k2 + k4/Λ2)). So we

take

S̃ = S(H) +
g

Λγ

∫
ddx Õ, (3.19)

where Λ is the UV cutoff, Õ an irrelevant operator of dimension d + γ, γ > 0, which

preserves partial SUSY but not the full one, g a dimensionless coupling. E.g. we can

choose a γ = 2 operator

Õ =

∫
dθdθ̄Φ(∂2)2Φ = ϕ(∂2)2ω + ψ(∂2)2ψ̄ . (3.20)

[Note that were we to choose

O(H) =

∫
dθdθ̄Φ(D2)2Φ = ϕ(∂2)2ω + ψ(∂2)2ψ̄ +Hω∂2ω, (3.21)

it would have been a fully SUSY-preserving regulator.]

Consider the structure of the RG flow within this toy model. After an RG step Λ →
Λ′ = Λ/2 the irrelevant coupling decreases g → g′ = 2−γg. The action S(H) experiences

the usual SUSY renormalizations, on top of which we expect to generate a partial-SUSY

preserving (but full SUSY breaking) term ω2, with a coefficient ∆H which should be

interpreted as a change in H. This coefficient vanishes in absence of interactions and in

absence of O, thus ∆H = O(λg) where λ is the quartic. Now we have the action S(H)

which had a SUSY regulator adapted to H but the new H ′ = H + ∆H has changed, so we

have to change the SUSY regulator, e.g. by moving a part of Õ to O(H) in (3.21) which

generates a further change in g, ∆g = O(∆H). To summarize, after the RG step, the full

action at the scale Λ′ has the same form as (3.19) with the couplings H and g replaced by

H ′ = H + ∆H, ∆H = O(λg) , g′ = 2−γg +O(λg) . (3.22)

From here we draw the following conclusions. First, assuming that the quartic λ remains

small, as it is the case at least for ε ≪ 1, the irrelevant coupling g approaches zero expo-

nentially fast. Second, the series made up of consecutive changes ∆Hi from infinitely many

RG steps needed to reach the IR fixed point converges. Therefore H flows in the IR to a

finite value HIR. In particular we exclude the situation when H flows in IR to infinity.22

See figure 1.

More abstractly, consider the RG flow of the SUSY theory perturbed by two couplings

breaking to partial SUSY, exactly marginal ω2 and irrelevant Õ:

S(H) +

∫
g0ω

2 +
g

Λγ
Õ. (3.23)

This time Õ does not have to have the above quadratic form and the discussion can be

generalized easily to several Õ’s. On general grounds, the beta functions have the form

βg0 = O(g),

βg = (γ +O(λ, g0) +O(g))g. (3.24)

22The opposite situation when H flows to zero is also excluded as finetuned.
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1/Λ

HUV

HIR

g

Figure 1. Schematic RG flow of H and g.

The small initial coupling g will flow to zero in the IR if γ + O(λ, g0) is positive. This

quantity (up to d+) can be interpreted as the scaling dimension of Õ at the SUSY fixed

point corrected by g0ω
2 and since ω2 is exactly marginal, it should not depend on g0 at all:

γ +O(λ, g0)→ γ +O(λ). Operators Õ breaking full SUSY to partial SUSY will reappear

in section 8.3 as the susy-writable leader operators, using the terminology to be introduced

below. We will see in sections 9.1 and 10 that all such operators remain irrelevant also in

presence of O(λ) corrections. Thus the coupling g flows to zero, and in the IR we recover

the SUSY fixed point perturbed by an exactly marginal deformation ω2, which as discussed

in the previous section amounts to a change in H.

4 RG flow in the full Cardy theory: general plan

Let us recap. In section 2 we used the Cardy transform to rewrite the replica action in

terms of the variables ϕ, χi, ω. This made manifest the presence of a marginally relevant

interaction close to the upper critical dimension. We then dropped some terms in the

action either because they were irrelevant near d = 6 (L1), or because they vanished in

the limit n→ 0 (L2). This was dubbed “basic RG scenario” in section 2.4. The remaining

Lagrangian L0 could be seen formally equivalent to a supersymmetric one LSUSY, replacing

O(−2)-invariant bilinears made of fields χi by Sp(2)-invariant bilinears made out of two

Grassmann fields ψ, ψ̄. Then, in section 3.1 we discussed RG flow in the SUSY theory,

concluding that it has a nontrivial RG fixed point down to d = 4 but not in 3d. This was

based on dimensional reduction and the well-known Wilson-Fisher fixed point properties.

In section 3.2 we discussed the RG flow of L0 theory. Due to subtleties of the UV regulator

the bare theory preserves SUSY only partially (supertranslations but not superrotations),

yet at long distances full SUSY is recovered.

We will now come back to the full Cardy theory L0 +L1 +L2. We will discuss the RG

flow in this setup and examine the validity of the basic RG scenario assumptions (a) and

(b). We will work in the ϕ, χi, ω formulation rather then in the SUSY field basis ϕ,ψ, ψ̄, ω.
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Indeed, the full Lagrangian contains some operators involving odd powers of χi fields (e.g.∑′ χ3
iϕ) which cannot be written in terms of SUSY fermions. Such operators will play an

important role in stability of the RG flow.

Our plan is as follows. In section 5 we will describe a somewhat peculiar form taken by

the Sn invariance in the Cardy basis. Here we will introduce the notion of a “leader” — the

lowest-dimension part of an Sn-singlet operator transformed to the Cardy basis — and of

its “followers” which are the higher-dimension parts. In the short but important section 6

we will analyze the role of n-suppressed terms. Here we will explain that the assumption

(b) of the basic RG scenario holds, but in a subtle sense: the theory with a small but

finite n is gapped, but as the n→ 0 limit is taken, the approximately scale invariant region

of the RG flow becomes longer and longer. This is different from what happens in the

bond-(as opposed to field-) disordered Ising model, where the n 6= 0 fixed point is believed

to smoothly connect to n = 0, but it suffices for our purposes: L2 can be dropped.

With L2 out of the way, in section 7 we will focus on the L0 + L1 RG flow, working

in the strict n = 0 limit. We will examine if some L1 perturbations (or other Sn-invariant

perturbations generated by RG) which are irrelevant in d = 6− ε dimensions, may become

relevant in lower d. The leader-follower distinction becomes very handy here, because as

we will see the relevance of an Sn-singlet perturbation can be decided by computing the

scaling dimension of the leader alone.

Next, in section 8, we will classify the leader operators, dividing them into three classes:

non-susy-writable, susy-writable and susy-null. These three classes RG-mix among each

other only in a triangular way, which will simplify the anomalous dimension computations

(section 9). Exhaustive classification of leaders will be carried out up to dimension 12

in d = 6, which includes one or more lowest-lying leaders in each of the three classes.

Anomalous dimensions will be computed at one or two loops.

Figure 2 is a roadmap for all these steps. Once completed, we will see in section 10

what this implies for the loss of Parisi-Sourlas SUSY.

5 Sn invariance in the Cardy basis

The original replicated action (2.7) is invariant under permutations of the n replicas. While

the Cardy transform clarifies many properties of our RG flow, it somewhat obscures this

Sn symmetry, meriting a discussion.23 We have permutations φ1 ↔ φi and φi ↔ φj
(i, j ∈ {2, . . . , n}). After Cardy transform, the latter give rise to permutations χi ↔ χj
which generate Sn−1 subgroup. This symmetry subgroup is manifest in the Cardy basis:

invariance of LCardy under it just means that χi’s should enter in singlet combinations.

23In this paper we will be content with using the standard physics literature operational definition of what
is meant by Sn invariance for n 6∈ N: all algebraic manipulations are done with arbitrary n ∈ N and the
arising rational functions of n are extrapolated to n non-integer or n = 0. Recently, ref. [24] interpreted such
manipulations in terms of Deligne categories, introducing a notion of “categorical symmetry”. Interestingly,
for any group G, there is also a Deligne category interpolating the replica symmetry Sn ⋉ Gn [25, 26],
see [24], section 9.4. This may turn out useful in future rigorous mathematical justifications of the method
of replicas. In this paper we will not use categorical language.
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Figure 2. This figure illustrates how a generic Sn-singlet perturbation O is divided into various

pieces (leader, followers, n-suppressed) and shows the sections of our paper where these pieces are

discussed.

Consider now permutations of the former kind, φ1 ↔ φi. Without loss of generality

we focus on φ1 ↔ φ2 since together with Sn−1 it generates the full Sn. Applying Cardy

transform with φ2 and φ1 interchanged, the relation between the new and old Cardy fields

is found from the equations

φ1 = ϕ+
ω

2
= ϕ′ − ω′

2
+ χ′

2,

φ2 = ϕ− ω

2
+ χ2 = ϕ′ +

ω′

2
,

φi = ϕ− ω

2
+ χi = ϕ′ − ω′

2
+ χ′

i (i = 3 . . . n), (5.1)

where we renumbered the fields χ′
i so that their index always runs from 2 to n. We thus

find

ϕ′ = ϕ− 2− n
2(1− n)

(ω − χ2),

ω′ =
ω

1− n −
n

1− nχ2,

χ′
2 =

2− n
1− nω −

χ2

1− n,

χ′
i = χi +

ω − χ2

1− n (i = 3 . . . n). (5.2)
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We will mostly use the n→ 0 limit of this “extra” symmetry transformation, which is

ϕ′ = ϕ− 2(ω − χ2),

ω′ = ω,

χ′
2 = 2ω − χ2,

χ′
i = χi + ω − χ2 (i = 3 . . . n). (5.3)

Let us see how LCardy behaves under this. The ω2 term in L0, eq. (2.22), is trivially

invariant. It is more interesting to check that the mass term is invariant:

2ϕω +
n∑

i=2

χ2
i → 2[ϕ− 2(ω − χ2)]ω + (2ω − χ2)2 +

n∑

i=3

(χi + ω − χ2)2, (5.4)

and using the constraint
∑′ χi = 0 we see that the r.h.s. reduces to the l.h.s. Analogously

the kinetic part ∂ϕ∂ω + 1
2(∂χi)

2 is also invariant.

For the quartic term, Sn invariance is realized in a still more interesting way. The

quartic term is the marginal (in d = 6) part of the Sn invariant term σ4 =
∑n
i=1 φ

4
i whose

full n→ 0 limit is

σ4 =
[
4ωϕ3 + 6

∑′
χ2
iϕ

2
]

∆=6

+
[
4ϕ
∑′

χ3
i

]
∆=7

+
[∑′

χ4
i − 6ϕω

∑′
χ2
i

]
∆=8

−
[
2ω
∑′

χ3
i

]
∆=9

+

[
3

2
ω2
∑′

χ2
i + ϕω3

]

∆=10
, (5.5)

where we indicated the scaling dimensions in d = 6. The irrelevant terms in the second

and third lines have been assigned to the L1 part of the Lagrangian. It is now possible to

check that the sum of all terms is invariant under the n = 0 symmetry (5.3), although the

first line by itself is not.

We thus learn something very important: the sum L0 + L1 is invariant under the full

Sn symmetry in the n → 0 limit (denoted Sn→0), while individually the two parts are

invariant only under the Sn−1 subgroup permuting χi’s.

And what about L2? It was originally defined as consisting of the n-suppressed terms,

but now we can give an alternative description: L2 consists of all terms which are not in-

variant under the extra symmetry (5.3), nor can be made invariant by adding further terms.

Consider e.g. ϕ2, which is in L2 according to (2.24). Under the extra symmetry we have:

ϕ2 → [ϕ− 2(ω − χ2)]2 = ϕ2 − 4(ω − χ2)ϕ+ 4(ω − χ2)2. (5.6)

This is obviously not invariant by itself, nor can it be made invariant by adding other

terms. E.g. variation of ϕ2 contains −4ωϕ and a moment’s thought shows that this cannot

be canceled by variation of anything.

Since the terms in L2 are not invariant under the Sn→0 symmetry, their coefficients

must be proportional to n. This explains why they are “n-suppressed”. The advantage

of this new understanding is that it is not tied to the bare Lagrangian but can be used

along the RG flow. Since L0 +L1 are Sn→0 invariant, they can generate L2 terms only with

n-suppressed coefficients. This guarantees that a term n-suppressed in the bare Lagrangian

remains n-suppressed at a lower RG scale.
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5.1 Sn singlets in the replicated basis

As pointed out by Brézin and De Dominicis [27], the replicated Lagrangian (2.7), in addition

to the shown bare terms, will generate infinitely many extra Sn invariant terms upon RG

flow.24 Of course, these terms may or may not destabilize the RG flow depending on their

scaling dimensions. Leaving this more complicated question for later, let us first learn to

write general Sn invariant terms (referred to as “singlets” from now on). In the replicated

basis, they can be constructed as finite products:

[
n∑

i=1

A(φi)

]


n∑

j=1

B(φj)



[
n∑

k=1

C(φk)

]
× . . . (5.7)

where A,B,C . . . are some polynomial25 functions of φi and of its derivatives. For most

part we will be interested in scalar perturbations, which means that A,B,C either do not

contain derivatives, or that all derivative indices are contracted.26

We will use the notation (
∑ ≡∑n

i=1)

σk =
∑

φki ,

σk(µ) =
∑

φk−1
i ∂µφi,

σk(µν) =
∑

φk−1
i ∂µ∂νφi,

σk(µ)(ν) =
∑

φk−2
i ∂µφi∂νφi, etc . (5.8)

The fields σk were considered in [27], and the others are natural generalizations. More

singlets can be constructed by taking products of these basic building blocks.

In this notation, e.g., the bare replicated Lagrangian (quartic potential) is a linear

combination of singlets

σ2(µ)(µ), σ2
1, σ2, σ4. (5.9)

But we can clearly construct more singlets. E.g. with four fields and no derivatives the full

list has five singlets [27]:

σ4, σ1σ3, σ2
2, σ2

1σ2, σ4
1. (5.10)

Still more singlets are obtained by increasing the number of fields or introducing derivatives.

What are the scaling dimension of the corresponding fixed point perturbations? Can they

become relevant as the dimension is lowered? We will study these questions systematically

in the subsequent sections.

24Depending on the circumstances, these extra terms may be present already in the bare action, as was
demonstrated explicitly in [27] via the Hubbard-Stratonovich transformation from the lattice model.

25Limiting to polynomial interactions is standard when dealing with perturbation of Gaussian fixed points.
Some literature on the RFIM (e.g. [28]) consider interactions with non-polynomial field dependence, such
as absolute value of the fields (“cusps”). In appendix A.8 we explain that cusp interactions do not yield new
perturbations of Gaussian fixed points, the full spectrum of independent perturbations given by polynomial
interactions.

26Contractions of derivative indices from different factors, e.g. from A and B, are allowed.
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Feldman [29]27 discussed a family of singlet operators Fk (k ∈ 2N) given by

Fk =
n∑

i,j=1

(φi − φj)k =
k−1∑

l=1

(−1)l
(
k

l

)
σlσk−l (5.11)

(the l = 0, k terms vanish for n→ 0). Operators F4 and F6 will play an important role in

our work.

5.2 Sn singlets in the Cardy basis

Applying the Cardy transform to any singlet in the replicated basis, we get an Sn→0 singlet

in the Cardy basis. We have already seen such expressions above, e.g.

σ2 = 2ϕω +
∑′

χ2
i , (5.12)

while σ4 is given in (5.5). We will use this procedure to construct all singlets in the Cardy

basis. Generality of this method follows from the fact that the Cardy transform is an

invertible linear transformation of the field basis. We have the following master formula

(here and below we drop terms vanishing in the n = 0 limit):28

n∑

i=1

A(φi) = A

(
ϕ+

ω

2

)
+
∑′

A

(
ϕ− ω

2
+ χi

)
(5.13)

=
δA

δϕ
(ϕ)ω +

1

2

δ2A

δϕ2
(ϕ)

∑′
χ2
i

+
∞∑

k=3

1

k!

δkA

δϕk
(ϕ)

[(
ω

2

)k
+
∑′

(
−ω

2
+ χi

)k]
. (5.14)

Let us introduce some useful terminology. By composite operators (composites, for short)

we will mean products of Cardy fields, their derivatives, and linear combinations thereof.

To each product composite we assign a classical scaling dimension which is the sum of

dimensions of its constituents, eq. (2.16). A linear combination of composites has a “well-

defined classical dimension” if all terms have the same dimension. Later on, we will also

discuss anomalous dimensions due to interactions. Due to mixing, only some special linear

combinations will have well-defined anomalous dimensions.

In this terminology, the terms in the first line of (5.14) have the same classical di-

mension, while those in the second line have a higher dimension. For singlets involving at

most two fields (σ1, σ2, σ1(µ), σ2(µ), etc), the second line is absent (δkA/δϕk ≡ 0). Such

fields, and products thereof, are special: they have well-defined classical dimensions in the

Cardy basis.29 One example is (5.12) where both composites have dimension d − 2. Any

27Ref. [29] focuses on the Random Field O(N) Model, and the part starting from eq. (8) applies also to
the RFIM setting N = 1. In our work we will find support for some of Feldman’s results, but we will draw
from them a different conclusion.

28Variational derivative notation allows for the case when A depends on the derivatives of φ. In this case
these derivatives have to be distributed on the fields following δkA/δϕk, in an obvious manner. Note that
(δkA/δϕk)ωk terms with k even are n-suppressed (A(ϕ) and (δ2A/δϕ2)ω2 being two examples).

29This is only true in the n = 0 limit which is assumed here.
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other singlet will becomes a linear combination of composites of different dimensions in the

Cardy basis. We have seen one example in (5.5).

Given any singlet O, we can split it into parts with definite classical dimension, which

will come in unit steps:

O = [O]∆ + [O]∆+1 + . . . (5.15)

We will call the “leader” the lowest scaling dimension part of O, that is [O]∆, while [O]∆+k

with k > 1 will be called “followers”. E.g. the first line of the r.h.s. of (5.5) is the leader

of σ4, while the subsequent lines contains the followers. The rationale for this terminology

will become clear in section 7.

As an exercise which will turn out useful later on, let us transform Feldman operators

to the Cardy basis and extract the leader. Using definition (5.11) we have:

Fk = 2
n∑

i=2

(ω − χi)k +
n∑

i,j=2

(χi − χj)k. (5.16)

In particular there is no dependence on ϕ for this very special operator. Expanding we

have

Fk =
k−2∑

l=2

(−1)l
(
k

l

)(∑′
χli

) (∑′
χk−l
i

)
(5.17)

−2kω
(∑′

χk−1
i

)
+ . . .

where we used
∑′ χi = 0 and that

∑′ χki cancels between the two terms for n → 0. This

shows the leader (first line) and the first follower for k > 4. (For k = 2 the shown terms

vanish and F2 = −2ω2.)

6 The n-suppressed terms

Following our plan to clarify step-by-step the basic RG scenario of section 2.4, we will

discuss here the effects associated with the n-suppressed terms, which were grouped in

the L2 part of the Cardy-transformed Lagrangian (2.25). As explained in section 5, these

terms can be alternatively characterized as those which break the Sn→0 symmetry of the

L0 + L1 Lagrangian. This implies that the terms n-suppressed in the bare Lagrangian

remain n-suppressed along the RG flow. If we set n = 0, these terms vanish in the bare

Lagrangian and are not regenerated in the RG flow. Still, it is instructive to analyze what

would happen if we worked at a tiny but nonzero n. Note that L2 contains several relevant

terms so that, while n-suppressed, they grow in the IR. One such term is the operator ϕ2,

which comes from the operator σ2 ∋ nϕ2 (while the n = 0 part of σ2 goes into L0). What

would be the role of these terms for the IR behavior of the theory?

For concreteness let us just focus on this very operator ϕ2, the discussion being

similar for any other relevant part of L2 such as ϕ4 or (∂ϕ)2. We thus consider L0 action

perturbed by
g2

Λ4
UV

∫
ddxϕ2, (6.1)
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g0
<latexit sha1_base64="rAEDyM9sUU1BRreoah4ASySo6kI="></latexit>

g1
<latexit sha1_base64="7gD3PmBjlkkfVBuqTNeD6DexB0E="></latexit>

g2
<latexit sha1_base64="qjtEW0AS+bxHiWhUDTP48zpRk3M=">AAAClXicbVFbS8MwFM7qfV6nDz74UhwDn0Y7xcuDMFTENyc6HWxlpOnpDCZpSVJl1P4EX/W3+W9s6pBd/CDw5TvfyTknx48ZVdpxvkvW3PzC4tLySnl1bX1jc6uy/aiiRBJok4hFsuNjBYwKaGuqGXRiCZj7DJ78l0sTf3oFqWgkHvQwBo/jgaAhJVjn0v2g3+hvVZ26U8CeJe6IVNEIrX6l9N4LIpJwEJowrFTXdWLtpVhqShhk5V6iIMbkBQ+gm1OBOSgvLXrN7FquBHYYyfwIbRfqeEaKuVJD7udOjvWzmo4Z8d9YoMyD/4W6iQ5PvZSKONEgyG8PYcJsHdnmT+yASiCaDXOCiaT5GDZ5xhITnf9cuTZeBRKCWTapmYJShSqb7tU0ZFQBbyTiHIsg7fksgazremnaK2ZPC6HqZlM+CcGEzdwLV7GvM4Pjv+3MksdG3T2sH94dVZsXo80toz20jw6Qi05QE92gFmojggboA32iL2vXOreurOtfq1Ua5eygCVi3P0Njzo4=</latexit>

Λ
−1

IR
<latexit sha1_base64="saSI9a7gdiyqmhQ6rp1b85+MV58="></latexit>

Λ
−1

<latexit sha1_base64="RIjmjbg0ueZBCZNlGNplRPvepoI=">AAACnnicbVFNb9QwEPUG+sFSSheOXCxWlbh0lVAE7W1FJcQBRJHYdqVNWk2cSWvVdiLbKVq5+Rtc4W/xb7DTFepu+yRLz2/eeGY8eS24sXH8txc9ery2vrH5pP9069n2853BixNTNZrhhFWi0tMcDAqucGK5FTitNYLMBZ7mV0chfnqN2vBK/bDzGjMJF4qXnIH1Upp+8dYCztxe0p7vDONR3IHeJ8mCDMkCx+eD3k1aVKyRqCwTYMwsiWubOdCWM4FtP20M1sCu4AJnniqQaDLXNd3SXa8UtKy0P8rSTr2b4UAaM5e5d0qwl2Y1FsQHY4UJDz4UmjW2PMgcV3VjUbHbHspGUFvR8Dm04BqZFXNPgGnux6DsEjQw67+wv3u3CjYMRLushYLalKZd7TU0FFSFP1klJajCpblosJ0lmXNpN7vrhGHSrvg0Fku2cO9c3b4OA97/3859cvJ2lOyP9r+/G44/Lja3SV6R1+QNScgHMiafyTGZEEZq8ov8Jn8iGn2Kvkbfbq1Rb5Hzkiwhmv4D/JTSQQ==</latexit>

gi
<latexit sha1_base64="fr5FT6wDrBCK/1TjXayvCzCzE+U="></latexit>

Figure 3. Schematic RG flow (from short to long distances) including n-suppressed terms. The

flow has three parts (left to right): (1) the transitory part where the couplings g0 of L0 flows to a

fixed point, while the irrelevant couplings g1 of L1 go to zero; (2) the shaded part where the flow

stays close to the L0 fixed point; (3) the part where the relevant L2 terms finally grow to overcome

suppression by n, and the flow deviates from the fixed point.

with ΛUV the UV cutoff energy scale, and g2 a dimensionless coupling. The power of ΛUV

is fixed by the dimension of the perturbing operator, d− 4 in the case at hand.

We are considering the situation when in absence of the perturbation the L0 part of

the action flows to an IR fixed point. When we add the perturbation the coupling g2 starts

growing. Since g2 starts at order-n at the UV scale, it reaches order-1 values at the scale

ΛIR ∼ n1/4ΛUV . (6.2)

At that point we can no longer treat it as a small perturbation.

The conclusions from this discussion is that, first of all, the n = 0 fixed point is unstable

with respect to turning on nonzero n. For n tiny but nonzero, the RG trajectory stays for a

long time near the fixed point before finally deviating. Thus, for a very small n, we expect

that in a range of distances the theory will be approximately described by the n = 0 fixed

point and will have an approximate scale invariance, and this range will become longer and

longer as n → 0. However, no matter how small n is, the trajectory eventually deviates

(see figure 3).

We do not know what happens with the small n trajectory afterwards — it may flow to

a gapped phase or to another fixed point. Note that even if the trajectory flows to a fixed

point, such a fixed point would have no significance for the disordered physics, not being

continuously connected to the n = 0 fixed point.30 One example of such a fixed point for

nonzero n can be found in the work of Brézin and De Dominicis [27]. Their fixed point has

couplings scaling as inverse powers of n, a clear feature of being disconnected from n = 0.

For the above reasons we will not consider their fixed point any further in the main text,

although we provide more details in appendix A.9.

30Incidentally, this is radically different from what happens in the bond-disordered Ising model, where the
fixed point is believed to exist for any n so that we can compute CFT data as a function of n and perform
the n → 0 limit at the CFT level (see section 8.3 of [30], and [4]).
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To summarize, when n→ 0, the range in which the flow is close to the L0 fixed point

becomes infinitely large. This clarifies in which sense the n-suppressed terms can be safely

discarded in the limit n→ 0.

7 RG flow in the L0 + L1 theory

At this point we are left with studying the RG flow in the theory consisting of L0 +L1 part

of the Cardy Lagrangian, working in the strict n = 0 limit. As discussed in section 3, the

L0 theory by itself flows to an IR fixed point equivalent31 to the SUSY fixed point of LSUSY.

The key remaining question is whether this RG flow is stable under L1 perturbations.

In the original definition, L1 included all terms irrelevant in d just below 6, coming from

the replicated bare Lagrangian with the quartic potential. This was not completely general:

the bare Lagrangian can be expected to contain any possible Z2-even Sn singlets, and even

if not initially, included such terms will be generated under RG flow [27]. From now on we

will extend the definition of the bare Lagrangian to include all Z2-even Sn singlets. E.g., at

the quartic level we should consider all terms given in (5.10) (while only the first of these

five singlets was included so far). It is easy to see that with the new definition we do not

get any additional relevant terms in d = 6− ε. So all new terms end up in L1.

Now that we have the full bare Lagrangian, we should ask: can it be that some

perturbations, while irrelevant near 6d, become relevant for smaller d?32 If this happens,

the L0 fixed point will not be reached for those d. The RG flow will be instead deviated

to another fixed point, which does not have SUSY if the new relevant interaction is SUSY-

breaking (something to be checked).

We wish to explore this mechanism for the loss of Parisi-Sourlas SUSY. The problem is

well defined, at least in perturbation theory: we need to consider L1 perturbations one by

one, and see which of them get anomalous dimensions of sign and size likely to render them

relevant. We are interested in stability with respect to Sn singlet perturbations, because

only such perturbations are present in the microscopic replicated Lagrangian (i.e. before

the Cardy transform).

7.1 Leader and followers: quartic term

In section 5 we saw that after the Cardy transform, a generic Sn singlet is a sum of

the leader (the lowest scaling-dimension part) and the followers (higher scaling dimension

parts). The quadratic terms in the replicated Lagrangian do not have any followers, while

the quartic term has both the leader and the followers, see (5.5).

31As stressed several times this equivalence holds only in the sector of operators invariant under O(n− 2)

rotations of χi’s.
32Sometimes in high-energy physics one calls “dangerously irrelevant” operators which are irrelevant at

the UV fixed point but become relevant at the IR fixed point. We will refrain from this usage of the term,
which is different from statistical physics, where dangerously irrelevant operator is a property of a single
fixed point, not of an RG flow (it is an irrelevant operator whose perturbation effect on the fixed point is
non-analytic in the coupling [31], a typical example being the ϕ4 operator around free massless scalar fixed
point in d > 4 dimensions).
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It is instructive to consider first the RG flow of the L0 +L1 theory truncated just to the

quartic perturbation (5.5). We start the RG flow at an energy scale Λ with the Lagrangian

in the Cardy basis (in equations below we use the notation χki ≡
∑′
i χ

k
i )

∂ϕ∂ω +
1

2
(∂χi)

2 − H

2
ω2 +

m2

2

(
2ϕω + χ2

i

)
+
λ

4!

[(
4ωϕ3 + 6χ2

iϕ
2
)

+ 4ϕχ3
i + . . .

]
, (7.1)

where . . . stands for the other σ4 followers visible in (5.5). Performing the integrating-out

step down to the energy scale Λ′ = Λ/b (but not yet any field rescaling), we will find an

effective Lagrangian

Z1

[
∂ϕ∂ω +

1

2
(∂χi)

2
]
−Z2

H

2
ω2 +(m′)2

(
ϕω +

1

2
χ2
i

)
+
λ′

4!

[(
4ωϕ3 + 6χ2

iϕ
2
)

+ 4ϕχ3
i + . . .

]
.

(7.2)

Crucially, Sn invariance guarantees that the kinetic terms ∂ϕ∂ω+ 1
2(∂χi)

2, the mass terms

2ϕω+χ2
i , and the whole quartic interaction renormalize by overall rescaling, since the form

of these terms is fixed uniquely by transforming σ2(µ)(µ), σ2 and σ4 to the Cardy basis. We

now perform field rescaling

ϕ(x) → Z
−1/2
1 b−∆0

ϕϕ(x/b),

χi(x) → Z
−1/2
1 b−∆0

χχi(x/b), (7.3)

ω(x) → Z
−1/2
1 b−∆0

ωω(x/b),

where ∆0
ϕ,∆

0
χi
,∆0

ω are the Gaussian fixed point dimensions (2.16). After rescaling, the

fields again have momenta up to Λ while the Lagrangian becomes:

∂ϕ∂ω+
1

2
(∂χi)

2− Z2

Z1

H

2
ω2 +

(m′)2b2

Z1

(
ϕω+

1

2
χ2
i

)
(7.4)

+
λ′bε

4!Z2
1

[(
4ωϕ3 +6χ2

iϕ
2
)

+
1

b
4ϕχ3

i +
1

b2

(
χ4
i −6ϕωχ2

i

)
− 1

b3
2ωχ3

i +
1

b4

(
3

2
ω2χ2

i +ϕω3
)]
.

We see that in general Z2 6= Z1 and H will be renormalized. However as discussed in

section 3.2 we can expect that this effect is transient and disappears in deep infrared so

that H flows to a constant. Here we are focusing on the behavior of the σ4 followers,

this time written in full. We see that their coefficients rescale with an additional positive

integer power of b compared to that of the leader. But, apart from this additional rescaling,

the relative coefficients stay fixed because determined by Sn invariance. This explain our

choice for the leader-follower terminology.

After many RG steps the coefficients of the followers will flow to zero, and we approach

the fixed point of the L0 theory. It is not so surprising that the follower coefficients flow

to zero as these operators are irrelevant. What is more surprising is that the coefficients of

these irrelevant terms go to zero in a prescribed fashion. This feature of the L0 + L1 RG

flow is dictated by Sn invariance.

We can rephrase the above conclusions as follows. Consider the perturbation (δλ)σ4

on top of the L0 fixed point, splitting it into the leader and the followers:

(δλ)σ4 = δλ
[(

4ωϕ3 + 6χ2
iϕ

2
)

+ 4ϕχ3
i + . . .

]
. (7.5)
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At a lower scale Λ/b the perturbation will become

δλ(b)

[(
4ωϕ3 + 6χ2

iϕ
2
)

+
1

b
4ϕχ3

i + . . .

]
. (7.6)

We see here two effects. First, the coefficients of the followers are suppressed compared to

that of the leader by integer powers of b. Second, assuming that the fixed point is reached,

δλ(b) flows to zero (which is the same as λ flowing to a constant). Let us introduce the

RG eigenvalue y for δλ:
d

d log b
δλ = −yδλ, (7.7)

where y must be positive for δλ to flow to zero.

The simplest way to compute y is to go to deep IR. There the coefficients of the followers

are tiny and can be neglected. We are therefore reduced to the problem of computing the

anomalous dimension of the leader as a perturbation of the L0 fixed point. This recipe

is a key simplification: it would have been much more awkward to compute anomalous

dimension if we had to keep track of both the leader and the followers.

For the quartic coupling case at hand, y is related to the anomalous dimension of(
4ωϕ3 + 6χ2

iϕ
2
)

perturbing the L0 fixed point. This being a susy-writable operator, its

anomalous dimension is the same as that of
(
4ωϕ3 + 3ψψ̄ϕ2

)
perturbing the LSUSY fixed

point. In turn, by dimensional reduction, this is the same as the anomalous dimension of

φ̂4 at the Wilson-Fisher fixed point in d− 2 dimensions (see section 9.1 below). The latter

operator is irrelevant since the Wilson-Fisher fixed point has only one relevant Z2 even

singlet (φ̂2), hence indeed y > 0.

7.2 Leader and followers: general case

We will now generalize the quartic coupling perturbation considered in the previous section

to any other singlet perturbation gO inside the L0 +L1 flow. Near the L0 fixed point, this

perturbation takes the form

g(b)

[
OL +

1

b
OF1 +

1

b2
OF2 + . . .+

]
,

d

d log b
g = −yOg, (7.8)

where OL is the leader, while OF1,OF2, . . . are the followers. If the leader coefficient flows

to zero (yO > 0), the follower coefficients flow to zero as well, and faster. The RG eigenvalue

yO can be computed as

yO = ∆(OL)− d, (7.9)

where ∆(OL) is the scaling dimension of OL as a perturbation of the L0 fixed point. A

very convenient feature is that the followers do not enter into the latter computation.

We are thus converging on a well-defined problem of quantum field theory. We have to

classify all perturbations of the L0 fixed point which can be realized as leaders of Z2-even

Sn singlets, and compute their anomalous dimensions. If one of these becomes relevant,

stability of the L0 fixed point is lost. This program will be realized in section 8 and 9 below.
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7.3 Followers as individual L0 perturbations

The reader may find somewhat puzzling the feature of the above discussion that followers

completely “go for the ride”. In other words, we are not supposed to consider followers as

individual perturbations of the L0 fixed point. Let us give a few more explanations con-

cerning this fact. We are studying stability of the L0 fixed point in the IR, by adding to it

infinitesimal Sn singlet perturbations and seeing if they grow or decay. In this setup, per-

turbing the L0 fixed point by a follower alone would not be consistent: the follower always

accompanies a leader, whose coefficient is enhanced by the RG flow with respect to that of

the follower. That is why the correct procedure is to perturb infinitesimally by the leader,

while the follower perturbation then is “doubly infinitesimal” in IR, and can be neglected.

But what if we nevertheless perturb the L0 fixed point by a follower alone and compute

the anomalous dimension of such a perturbation? What would be the physical meaning of

such a computation? The answer is instructive. In addition to Sn singlet perturbations, the

L0 + L1 RG flow possesses perturbations breaking Sn invariance. Were we to perturb the

L0 fixed point by a follower alone, we would be computing dimensions of such Sn-breaking

perturbations. These perturbations are not important for the problem of Sn-invariant RG

stability studied in this paper, but they do exist.

To convince ourselves in the reality of Sn-breaking perturbations, we found useful the

following toy model. Consider the Sn-invariant RG flow with initial conditions correspond-

ing to the quadratic part of the L0 Lagrangian perturbed by 5 quartic singlets without

derivatives from eq. (5.10):

[
∂ϕ∂ω +

1

2
∂χi∂χi −

H

2
ω2
]

+ h1σ4 + h2σ
2
2 + h3σ1σ3 + h4σ

2
1σ2 + h5σ

4
1. (7.10)

When we transform these singlets into the Cardy basis, we get a total of 11 monomials.

We then consider a more general RG flow introducing 11 independent couplings for each

of these monomials:

[
∂ϕ∂ω +

1

2
∂χi∂χi −

H

2
ω2
]

+ 6g1ϕ
2χ2

i + 4g2ϕ
3ω + 4g3ϕχ

3
i + g4χ

4
i

+ g5ϕωχ
2
i + g6ωχ

3
i + g7ω

2χ2
i + g8ϕω

3 + g9χ
4
i + g10ϕωχ

2
i + g11ω

4.

(7.11)

When these 11 couplings are set to particular linear combinations of 5 hi’s, we are back

to the Sn-invariant flow (7.10), while when we relax this condition, we get an Sn-breaking

RG flow. In this setup we can do renormalization and see how these couplings evolve when

we approach the IR fixed point. These computations are carried out in appendix B, and

they give a concrete illustration and a confirmation of the picture developed above.

8 Classification of leaders

As the first step of the program set in section 7, let us classify the Z2-even Sn singlet

leader operators. Of course, the total number of leaders is infinite. We will carry out a

detailed classification for leaders up to scaling dimension 12 in d = 6, and we will make
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some comments about operators of arbitrarily high dimensions. This will be sufficient for

our goal of understanding the loss of stability of the L0 fixed point.

We will pay close attention to symmetries. Symmetries control mixing of operators

under RG evolution, importantly for the next section where we compute anomalous dimen-

sions. We know that the L0 fixed point has Parisi-Sourlas supersymmetry upon replacing

χ bilinears by ψ bilinears. Some leaders (the susy-writable ones) can thus be located inside

SUSY multiplets. Their anomalous dimensions can then be determined easily, by reusing

known Wilson-Fisher results. This method is not available for leaders which are not susy-

writable, whose anomalous dimensions will be computed independently starting from the

L0 Lagrangian.

8.1 General remarks

We are interested in classifying the scalar leader operators up to classical dimension ∆max =

12 in d = 6. A general singlet operator is constructed, in the replicated basis, as a product

O = Ak1 . . . Akp , (8.1)

where each Ak is either σk or one of its dressings by derivatives, eq. (5.8). The classical

scaling dimension of the leader will be

∆(OL) = Nφ + 2p+Nder, (8.2)

where Nφ = k1 + . . .+ kp is the total power of φ in O (an even number for the considered

Z2-even fields), and Nder is the total number of derivatives (also even, since indices are

contracted to get a scalar). The Nφ + 2p in (8.2) is obtained when we replace in each Aki

one φ by ω and the rest by ϕ, as in the first term in eq. (5.14). Linear combinations of

operators (8.1) may have leaders of higher dimensions than (8.2) if the leading terms cancel.

So we need to consider all possible products (8.1) such that Nφ + 2p + Nder 6 ∆max,

do the Cardy transform, and separate the leaders. Let us show how this works for the

case Nφ = 4, Nder = 0. The basis of singlets is given in eq. (5.10). Performing the Cardy

transform we find:

σ4 =
[
4ωϕ3 + 6χ2

iϕ
2
]

∆=6
+ . . . ,

σ1σ3 = [3ϕ2ω2 + 3ϕωχ2
i ]∆=8 + . . . ,

σ2
2 = [4ϕ2ω2 + 4ϕωχ2

i + (χ2
i )

2]∆=8, (8.3)

σ2
1σ2 = [2ϕω3 + ω2χ2

i ]∆=10,

σ4
1 = [ω4]∆=12.

Here are below we will continue to omit
∑′: χki ≡

∑′ χki , (χ2
i )

2 ≡ (∑′ χ2
i

)2
, etc.

Recall that the operators involving χi’s only in O(n− 2) symmetric combinations, like

χ2
i , are called susy-writable. Their correlators can be computed in the SUSY theory LSUSY

replacing χ bilinears by ψ bilinears: χ2
i → 2ψψ̄, etc. The full rules are given in appendix C.

We will use the name “susy-writable” only for O(n−2) invariant operators which do not

vanish upon the SUSY substitution of χ’s by ψ’s. Operators which do vanish, because of the
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Singlet Leader(+1st follower if susy-null) Leader type

σ4
[
4ωϕ3 + 6ϕχ2

i

]
∆=6 susy-writable

σ1σ3 [3ϕ2ω2 + 3ϕωχ2
i ]∆=8 susy-writable

1
6F4 = σ2

2 − 4
3σ1σ3 [(χ2

i )
2]∆=8 − 4

3 [ωχ3
i ]∆=9 susy-null

σ2
1σ2 [2ϕω3 + ω2χ2

i ]∆=10 susy-writable

σ4
1 [ω4]∆=12 susy-writable

Table 1. Leaders with Nφ = 4, Nder = 0.

Grassmann nature of the ψ and ψ̄, will be called “susy-null”. The simplest example is (χ2
i )

2,

which maps to (2ψψ̄)2 ≡ 0. Although one might think that susy-null operators do not have

any physical effect, this is not quite true because they may have non-null followers (see sec-

tion 8.4 below). The susy-null operators will not mix with susy-writable nor with non-susy-

writable operators under RG, which is another reason to put them into a separate category.

Now, in (8.3), σ1σ3 and σ2
2 have the same susy-writable part of their leader, up to a

constant factor We thus can perform a linear transformation to exhibit a singlet with a

purely susy-null leader:

σ2
2 −

4

3
σ1σ3 =

1

6
F4 = [(χ2

i )
2]∆=8 −

4

3
[ωχ3

i ]∆=9 + . . . , (8.4)

where we also exhibited the non-susy-writable follower, coming from σ1σ3. Interestingly,

this special linear combination turns out proportional to the Feldman operator F4, see

eqs. (5.11), (5.17).

This completes classification of leaders with Nφ = 4, Nder = 0 (see table 1). We stress

that the leader type (susy-writable, non-susy-writable or susy-null) is determined based on

the expression for the leader, not for the followers.

The described procedure can be analogously carried out for any Nφ and Nder (see

appendix D). When classifying leaders containing derivatives, we separate total derivatives

since those do not affect RG stability, and also do not mix with other operators of the

same classical dimensions. We will next highlight conceptual aspects of this classification,

separately for each leader type.

8.2 Non-susy-writable leaders

We start with the non-susy-writable leaders. These operators break the accidental O(n−2)

symmetry of the L0 Lagrangian to the Sn−1 symmetry permuting the χi fields.33

One might think that non-susy-writable leaders should be more numerous than susy-

writable ones because of their smaller symmetry. However this turns out not to be true.

The point is that while there are many non-susy-writable operators, most of them end

up being followers rather than leaders. We have seen this already in eq. (5.5), where

33Note the subgroup relation Sn−1 ⊂ O(n− 2), familiar for integer n. E.g. S4 ⊂ O(3) acts by permuting
the vertices of the tetrahedron centered at the origin of R3.
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ϕχ3
i , χ

4
i and ωχ3

i are all followers. Systematic enumeration (appendix D) finds only one

non-susy-writable leader up to ∆ = 12, which comes from the Feldman operator F6:

(
− 1

20
F6

)

L
=

[
(χ3

i )
2 − 3

2
(χ2

i )(χ
4
i )

]

∆=12
. (8.5)

At higher ∆, non-susy-writable leaders could be constructed e.g. from the singlets

n∑

i,j=1

(φi − φj)6P (φi, φj), (8.6)

with P (φi, φj) an arbitrary polynomial. In particular, for P (φi, φj) = (φi − φj)k−6 these

would be the higher Feldman operators Fk whose non-susy-writable leaders are given in

eq. (5.17). Still more non-susy-writable leaders can be obtained by dressing singlets (8.6)

with derivatives, or multiplying them by other singlets. We will not attempt here a full

classification.

8.3 Susy-writable leaders

Looking at table 1 and appendix D, we see that most leaders up to ∆ 6 12 are susy-

writable. It would be somewhat tedious to have to compute the anomalous dimensions

of all these operators. Fortunately this turns out unnecessary because general arguments

(section 9.1) will establish that most of them are guaranteed to be irrelevant. But before

we come to that, let us have a general discussion of this class of operators.

We will refer to susy-writable leaders transformed to SUSY fields as “susy-written”.

Consider first the following question: what distinguishes susy-written leaders from all other

operators of the SUSY theory? As one may expect, this has a neat answer based on

symmetry, which is as follows: The susy-written leaders correspond to supertranslation-
invariant Sp(2)-invariant operators. In other words, supertranslations (3.2) and Sp(2)

take the role of Sn in fixing linear combinations corresponding to leaders.

Let’s explain how this comes about. The Sp(2) invariance acting on ψ, ψ̄ is manifest in

the rule (C.4). As an example of supertranslation invariance, consider susy-writable leaders

in table 1. Transforming to SUSY fields we get ϕ3ω+3ϕ2ψψ̄, ϕ2ω2 +2ϕωψψ̄, ϕω3 +ω2ψψ̄,

ω4. Indeed these are all invariant under δϕ = −εψ̄, δψ = εω, δψ̄ = δω = 0, and only for

these relative coefficients. More generally, susy-writable leaders appear from terms in the

first line of eq. (5.14), and it is easy to check that these become supertranslation-invariant

upon passing to SUSY fields. This statement remains true also in presence of derivatives.

It would be interesting to give a formal general proof, although we have tested this property

so extensively that we are absolutely sure in its validity.

As any LSUSY operator, any susy-written leader can be expressed in terms of superfield

Φ given in (2.28) and its (super)derivatives. E.g.

ϕ3ω + 3ϕ2ψψ̄ = Φ3Φ,θθ̄ + 3Φ2Φ,θ̄Φ,θ|θ=θ̄=0. (8.7)

Let us think in terms of superprimaries, i.e. composite operators O built out of the super-

field Φ which transform simply under the (super)conformal symmetry of the SUSY fixed
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point [1]. Superprimaries have well-defined anomalous dimensions at the SUSY fixed point,

equal to those of primaries in the Wilson-Fisher fixed point in d̂ = d − 2 dimensions [1].

Identifying susy-written leaders with components of superprimaries, we will easily deter-

mine their anomalous dimensions. A general superprimary is expanded in components as

([1], eq. (3.20))

O(a)(x, θ, θ̄) = O(a)
0 (x) + θO(a)

θ (x) + θ̄O(a)

θ̄
(x) + θθ̄O(a)

θθ̄
(x), (8.8)

where (a) is a collection of OSp(d|2) indices if superprimary transforms in a nontrivial repre-

sentation. Leaders Υ will be found in the component O(a)

θθ̄
≡ Dθ̄DθO(a) which is supertrans-

lation invariant and has scaling dimension ∆O + 2. The indices (a), if present, have to be

contracted to get a scalar leader. So we will have Υ = t(a)O(a)

θθ̄
where t(a) is an SO(d)×Sp(2)

invariant tensor, or simply Υ = Oθθ̄ if O is a scalar superprimary. Total derivative leaders

would correspond to x-derivatives of superprimary components; they do not affect RG flow.

In general, O(a) will transform under OSp(d|2) as a traceless tensor with mixed graded

symmetry represented by a Young tableau [1]. Because of the tracelessness condition, the

SO(d)×Sp(2) invariant tensor t(a) above can be chosen as a product of εpq’s where p, q ∈ θ, θ̄
run over the Grassmann directions.34 In other words, all indices (a) will be pairwise

assigned to θθ̄. Since graded symmetry means antisymmetry for Grassmann directions,

we may conclude that the only Young tableaux giving rise to nonzero Sp(2) invariant

components are those of shape (2, 2, . . . , 2) (i.e. 2 boxes in each row). This observation is

very important, as it radically reduces the number of representations we need to examine.

The representations with more than 2 rows do not occur below dimension 12, and we will

not discuss them except for a few comments below.

In summary, all needed susy-written scalar leaders are the highest components O(a)

θθ̄

of superprimaries in the scalar S, spin-two J ab, or box Bab,cd representations of OSp(d|2),

where the graded symmetric pairs of indices (ab) and (cd) have to be set to θθ̄, namely:

Sθθ̄, J θθ̄
θθ̄
, Bθθ̄,θθ̄

θθ̄
. (8.9)

Let us now discuss superrotations (3.3). For a leader Υ = Oθθ̄ where O is a scalar super-

primary, superrotation transformation generalizes that of ω in (3.4):

δΥ = −εµθ∂µOθ̄ − εµθ̄∂µOθ. (8.10)

This only produces total derivatives, and so
∫
ddxΥ will be preserving superrotations

(and thus full SUSY). On the other hand, leaders Υ built out of SO(d) × Sp(2)-invariant

components O(a)

θθ̄
of a tensor superprimary (like J ab or Bab,cd) will superrotate to other

components (in addition to the total derivative terms). For such leaders,
∫
ddxΥ will

break superrotations (and thus not preserve full SUSY).

Coming back to the problem of identifying susy-written leaders with superprimary

components, we can go through the list of superprimaries, and see what the corresponding

leaders are. We are to classify superprimaries of the Gaussian part of LSUSY, making use

of the SUSY equation of motion D2Φ = 0.

34E.g. T µµ ∝ T θθ̄ for spin two representation and does not have to be considered separately.

– 35 –



J
H
E
P
0
3
(
2
0
2
1
)
2
1
9

In the sector with two superfields, the lowest two superprimaries are Φ2 and the super

stress tensor T ab,see eq. (C.4) of [1]. Superconservation fixes the dimension of T ab at d− 2

for any d, while anomalous dimensions of Φ2 will be the same as for the Wilson-Fisher

operator φ̂2. The supertranslation invariant components are (H = 2),

(Φ2)θθ̄ = 2ϕω + 2ψψ̄,

T µµ
θθ̄

= 2T θθ̄
θθ̄

= −∂ϕ∂ω − ∂ψ∂ψ̄ + 4ω2. (8.11)

The first one is the SUSY mass term, while the second is a particular linear combinations of

∂ϕ∂ω+∂ψ∂ψ̄ and ω2. Another linear combination with a well-defined anomalous dimension

sits in the total derivative

∂2(Φ2)θθ̄ = 4(∂ϕ∂ω + ∂ψ∂ψ̄ − ω2), (8.12)

where one uses the Gaussian EOM ∂2ϕ = −2ω, ∂2(ω, ψ, ψ̄) = 0.

Higher spin l > 4 superprimaries built out of two superfields, e.g. the spin-4 J abcd, are

graded symmetric-traceless tensors. They have Young tableaux with l boxes in one row.

As discussed above, such Young tableau do not give rise to supertranslation- and Sp(2)-

invariant scalars, as the corresponding components vanish by graded-symmetric traceless-

ness (too many θ’s, e.g. J θθ̄θθ̄ = 0).

Let us carry out a similar exercise in the sector with four superfields. Two low-

dimension superprimaries are Φ4 and Φ2T ab of 6d scaling dimension 4 and 6 respectively.

They give rise to supertranslation invariant components of dimension 6 and 8:

(Φ4)θθ̄ = 4ϕ3ω + 12ϕ2ψψ̄,

(Φ2T µµ)θθ̄ = 6ϕ2ω2 + 12ϕωψψ̄ (8.13)

−ϕ2∂ψ∂ψ̄ − 2ϕ∂ϕ(∂ψψ̄ + ψ∂ψ̄)− (∂ϕ)2ψψ̄ − ϕω(∂ϕ)2 − ϕ2∂ϕ∂ω.

The first one is the SUSY quartic interaction. The second one is recognized as a lin-

ear combination of the dimension 8 leaders (σ1σ3)L = 3ϕ2ω2 + 3ϕωχ2
i and (σ4(µ)(µ))L =

(∂χi)
2ϕ2 + . . . (see tables 1, 6). Another linear combination corresponds to ∂2(Φ4)θθ̄.

To extend this story to higher ∆, it is useful to take into account that Parisi-Sourlas

superprimaries in 6 dimensions are in correspondence with the free massless scalar primaries

in 4 dimensions. The latter can be counted using conformal characters [32].35 This gives

the number of primaries and their spin for each dimension. Denoting 4d primaries as ∆j1,j2

where ∆ is the scaling dimension and j1, j2 ∈ Z/2 label the SO(4) representation,36 up to

35For systematic applications to Wilson-Fisher see [33] and [34], appendix A. Note that this method only
determines the number of primaries of each spin for every dimension. To find their explicit expressions
in terms of the fundamental field one would have to use other techniques, such as directly imposing the
primary condition [Kµ, O(0)] = 0.

36Here j1 and j2 are the quantum numbers that label the two SU(2) in SO(4) = SU(2)×SU(2). Represen-
tations (j1, j2) can be simply related to Young tableaux (l1, l2), i.e. l1 boxes in the first row and l2 boxes in
the second row. E.g. spin l representations are obtained by setting j1 = j2 = l/2. More generically, mixed
symmetric Young tableaux (l1, l2) are related to representations (j1, j2) ⊕ (j2, j1) where j1 = (l1 + l2)/2 and
j2 = (l1 − l2)/2.
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∆ = 10 we find the following counting:37

4 fields : 40,0, 61,1, 73/2,3/2,

2× 82,2, 82,0⊕0,2, 81,1, 80,0, (8.14)

95/2,5/2, 95/2,3/2⊕3/2,5/2, 95/2,1/2⊕1/2,5/2, 93/2,1/2⊕1/2,3/2,

3× 103,3, 103,2⊕2,3, 2× 103,1⊕1,3, 2× 102,2, 102,1⊕1,2, 2× 101,1, 100,0,

6 fields : 60,0, 81,1, 93/2,3/2, 2× 102,2, 102,0⊕0,2, 101,1, 100,0,

8 fields : 80,0, 101,1.

The only representations from this list giving rise to SO(d)× Sp(2) invariant components

in 6d (which are not total derivatives) are scalars (j1, j2 = 0), rank-2 tensors (j1, j2 =

1, 1) and mixed-symmetry 4-index tensor corresponding to the (2, 2) “box” Young tableau

(j1, j2 = 2, 0⊕ 0, 2). Mixed symmetry tensors of shape (2, 2, . . .) with more than two rows

are not realized in 4d, although they may exist in 6d. 6d tensors with such symmetry

are examples of representations which project to zero under dimensional reduction [1] in

physical dimension. However when we go to d = 4 − ε dimensions, such representations

reappear as “evanescent operators” [35, 36]. It is possible to study evanescent operators

in the ε-expansion [36], but since their classical dimension is rather high (the lowest scalar

evanescent has dimension 15 in 4d), we will not consider them in this work as already

mentioned above. We will however consider the “box” tensors in full seriousness.

8.4 Susy-null leaders

Susy-null operators are closely related to susy-writable operators. Like susy-writable oper-

ators, susy-null operators are O(n− 2) invariant and can be mapped to the ψ-formulation

using the map described in appendix C. The special feature of these operators compared

to susy-writables is that in the ψ-formulation they exactly vanish. The simplest instance

of this class of operator is (χ2
i )

2 mapped to (ψψ̄)2 which clearly vanishes because of anti-

commutation of ψ.

These operators are evidently null in the susy theory, namely any correlation function

of a susy-null operator Onull with any other operator OiSUSY will vanish:
〈
OnullO1

SUSY . . .OkSUSY

〉
= 0. (8.15)

The property above of course holds also when OiSUSY is itself a susy-null operator, in

particular the 2-point function Onull must vanish,

〈OnullOnull〉 = 0. (8.16)

One may be tempted to discard these operators, however this conclusion is too quick.

Indeed in the L0 theory we can also consider non-susy-writable operators for which the

vanishing condition does not hold,
〈
OnullO1

non-susy . . .Oknon-susy

〉
6= 0. (8.17)

37We go up to ∆ = 10 because the leader will sit in the O
(a)

θθ̄
component and have dimension 2 higher,

and we are classifying leaders up to ∆ = 12.
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A simple instance of this is the 5-point function 〈(χ2
i )

2χi1χi2χi3χi4〉 6= 0, as one can easily

verify in free theory by Wick contractions. In this sense susy-null operators are physical

operators of the L0 theory.

Because of its special structure, this class of operators satisfies very strict selection

rules for mixing under RG. Namely, susy-null operators can only mix with other susy-null

operators. Indeed, as the susy-writable operators, they cannot mix with non-susy-writables

since the latter are invariant under a smaller symmetry group: Sn−1 symmetry instead of

the accidental O(n − 2). Also they cannot acquire admixtures of susy-writable operators

(which are not null). This must be the case, otherwise we would find that a null operator in

the SUSY theory (which should be set to zero) would mix non-trivially with a non-vanishing

operator. Notice however that the mixing can occur in the opposite direction: non-susy

writable and susy-writable operators can acquire admixtures of susy-nulls. Schematically,

we have the following triangular mixing:

susy-null ↔ susy-null

susy-writable → susy-writable, susy-null (8.18)

non-susy-writable → non-susy-writable, susy-writable, susy-null.

More formally this block-triangular structure holds for the matrix Z relating the bare and

renormalized operators, see eq. (F.11). This in particular implies that renormalized susy-

writable and non-susy-writable operators with a well-defined anomalous dimension may

contain a susy-null piece. On the other hand, all renormalized susy-null operators will

always stay susy-null.

Now that the definition of susy-null operators is set, let us comment on which are

the possible susy-null leaders with dimensions up to 12 in d = 6. Systematic enumeration

in appendix D produced a few instances of susy-null leaders. The first one is the unique

susy-null operator at dimensions 8: this is the Feldman F4 leader which can be written as

(χ2
i )

2. Another susy-null leader is found at dimension 10: ϕ2(χ2
i )

2. At dimension 12 there

are three susy-null leaders built out of 6 fields, which can mix among themselves ϕω(χ2
i )

2,

(χ2
i )

3, ∂µϕ∂
µϕ(χ2

i )
2. Finally, also at dimension 12, there is a unique susy-null leader built

of 8 fields ϕ4(χ2
i )

2. In the next section we will go though this list and compute all their

anomalous dimensions.

8.5 Fixed point destabilization

An Sn-singlet perturbation can destabilize the IR fixed point, when its leader becomes

relevant. This criterion is obvious for the susy-writable and non-susy-writable leaders.

The same criterion applies also for the susy-null leaders. Note that the susy-null operators

by themselves do not affect the correlation functions of all operators in the susy-writable

sector. However when the coefficient of a susy-null leader grows and becomes O(1) (as

it may happen when such a leader is relevant), it will enter and modify RG evolution

equations of other perturbations. E.g., non-susy-writable leaders which were irrelevant,

may become relevant in presence of such large susy-null perturbations.

There is a small loophole, because in principle it may happen that the offending susy-

null coupling flows to a nearby fixed point and never becomes O(1). Whether this happens
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of not, depends on the higher-order terms in the beta-function, and on the sign of the

initial value of the RG evolving susy-null coupling. If such a fixed point does occur, SUSY

observables will be unaffected.38 This possibility looks somewhat exotic. In this paper we

will be conservative, and will count relevant susy-null leaders as potentially destabilizing

perturbations.39

9 Anomalous dimensions

In the previous section we classified the leaders of Z2-even Sn singlets up to 6d scaling

dimension 12. We will now discuss their anomalous dimensions. Some anomalous dimen-

sions will be computed at two loops, and some at one loop. We will consider separately the

three classes of leaders (susy-null, susy-writable, and non-susy-writable). We will identify

in each class at least one perturbation which becomes less irrelevant as d is lowered. The

next section will discuss the critical dimension dc where these candidate perturbations may

cross the relevance threshold.

We will start in section 9.1 with the susy-writable leaders, the most numerous class.

Their anomalous dimensions can be determined, as discussed above, by writing them as

components of supermultiplets whose dimensions are known from dimensional reduction to

Wilson-Fisher theory. This strategy is not available for the susy-null and non-susy-writable

leaders, whose anomalous dimensions have to be computed from scratch (sections 9.2, 9.3).

As we explained in sections 7, the anomalous dimension computation is greatly simpli-

fied by the fact that close to the IR fixed point all follower operators can be dropped. We

are therefore led to consider the anomalous dimensions of leader operators in the theory

defined by the Gaussian L0 Lagrangian perturbed by the interaction 4ωϕ3 + 6χ2
iϕ

2, at its

IR fixed point in d = 6− ε dimensions. We use dimensional regularization.

38While the SUSY observables are unaffected, it may be possible to see a presence of a susy-null cou-
pling in more complicated correlation functions involving non-susy-writable operators. E.g. the correlation
function 〈χ2(x1)χ2(x2)χ2(x3)χ2(x4)〉 would be affected if the leaders (χ2

i )2 or ϕ2(χ2
i )2 become relevant.

This correlation can be mapped to the replica variables and back to the random field formulation as follows
(namely we substitute χ2 = φ2 − 1

n−1
(φ3 + . . .+φn), expand the correlator for generic n, translate replicated

correlators to the random field correlators using (2.8), and finally take the limit n → 0 for the coefficients),

〈χ2(x1)χ2(x2)χ2(x3)χ2(x4)〉 = 14〈φ(x1)φ(x2)φ(x3)φ(x4)〉

−10(〈φ(x1)φ(x2)〉〈φ(x3)φ(x4)〉 + 2 perms)

−14(〈φ(x3)〉〈φ(x1)φ(x2)φ(x4)〉 + 3 perms) (8.19)

+24(〈φ(x1)φ(x2)〉〈φ(x3)〉〈φ(x4)〉 + 5 perms)

−72〈φ(x1)〉〈φ(x2)〉〈φ(x3)〉〈φ(x4)〉.

It may be possible to consider the r.h.s. in a simulation and see if it deviates from the result of the l.h.s.
predicted by using L0. If so, one can check if the correct result is obtained by perturbing L0 with a relevant
susy-null operator. Admittedly, this is more a question of principle than a concretely realizable proposal,
since simulating 4-point functions is a very hard task. In any case a deviation in (8.19) from the L0 prediction
does not count as a violation of SUSY, since this observable was not protected by SUSY in the first place.

39In the preliminary report given in [10], as well as in the earlier version of the paper, we used a different
criterion for when a susy-null leader destabilizes the fixed point, which required looking at the first follower,
and requiring that follower be relevant. For this to happen, the susy-null leader dimension has to be below
d− 1. We now think that conclusion, based on a linearized analysis, was not correct.
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Consistency of our method to compute anomalous dimensions by restricting to the

leader operators requires that leaders and followers do not mix. For susy-writable leaders

this is guaranteed explicitly by their supertranslation invariance when transformed to the

SUSY fields (section 8.3). From the point of view of the L0 Lagrangian the absence of

leader-follower mixing may appear puzzling, since these operators may have the same

classical dimensions and the same number of fields. However, our extensive checks confirm

the absence of this mixing in all cases we looked at. It would be interesting to find a formal

proof, based on selection rules following from Sn invariance, and for all three classes of

leaders (see section 11.1.1).

9.1 Susy-writable leaders

The general remarks in section 8.3 give many handles on the susy-writable leaders. We will

now discuss their IR scaling dimension. We have one low-dimension susy-writable leader:

the SUSY mass term (Φ2)θθ̄ = 2ϕω+2ψψ̄. This operator is relevant in any d, its anomalous

dimension being the same as for the Wilson-Fisher operator φ̂2 in d̂ = d − 2 dimensions.

The coefficient of this operator is finetuned to reach the SUSY fixed point.40

Are there any other susy-writable Z2-even leaders which are relevant? As we explained,

apart from total x-derivatives, susy-writable leaders Υ, when transformed to the SUSY

fields, are SO(d)× Sp(2) invariant components O(a)

θθ̄
of superprimaries O(a). Their scaling

dimension are thus

∆Υ = ∆O + 2 = ∆
Ô

+ 2, (9.1)

where we used that the scaling dimension of O equals that of the Wilson-Fisher primary

Ô to which O projects under dimensional reduction [1] (see also appendix H.1 for a few

one-loop examples). We have seen above the example Ô = φ̂2 for O = Φ2. By eq. (9.1), Υ

is relevant d dimensions if and only if Ô is relevant in d̂ dimensions:

∆Υ < d ⇐⇒ ∆
Ô
< d̂ = d− 2. (9.2)

In addition, as mentioned in section 8.3, we are interested in operators Ô which are either

scalars, spin-2 tensors, or 2 × 2 “box” Young tableau mixed symmetry tensors, since oth-

erwise O will not have SO(d) × Sp(2) invariant components.41 Let us then discuss what

is known about the spectrum of such Z2-even operators at the Wilson-Fisher (WF) fixed

point.

For any d̂ the WF fixed point has one Z2-even relevant scalar, φ̂2, connected to the

relevant SUSY mass term by the above argument. All other Z2-even scalars are irrelevant,

which corresponds to the fact that the Ising phase transition is reached by tuning one Z2

even parameter (temperature).

40For a non-finetuned coefficient the RG flow with SUSY initial conditions would end up in a SUSY
massive phase. The L0 + L1 flow is then also expected to end up in a massive phase, which however is not
going to be equivalent to the SUSY one, because of the residual L1 effects, which will not have time to
decay completely to zero.

41As mentioned in section 8.3, Young tableau of shape (2, 2, . . .) could also be important but we will neglect
them since they have high classical dimension. They are harder to study since they project to zero in 4d.
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In the spin-2 sector the lowest operator is the stress tensor, of dimension exactly d̂.

All other spin-2 operators are irrelevant in 4d and expected to stay irrelevant in d̂ < 4,

by two arguments. First, we have the unitarity bound ∆ > d̂ for any spin-2 primary in a

unitary CFT. This argument is rigorous for integer d̂ but it has a caveat for intermediate

d̂. In fact, the Wilson-Fisher theory in d̂ = 4− ε is known to be not quite unitary because

of the evanescent operators [35, 36] mentioned in section 8.3. However the violations of

unitarity appear secluded at high dimension where all evanescent operators belong, and

the unitarity bound for low-lying operators seems safe even in non-integer dimensions.

The second argument does not rely on unitarity but on the observation that to pass from

irrelevant to relevant a spin-2 operator would have to cross the stress tensor, and level

crossing is believed unlikely in an interacting non-integrable theory.

Finally, let us discuss the “box” tensors. The unitarity bound for these tensors is

relatively weak:42

∆box > d̂− 1, (9.3)

which unfortunately does not guarantee irrelevance (even modulo caveats about the lack of

unitarity in non-integer d). So we have to enter into the details. The lowest box tensor is

82,0⊕0,2 in 4d (see eq. (8.14)). This operator has 4 fields and 4 derivatives and an expression

in terms of fields of the form43

(
φ̂,µν φ̂,ρσφ̂

2 − 2d̂

d̂− 2
φ̂,µφ̂,ν φ̂,ρσφ̂

)Y
, (9.4)

where ()Y means that we should apply the box Young symmetrizer and subtract traces.

The IR scaling dimension of this operator in d̂ = 4− ε is given by

∆
B̂

= (8− 2ε)class +

(
7

9
ε

)

1-loop

+O(ε2) = 8− 11

9
ε+O(ε2), (9.5)

where the one-loop correction is from [38], table 4 (line “(2,0),(0,2)”, n = 4). Unfortunately

we are not aware of a two-loop computation.

So by eq. (9.1), the dimension of the leader B in d = 6−ε is two units higher than (9.5):

∆B = 10− 11

9
ε+O(ε2). (9.6)

In appendix H.1 we write the form of the box operator in Cardy variables, and perform

an independent computation of its one-loop anomalous dimension. This agrees with the

Wilson-Fisher computation, providing a further interesting check of dimensional reduction.

By eq. (9.6), the leader B is becoming less irrelevant as the dimension is lowered, but

only very slowly so. So in section 10 it will not be our prime candidate to destabilize the

SUSY fixed point.

42Put {hi} = (2, 2, 0, . . .) in eq. (2.41) in [37]. This also agrees with [37], (2.45) using “box”= (2, 0)⊕(0, 2)

in 4d.
43The relative coefficient between the two terms can be found by imposing the primary condition

[Kµ,O(0)] = 0, or by requiring zero two-point functions with the lower primaries φ̂2 and φ̂2T̂µν .
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p1
<latexit sha1_base64="YgAuzWg+wuyQict0QiuK5Kx+fug=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtIu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9ZD2/b5b9WreXGQV/AKqUKjRd796g4RlMUrDBNW663upCXKqDGcCp5VepjGlbEyH2LUoaYw6yOerTsmZdQYkSpR90pC5+3sip7HWkzi0nTE1I71cm5n/1bqZia6DnMs0MyjZ4qMoE8QkZHY3GXCFzIiJBcoUt7sSNqKKMmPTqdgQ/OWTV6F1UfMt319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOcF+fd+Vi0lpxi5hj+yPn8Af9zjZg=</latexit><latexit sha1_base64="YgAuzWg+wuyQict0QiuK5Kx+fug=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtIu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9ZD2/b5b9WreXGQV/AKqUKjRd796g4RlMUrDBNW663upCXKqDGcCp5VepjGlbEyH2LUoaYw6yOerTsmZdQYkSpR90pC5+3sip7HWkzi0nTE1I71cm5n/1bqZia6DnMs0MyjZ4qMoE8QkZHY3GXCFzIiJBcoUt7sSNqKKMmPTqdgQ/OWTV6F1UfMt319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOcF+fd+Vi0lpxi5hj+yPn8Af9zjZg=</latexit><latexit sha1_base64="YgAuzWg+wuyQict0QiuK5Kx+fug=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtIu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9ZD2/b5b9WreXGQV/AKqUKjRd796g4RlMUrDBNW663upCXKqDGcCp5VepjGlbEyH2LUoaYw6yOerTsmZdQYkSpR90pC5+3sip7HWkzi0nTE1I71cm5n/1bqZia6DnMs0MyjZ4qMoE8QkZHY3GXCFzIiJBcoUt7sSNqKKMmPTqdgQ/OWTV6F1UfMt319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOcF+fd+Vi0lpxi5hj+yPn8Af9zjZg=</latexit><latexit sha1_base64="YgAuzWg+wuyQict0QiuK5Kx+fug=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtIu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9ZD2/b5b9WreXGQV/AKqUKjRd796g4RlMUrDBNW663upCXKqDGcCp5VepjGlbEyH2LUoaYw6yOerTsmZdQYkSpR90pC5+3sip7HWkzi0nTE1I71cm5n/1bqZia6DnMs0MyjZ4qMoE8QkZHY3GXCFzIiJBcoUt7sSNqKKMmPTqdgQ/OWTV6F1UfMt319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOcF+fd+Vi0lpxi5hj+yPn8Af9zjZg=</latexit>

p2
<latexit sha1_base64="v0/vP4Il+nxU5vg1a4XbDiBSmjE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0kg9qgXHGr7kJkHbwcKpCrOSh/9YcxSyOukElqTM9zE/QzqlEwyWelfmp4QtmEjnjPoqIRN362WHVGLqwzJGGs7VNIFu7viYxGxkyjwHZGFMdmtTY3/6v1Ugyv/UyoJEWu2PKjMJUEYzK/mwyF5gzl1AJlWthdCRtTTRnadEo2BG/15HVo16qe5furSuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPHwEGjZk=</latexit> <latexit sha1_base64="v0/vP4Il+nxU5vg1a4XbDiBSmjE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0kg9qgXHGr7kJkHbwcKpCrOSh/9YcxSyOukElqTM9zE/QzqlEwyWelfmp4QtmEjnjPoqIRN362WHVGLqwzJGGs7VNIFu7viYxGxkyjwHZGFMdmtTY3/6v1Ugyv/UyoJEWu2PKjMJUEYzK/mwyF5gzl1AJlWthdCRtTTRnadEo2BG/15HVo16qe5furSuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPHwEGjZk=</latexit> <latexit sha1_base64="v0/vP4Il+nxU5vg1a4XbDiBSmjE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0kg9qgXHGr7kJkHbwcKpCrOSh/9YcxSyOukElqTM9zE/QzqlEwyWelfmp4QtmEjnjPoqIRN362WHVGLqwzJGGs7VNIFu7viYxGxkyjwHZGFMdmtTY3/6v1Ugyv/UyoJEWu2PKjMJUEYzK/mwyF5gzl1AJlWthdCRtTTRnadEo2BG/15HVo16qe5furSuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPHwEGjZk=</latexit><latexit sha1_base64="v0/vP4Il+nxU5vg1a4XbDiBSmjE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0kg9qgXHGr7kJkHbwcKpCrOSh/9YcxSyOukElqTM9zE/QzqlEwyWelfmp4QtmEjnjPoqIRN362WHVGLqwzJGGs7VNIFu7viYxGxkyjwHZGFMdmtTY3/6v1Ugyv/UyoJEWu2PKjMJUEYzK/mwyF5gzl1AJlWthdCRtTTRnadEo2BG/15HVo16qe5furSuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPHwEGjZk=</latexit>

p3
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Figure 4. Two-loop correction to the correlator 〈(χ2
i )2(p = 0)χj(p1)χk(p2)χl(p3)χm(p4)〉. The

black dot indicates the bare composite operator (χ2)2. We also see two ϕ2χ2 vertices. The conven-

tions for the propagators are explained in appendix E.

9.2 Susy-null leaders

Here we will summarize computations of anomalous dimensions of susy-null leaders (see

appendix H.2 for details).

The susy-null operator with the smallest UV dimension is (χ2
i )

2. It is the leader op-

erator of the singlet combination σ3σ1 + 3
4σ

2
2, which is also the Feldman operator F4, see

eq. (8.4). Its anomalous dimension receives no one-loop contribution, while the two-loop

correction is given by the diagram in figure 4. Using standard techniques (appendix H.2.1)

we obtain the IR scaling dimension

∆(χ2
i )2 = 8− 2ε− 8

27
ε2 +O(ε3). (9.7)

Going higher in the UV dimension, we encounter the susy-null leader ϕ2(χ2
i )

2 with classical

dimension 10− 3ε. Since it is the only susy-null leader at this dimension, it does not mix

with any other operator. It receives a positive one-loop anomalous dimension equal to 3ε,

as discussed in appendix H.2.2. We have not evaluated its two-loop anomalous dimension.

At classical dimension 12 − 3ε, we have three susy-null leaders made of six fields,

which mix with one another in a nontrivial way: ϕω(χ2
i )

2, (χ2
i )

3 and (∂µϕ)2(χ2
i )

2. In

appendix H.2.3 we compute their anomalous dimension matrix at one loop. As explained

there, the matrix is not completely diagonalizable, rather it can be brought to the Jordan

form (see also appendix F) with eigenvalues 0 and (11/9)ε, the latter associated to a rank-

two Jordan block. In the CFT context, the Jordan block structure of the mixing matrix

signals the presence of a logarithmic multiplet, and is a symptom that we are dealing with

a logarithmic CFT [39]. This fact is not very surprising since our theory arises from the

n→ 0 limit of Sn-symmetric replica Lagrangian (see [40]).

At classical dimension 12 − 4ε there is a single composite of eight fields, ϕ4(χ2
i )

2.

This also receives a positive one-loop anomalous dimension equal to (22/3)ε, as shown in

appendix H.2.4.

We summarize these results in table 2. As discussed in section 8.5, we count relevant

susy-null leaders as possible sources of the SUSY fixed point destabilization. The leader
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Leaders Onull Full Sn-singlet perturbation O IR dimension: ∆Onull

(χ2
i )

2 σ3σ1 + 3
4σ

2
2 8− 2ε− 8

27ε
2 +O(ε3)

ϕ2(χ2
i )

2 σ2σ4 − 8
5σ1σ5 10 +O(ε2)

ϕω(χ2
i )

2 σ1σ2σ3 − 3
2σ

2
1σ4





12− 3ε+O
(
ε2
)

12− 16
9 ε+O

(
ε2
)(χ2

i )
3 σ3

2 − 2σ1σ2σ3 + σ2
1σ4

∂µϕ∂
µϕ(χ2

i )
2 σ2

3(µ) − 4
3σ2(µ)σ4(µ) + 1

3σ1(µ)σ5(µ)

ϕ4(χ2
i )

2 σ2σ6 − 12
7 σ1σ7 12 + 10

3 ε+O
(
ε2
)

Table 2. Summary of anomalous dimension computations for all susy-null leaders with ∆UV 6

12+O (ε). For the leaders ϕω(χ2
i )2, ϕω(χ2

i )2 and ∂µϕ∂
µϕ(χ2

i )2 we show the two scaling dimensions

arising after mixing (the second one being associated to a rank-two logarithmic multiplet).

(χ2
i )

2 has the smallest dimension and is one candidate which may cause such a destabiliza-

tion, once it becomes relevant (see section 10).

9.3 Non-susy-writable leaders

In section 8.2, we have identified only one non-susy writable leader up to ∆ = 12 in

d = 6. It is the leader (F6)L of the Feldman operator F6. Given its expression (8.5)

in Cardy fields, its anomalous dimension is studied via the 6-point correlation function

〈(F6)L(p)χi(p1)χj(p2)χk(p3)χl(p4)χm(p5)χn(p6)〉. Its leading anomalous dimension ap-

pears at two loops, from the first diagram in figure 15 (see appendix H.3 for details),

and it is negative. The two-loop corrected dimension IR dimension of (F6)L is given by:

∆(F6)L
= 12− 3ε− 7

9
ε2 +O(ε3). (9.8)

This leader is becoming less irrelevant as d gets smaller, and is another candidate which

might destabilize the SUSY RG flow, as we discuss in section 10.

In appendix H.3 we also considered anomalous dimensions of higher Feldman leaders

(Fk)L, finding at two loops

∆(Fk)L
= 2k − k

2
ε− k(3k − 4)

108
ε2 +O(ε3). (9.9)

This confirms the original result of Feldman [29]. It should be noted that ref. [29] used

the “old” formalism for computing anomalous dimensions, working in the replicated basis

with propagator (2.10). The agreement shows that the “old” formalism is not wrong, if

one is careful. We believe however that our new formalism (working in the Cardy basis

in the vicinity of the Gaussian fixed point, distinguishing leaders and followers, classifying

leaders by their symmetry) is more systematic, hence less error prone.

While we confirm Feldman’s result (9.9) for the anomalous dimension, we disagree

with his conclusion that this implies instability of the SUSY fixed point for an arbitrary

small ε; see section 10.
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Figure 5. Scaling dimensions of the three lowest leaders (one per each class) as a function of the

space dimension d, per eqs. (10.1).

10 Scenarios for the loss of SUSY

In the previous sections we carried out the program of classifying the leaders of Sn singlet

perturbations, and we described many anomalous dimension computations. This is a vast

body of knowledge about the spectrum of potentially destabilizing perturbations. On the

basis of this information we will now discuss possible scenarios for how SUSY may be lost

below a critical dimension dc.

The lowest leaders in each of the three classes have dimensions (9.6), (9.7), (9.8). In

this section we will use them truncated to the known terms:

susy-writable: ∆B = 10− 11

9
ε,

susy-null: ∆(χ2
i )2 = 8− 2ε− 8

27
ε2,

non-susy-writable: ∆(F6)L
= 12− 3ε− 7

9
ε2.

(10.1)

In figure 5 we plot these scaling dimensions as a function of d in the range of interest

3 6 d 6 6. In the same plot we show the marginality threshold line ∆ = d.

The immediate observation is that B does not become relevant in this range of d, while

(F6)L and (χ2
i )

2 do so at:

∆(χ2
i )2 = d at d ≈ 4.6,

∆(F6)L
= d at d ≈ 4.2.

Taking this at face value, SUSY may be lost between d = 4 and 5 because of these two

perturbations.
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The first uncertainty in this result is due to the shortness of available perturbative

series, which hopefully will be improved in the future by higher-loop computations. E.g.,

using instead a Padé[1,1] rational approximant for the conformal dimensions, we find that

∆(χ2
i )2 crosses marginality at d ≈ 4.7, while ∆(F6)L

at d ≈ 4.5. This provides a rough idea

of this uncertainty.44

Another uncertainty is associated with the fact that the coupling of the susy-null (χ2
i )

2,

even if relevant, may flow to a nearby fixed point (“small loophole” from section 8.5), in

which case SUSY may be preserved. But even if this happens, we still have the non-susy-

writable leader (F6)L, which will destroy SUSY at a nearby dimension.

Additional uncertainty may be due to the nonperturbative mixing with higher-

dimension operators, as we will now discuss.

By nonperturbative mixing we mean the following phenomenon. In perturbation the-

ory, mixing happens between operators of the same symmetry, with additional selection

rules that they should have the same number of fields and the same scaling dimension in

d = 6. Beyond perturbation theory, symmetry remains the only selection rule. Let then

∆1(d) and ∆2(d) be dimensions of two operators computed in perturbation theory, and

suppose these two curves intersect at some d < 6 (“level crossing”). If these two operators

have different symmetry, e.g. belong to different leader classes like in figure 5, then the

level crossing is allowed also beyond perturbation theory. On the other hand, if the two

operators have the same symmetry, then we should not believe the level crossing literally,

as it will be modified by nonperturbative mixing effects.

Normally, level crossing will be resolved via level repulsion (figure 6, center). Our

theory being non-unitary, level crossing may also be resolved via operator dimensions

becoming complex conjugate (figure 6, right). Which of the two resolutions is realized

depends on the sign of the norm of the crossing operators (which is the same as the sign

of their two-point functions). Operators whose norm has the same sign will repel (as is

always the case in unitary theories), while for the norm of opposite sign, dimension will go

into the complex plane. If the mixing operators have zero norm, as in the susy-null case,

both options are possible.

After these general comments, let us see which of the curves in figure 5 can be affected

by nonperturbative mixing.

The susy-writable leader B could in principle mix nonperturbatively with other susy-

writable leaders coming from the box representations, the first of which is the 102,0⊕0,2 in

eq. (8.14). The scaling dimension of the corresponding leader B′ is:45

∆B′ = (12− 3ε)class +

(
10

3
ε

)

1-loop

+O(ε2) = 12 +
ε

3
+O(ε2). (10.2)

At O(ε) the scaling dimension curves do not intersect, and we do not consider this case

any further.

44We thank Édouard Brézin and Nicolas Sourlas for suggesting a Padé check.
45The one-loop correction is from [38], table 4 (line “(2,0),(0,2)”, n = 6). The number in the table needs

to be multipled by ε/3.
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Figure 6. Left: level crossing for two operator dimensions ∆1(d), ∆2(d) of the same symmetry in

perturbation theory. Center: crossing resolved via level repulsion (for norm of the same sign). Right:
crossing resolved via going to the complex plane (for norm of the opposite sign). These plots were

obtained by diagonalizing the matrix

(
∆1(d) p

p ∆2(d)

)
, where p is a parameter characterizing the

nonperturbative mixing strength, taken real or purely imaginary for norms of equal/opposite sign.

3.5 4.0 4.5 5.0 5.5 6.0
0

2

4

6

8

10

12

Figure 7. Scaling dimensions of susy-null leaders from table 2 (known terms).

The susy-null leader (χ2
i )

2 could in principle mix nonperturbatively with other susy-

null leaders shown in table 2. We plot the perturbative predictions for their scaling dimen-

sions (to known order) in figure 7. We see that while the higher curves intersect among

themselves, they do not reach the lower (χ2
i )

2 curve.

Finally, the non-susy-writable sector (F6)L may mix nonperturbatively with any of the

higher non-susy-writable leaders. We know a part of this higher spectrum, namely the two-

loop dimensions of the higher Feldman operators, eq. (9.9). In figure 8 we plot the scaling di-

mension of the first four (Fk)L. This time we do see level crossings. In fact, since the 2-loop

correction is negative and grows with k, it looks like the dimensions of (Fk)L intersect the

dimensions of all lower (Fk′)L. At least for the first few Feldman operators, these crossings

all appear to happen slightly above d = 4, close to the point where (F6)L becomes relevant.

This multitude of crossings deserves a discussion. The nonperturbative mixing will

likely repel the Feldman operators. As a result the lower Feldman operator will become
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Out[324]=
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0
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Figure 8. Perturbative scaling dimensions of the leaders of the first four Feldman operators.

d
<latexit sha1_base64="C5dnsXnvtWPFCy3/SWxuCQVhIro="></latexit>

∆ <latexit sha1_base64="sM6CIA74KB1Ft2zdHjFMjIDIYak="></latexit>

Figure 9. Schematic dimension curves for Feldman operators after taking nonperturbative mixing

into account. In making this figure we assumed the simplest scenario that all Feldman operators

have the norm of the same sign and hence repel each other rather than go into the complex plane.

It would be interesting to verify the norm sign in the future. For this one would have to determine

the eigenperturbations and compute the sign of the two-point functions. This plot also does not

take into account that there exist other non-susy-writable operators, with which higher Feldman

operators are expected to mix beyond two-loop order, see section H.3.

relevant at a slightly higher dc than without taking mixing into account, while the higher

Feldman operators will become relevant at a slightly lower d, if at all. SUSY will be valid for

d > dc. The final picture may perhaps resemble that of figure 9. This deserves further study,

but we emphasize that any future discussion of this problem should take nonperturbative

mixing into account. It should also be remembered that Feldman operators are but a small

subset of all the non-susy-writable operators which can be expected to take part in this

mixing, see section H.3.
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Finally we would like to discuss what would happen if one naively extrapolated figure 8

to extremely high k. The two-loop result eq. (9.9) would seem to predict that (Fk)L
becomes relevant for εc ∼

√
72/k which goes to zero for k → ∞. This was the argument

advanced by Feldman [29], who thus concluded that arbitrarily close to d = 6 there will

be some sufficiently high (Fk)L which is already relevant. Hence, he argued, SUSY will be

not present at any d < 6. We do not trust this argument for two reasons. First, because

it ignores nonperturbative mixing discussed above. Second, because to have εc small we

would have to consider very large k indeed. E.g. for k = 50 we still have εc = 1.01 from

the two-loop result. On the other hand the coefficients of the perturbative series grow with

k, as already visible in (9.9). Therefore the two-loop prediction at very large k will be

trustworthy only in a tiny range of ε, and cannot by itself be used to find where (Fk)L
becomes relevant and if this happens at all.46 For these reasons, we do not think it likely

that infinitely many Feldman operators will cross or approach the relevance threshold.

To summarize, our computations suggest that Parisi-Sourlas SUSY will be lost below

a critical dimension dc ≈ 4.2 - 4.7. Around this dimension, SUSY-breaking perturbations

from two different symmetry sectors (susy-null and non-susy-writable leaders) become rel-

evant. In particular, for integer dimension 5 all perturbations are irrelevant and Parisi-

Sourlas SUSY is expected to be present. For integer dimension 4, one perturbation with a

susy-null leader and at least one non-susy-writable perturbations are relevant, and the RG

flow is directed away from the SUSY fixed point. The phase transition in the 4d RFIM is

therefore not expected to be supersymmetric.

11 Discussion

In this paper we laid out a comprehensive framework to study RG stability of the Parisi-

Sourlas supersymmetric fixed point describing the phase transition in the Random Field

Ising Model. The key ingredients of our approach are:

• We used the Cardy-transformed basis of fields ϕ, ω, χi, in which the RG flow looks

manifestly as a Gaussian fixed point perturbed by a weakly-relevant interaction near

the upper critical dimension 6.

• We decomposed Sn-invariant perturbations (in the Cardy basis) into the leaders

and followers. Scaling dimension of the leader then determines whether the whole

perturbation is relevant.

• We classified the leaders into three classes by their symmetry (susy-writable, susy-

null, and non-susy-writable).

46See e.g. [41] for a recent related discussion of anomalous dimensions of composite operators made of
many fields in the Wilson-Fisher 4 − ε expansion. In this regard it is also instructive to recall that in the
2 + ε expansion for the O(N) vector model, operators with a large number of gradients s acquire negative
anomalous dimensions at one [42] and two loops [43, 44]. If one takes these terms too literally, infinitely
many such operators (namely all operators with s ≫ N/ε) seem to become relevant, contrary to the usual
expectation that the Wilson-Fisher fixed point should have exactly one relevant O(N)-singlet direction for
any 2 < d < 4. The general conclusion seems to be that this paradox is due to applying 2 + ε expansion
results outside of their regime of validity [45–47].
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• Susy-writable leaders were additionally classified as belonging to superprimary mul-

tiplets transforming in particular OSp(d|2) representations.

• We enumerated all leaders up to 6d dimension ∆ = 12, and computed their pertur-

bative anomalous dimensions (at one or two loops).

On the basis of the above, we identified two Sn-invariant perturbations which become

relevant at a critical dimension dc slightly above 4. In the replicated field basis φi, these

perturbations correspond to F4 and F6, where Fk =
∑n
i,j=1(φi − φj)

k is the series of

operators considered long ago by Feldman [29]. Although looking similar in the replicated

basis, in our picture the two perturbations belong to two different classes: F4 has a susy-null

leader (χ2
i )

2, while F6 has a non-susy-writable leader.

The above conclusions were based on perturbative calculations of anomalous dimen-

sions around 6d, and on considering the lowest leaders in each class. In the non-susy-

writable class, perturbative calculations indicate level crossing between F6 and the higher

Feldman operators Fk, k > 6. We discussed how this level crossing is expected to be re-

solved by nonperturbative mixing effects, pushing slightly up the critical dimension dc at

which F6 will become relevant.

To summarize, the main features of our scenario for the loss of SUSY are:

1. SUSY fixed point exists for any 3 < d 6 6.

2. SUSY fixed point is stable for d > dc and unstable for d < dc, where dc ≈ 4.2 - 4.7.

Our scenario is therefore different from the loss of SUSY in any d < 6 advocated for various

reasons in some works such as [27, 29, 48, 49].47 It is also different from the disappearance

of the SUSY fixed point via fixed point annihilation, found in Functional Renormalization

Group (FRG) studies [22, 50–53] at dc ≈ 5.1 (see appendix A.7). For them, SUSY is absent

for d < dc because there is no longer any SUSY fixed point, while for us the SUSY fixed

point exists for any d, it just becomes unstable for d < dc. [The value of dc is also different

but this is less important.] We do not see any signs of fixed point annihilation in our

picture. For us, this would require that a SUSY-preserving operator crosses the relevance

threshold. In the language of section 9.1, this would be a scalar Z2-even susy-writable

leader, and as discussed there all such operators remain irrelevant for all d.

Our work suggests two kinds of open problems: to explore our method further, and to

check our conclusions with other techniques. We discuss these in turn.

11.1 Exploring our method further

11.1.1 Symmetry meaning of leaders in the Cardy basis

One aspect of our construction which deserves further thinking is the symmetry understand-

ing of leaders. Leaders were introduced as the lowest-dimension components of Sn-singlet

operators. We then argued (and checked extensively) that leaders only mix with leaders un-

der RG. If so there must be a symmetry reason for this fact contained in the L0 Lagrangian

47See appendix A.11 concerning [48, 49], appendix A.9 concerning [27], and section 10 concerning [29].
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(without appealing to the original Sn invariant Lagrangian), and it would be interesting to

identify such a reason. For susy-writable leaders we gave a criterion (section 8.3) that they

become supertranslation invariant when written in the SUSY field basis, and it would be

interesting to prove this more rigorously.

Another hint for such a symmetry may come from an interesting property which all

leader operators have: their correlation functions vanish. One easy argument for this

comes from considering correlation functions of Sn-singlets written in terms of the original

replicated fields φi (namely without writing them in Cardy basis). It is indeed easy to

prove that such correlation functions are proportional to n and thus vanish in the n → 0

limit. [This is related to the fact that the partition function of replicated theory is exactly

1 in the n → 0 limit.] As an example let us consider 〈σk1 . . . σkm〉 in the free replicated

theory (namely (2.7) with V = 0). The result of this correlator can be written as a product

of propagators (2.10), thus it is proportional to the trace of a product of the matrices 1

and M of (2.10). Since tr(1 · · ·1M · · ·M) = O(na) with a > 1, the result must vanish as

n→ 0. This argument generalizes straightforwardly for more generic Sn singlets48 and it is

also easy to see that when V 6= 0, at any order in perturbation theory, the same property

must hold, since the potential is also an Sn-singlet by construction. We thus conclude that

correlation functions of Sn-singlets vanish. Since the leaders are lowest dimensional pieces

of Sn-singlets, their correlators must vanish too.

But can we understand this vanishing of correlators directly in terms of leaders, without

appealing to Sn-singlets from which the leaders originated? For susy-writable leaders we

can, since they are the highest component of a supermultiplet, so, by supersymmetry, their

correlation function must be zero (this is the same arguments that predicts 〈ω(x)ω(0)〉 = 0).

Also correlation functions of susy-null leaders must vanish, since the operator are null

(similarly this happens for mixed correlation functions of susy-null operators and susy-

writable ones). A less trivial case is when non-susy-writable leaders are inserted in the

correlation function. In this case SUSY arguments don’t apply, and one has to find a new

strategy to prove the statement.

11.1.2 Higher-loop computations

Perturbative computations of anomalous dimensions played an important role in our con-

siderations. In this work we relied on one- and two-loop predictions. In comparison, 6-

or 7-loop results are available nowadays for the leading critical exponents in the Wilson-

Fisher 4− ε expansion [54, 55]. It would be interesting to compute higher loop anomalous

dimensions of composite operators responsible for destabilizing the SUSY fixed point. Re-

summing these series could lead to improved determinations of dc.

48This argument works unless we consider Sn-singlets rescaled by powers of n. In this paper we do not con-
sider such rescaled operators since they would diverge in the n → 0 limit. One may argue that e.g.

∑n

i=1
φk

i

is also vanishing for n → 0, and thus that dividing by n is an allowed operation. However in Cardy variables∑n

i=1
φk

i is non-vanishing and for this reason in this formalism the rescaled operators are not allowed.

– 50 –



J
H
E
P
0
3
(
2
0
2
1
)
2
1
9

11.1.3 Branched polymers and the Lee-Yang universality class

One can consider the same problem as we studied in this paper, but replacing the quartic

potential φ4 with the imaginary cubic potential iφ3 [18]. As mentioned in section 1 and

reviewed in appendix A.4, this “Random Field Lee-Yang Model”, with upper critical di-

mension 8, describes the phase transition in the system of random polymers. Dimensional

reduction from d to d−2 dimensions in this case is verified to high precision by Monte Carlo

simulations.49 Therefore, we do not expect to find instability phenomena that we found

here for the RFIM case. In other words, leader anomalous dimensions in the iφ3 theory

should be such that they will not cross the relevance threshold. It would be very interesting

to verify this explicitly. Note that both Z2 invariant and Z2 breaking leaders should be

considered in this computation, since Z2 is not a symmetry of the Lee-Yang model.

11.2 Checking our conclusions with other techniques

11.2.1 Numerical simulations

A feature of our scenario is that the Parisi-Sourlas SUSY fixed point exists in any d > 3

(although it becomes unstable for d < dc). In principle, this could be tested in numerical

lattice simulations. State-of-the-art simulations study the RFIM phase transition at zero

temperature, by tuning the disorder distribution. In practice one considers a one-parameter

family of distributions with a fixed shape and varying overall strength (i.e. dispersion).

E.g. ref. [7] did this in d = 4 for the Gaussian and Poisson disorders. In both cases they

found identical, non-SUSY, critical exponents (as reviewed in appendix A.2). If the SUSY

fixed point exists in d = 4, it should be possible to observe it by tuning within a family

of disorder distributions depending on a larger number of parameters (as many as there

are relevant perturbations at the SUSY fixed point). As discussed in section 10, it looks

like at least two more perturbations in addition to the SUSY mass become relevant in

d = 4 (F4 and F6). If that is the case, one would have to consider a 3-parameter family

of distributions to find a SUSY fixed point in a lattice simulation — a daunting task. But

perhaps the higher-loop terms slightly modify the behavior of anomalous dimensions on d,

and only one extra perturbation becomes relevant in d = 4, so that a 2-parameter family

would suffice. See appendix I for a schematic discussion of this possibility.

Another question is whether one can measure some of the observables considered in this

paper through a lattice simulation, e.g. in d = 5, where the SUSY fixed point is expected

to be reached. In particular it would be interesting to compute the scaling dimensions of

the leaders of the Sn-singlet operators F4 and F6 and check that these are indeed irrelevant

in d = 5. Let us explain how this can be done. Any correlation function of any operator in

Cardy variables can be mapped to a correlator of the random field theory by first rewrit-

ing it in terms of the replicated fields φi following eqs. (2.11), (2.14) and then by using

the recipe in eqs. (2.6), (2.8). An example of such computation is done in (2.32)–(2.34)

and (8.19), but it can be easily generalized to any kind of operator, in particular to the

49As discussed in appendix A.4, there is also a rigorous proof for dimensional reduction of branched
polymers [56]. Done for a model of branched polymers preserving SUSY at the microscopic level, that proof
does not shed light on the stability of the SUSY fixed point with respect to SUSY-breaking perturbations.
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leaders of F4 and F6. It is however important to mention that correlation functions of both

Sn-singlets and of their leaders are vanishing as we explain in section 11.1.1. Hence one

cannot extract the dimension of a leader by computing its two point function, since this

would be zero. One should consider instead more complicated correlation functions involv-

ing non-singlet operators. E.g. ∆(F6)L
can be studied with the help of the 3-point function

〈(F6)L(x1)ϕ(x2)ϕ(x3)〉. On the other hand, the susy-null dimension ∆(F4)L
may be acces-

sible via through a 3-point function 〈(F4)L(x1)O(x2)O(x3)〉, where O has to be non-singlet

and in addition non-susy-writable, otherwise the result will vanish.50 These kind of observ-

ables would be very interesting to study. Even if higher point functions are significantly

more complicated to compute in a lattice simulation, we hope that progress can be done in

this direction. E.g. the same scaling dimensions ∆(F6)L
and ∆(F4)L

can be extracted from

finite-volume corrections to scaling of the two point functions 〈ϕϕ〉 and 〈OO〉.

11.2.2 Conformal bootstrap

In recent years, the conformal bootstrap has emerged as a powerful method to study

nonperturbative CFTs in any dimension (see the review [57]). Most of its successes have

been for unitary CFTs, which can be analyzed rigorously due to the unitarity bounds for

the operator dimensions and reality constraints on the OPE coefficients, as was first shown

in [58]. These rigorous methods do not directly apply to the Parisi-Sourlas SUSY fixed

point which is non-unitary, as visible e.g. in ∆ϕ below the scalar unitarity bound, and in

the violation of spin-statistics by spinless fermions.

Scaling dimensions of susy-writable leaders could be obtained by looking at the cor-

responding primaries in the Wilson-Fisher fixed point in d̂ = d − 2 dimensions. This is

complicated by the fact that in integer d some interesting representations project to zero,

while for non-integer d the Wilson-Fisher theory is also non-unitary [36] (as already men-

tioned in section 9.1). For us, the most interesting susy-writable leader is the box operator

B, whose dimension equals that of the Wilson-Fisher box primary B̂. The number of com-

ponents (O(d̂) irrep dimension) of B̂ is given by (see eq. (H.4)) dim(B̂) = (d̂+2)(d̂+1)d̂(d̂−3)
12 .

We have dim(B̂) = 10 for d̂ = 4 consistently with box=(2, 0) ⊕ (0, 2) in that dimension.

Note that dim(B̂) vanishes for d̂ = 3, which means that B̂ does not exist in 3d, i.e. B
projects to zero under dimensional reduction from d = 5 to 3. For 3 < d̂ < 4, dim(B̂)

is positive. Perhaps in this range of d̂ some trustworthy, albeit non-rigorous, information

about the scaling dimension of B̂ can be provided by the standard numerical bootstrap

(applying it e.g. to the 4-point functions of spin-one operators or stress tensors).51

Apart from the lack of positivity, there are other complications in applying the confor-

mal bootstrap method to the RFIM. First, the fixed point of interest exists only for n = 0,

thus precluding the analytic continuation of CFT data in n (section 6). Second, the CFT

50E.g. O = (χ2)2 gives a nonzero 3-point function. On the other hand O = χ2 seems to give a vanishing
3-point function because the two point function 〈χ2χ2〉 can be expressed in the susy variables as 〈ψψ̄〉 times
a prefactor, see (2.36).

51While being still technically challenging to set up the conformal bootstrap for such operators in arbitrary
dimensions, we might see developments in this direction in the near future. E.g. U(1) currents and stress
tensors were recently considered in d = 3 [59–61].
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is expected to contain logarithmic multiplets (section 9.2), for which logarithmic conformal

blocks need to be used instead of the usual conformal blocks [39].

At present, the only bootstrap algorithm not relying on positivity and thus applicable

also to non-unitary CFTs is the one proposed by Gliozzi [62].52 In its present incarnation

this algorithm is not rigorous, as well as less systematic than the standard numerical

bootstrap algorithms. In spite of the lack of rigor and the above-mentioned complications,

it would be interesting to try to apply Gliozzi’s algorithm to the RFIM fixed point. This

was attempted by Hikami [65], who found support for the loss of dimensional reduction

below dc ≈ 5. As we explain in appendix A.10, more work in this direction is needed to

verify the robustness of Hikami’s results and to extract what they say about the mechanism

for the loss of dimensional reduction.

11.2.3 Functional renormalization group

Previous functional renormalization group (FRG) studies of the RFIM phase transition,

such [22, 50–53] (see appendix A.7) used the Sn-symmetric formalism. In principle, it

should also be possible to apply the FRG method in the Cardy field basis. For that one

would have to package an infinite series of singlet operators in a general function. E.g.,

one could generalize Feldman operators to an Sn-invariant interaction parametrized by a

general function R:
n∑

i,j=1

R(φi − φj), (11.1)

which in the Cardy basis becomes

2
n∑

i=2

R(ω − χi) +
n∑

i,j=2

R(χi − χj). (11.2)

[Separating it into a leader plus followers may not be necessary in a nonperturbative frame-

work such as FRG.] One could then derive an RG flow equation for the function R, leading

to the anomalous dimension predictions for the Feldman operators. Note that this RG

equation will be different from that in the FRG studies of the interface disorder (sec-

tion A.6), because of the presence of the quartic coupling in our problem. Also unlike in

section A.6, the function R for us does not have to satisfy any conditions at infinity. It

would be interesting to carry out this exercise, as a way to confirm our expectations from

section 10 about the mixing and level repulsion of these operators.
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A History and prior work

A.1 Early work

That critical exponents of random-field φ4 theory in d = 6 − ε agree with Wilson-Fisher

in d = 4− ε was first proved by Aharony, Imry and Ma in 1976 [66] (see also Young [67]).

They picked out a subclass of perturbative diagrams most divergent in IR, and showed

them identical to those of the Wilson-Fisher theory with coupling λ′ = λH, for (d − 2)-

dimensional external momenta.

Parisi and Sourlas [5] rephrased this calculation in terms of supersymmetry. The dia-

grams in question being tree-level in φ (before integrating over the random field), their sum

can be done by solving the classical equation of motion in external field h. This can be then

neatly interpreted as a path integral with insertion δ(−∆φ+ V ′(φ)− h) det(−∆ + V ′′(φ)).

Introducing a Lagrange multiplier field ω for the δ-function and a pair of anticommuting

scalars to represent the determinant, one lands on a supersymmetric action. Dimensional

reduction is then argued in perturbation theory using superpropagators and the identity∫
dd−2xF (Yix, x

2) =
∫
ddxdθdθ̄ F (Yix, x

2 + θ̄θ) where Yi are d−2 dimensional vectors. The

position space argument is thus easier than the momentum space one.

A.2 No SUSY and no dimensional reduction in d = 3, 4

The Parisi-Sourlas conjecture fails in d = 3: the d = 3 RFIM is ordered at low temperatures

(for weak disorder) by the Imry-Ma criterion [68], while d = 1 Ising is of course disordered at

all temperatures and does not even have a phase transition. The ordering of 3d RFIM was

also proved rigorously by Imbrie [69, 70] (T = 0) and by Bricmont and Kupiainen [71, 72]

(small T ).

The transition is believed continuous in 3d. Numerical simulations can be done at

T = 0 varying the disorder strength to reach the transition. One uses fast algorithms to

find exact ground states for a collection of disorder samples, and then performs disorder

average. In this setup, a large-scale study on cubic lattices with size up to L = 192 and

with 107 disorder samples was performed by Fytas and Martin-Mayor [6]. They found a

continuous transition with exponents ν ≈ 1.4(1), η ≈ 0.515(1). Defining different exponents

for the connected and disconnected propagators as

∂〈Sx〉/∂hy ∼ 1/rd−2+η, 〈Sx〉〈Sy〉 ∼ 1/rd−4+η̄ (A.1)

they find η̄ ≈ 2η. SUSY is ruled out as it would predict η̄ = η. Correction to scaling

exponent is ω = 0.52(11).

The d = 4 RFIM and d = 2 Ising both have a phase transition but exponents do not

agree. The d = 4 RFIM exponents were measured precisely in [7], with results ν ≈ 0.872(6),

η ≈ 0.1930(13), 2η− η̄ ≈ 0.032(2), ω ≈ 1.3(1). In particular η̄ 6= η and SUSY is ruled out.
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A.3 SUSY in d = 5?

The d = 5 RFIM study [8] found ν = 0.626(18), η = 0.055(15), 2η − η̄ = 0.058(8),

ω = 0.66(15). Within error bars, this is largely consistent with both SUSY η̄ = η and

with the 3d Ising exponents (ν = 0.629971(4), η = 0.036298(2), ω = 0.82966(9) from the

conformal bootstrap [73, 74]).

Further evidence for SUSY and dimensional reduction in 5d RFIM was presented

in [9], which simulated elongated hypercube geometries with d − 2 dimensions fixed at L

and 2 remaining ones at RL. For R → ∞ and L fixed, SUSY imposes relations between

connected and disconnected propagators, and these relations were found to be satisfied in

d = 5 (working at R = 5). E.g. three independent finite-volume correlation lengths (which

scale with L) were found equal at a percent level: for the connected and disconnected

propagators in 5d RFIM and for the 3d Ising.

A.4 Branched polymers and the Lee-Yang universality class

Another interesting case of dimensional reduction occurs for the statistics of branched

polymers which can be modeled as connected clusters of N points on a lattice (“lattice an-

imals”). Their number P (N) and average size R scales as P (N) ∼ N−θλN , R ∼ Nν where

θ, ν are critical exponents and λ is a lattice-dependent non-universal constant. Lubensky

and Isaacson [75] proposed a field-theoretic description for extracting these exponents from

a scalar theory in n → 0 limit, similar to de Gennes’s description of self-avoiding walks

but with extra cubic vertices breaking O(n) symmetry to Sn. Parisi and Sourlas [76] then

interpreted this as the replica method limit for the random field model (1.4) with the cubic

potential V (φ) = m2φ2 + igφ3. Via supersymmetry, critical exponents should be the same

as for the Lee-Yang universality class in d − 2 dimensions. The lattice animals exponents

are known from precise Monte Carlo simulations [77] for all d < duc = 8 and indeed they

agree with the Lee-Yang exponents (known exactly or approximately depending on d).

Brydges and Imbrie [56] found a model of branched polymers which has manifest super-

symmetry at the microscopic level (see also review [78]). In their model branched polymers

are represented as a gas of particles in d dimensions with weight
∏
i∼j Q(r2

ij)
∏
i≁j P (r2

ij)

where Q keeps neighboring nodes at a distance r ∼ a apart, while P repels all other nodes.

Supersymmetry is present if Q(x) = dP (x)/dx. In this case, the model can be written

as a classical gas of particles in R
d|2 interacting with repulsive potential V , e−V = P .

Dimensional reduction follows, to a classical repulsive gas in R
d−2. The latter model has

a critical point at negative fugacity which is one of two famous microscopic realizations

of the Lee-Yang universality class [79, 80] (the other being the Ising model in imaginary

magnetic field [81]). Brydges and Imbrie’s result is limited to their model of polymers and

to the finetuned case of Q = P ′. It does not explain why supersymmetry should emerge in

a generic model of branched polymers (i.e. why supersymmetry breaking deformations are

irrelevant). This explanation may come from repeating the analysis of our paper for the

cubic potential (see section 11.1.3).
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A.5 Zero-temperature fixed points

Long-distance behavior of disordered systems is often described in terms of “zero-

temperature fixed points”. Some features of these fixed points appeared to us rather un-

usual, and we will attempt here a review for non-expert audience, according to our own

incomplete understanding. We found particularly useful the original references [82, 83],

and section 8.5 of [30].

To set the notation, recall that the usual “fixed point” is a system with an action

S({φ}, {λ}) depending on a collection of fields {φ} and couplings {λ}, which remains in-

variant under an RG transformation corresponding to the RG change of scale x′ = bx, b > 1,

in the sense that all couplings are invariant: {λ′} = {λ}. To exhibit this invariance one may

have to reparametrize the fields after performing RG transformation (e.g. rescale them).

One of the RG invariant couplings may be taken to be temperature itself. E.g., the fixed

point describing the ferromagnetic phase transition in the usual, non-disordered Ising model

has a fixed nearest-neighbor coupling J which can be identified also with the inverse temper-

ature, as well as infinitely many other couplings corresponding to the next-to-nearest and

other possible Z2 invariant couplings, which may be neglected in an approximate treatment.

In the same notation, by a “zero-temperature fixed point” one means a system whose

action is written with an explicit T−1 factor, 1
T S({φ}, {λ}), and whose behavior under

RG amounts to the change T ′ = b−θT with θ > 0 a critical exponent, while all the other

couplings {λ} remain invariant. So T → 0 as one iterates RG. Two well-known examples

are the low-temperature fixed points describing the ordered phase of the Ising model, as

well as of the O(N) model with N > 2, d > 3. Both of these cases lead to simple long-range

behavior (gapped for Ising, Gaussian with massless Goldstones for O(N)).

What is unusual is that disordered phase transition are often described by non-

Gaussian zero-temperature fixed points. RFIM is one example. Rewriting the Hamil-

tonian (1.1) as 1
T

[
−∑〈ij〉 sisj +

∑
i hisi

]
, h2

i = ∆2, the d > 2 phase diagram in the space

(T,∆) is shown in figure 10. It contains the usual non-disordered fixed point at T = Tc
which is unstable under arbitrarily small disorder (Harris criterion) and flows to the dis-

ordered fixed point at T = 0, ∆ = ∆c. This fixed point is a zero temperature fixed point

according to the above definition. The critical exponent θ is known to be 2 in d = 6− ε to

all orders, while θ = 1 + ε/2 for d = 2 + ε [82].

Physically, this means that the thermal fluctuations are negligible to those due to

disorder at the phase transition. This is very useful in numerical simulations of the RFIM

phase transition as it can be done at zero temperature with ∆ = ∆c. One picks a large

ensemble of disorder representatives {hi}, for each of these one computes the ground state

(the configuration of spins with minimal energy −∑〈ij〉 sisj +
∑
i hisi). This can be done

in polynomial time with the push-relabel algorithm [84], the solution is generically unique,

and the critical slow-down is not too bad [85, 86]. These zero-temperature algorithms are

used in modern large scale numerical simulations [6–9].

Let us discuss how the zero-temperature fixed point concept is reconciled with pertur-

bation theory in d = 6 − ε and Parisi-Sourlas SUSY ([83] and [30], section 8.5). Consider

the replicated action (2.7). Restoring the temperature dependence, the Lagrangian takes
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Figure 10. Phase diagram of the RFIM for d > 2.

the form 1
T

∑n
i=1

1
2(∂µφi)

2+λ0φ
4
i− H0

2T 2 (
∑n
i=1 φi)

2 where h(x)h(x′) = H0δ(x−x′). Rescaling

the fields we get the action as in (2.7) with λ = Tλ0, H = H0/T . If we use the classical

scalar dimension in 6d, then an RG step with rescaling factor b > 1 will give λ′ = b−2λ,

H ′ = b2H. We see that this corresponds to λ0,H0 being invariant, while T ′ = T/b2, so we

flow to a zero-temperature fixed point (θ = 2).53

Let us next consider d < 6 and connect with the Cardy-transformed description. In

the basic scenario of section 2.4, the IR fixed point is described by the Lagrangian (2.21)

with H and the quartic λ both RG-invariant, provided that the fields f ∈ {ϕ′, χ′
i, ω

′} are

rescaled by f ′(x) = b∆f f(bx) where ∆χ = ∆ϕ + 1, ∆ω = ∆ϕ + 2. If on the other hand we

do the rescaling using ∆χ instead of ∆f for all three fields, the Lagrangian will retain its

form with the unit-normalized kinetic terms, but H,λ will change as H ′ = b2H, λ′ = λ/b2,

which as we have seen above is equivalent to a zero-temperature fixed point. We conclude

that θ = 2 in any d < 6 where Parisi-Sourlas SUSY holds.

We thus see that the zero-temperature fixed point can manifest itself in many guises.

In lattice simulations we can just set T = 0. On the other hand, in the standard replicated

description (2.7) we are forced to keep T 6= 0 even though it flows to zero (a coupling

which flows to zero but cannot be simply dropped is “dangerously irrelevant”, footnote 32).

Alternatively, we are forced to keep the quartic coupling λ0 in the action although it is

irrelevant and flows to zero, because it combines with another coupling H0 which flows to

infinity. Finally, in the Cardy field basis the zero-temperature fixed point looks like the

usual non-zero temperature one: nothing flows to zero or infinity provided that we use the

correct dimensions of fields in the SUSY multiplet. The latter property is of course the

chief reason why we used the Cardy basis throughout this paper.

But what if we decide, for the sake of the argument, to forego RG and set T = 0

directly in the Landau-Ginzburg description (1.4)? This would mean that we have to find,

53Note that in the replica formalism zero-temperature fixed points are described with disorder-averaged
terms having higher order in 1/T .
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for each random h(x), the field φh solving the classical EOM

− ∂2φh + V ′(φh) + h = 0, (A.2)

and having the minimal energy. This gives in fact the fastest way to “derive” Parisi-Sourlas

SUSY. We represent the resulting path integral as

∫
Dφ δ(φ− φh)P(h)Dh =

∫
DφP(h)Dh δ(−∂2φ+ V ′(φ) + h) det(−∂2 + V ′′(φ)). (A.3)

where we reexpressed δ(φ− φh) assuming the solution of (A.2) is unique. We can further

rewrite this as
∫
DϕDωDψDψ̄P(h)Dh e

∫
ω(−∂2φ+V ′(φ)+h)+

∫
ψ(−∂2+V ′′(ϕ))ψ̄, (A.4)

and upon averaging over Gaussian h we land on the SUSY Lagrangian. This was in fact the

derivation used originally by Parisi and Sourlas [5] except that they argued the localization

to solutions of (A.2) based on the structure of most important terms in perturbation theory,

not on the fact that the fixed point is at zero temperature. In retrospect, their argument

proves that fixed point is at zero temperature in perturbation theory [83].

By convexity arguments, eq. (A.2) has a unique solution for any h as long as m2 > 0.

At the same time, for m2 < 0 there are multiple solutions for some h. This is discussed

in Parisi’s Les Houches 1982 lectures [48] (see also [87, 88]). The bare mass at the phase

transition is expected to be negative, and so multiple solutions are always present at the

short-distance scale. In presence of multiple solutions, Parisi-Sourlas path integral (A.4)

can be reduced to the sum over all solutions weighted by the determinant. This deviates

from what one originally wanted: just the minimal energy solution. One can try to relate

this deviation to nonperturbative effects, which may lead to exponentially small e−C/ε

deviations from dimensional reduction already in d = 6 − ε [48, 49].54 It appears that

the constant C has never been computed, which makes the reality of these corrections

somewhat nebulous. In fact, multiple solutions may be a short-distance phenomenon, their

effect renormalized away when one flows to long distances. To see whether this scenario is

realized, one may wish to study the whole RG flow leading to the zero-temperature fixed

point and see if the RG fixed point is stable (rather than set T = 0 from the start). That

is exactly what we did in the main text of the paper.

A.6 Interface disorder

Another famous occurrence of disorder is in statistical physics of interfaces (see e.g. lecture

notes by Kay Wiese [89] and by Leon Balents [90]). Some aspects of this problem are anal-

ogous to RFIM, although there are also differences because the symmetry is not the same.

An interface is a scalar function u(x), x ∈ R
d, described by an action

1

T

∫
ddx

[
1

2
(∂u)2 + V (x, u(x))

]
, (A.5)

54We thank Giorgio Parisi for a discussion.

– 58 –



J
H
E
P
0
3
(
2
0
2
1
)
2
1
9

where V is a random potential. [E.g. one may imagine the interface between two phases of

d+1 dimensional Ising model at T < Tc, the disorder potential V coming from impurities.]

We kept T explicit in the action. The potential is taken Gaussian random with

V (x, u) = 0, V (x, u)V (x′, u′) = δd(x− x′)R(u− u′). (A.6)

As a consequence of the shift symmetry u → u + const, the variance depends on the

difference R(u − u′), assumed an even function. One is interested in computing various

correlators of u(x), e.g.

(〈u(x)〉 − 〈u(y)〉)2 ∼ |x− y|2ζ (A.7)

at long distances, where ζ is called the roughness exponent .

Replica method then leads to the Lagrangian:

1

T

∑

i

1

2
(∂ui)

2 − 1

2T 2

∑

ij

R(ui(x)− uj(x)). (A.8)

Compared to the RFIM replicated Lagrangian (2.7) (with φi ↔ ui), this Lagrangian lacks

the individual potential V (ui) which is forbidden by the shift symmetry. The term (
∑
i ui)

2

is reproduced for the quadratic R(u), because
∑
ij(ui − uj)2 = −2

∑
ij uiuj = −2 (

∑
ui)

2

in the n → 0 limit. For R(u) = uk, the perturbation in (A.8) is nothing but the Feldman

operator Fk which played such an important role in our paper. Applying the Cardy trans-

form u1 = ϕ + ω/2, ui = ϕ − ω/2 + χi (i = 2, . . . , n,
∑
χi = 0) gives, in the n → 0 limit,

the Lagrangian

1

T

[
∂ϕ∂ω +

1

2

∑
(∂χi)

2
]

+
R′′(0)

2T 2
ω2 −

−R
(4)(0)

8T 2

[(∑
χ2
i

)2
− 4

3
ω
∑

χ3
i

]
+ . . . (A.9)

The leading Lagrangian (first line of (A.9)) is a free SUSY theory. The second line is the

Feldman F4 (8.4) in the Cardy basis, with a susy-null leader
(∑

χ2
i

)2
. In our paper we had

to calculate the scaling dimension of this perturbation working in the 6− ε expansion, but

in the interface problem the SUSY fixed point is Gaussian (because the shift symmetry

forbids the quartic interaction), and we can just read off the leader scaling dimension as

∆ = 2d − 4, which becomes relevant for d < 4. Thus, according to the discussion in

section 8.5, we expect that at d < 4 the Gaussian SUSY fixed point may be destabilized.

Furthermore, the problem at hand provides a nice illustration of how to deal with the

“small loophole” mentioned in section 8.5, namely that we have to consider the nonlinear

terms in the beta-function to see whether the susy-null coupling actually grows to become

O(1), or perhaps flows to a nearby fixed point, in which case the SUSY would not really be

broken. Denoting by g = −R(4)(0)
8T 2 the

(∑
χ2
i

)2
coupling, the beta-function at marginality

(i.e. in 4d) has the form:

βg = Cg2 , (A.10)

where C is a positive order 1 constant. It turns out that the initial conditions for the RG

evolution in the interface problem are always g(ΛUV) < 0 at the microscopic scale [89].55

55We thank Kay Wiese for emphasizing this point to us.
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With such an initial condition and with C > 0 in (A.10), the RG evolution leads to a

blowup of the coupling g in the IR (similarly to how the QCD gauge coupling formally

blows up at ΛQCD). We conclude that in the interface problem the “small loophole” does

not realize, and once the
(∑

χ2
i

)2
passes the marginality threshold, the Gaussian SUSY

fixed point is truly destabilized.

It should be said that we do not know if the same will happen when
(∑

χ2
i

)2
crosses

the marginality threshold in our RFIM problem, because we have not calculated the sign

of the beta-function (which may be different in our case due to quantum corrections) and

we do not know if the initial sign of the coupling will be the same in our problem as for

the interface.

Going back to the interface problem, while the SUSY fixed point instability can be

easily understood using our language, there remains the question where the flow goes. For

the interface, this question has been studied using FRG, by writing the RG equation for

the whole function R(u) [91] rather than performing the expansion as in (A.9).56

Consider the replica action (A.8) with n = 0 and some UV cutoff scale Λ. It is

convenient to rescale R = ΛεR̄. Then, the one-loop RG equation for R(u) in d = 4− ε has

the form

− dR̄

d log Λ
= εR̄(u) + C̃

[
1

2
[R̄′′(u)]2 − R̄′′(u)R̄′′(0)

]
, (A.11)

where C̃ is an order 1 positive dimensionless coefficient (it is proportional to C in (A.10)).

Starting the RG evolution with an analytic function R(t) having a physically acceptable

behavior at infinity, as well as having R(4)(0) > 0 (which is always the case for the random

interface), one finds that the function ∆(u) = −R′′(u) develops a cusp at u = 0, i.e. ∆(u) =

c0 + c1|u| + . . . at small t. This cusp appears at the scale where R(4)(0) → ∞, which we

found above based on (A.10).

Once the cusp forms, one would be tempted to declare that the problem became

strongly coupled and no further analytic progress is possible. That is what happens in

perturbative QCD, where below ΛQCD, when the gauge coupling becomes strong, one has

to resort to lattice Monte Carlo simulations or descriptions in terms of an effective action

using very different degrees of freedom from those in the UV, and whose parameters cannot

be determined from the first principles.

It is somewhat surprising however, that the literature on the disordered interfaces

claims to be able to go beyond the cusp formation point (see [89]). One looks for a self-

similar solution of the RG equation in the form

R(u) = Λ−4ζK(Λζu) (A.12)

56Note that, physically, the function R(u) must go to zero at large u. E.g. we might have R(u) ∼ e−u2

at the UV cutoff scale for random-bond type of disorder in the underlying Ising model which hosts the
interface, while for random-field type disorder we have instead R′′(u) → 0 at large u [89]. The requirement
that R(u) go to zero implies nontrivial correlations between the coefficients of its Taylor series. E.g. if we
set all expansion coefficients with k > k0 to zero, the resulting R(u) is a polynomial, growing at infinity,
which is not allowed by physical constraints.
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which gives a fixed point equation for K(t)

0 = (ε− 4ζ)K(t) + ζtK(t) + C

[
1

2
[K ′′(t)]2 −K ′′(t)K ′′(0)

]
(A.13)

This equation turns out to have nontrivial solutions with “cuspy” K ′′(t), for an appropri-

ately chosen value of ζ.

With R on the self-similar trajectory (A.12), redefining the variable u(x) = Λ−ζ ū(Λy),

effective action in terms of the ū field (which has momenta of order 1) takes the same form

as (A.8) but with a rescaled temperature

T → αT, α = Λd+2ζ−2 < 1 (A.14)

So the effective temperature goes to zero at long distances, while ζ in (A.12) may be

identified with the roughening exponent, giving values in agreement with Monte Carlo

simulations.

A.7 Functional renormalization group studies of RFIM

Tarjus, Tissier and collaborators (Tarjus et al. in what follows) applied the functional

renormalization group (FRG) method to the RFIM phase transition [22, 50–53]. Here we

will attempt to review some aspects of their work in spite of the fact that we understand

it only partially, and compare to our approach.57

Tarjus et al. ([22], section 2.C) allow for unequal sources for different replicas, which

they contrast with the conventional replica approaches using, they say, equal sources. We

tend to disagree that this difference is so crucial. The usual replica formalism allows to

describe all experimentally observable correlators, see eq. (2.8). The Cardy-transformed

Lagrangian used in our work is equivalent to the usual replica Lagrangian, as long as one

does not drop any terms without due RG justification. In this paper we talked about fields

and correlators, which is of course equivalent to introducing sources and differentiating

with respect to them, although we did not find it necessary to stress this standard part of

QFT dictionary explicitly.

In the rest of this appendix we will comment on refs. [50, 92], devoted to the loss

of Parisi-Sourlas SUSY. As far as we can see, this FRG analysis is applied to an action

arrived at by not fully justified assumptions. Namely, one first derives the Parisi-Sourlas La-

grangian using the original Parisi-Sourlas argument. Then one observes that the obtained

result is wrong due to multiple solutions to the classical equation of motion. It is then pro-

posed to fix this via an auxiliary parameter β providing a Boltzmann suppression for the ex-

tra contributions, see [92], eq. (28).58 While such a direct modification of the Parisi-Sourlas

Lagrangian may appear physically reasonable, it does not seem a first-principle derivation

from the replicated action. This should be contrasted with our approach, where the terms

L1,L2 modifying the Parisi-Sourlas Lagrangian came from an explicit Cardy transform.

57We thank Gilles Tarjus for a discussion.
58This is somewhat similar in spirit to the modification of mean-field theory considered in [88].
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This line of reasoning leads Tarjus et al. to a theory (see [92], eq. (42)) with N super-

fields59 Φa(x, θ, θ̄), a = 1, . . . , N and the action (
∫
θ :=

∫
dθ̄dθ(1 + βθθ̄)

N∑

a=1

∫
ddx

∫

θ

[
1

2
(∂µΦa)

2 + V (Φa)

]
−H

2

N∑

a,b=1

∫
ddx

∫

θ1

∫

θ2

Φa(x, θ1, θ1)Φb(x, θ2, θ2). (A.15)

As mentioned it is not clear to us if this action is correct in the first place. Nevertheless,

for the sake of comparison, let us try to get a similar action from our point of view. We

will not fully succeed, but we will learn some interesting lessons along the way. Take our

replicated action (2.7) and replace n → nN for a fixed integer N . The limits n → 0 and

nN → 0 being equivalent, imagine that we have N groups of n → 0 fields, and apply the

Cardy transform in each group separately. We will get a Lagrangian for fields ϕa, χa,i, ωa,

a = 1 . . . N, i = 2 . . . n. The kinetic term in the n→ 0 limit is

N∑

a=1

{
∂ϕa∂ωa +

1

2

∑′
(∂χa,i)

2
}
− H

2

(
N∑

a=1

ωa

)2

. (A.16)

Assume now for a second that the fields ϕa, χa,i, ωa for each a have the same scaling dimen-

sions as those of ϕ, ω, χi given in (2.16) [this is not quite correct, see below]. Then, dropping

the interaction terms irrelevant in d = 6− ε with these scaling dimension assignments, we

would get the interaction Lagrangian

N∑

a=1

{
V ′(ϕa)ωa +

1

2
V ′′(ϕa)

∑′
χ2
a,i

}
. (A.17)

If we now introduce N supermultiplets Φa = (ϕa, ψa, ψ̄a, ωa), and replace the χa-bilinears

by ψaψ̄a ones, the sum of (A.16) and (A.17) maps on the Lagrangian

N∑

a=1

{
∂ϕa∂ωa + ∂ψa∂ψ̄a + V ′(ϕa)ωa + V ′′(ϕa)ψaψ̄a

}
− H

2

(
N∑

a=1

ωa

)2

, (A.18)

which can be also written in terms of superfields as (A|θθ̄ :=
∫
dθ̄dθA)

N∑

a=1

[
1

2
∂µΦa∂µΦa + V (Φ)

]

θθ̄
− H

2

(
N∑

a=1

Φa|θθ̄
)2

. (A.19)

This would correspond to the β = 0 case of the Tarjus et al. action (A.15). It has N

independent supertranslation invariances, one for each supermultiplet.

However, it was incorrect to assign to ϕa, χa,i, ωa for each a the same scaling dimensions

as for ϕ, χi, ω. We had to diagonalize the kinetic part before assigning scaling dimensions,

and (A.16) is not fully diagonalized, since ωa appear coupled through (
∑
ωa)

2. For a

better treatment, we have to introduce fields ω0 =
∑
ωa, ϕ0 = 1

N

∑
ϕa, ω̃a = ωa − 1

N ω0,

ϕ̃a = ϕa − ϕ0 (
∑
ϕ̃a =

∑
ω̃a = 0) in terms of which the kinetic Lagrangian takes the form

∂ϕ0∂ω0 −
H

2
ω2

0 +
N∑

a=1

{
∂ϕ̃a∂ω̃a +

1

2

∑′
(∂χa,i)

2
}
. (A.20)

59Whose number is denoted by n in ref. [92].
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Therefore, the pair of fields ϕ0, ω0 has scaling dimensions like ϕ, ω while all the other

fields (χa,i, ϕ̃a, ω̃a) should be assigned scaling dimensions d/2−1. With the new dimension

assignments, more terms in the interaction Lagrangian (A.17) become irrelevant and should

be dropped (while no previously dropped terms became relevant). The only remaining

terms are:

V ′(ϕ0)ω0 + V ′′(ϕ0)

{
N∑

a=1

ϕ̃aω̃a +
1

2

∑′
χ2
a,i

}
. (A.21)

Now, the total number of fields ϕ̃a, ω̃a, χa,i is nN − 2 → −2 in the n → 0 limit, and their

effect can be reproduced by a single pair of fermions ψ0, ψ̄0. We then end up with a theory

containing one supermultiplet (ϕ0, ψ0, ψ̄0, ω0), not N supermultiplets like Tarjus et al.

This discussion suggests that splitting n → 0 fields into N groups does not add new

effects when using the Cardy transform, provided that one correctly identifies scaling di-

mensions. As we mentioned several times in this paper, the Cardy transform is just a

change of the field basis, and all bases should be equivalent no matter how one slices and

dices the fields, as long as we do not drop any terms without justification.

We next discuss the terms in the Tarjus et al. action (A.15) which appear for nonzero

β. Focusing on N = 1, the full Lagrangian in superfield components takes the form:60

LSUSY + β

[
1

2
(∂ϕ)2 + V (ϕ)

]
− H

2
(βωϕ+ β2ϕ2). (A.22)

Recall that in our picture the Parisi-Sourlas Lagrangian follows from the replicated action

in the n → 0 limit, and the underlying Sn invariance has to be respected. It therefore

appears to us worrisome that the extra terms in (A.22) are not Sn singlets according to

our classification. The Sn invariance is thus explicitly broken by these β-terms. For N > 1

action (A.15) preserves only SN invariance, while we would insist that the full SnN has to

be preserved at the microscopic level.

After we reviewed all the worries that we have about action (A.15), let us describe

the results that Tarjus et al. derive from this action. In [50], section III, they describe

loss of SUSY in terms of its “spontaneous breaking”. Since their action (A.15) is not fully

supersymmetric in the first place (superrotation invariance being broken by the β 6= 0

terms), it is not clear to us why it is legitimate to talk about spontaneous breaking (in

the standard high-energy physics terminolgy the situation at hand would be called explicit

SUSY breaking). Recall also that the usual spontaneous SUSY breaking is associated with

the appearance of massless particles (goldstinos), which does not appear consistent with

the RFIM phenomenology.

When Tarjus et al. derive the FRG equations they set β = ∞, in which limit the

equations involve only the bosonic components of the superfields, a property they call

“Grassmannian ultralocality”. They claim they have an argument that in this limit super-

symmetry is restored, which seems to us rather counterintuitive, but we should admit that

our understanding of this part of their work is very limited. Working with the FRG for

the second cumulant, they give further arguments relating the loss dimensional reduction

60As observed in [92] this action retains a supertranslation invariance even for nonzero β, corresponding
to Killing vectors of the curved superspace with a constant-curvature metric dθ̄dθ(1 + βθθ̄).
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to an appearance of a “cusp” in this quantity. Finally by solving the FRG numerically,

they do find a cusp below dc ≈ 5.1 [50]. While in [50] they attribute the loss of dimen-

sional reduction to “spontaneous SUSY breaking” (see our misgivings above), in subsequent

work [53, 93] they ascribe it instead to an annihilation of two SUSY fixed points.

Note that in more familiar situations where two fixed point of the same symmetry

annihilate, they disappear into the complex plane (e.g. in the 2d Potts model where a

stable and an unstable fixed points annihilate for Q = 4, for Q > 4 there is no fixed

point and the transition is weakly first order, see [94, 95] for a recent discussion). This is

not what is found in the FRG work where two SUSY fixed points existing at d > dc are

claimed to annihilate and yet a third, non-SUSY, fixed point emerges at d < dc. It would

be interesting to understand what makes their scenario consistent, from the point of view

of the quantum numbers of the operator crossing the marginality bound (which should be

a full SUSY singlet if the annihilating fixed points are both SUSY, and it is then unclear

how it can give rise to a non-SUSY fixed point at d < dc).

This concludes our outline of the FRG RFIM studies by Tarjus et al. In the next

section we will try to make contact with their work [28], where cuspy interactions were

discussed in the context of perturbative expansion in d = 6− ε.

A.8 Comments on the perturbative “cusp operators”

In sections A.6 and A.7 we saw that “cusp” interactions appear to play a role in the non-

perturbative descriptions of disordered fixed points. We are happy to admit that this might

well be the case in the FRG context, not being experts in that technique. We feel more confi-

dent however in perturbative QFT aspects, and here we wish to comment on ref. [28], which

considered a cusp operator in the context of a perturbative expansion around a Gaussian

fixed point in d = 6− ε dimension. Working with the usual replicated RFIM action (2.7),

this “cusp” operator was defined in [28] in terms of the replica fields as (see their eq. (5))

C =
n∑

i,j=1

φiφj |φi − φj |. (A.23)

Before we discuss how they deal with this operator, let us consider a simpler case of a

single free massless scalar φ (in any d > 2). In this Gaussian theory, the full spectrum of

perturbations Oi with well-defined scaling dimensions is given by normal ordered products

of φ and its derivatives. Operators involving non-analytic functions of φ, such as |φ|,
are not in that list. Now one can ask, what if one does consider a correlation function

involving |φ|? E.g. one can imagine measuring 〈|φ|(x)|φ|(y)〉 in a Monte Carlo simulation

in a lattice-discretized (∂φ)2 theory (or with another UV cutoff). What would be a

behavior of this correlation function at large distances where the theory is scale invariant?

The answer to this follows from the fact that the operator |φ| will have an expansion

|ϕ|(x) =
∞∑

i=1

aiOi(x), (A.24)

where Oi are the above operators with well-defined scaling dimension. In addition, since

|φ| is Z2-even, only Z2-even operators will appear on the r.h.s. We will have O1 = 1
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(unit operator), O2 = : φ2 :, etc. So subtracting the constant, the leading behavior of

the connected two-point function of the operator |φ| will be the same as for φ2 (see sec-

tion A.8.1 below for a proof via an explicit computation). This just illustrates that we do

not enlarge the spectrum of scaling dimensions by considering non-polynomial operators.

This should not be surprising: e.g. when we study the spectrum of perturbations of the

Wilson-Fisher fixed points, we always consider only polynomial interactions and compute

their anomalous dimensions. If we had to consider non-polynomial operators, there would

be many more anomalous dimensions to compute, and there is no evidence that this is

necessary, from theory, experiment, or simulations.

For similar reason, we believe that operator (A.23) does not exist as a scale-invariant

perturbation of the RFIM replicated Gaussian fixed point in d = 6−ε dimensions. At long

distances, this operator should be expandable in polynomial operators considered by Brézin

and De Dominicis [27], Feldman [29], and other operators that we studied in our work.

On the other hand, ref. [28] does consider operator (A.23) as an independent pertur-

bation of classical scaling dimension ∆0
C = d + 1 − ε/2 = 7 − 3ε/2 (see e.g. their eq. (9)),

without explaining in detail how they arrived to this dimension (no correlator which would

correspond to such a scaling is exhibited). Given that we do not understand the origin

of this classical dimension, and in fact oppose the very existence of C as a scale-invariant

perturbation, we will not enter into the discussion of how ref. [28] computes the anomalous

dimension of C.
Finally we would like to show a property of the Feldman operators Fk, which might

have some positive connections to the work of [28]. The requirement used in [28] to fix the

form of C is that the second cumulant of the partition function perturbed by C should behave

as the absolute value of |φa − φb| in the limit φb → φa, namely δ
δφa(x)

δ
δφb(y)

∫
ddz C(z) =

2δ(x−y)|φa−φb|(1+O(φa−φb)). As we explained above, we think that the perturbation C
should not be considered. On the other hand in our work we presented some perturbations

which we think could destabilize the IR SUSY fixed point, the most dangerous candidates

being the Feldman operators Fk. These operators affect the second cumulant as follows,

δ

δφa(x)

δ

δφb(y)

∫
ddzFk(z) = −2k(k − 1)δ(x− y)(φa − φb)k−2(1 +O(φa − φb)). (A.25)

Of course the behavior above is very different from the one of C since it is analytic. However

the fact that all Fk behave as positive powers of (φa−φb) — in contrast with other operators

of the replicated theory which would scale like a constant, e.g.
∑
i φ

k
i — is a tantalizing

observation. A similar observation is that the absolute value |φa − φb| can be expanded

(using the regularization described in section A.8.1 below) in terms of operators Fk. It

would be interesting to see if there exists a connection between the alleged cuspy behavior

of the susy-broken IR fixed point and the Feldman perturbations Fk.

A.8.1 Two-point function of |φ|

To convince the reader that our picture is indeed correct, in the following we perform an

explicit computation of the two point function of |φ| in the free massless scalar theory of
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φ regulated with a UV cutoff Λ in momentum space.61 We will show that this can be

expanded in an infinite sum of two-point functions of Z2-even operators. Naively, to do

this computation one may wish to expand |φ| in terms of monomials φk. Of course this

is not possible since the absolute value is not an analytic function and it does not admit

a power expansion. We will use an alternative definition of |φ| = φ sign(φ) representing

sign(φ) as a limit of an analytic function

sign(x) = lim
ε→0

f

(
x

ε

)
, f(x) =

2

π
Si(πx) , (A.26)

where Si (x) ≡ ∫ x0 dy
y sin y is an entire function known as “sine integral” (see below for why

we choose this particular regulator). We therefore Taylor expand the function f as follows

f(x) =
∞∑

n=0

anx
n , a2n+1 =

2(−π2)n

(2n+ 1)2(2n)!
, a2n = 0 . (A.27)

Using this expansion we rewrite the two point function of |φ| as follows:

〈|φ(x)||φ(y)|〉 = lim
ε→0

∞∑

m,n=0

anam
εn+m

〈φn+1(x)φm+1(y)〉. (A.28)

Notice that the operators φn+1 and φm+1 in (A.28) are not normal ordered. It is then con-

venient to rewrite the correlator 〈φn+1(x)φm+1(y)〉 as a sum of normal ordered correlation

functions,

〈φn+1(x)φm+1(y)〉=
∑

M=0,2,4,...

(
n+1

M

)(
m+1

M

)
〈φn+1−M (x)〉〈φm+1−M (y)〉〈:φM (x)::φM (y):〉 ,

(A.29)

where M must be even since both n+ 1 and m+ 1 are even. Here the correlation functions

of k operators inserted at the same point can be computed as 〈φk(x)〉 = (k − 1)!!G(0)k/2,

where the double factorial (k − 1)!! is the combinatorial factor which counts the number

of pairings in k elements, while G(0) is the two-point function at coincident points G(0) ≡
〈φ(x)φ(x)〉 =

∫
|k|<Λ

ddk
(2π)d |k|−2 = const×Λd−2. Combining these results we find that the

sums over n and m factorize and can be easily performed,

SM (X) ≡
∞∑

n=0

(n−M)!!

(
n+ 1

M

)
anX

n = X 2
M
2

+1
2F2

(
1
2 , 2; 3

2 , 2− M
2 ;−π2X2

2

)

Γ
(
2− M

2

)
Γ(M + 1)

, (A.30)

where the expansion parameter X takes the form X =

√
G(0)

ε . In particular we are inter-

ested in taking the limit of ε→ 0 which corresponds to sending X to infinity,

S∞
M ≡ lim

X→∞
SM (X) =

2
M−1

2

M !Γ
(

3−M
2

) . (A.31)

61We do not know any way to make sense of this operator in a theory without UV cutoff.
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Putting everything together we thus find

〈|φ(x)||φ(y)|〉 =
∑

M=0,2,4,...

G(0)1−M (S∞
M )2〈:φM (x) ::φM (y) :〉. (A.32)

The result (A.32) confirms our expectation: the two-point function of |φ| can be written

as sum of two-point functions of Z2-even operators. In particular at large distances (for

large |x − y|) (A.32) behaves as the two-point function of the identity plus the one of φ2.

One can eliminate the contribution of the identity by defining a normal ordered version

of |φ| with vanishing one-point function. The resulting normal ordered operator at large

distances would thus behave as φ2.

To clarify all steps of our computation, we would like to comment on the choice of

the function f(x) in (A.26). There are many possible analytic functions which tend to the

sign function in some limit. We chose to use (A.26) because of its excellent convergence

properties. Indeed it is not enough to consider a function f(x) with a uniformly convergent

expansion. For our computation we must also require that it is possible to commute the

path integral with the series expansion. It is easy to see that this is a more restrictive

requirement. E.g. for the one-point function of |φ|, after commuting the path integral

with the sum we find a new series of the form
∑∞
n=0(n)!!anx

n, where the new coefficients

(n)!!an grow much faster than an. If one chooses functions f with weaker convergence it

may happen that the path-integral and the series cannot be swapped or, in other words,

that the integrated expansion diverges.62

We hope that this explicit computation clarifies that it is sufficient to consider pertur-

bations around free theory of the polynomial form.

A.9 Comparison to the work of Brézin and De Dominicis

In this paper we used the observation of Brézin and De Dominicis [27] concerning the need

to consider additional Sn invariant interactions in the effective Lagrangian. On the other

hand, we disagree with ref. [27] on how to interpret the instability of n = 0 fixed point with

respect to turning on nonzero n, and in particular about the role of the additional fixed

point identified in [27]. In this appendix we will review this disagreement in more detail.

Ref. [27] worked in the “old” formalism (replicated field basis with propagator (2.10)).

The quadratic part of the replicated Lagrangian was perturbed by a general linear combi-

nation of the Sn-singlet perturbations with 4 fields given in eq. (5.10): u1σ4 + u2σ1σ3 +

u3σ
2
2 + u4σ

2
1σ2 + u5σ

4
1. All of the couplings ui were assigned in d = 6− ε the same scaling

dimension ε as u1, as is visible from RG equations (3.2) in [27], which all have the form

βui = −εui +HCijkujuk with dimensionless Cijk. In our scheme the couplings u2,u3, u4, u5

62The above is not the only way to perform this computation. E.g., denoting a = φ(x), b = φ(y),
one can integrate out all the space-points in the path integral except for x, y, and obtain the probability
distribution density P (a, b). Since the theory is Gaussian, this is given by a Gaussian distribution P (a, b) ∝

exp(−u(a2 + b2) − 2vab), and the coefficients u, v can be fixed uniquely by requiring that the two point
functions 〈φ(x)φ(x)〉 and 〈φ(x)φ(y)〉 are correctly reproduced. Then the two-point function 〈|φ(x)||φ(y)|〉

can be computed as
∫
da db |a||b|P (a, b). This gives the same result as (A.32). See also [96] for how to

deal with non-polynomial operators in field theory (we thank Giorgio Parisi for mentioning this early work,
whose focus is on the UV).

– 67 –



J
H
E
P
0
3
(
2
0
2
1
)
2
1
9

would have dimensions ε−2, ε−2, ε−4, ε−6, looking at the scaling dimension of the leader

of the corresponding interaction. Up to this difference, RG equations (3.2) in [27] bear some

similarity with the Wilsonian RG equations (B.13) in appendix B below. eqs. (B.13) were

derived for n = 0, but (3.2) in [27] contain some terms proportional to powers of n. Ref. [27]

observed that the fixed point u1 = u1∗, u2 = u3 = . . . = u5 = 0 is unstable with respect to

the inclusion of these n 6= 0 terms, and identified another fixed point for nonzero n where

the couplings scale singularly as

u1 = O(1), u2, u3 = O(1/n), u4 = O(1/n2), u5 = O(1/n3). (A.33)

Because of the mentioned mismatch in the scaling dimensions of ui, we are not sure to

agree with the details of this computation, although we do completely agree with the

conclusion that the n = 0 fixed point should be unstable with respect to turning on

n 6= 0 (see section 6). We disagree however with the interpretation of this instability. As

discussed in section 6, even though the n = 0 fixed point is unstable, the approximately

scale-invariant regime becomes longer and longer as n gets smaller and smaller. The

Brézin-De Dominicis fixed point (A.33) at nonzero n is pushed to longer and longer

distances as n gets smaller, and cannot describe the RFIM phase transition. It is, as we

said in section 6, disconnected from the n = 0 physics. This is why in the main text we

did not at all consider this fixed point.

In particular, we do not believe that one can shed light on the Parisi-Sourlas conjecture

by considering the properties of the Brézin-De Dominicis fixed point. (That is what ref. [27]

tried to do. They observed that their fixed point (A.33) is unstable, and argued that this

instability may lead to the violation of the Parisi-Sourlas conjecture for any d < 6.)

Ref. [27] is also sometimes cited (e.g. in [40]) for the fact that RG in RFIM is singular

as n → 0. Some loop effects singular in n are indeed mentioned in section 2 of [27]. We

are puzzled by that section: e.g. in a Wilsonian RG scheme with a UV and an IR cutoff

we do not see any singularity in their eq. (2.6) for d = 6. Independently of what these

“singularities” might mean, they do not trickle down to their d = 6 − ε RG equations

([27], section 3), which are completely smooth in the limit n → 0, in agreement with our

discussion in section 5.

A.10 Conformal bootstrap approach to dimensional reduction

In section 11.2.2 we described prospects for applying the conformal bootstrap approach to

study the RFIM fixed point. The only prior work in this direction is by Hikami [65]. We

will now briefly describe how we understand the computations reported in that paper. We

only comment on the part of [65] which concerns the RFIM, leaving aside the branched

polymer case also treated there.

In our language, ref. [65] studies the 4pt function of χi’s which is called there “φ” and

we will use the same notation in this appendix. This identification is visible from [65],

eq. (27). This 4pt function is considered in the strict n→ 0 limit63 and at the fixed point,

63This should correspond to −2 linearly independent χ’s. Since the crossing equations are not written
explicitly in [65], it is impossible to verify the exact number of fields used in the computations. If ref. [65]
used 0-component χ, it is a mistake.
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assuming conformal invariance. The spectrum of exchanged CFT operators in the OPE

φ × φ is limited to 3 scalar operators of dimension ∆1,∆ε,∆ε′ and one spin-4 operator

whose dimension is called Q. (The operator of dimension ∆1 is non-susy-writable in our

language.) Determinant method of Gliozzi is applied to solve crossing approximately and

determine the scaling dimensions of these operators as a function of the spatial dimension

4 6 d 6 6 ([65], table 4). The so determined scaling dimensions of φ and of the energy

operator ε are seen to satisfy the dimensional reduction predictions reasonably well for

d > 5, while for d < 5 larger deviations are observed.

In each of the figures 7–13, ref. [65] varies ∆φ and ∆ε to find the intersection points

(approximate solution of crossing) while parameters ∆1 and Q are fixed to particular values.

It is not clearly reported how those values are arrived at, and how the predictions would

change if different values were chosen. It is also not clear why a spin-4 operator is included

in this study but not spin-2 operators. One may also question the accuracy of truncation,

because at d = 6, ∆1 = 4.3 in table 4, deviating significantly from the Gaussian prediction

∆1 = 4.

Ref. [65] does not investigate the mechanism by which dimensional reduction is lost

at the critical dimension dc. On theoretical grounds, we know that this loss is associated

with the loss of SUSY, which should happen because some operator becomes relevant. The

operator becoming relevant may be either a SUSY singlet, in which case SUSY would be

lost via fixed point annihilation, as in FRG studies cited in section 11. Or, as we found

in our work, SUSY fixed point may become unstable because a SUSY-breaking leader

operator becomes relevant. In the former case there should be two fixed points above dc:

the two SUSY fixed points which annihilate. In the later case there should be two fixed

points below dc: the unstable SUSY one, and the stable non-SUSY.

Focusing on just one 4pt function, ref. [65] is not sensitive to finer aspects of Parisi-

Sourlas supersymmetry apart from predictions for operator dimensions from dimensional

reduction. It reports only one CFT for any d, which appears incompatible with either

scenario. No operator is reported to become relevant at dc. (A SUSY-singlet should

appear in the OPE φ× φ and hence be visible in this study.)

In our opinion, while the observations of [65] are suggestive, a much more careful study

is needed to verify that they are physical and are not instead due to truncation effects. This

study should confirm explicitly the existence of SUSY above dc and its absence below dc
(beyond dimensional reduction operator dimensions), and clarify the mechanism by which

SUSY is lost.

A.11 Other approaches

Without trying to judge the merit, we will briefly mention two other theoretical ideas about

the RFIM transition.

It has been proposed to connect the loss of dimensional reduction to “formation of

bound state of replicas”.64 This scenario was discussed e.g. in [98], section 5, where refer-

ences to prior work can be found. In ref. [99], numerical simulations of the RFIM in d = 3

64We are not sure, but perhaps one can think of this mechanism as due to fluctuations with large values
of fields which render the fixed point unstable, in spite of stability with respect to small fluctuations. This
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seemed to provide support for bound states of replicas. Note that as mentioned several

times, we do not expect a SUSY fixed point in d = 3. It would be interesting to know if the

non-self-averaging phenomena observed in [99] persist in d = 4 and d = 5, and whether they

are present in modern high-statistics simulations [6–8] which do not comment on this issue.

Recently, ref. [100] proposed to expand the RFIM around an exact solution on the

“Bethe lattice” (an infinite tree without loops with all vertices equivalent and having co-

ordination number 2d, like for the cubic lattice in d dimension). While this approach is

very different from the traditional one, their calculations were consistent with dimensional

reduction in d close to 6.

Finally, RFIM critical exponents can be studied using the high temperature expansion.

Ref. [101] thus obtained γ = 1.13(3), 1.45(5), 2.1(2) in d = 5, 4, 3, which using γ = ν(2− η)

is in the ballpark of the more recent accurate Monte Carlo results cited in sections A.2, A.3.

B Toy model for the L0 + L1 RG flow

In this section we develop a very concrete toy model for the L0 + L1 RG flow, mentioned

in section 7.3. It is important to stress that the aim of this section is not to study all

interesting operators which may have an important role in destabilizing the RG. Here we

want only to show a computation which clarifies some features of the RG (e.g. the role of

Sn symmetry, leaders, followers, etc.).

We consider a setup where the Gaussian piece of the L0 Lagrangian is perturbed by

5 Sn-singlet operators, chosen to be all the perturbations which contain 4 fields and no

derivatives. Since the perturbations are free of derivatives, they can be written as products

of the σi fields. So we get eq. (7.10), where each Sn-singlet multiplies a coupling hi. It is

instructive write this Lagrangian in the Cardy basis. When n = 0, the 5 Sn singlets are

written as linear combinations of 11 fields,

σ4 = 6ϕ2χ2 + 4ϕ3ω + 4ϕχ3
i + (χ4

i − 6ϕωχ2
i )− 2ωχ3

i + (
3

2
ω2χ2

i + ϕω3),

σ2
2 = 4ϕωχ2

i + 4ϕ2ω2 + (χ2
i )

2,

σ1σ3 = 3ϕωχ2
i + 3ϕ2ω2 + ωχ3

i −
3

2
ω2χ2

i +
ω4

4
,

σ2
1σ2 = ω2χ2

i + 2ϕω3,

σ4
1 = ω4.

(B.1)

We are therefore led to write a Gaussian action perturbed with eleven independent cou-

plings gi, eq. (7.11). This Lagrangian exactly matches equation (7.10) when the couplings

gi satisfy the following Sn-invariance condition obtained by substituting (B.1) in (7.10)

g1 = g2 = g3 = g4 = h1, g5 = −6h1 + 4h2 + 3h3, g6 = h3 − 2h1,

g7 =
3

2
(h1 − h3) + h4, g8 = h1 + 2h4, g9 = 4h2 + 3h3,

g10 = h2, g11 =
h3

4
+ h5 .

(B.2)

would be somewhat similar to instabilities in fixed points of scalar theories with unstable potentials (like
cubic with a real coupling or quartic with a negative coupling, see e.g. [97]).
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In the nest subsections we want to investigate how the couplings gi evolve under RG when

the Sn-condition (B.2) are or are not imposed in the UV.

B.1 Integrating out

Let us start by considering 11 independent couplings gi which are all small perturbation

of the same order. We work in d = 6− ε dimensions in a theory with a momentum-space

cutoff Λ. We want to compute how the couplings change as we integrate out degrees of

freedom from Λ′ < Λ to Λ. The resulting couplings g̃i, at order O(g2
i ), take the form

g̃1 = g1 + 12(2g1 + g2)g1I

g̃2 = g2 + 36g2
2I

g̃3 = g3 + 36g1g3I

g̃4 = g4 + 36g2
3I

g̃5 = g5 + 12(2g1g5 + g2g5 + 2g1g9)I

g̃6 = g6 + 12g3g5I

g̃7 = g7 + (g2
5 + g9g5 + 18g1g8)I

g̃8 = g8 + 4(g2
9 + 9g2g8)I

g̃9 = g9 + 60g2g9I

g̃10 = g10 + 6(6g2
3 + g1g5)I

g̃11 = g11 + 3g8g9I,

(B.3)

Here, for simplicity, we consider only the contributions given by the one-loop integral

I which depends logarithmically on the ratio b ≡ Λ/Λ′ of the cutoff scales:65

I =
H

2

∫ Λ

Λ′

ddk

(2π)d
1

(k2)2(p− k)2
=

1

2

H

(4π)3
log b+O(ε). (B.4)

From (B.3) we can explicitly test if Sn symmetry is preserved by integrating-out. Namely

we want to check that, when (B.2) is satisfied by the bare couplings, the renormalized

couplings g̃i satisfy the same condition (B.2) where all couplings are tilded, namely

g̃1 = g̃2 = g̃3 = g̃4 = h̃1, g̃5 = −6h̃1 + 4h̃2 + 3h̃3, g̃6 = h̃3 − 2h̃1,

g̃7 =
3

2
(h̃1 − h̃3) + h̃4, g̃8 = h̃1 + 2h̃4, g̃9 = 4h̃2 + 3h̃3,

g̃10 = h̃2, g̃11 =
h̃3

4
+ h̃5 ,

(B.5)

where h̃i define the new values of the couplings hi after integrating out. This amounts to

check that, after imposing (B.2) and (B.5), the eleven equations (B.3) for the couplings gi

65These are indeed the only contributions which would survive in other schemes, like dimensional regu-
larization. For completeness we also performed a computation which takes into account all the one-loop
integrals — also the ones which scale as powers of the cutoff — and we found that, at leading order in ε,
the IR fixed point does not change. Since the result is unchanged, but all the intermediate step are more
complicated, we decided to present this simpler setup.
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reduce to only five equations for the renormalization of the couplings hi. For example let

us consider what happens to the first four equations of (B.3) which only involve couplings

g1, . . . , g4 which are all set to h1 by (B.2) (and similarly for their tilded companions). For Sn
to be respected it is crucial that these four equation reduce to the same one in terms of h1.

It is easy to see that this indeed happens giving rise to g̃1 = g̃2 = g̃3 = g̃4 = h̃1 = h1+36h2
1I.

By applying the same logic to the other equations we obtain the wanted 5 renormalization

equations for hi,

h̃1 = h1 + 36h2
1I

h̃2 = h2 + (24h1h2 + 18h1h3)I

h̃3 = h3 + (48h1h2 + 36h1h3)I

h̃4 = h4 + (32h2
2 + 48h3h2 + 18h2

3 + 36h1h4)I

h̃5 = h5 + (24h2h4 + 18h3h4)I .

(B.6)

In other words, when Sn symmetry is present in the UV, the renormalization of the 11

couplings g̃i can be computed using (B.5) and the renormalization of only 5 Sn-symmetric

couplings (B.6).

Computationally, this is a non-trivial check of Sn symmetry, although conceptually

this should not be surprising. In fact we knew that Sn invariance was actually present in

the initial action, even if it was hidden by the use of Cardy variables. One could have been

worried that Sn would be spoiled by dropping the n-suppressed terms. This computation

exemplifies that even when n is set to zero, Sn symmetry continues to exist and plays an

important role.

B.2 Rescaling

To complete the RG step, and get a Lagrangian of the same form as the initial one but

with new couplings gi(b), we need to rescale the cutoff to its original value. This amounts

to rescale the couplings g̃i defined at Λ′ by a factor bd−∆0 where b ≡ Λ/Λ′ and the power

is dictated by the classical dimensions ∆0 of the fields,

g1(b) = g̃1b
ε , g2(b) = g̃2b

ε , g3(b) = g̃3b
ε−1 , g4(b) = g̃4b

ε−2 ,

g5(b) = g̃5b
ε−2 , g6(b) = g̃6b

ε−3 , g7(b) = g̃7b
ε−4 , g8(b) = g̃8b

ε−4 ,

g9(b) = g̃9b
ε−2 , g10(b) = g̃10b

ε−2 , g11(b) = g̃11b
ε−6

(B.7)
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By rescaling the couplings, equations (B.5) get rescaled as follows

g1(b) = g2(b) = g3(b)b = g4(b)b2 = h̃1b
ε

g5(b) = −(6h̃1 − 4h̃2 − 3h̃3)bε−2

g6(b) = −(2h̃1 − h̃3)bε−3

g7(b) =
1

2
(3h̃1 − 3h̃3 + 2h̃4)bε−4

g8(b) = (h̃1 + 2h̃4)bε−4

g9(b) = (4h̃2 + 3h̃3)bε−2

g10(b) = h̃2b
ε−2

g11(b) =
1

4
(h̃3 + 4h̃5)bε−6 .

(B.8)

So while before rescaling Sn symmetry sets certain couplings equal to each other, after

rescaling it relates them by powers of the rescaling factor b. This is due to the fact that fields

ϕ, ω, χi related by the Sn symmetry have different classical scaling dimensions (contrary

to the usual situation that fields forming a multiplet under a symmetry have the same

dimensions). We say that “Sn symmetry does not commute with rescaling”. This makes

Sn symmetry less manifest, since some couplings which start in the UV with the same value,

may evolve differently. However it is important to stress that Sn symmetry is still present

(so it is not broken), and constrains the RG at all scales as it is clear from the relations (B.8).

By setting all h̃i>1 = 0 in (B.8), we can recover exactly formula (7.4) for the form of

σ4 after an RG step. Similarly, by keeping only one non-zero h̃i, we can obtain how the

other Sn singlets rescale after one RG step. The result is as follows

h1σ4→h1(b)

(
6ϕ2χ2 +4ϕ3ω+4

ϕχ3
i

b
+
χ4
i −6ϕωχ2

i

b2
−2

ωχ3
i

b3
+

3
2ω

2χ2
i +ϕω3

b4

)
,

h2σ
2
2→h2(b)(4ϕωχ2

i +4ϕ2ω2 +(χ2
i )

2) ,

h3σ1σ3→h3(b)

(
3ϕωχ2

i +3ϕ2ω2 +
ωχ3

i

b
− 3

2

ω2χ2
i

b2
+
ω4

4b4

)
,

h4σ
2
1σ2→h4(b)(ω2χ2

i +2ϕω3) ,

h5σ
4
1→h5(b)ω4,

(B.9)

where we introduced a natural definition for the rescaled couplings hi(b),

h1(b) ≡ h̃1b
ε , h2(b) ≡ h̃2b

ε−2 , h3(b) ≡ h̃3b
ε−2 , h4(b) ≡ h̃4b

ε−4 , h5(b) ≡ h̃5b
ε−6 .

(B.10)

Expression (B.9) is an explicit example of formula (7.8) of the main text.
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B.3 Beta functions and fixed point

After integrating-out (B.3) and rescaling (B.7) we can finally define the beta functions for

the eleven couplings by βgi ≡ d
d log bgi(b). This gives

βg1 = −g1ε+ 12g1(2g1 + g2) J

βg2 = −g2ε+ 36g2
2 J

βg3 = g3(1− ε) + 36g1g3 J

βg4 = g4(2− ε) + 36g2
3 J

βg5 = g5(2− ε) + 12(g2g5 + 2g1(g5 + g9)) J

βg6 = g6(3− ε) + 12g3g5 J

βg7 = g7(4− ε) + (g2
5 + g9g5 + 18g1g8) J

βg8 = g8(4− ε) + 4(g2
9 + 9g2g8) J

βg9 = g9(2− ε) + 60g2g9 J

βg10 = g10(2− ε) + 6(6g2
3 + g1g5) J

βg11 = g11(6− ε) + 3g8g9 J ,

(B.11)

where J ≡ H
2(4π)3 . We are interested in fixed points which can be reached from the Sn

invariant initial conditions (B.2). In particular any such fixed point will have g1 = g2, as

is clear from (B.8). Imposing this condition, we find a single non-trivial fixed point:

g⋆1 = g⋆2 =
ε

36J
, g⋆i>2 = 0 . (B.12)

Since all couplings g⋆i>2 vanish, this fixed point is the same as that of L0 (equivalent to

LSUSY). We conclude that every computation done close to the IR fixed point of La-

grangian (7.11) with Sn symmetric initial conditions (B.2) can be equivalently done in a

much simpler setup where the Gaussian piece of L0 is perturbed by the single susy-writable

operator 6ϕ2χ2
i + 4ϕ3ω.

Finally we show the β-functions for the couplings hi(b) of (B.10):

βh1 = −h1ε+ 36h2
1J

βh2 = h2(2− ε) + 24h1h2J + 18h1h3J

βh3 = h3(2− ε) + 48h1h2J + 36h1h3J

βh4 = h4(4− ε) + 32h2
2J + 48h3h2J + 18h2

3J + 36h1h4J

βh5 = h5(6− ε) + 24h2h4J + 18h3h4J .

(B.13)

The fixed point of the hi flow is given by h⋆1 = ε
36 J and h⋆i>1 = 0.

B.4 Perturbations around the IR fixed point

Next we want to study the perturbations around the fixed point.

We first linearize the RG flow of gi around the fixed point and study the 11 eigenvectors

va and eigenvalues λa of the matrix Mij = ∂gjβgi |g⋆ . The eigenvectors va define the IR
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∆a (1-loop) Oa
6 6ϕ2χ2

i + 4ϕ3ω

8− ε
3 (χ2

i )
2 + 10ϕωχ2

i + 10ϕ2ω2

8− 2ε (χ2
i )

2

10− ε ω2χ2
i + 2ϕω3

12− 2ε ω4

6− ε
3 ϕ2χ2

i

7− ε ϕχ3
i

8− 2ε χ4
i

8− ε ϕωχ2
i + 6(χ2

i )
2

9− 2ε ωχ3
i

10− 2ε ω2χ2
i

Table 3. Toy model: all the 11 IR perturbations. The first 5 are Sn-preserving, the last 6 are

Sn-breaking. ∆a is the 1-loop mixing matrix element which encodes how Oa renormalizes itself.

perturbations Oa in operator space, while the eigenvalues define the correspondent 1-loop

scaling dimension as ∆a = d+λa. Here it is necessary to make a disclaimer. Our toy model

does not include operators with derivatives, which can mix with the operators of (7.11) (e.g.

the operator ϕ2ω2 may mix with ϕω∂µϕ∂µϕ of the same scaling dimension, which was not

included in the toy Lagrangian (7.11)). In cases affected by such mixings, we do not expect

that our toy model computation will obtain the correct renormalized operators nor their

correct anomalous dimensions. (On the contrary in the serious calculations in section 9

and appendix H we were careful to take all possible mixings into account.) So in practice

the dimensions ∆a reported below should be only considered as a component of a mixing

matrix, which encodes how the operator Oa renormalizes itself. Only when Oa does not

mix with any other operators outside of (7.11), then we should expect that ∆a defines its

correct conformal dimension at 1-loop. In the end of the section we will come back to this

point. With this in mind, the result of the diagonalization of Mij is summarized in table 3.

This table lists 11 linear combinations of perturbations of the IR fixed point by quartic

operators without derivatives, which have well-defined anomalous dimensions (in our toy

model). What is their relation with the Sn symmetry? We know that the Sn-preserving di-

rections form a 5-dimensional subspace U of the 11-dimensional space V11 of couplings. The

complementary directions should be classified as Sn-breaking. As the RG flow progresses,

U changes, “rotating” inside V11 in accordance with (B.8). However, the number of Sn-

preserving (and of Sn-breaking) directions is preserved along the RG flow. At the IR fixed

point U reaches a final form UIR, defining the 5 different Sn-preserving IR perturbations.

Any flow starting in the subspace U in the UV will approach the IR fixed point along a lin-

ear combination of these 5 directions. From this argument we expect that UIR has a basis of

operators with well-defined IR anomalous dimensions. Operators with well-defined IR di-
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∆a (1-loop) Oa
6 σ4

8− ε
3 σ2

2 + 2σ1σ3

8− 2ε σ2
2 − 4

3σ1σ3

10− ε σ2
1σ2

12− 2ε σ4
1

Table 4. Toy model: the 5 Sn-preserving IR perturbations coming from the β functions (B.13)

linearized near the fixed point. ∆a is the 1-loop mixing matrix element which encodes how Oa

renormalizes itself.

mensions which are not in UIR will span a complementary space denoted by ŪIR. So we have

V11 = UIR⊕ ŪIR, where UIR is a 5-dimensional subspace of Sn-preserving IR perturbations,

and ŪIR is a complementary 6-dimensional subspace of Sn-breaking IR perturbations.

So, which directions are which? We claim that the Sn-preserving IR perturbations are

the first 5 entries of the table 3. To see this, we repeat the diagonalization exercise for the

β-functions (B.13) associated to the Sn couplings hi. When we diagonalize ∂hj
βhi
|h⋆ we

get 5 eigenvalues and eigenvectors given in table 4 (where we give Sn singlets to which the

5 eigencouplings couple).

The leader pieces of the singlets in table 4 exactly match the first 5 operators in table 3:

(σ4)L = 6ϕ2χ2
i + 4ϕ3ω ,

(σ2
2 + 2σ1σ3)L = (χ2

i )
2 + 10ϕωχ2

i + 10ϕ2ω2 ,

(σ2
2 −

4

3
σ1σ3)L = (χ2

i )
2 , (B.14)

(σ2
1σ2)L = ω2χ2

i + 2ϕω3 ,

(σ4
1)L = ω4 ,

and the values of ∆a in both tables 4 also agree. This proves the claim that the first

5 operators in table 3 are Sn invariant directions (and hence, by exclusion, the last 6

directions are Sn-breaking).

Let us now return to the problem of understanding which ∆a of tables 3 and 4 corre-

spond to the actual 1-loop dimensions of the respective operator Oa. As we said above, this

happens when Oa does not mix with operators containing derivatives, since those operators

were not considered in (7.11). Let us consider this question for the Sn-invariant directions.

Are there additional Sn singlets producing leaders with the same number of fields, with

the same classical dimensions and the same symmetry properties (recall that susy-writable,

susy-null, and non-susy-writable leaders do not mix with each other66)? Fortunately this

exercise is already done in appendix D, where the classification of all quartic operators with

dimensions ∆ 6 12 is given. For our purpose it is enough to consider table 6. There, we see

one leader (χ2
iµ)ϕ2 + . . . involving two derivatives, susy-writable and of classical dimensions

66More precisely there is only triangular mixing, which does not affect scaling dimensions.
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8 (at d = 6), which can mix with (σ2
2 + 2σ1σ3)L (the second line of tables 3 and 4). There

are also three susy-writable operators with dimensions 10, that can mix with (σ2
1σ2)L. Fi-

nally, there are 2 susy-writable operators of dimensions 12 which can mix with (σ4
1)L. The

value of ∆a for these three operators therefore should not be confused with their scaling

dimension. On the other hand, there are no operators which can mix with (σ4)L and the

(susy-null) (σ2
2− 4

3σ1σ3)L, thus their dimension is indeed given by ∆a. We can easily check

that the result is correct: the anomalous dimension of (σ4)L is the well-known one of φ̂4 of

the Wilson-Fisher fixed point, while (χ2
i )

2 gets no one-loop correction (see appendix H.2.1).

These computations represent a nice toy model to better understand our RG setup,

where Sn symmetry does not commute with rescaling. The final tables 3 and 4 show that by

diagonalizing the possible IR perturbations we get some directions which are Sn-preserving

while others are Sn-breaking. From table 3 we see that the Sn-preserving IR perturbations

are captured by the leaders of the correspondent Sn-singlets of table 4. Moreover table 3

exhibits other eigenperturbations, which are linear combinations of the followers and which

correspond to Sn-breaking directions, in agreement with the interpretation given in sec-

tion 7.3. It is also important to notice that when two Sn-singlets have leaders of the

same classical dimension (e.g. σ2
2 and σ1σ3), eigenperturbations are their particular lin-

ear combinations, which sometimes can be determined by looking at the leader type (e.g.

(σ2
2 − 4

3σ1σ3)L = (χ2
i )

2 is the only susy-null linear combination at this dimension, so must

be an eigenperturbation). These observations illustrate the general algorithm proposed

in sections 7 and 8 to organize the spectrum of all the Sn-preserving IR perturbations.

Hopefully this discussion convinces the reader that the proposed organization principle is

indeed correct.

C Correspondence between correlators of χi and ψ, ψ̄

Consider first the Gaussian theory of n− 1 χi’s subject to the constraint
∑n
i=2 χi = 0 and

with the action S[χ] = −1
2

∫
ddxχi∂

2χi (sum over repeated i’s implicit here and elsewhere

in this section, unless noted otherwise) and the Gaussian theory of Grassmann fields ψ, ψ̄

with the action S[ψ, ψ̄] = − ∫ ddxψ∂2ψ̄. We can compute correlators from the partition

functions coupled to sources:67

Zχ[Ji] =

∫
Dχi e−S[χ]+

∫
Jiχi = Nχ(det ∂2)− n−2

2 exp

(
1

2

∫
KijJi(∂

2)−1Jj

)
,

Zψ[J, J̄ ] =

∫
DψDψ̄ e−S[ψ,ψ̄]+

∫
ψJ̄+Jψ̄ = Nψ(det ∂2) exp

(∫
J(∂2)−1J̄

)
, (C.1)

where Kij = δij − 1
n−1Πij is the matrix appearing in (2.17). From here we get the χχ and

ψψ̄ propagators shown in (2.17) and (3.11).

As mentioned in section 2.5, the L0 theory defined in terms of χ field contains more

operators than its ψ, ψ̄ counterpart LSUSY. E.g. operators of the form
∑′ χni do not have

any correspondent due to the Grassmann nature or ψ, ψ̄. Let us show that observable of

67To do the first path integral it is convenient to represent the constraint
∑n

i=2
χi = 0 by a Lagrange

multiplier.
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the χ-formulation which involve O(n−2) singlets, can be recovered from the ψ-formulation.

To this end we compute the path integrals with sources for bilinear operators inserted at

different points

Zχ[A(x, y)] =

∫
Dχi e−S[χ]− 1

2

∫
χi(x)χi(y)A(x,y) = Nχ[det(−∂2 +A)]−

n−2
2 , (C.2)

Zψ[A(x, y)] =

∫
DψDψ̄ e−S[ψ,ψ̄]− 1

2

∫
(ψ(x)ψ̄(y)+ψ(y)ψ̄(x))A(x,y) = Nψ det(−∂2 +A).

Here A(x, y) = A(y, x) is a symmetric function. We consider the Gaussian actions S[χ],

S[ψ, ψ̄] but it is easy to introduce the coupling to ϕ via ∂2 → ∂2 + V ′′(ϕ). We see that

the results coincide in the limit n→ 0, discarding the overall normalization which cancels

in the computation of any correlator. By taking derivatives in A(x, y) it is straightforward

to see that all correlation functions of the bilocal operators Oχ(x, y) ≡ χi(x)χi(y) and

Oψ(x, y) ≡ ψ(x)ψ̄(y) + ψ(y)ψ̄(x) exactly match. For example

〈ψ(x1)ψ̄(x2〉+ 〈ψ(x2)ψ̄(x1)〉 = 〈χi(x1)χi(x2)〉, (C.3)

〈(ψ(x1)ψ̄(x2) + ψ(x2)ψ̄(x1)(ψ(x3)ψ̄(x4) + ψ(x4)ψ̄(x3)〉 = 〈χi(x1)χi(x2)χj(x3)χj(x4)〉.

We therefore obtain an equivalence map between bilocal operators of the two theories

Oχ(x, y)←→ Oψ(x, y).

As a next step, we pass from bilocal to local operators. To this end we differentiate

an arbitrary number of times in x and in y and take a limit as y → x. This way we obtain

that any two bilinear local operators of this form are equivalent between the two theories:

(∂(α)χi)(∂
(β)χi)←→ (∂(α)ψ)(∂(β)ψ̄) + (∂(β)ψ)(∂(α)ψ̄), (C.4)

where (α), (β) are arbitrary collections of indices. E.g. (denoting derivatives ∂µ as ()µ etc)

χiχi,µ ←→ ψψ̄µ + ψµψ̄,

χiχi,µν ←→ ψψ̄µν + ψµνψ̄,

χi,σχi,ρµν ←→ ψσψ̄ρµν + ψρµνψ̄σ, (C.5)

Finally we can extend this correspondence to products of bilinear operators, e.g.

χiχi,µνχjχj,ρσ −→ [ψψ̄µν + ψµνψ̄][ψψ̄ρσ + ψρσψ̄]. (C.6)

However one should be careful of ambiguities which may arise at this level. E.g. we have

χiχi,µχjχj,µ −→ [ψψ̄µ + ψµψ̄][ψψ̄µ + ψµψ̄] = 2ψψ̄ψµψ̄µ, (C.7)

1

2
χiχiχj,µχj,µ −→ 2ψψ̄ψµψ̄µ,

i.e. two different χ operators map to the same ψ operator, meaning that their difference is

susy-null.

This gives us a dictionary to map operators of the two theories. It is important to

stress that a large part of operators of the χ-theory is left out from the dictionary. Indeed
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Singlet Leader Leader type

σ2
[
2ωϕ+ χ2

i

]
∆=4 susy-writable

σ2
1 [ω2]∆=6 susy-writable

Table 5. Scalar Z2-even leaders with Nφ = 2, Nder = 0.

only O(n−2) singlets with all indices repeated twice like χiχi,µν have a nice interpretation.

Sn−1 singlet operators with three or more χi carrying the same index cannot be represented

in terms of the fermionic variables. In the opposite direction, also a sector of the fermionic

theory cannot be represented in terms of the χ-theory. Indeed only the Sp(2) bilinear

singlets have meaning in the χ-theory, therefore operators of the form ψ, ψψµν , and so on,

do not have a representative. Moreover also in Sp(2) singlet sector only operators with

derivatives acting symmetrically on ψ and ψ̄ (see (C.4)) make sense in the χ-theory.

One could have hoped that the correspondence can be extended also to χ correlators

with indices non-contracted, at the expense of introducing tensorial coefficients. Sometimes

this can be done, but not in full generality. E.g. this fails for general 4-point functions, as

one cannot find tensorial coefficients T
(I)
ijkl, I = 1, 2, 3, making the two sides of the following

equation agree (already in free theory):

〈χi(1)χj(2)χk(3)χl(4)〉 6= T
(1)
ijkl〈ψ(1)ψ(2)ψ̄(3)ψ̄(4)〉 (C.8)

+T
(2)
ijkl〈ψ(1)ψ(3)ψ̄(2)ψ̄(4)〉+ T

(3)
ijkl〈ψ(1)ψ(4)ψ̄(2)ψ̄(3)〉.

D Tables of leaders up to ∆ = 12

D.1 Nφ = 2

The Nφ = 2 singlets are σ2, σ2
1, or derivative dressings thereof. These singlets are par-

ticularly simple for two reasons. First, they have well defined classical dimension when

expressed in the Cardy basis (see section 5.2). This means they give pure leaders (no

followers). Second, they involve at most two powers of χi, and so are susy-writable.

The Nφ = 2 singlets without derivatives are given in table 5. We will not write

explicitly the Nφ = 2 singlets with derivatives. One familiar such singlet is the kinetic

term σ2(µ)(µ) =
[
2∂ω∂ϕ+ (∂χi)

2
]
∆=6.

D.2 Nφ = 4

The Nφ = 4 leaders without derivatives were given in table 1.

Table 6 lists scalar Nφ = 4 leaders with Nder = 2 derivatives and dimension ∆ 6 12.

(The Greek indices on ϕ, χi, ω denote partial derivatives: ϕµ = ∂µϕ, etc.) They arise from

7 singlets:

σ4(µ)(µ), σ1(µ)σ3(µ), σ1σ3(µ)(µ), σ2
2(µ), σ2σ2(µ)(µ), σ2σ

2
1(µ), σ2

1σ2(µ)(µ). (D.1)

When classifying singlets involving derivatives, we make use of the equations of motion

(EOM) of the Gaussian part of the L0 Lagrangian (working in normalization H = 2):

∂2ϕ = −2ω, ∂2ω = ∂2χi = 0, (D.2)
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Singlet Leader Leader type

σ4(µ)(µ) [(χ2
iµ)ϕ2 + 4(χiχiµ)ϕϕµ + (χ2

i )ϕ
2
µ + 2ϕϕ2

µω + 2ϕ2ϕµωµ]∆=8 susy-writable

σ1(µ)σ3(µ) [2(χiχiµ)ϕωµ + (χ2
i )ϕµωµ + 2ϕϕµωωµ + ϕ2ω2

µ]∆=10 susy-writable

σ1σ3(µ)(µ) [(χ2
iµ)ϕω + 2(χiχiµ)ϕµω + ϕ2

µω
2 + 2ϕϕµωωµ]∆=10 susy-writable

1
48∂

2F4 [(χiχiµ)2 + 1
2(χ2

i )(χ
2
iµ)]∆=10 susy-null

σ2σ2(µ)(µ) [(χ2
i )(χ

2
jµ) + 2(χ2

iµ)ϕω + 2(χ2
i )ϕµωµ + 4ϕϕµωωµ]∆=10 susy-writable

σ2σ
2
1(µ) [(χ2

i )ω
2
µ + 2ϕωω2

µ]∆=12 susy-writable

σ2
1σ2(µ)(µ) [(χ2

iµ)ω2 + 2ϕµω
2ωµ]∆=12 susy-writable

Table 6. Scalar Z2-even leaders with Nφ = 4, Nder = 2. 1
48∂

2F4 = σ2
2(µ)−σ1(µ)σ3(µ)+ 1

2σ2σ2(µ)(µ)−
σ1σ3(µ)(µ).

which can be written equivalently as

∂2φi = −2ω = −2σ1. (D.3)

This equation means that we never have to consider, in the replicated basis, the sin-

glets (5.8) involving ∂2φi, such as σk(µµ). This explains their absence in (D.1).68

One particular linear combination of singlets (D.1) is equivalent, modulo EOM, to the

total derivative ∂2F4 and has a susy-null leader ∂2[(χ2
i )

2]. Indeed, applying eq. (C.4) to

the expression in table 6 we get zero:

(χiχiµ)2 +
1

2
(χ2

i )(χ
2
iµ)→ (ψ∂µψ̄ + ∂µψψ̄)2 + 2ψψ̄∂µψ∂µψ̄ = 0. (D.4)

The other linear combination produce susy-writable leaders. Some of these, such as

(σ4(µ)(µ))L and one linear combination of σ1(µ)σ3(µ) and σ1σ3(µ)(µ), are total derivatives

(modulo EOM) of the Nφ = 4 leaders without derivatives given in table 1. Others are new

primaries. We will not carry out the separation.

Now let us move to scalar Nφ = 4 leaders with Nder = 4 derivatives and dimension

∆ 6 12. Without giving full expressions, the following 12 singlets:

σ4(µ)(µ)(ν)(ν), σ4(µ)(ν)(µν), σ4(µν)(µν),

σ1σ3(µ)(ν)(µν), σ1σ3(µν)(µν), σ1(ν)σ3(µ)(µ)(ν), σ1(ν)σ3(µ)(µν), σ1(µν)σ3(µ)(ν), σ1(µν)σ3(µν),

σ2σ2(µν)(µν), σ2(µν)σ2(µ)(ν), σ2(ν)σ2(µ)(µν) (D.5)

give rise to manifestly susy-writable leaders (i.e. either at most quadratic in χ’s, or with

quartic in χ terms none of which vanish upon χ→ ψ substitution).

68This use of EOM is analogous to using the EOM when classifying fields at the Wilson-Fisher fixed
point [36, 38, 102, 103]. In the interacting theory, EOM get modified with a non-linear term appearing in
the r.h.s.: ∂2φi = −Hσ1 − λ

3!
φ3

i . We can still classify fields modulo EOM because fields involving EOM only
have correlators at coincident points. Such fields correspond to redundant operators [23] and their scaling
dimensions do not influence RG stability of the theory; they also do not mix with the non-redundant fields.
So we can write any field involving ∂2φi as a redundant operator (which we drop from consideration) plus
a field which does not involve ∂2φi.
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Singlet Leader (+ First follower if susy-null) Leader type

σ6 [15(χ2
i )ϕ

4 +6ϕ5ω]∆=8 susy-writable

σ1σ5 [10(χ2
i )ϕ

3ω+5ϕ4ω2]∆=10 susy-writable

σ2
1σ4 [6(χ2

i )ϕ
2ω2 +4ϕ3ω3]∆=12 susy-writable

σ2σ4− 8
5σ1σ5 [6(χ2

i )
2ϕ2]∆=10 +[4(χ2

i )(χ
3
i )ϕ−8(χ3

i )ϕ
2ω]∆=11 susy-null

σ1σ2σ3− 3
2σ

2
1σ4 [3(χ2

i )
2ϕω]∆=12 +[(χ2

i )(χ
3
i )ω−4(χ3

i )ϕω
2]∆=13 susy-null

σ3
2−2σ1σ2σ3 +σ2

1σ4 [(χ2
i )

3]∆=12− [2(χ2
i )(χ

3
i )ω]∆=13 susy-null

− 1
20F6 [(χ3

i )
2− 3

2(χ2
i )(χ

4
i )]∆=12 non-susy-writable

Table 7. Scalar Z2-even leaders with Nφ = 6, Nder = 0. − 1
20F6 = σ2

3 − 3
2σ2σ4 + 3

5σ1σ5.

Three more singlets σ2
2(µν), σ

2
2(µ)(ν), σ2(µ)(µ)σ2(ν)(ν) give rise to leaders containing at

least some quartic in χ terms vanishing upon χ → ψ substitution. An equivalent basis of

leaders (modulo EOM) is obtained by replacing these three singlets by the following total

derivatives combinations:

∂µ∂ν [σ2σ2(µν)], ∂µ∂ν [σ2σ2(µ)(ν)], (∂
2)2F4. (D.6)

It can be verified that σ2σ2(µν) and σ2σ2(µ)(ν) have susy-writable leaders. To summarize,

at the Nφ = 4, Nder = 4 level with ∆ 6 2 we have only one susy-null leader, and it is the

total derivative of (F4)L.

Finally, all scalar leaders with Nφ = 4, Nder = 6 and dimension ∆ 6 12 originate from

dressing σ4 with derivatives. They are all susy-writable.

D.3 Nφ = 6

Leaders with Nφ = 6 and Nder = 0 with ∆ 6 12 arise from 7 singlets:

σ6, σ1σ5, σ2
1σ4, σ2σ4, σ2

3, σ1σ2σ3, σ3
2. (D.7)

Three of them are susy-writable. We also identify one susy-null linear combination of

dimension 10 and two SUSY-nulls of dimension 12. Finally, there is a non-susy-writable

leader of dimension 12, corresponding to the Feldman F6 operator. See table 7.

Moving to the Nφ = 6, Nder = 2 case, the following 5 singlets give rise to scalar

susy-writable leaders with ∆ 6 12:

σ6(µ)(µ), σ1(µ)σ5(µ), σ1σ5(µ)(µ), σ2(µ)(µ)σ4, σ3σ3(µ)(µ). (D.8)

Three more singlets give ∆ 6 12 leaders with some quartic in χ pieces which vanish upon

χ→ ψ:

(σ2(µ)σ4(µ))L =
[
3(χiχiµ)2ϕ2 + 3(χ2

i )(χiχiµ)ϕϕµ + susy-writable
]

∆=12
,

(σ2σ4(µ)(µ))L =
[
4(χ2

i )(χiχiµ)ϕϕµ + (χ2
i )

2ϕ2
µ + susy-writable

]
∆=12

, (D.9)

(σ2
3(µ))L =

[
4(χiχiµ)2ϕ2 + 4(χ2

i )(χiχiµ)ϕϕµ + (χ2
i )

2ϕ2
µ + susy-writable

]
∆=12

.
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Singlet Leader (+ First follower if susy-null) Leader type

σ8 [28(χ2
i )ϕ

6 + 8ϕ7ω]∆=10 susy-writable

σ1σ7 [21(χ2
i )ϕ

5ω + 7ϕ6ω2]∆=12 susy-writable

σ2σ6 − 12
7 σ1σ7 [15(χ2

i )
2ϕ4]∆=12 + [20(χ2

i )(χ
3
i )ϕ

3 − 20(χ3
i )ϕ

4ω]∆=13 susy-null

Table 8. Scalar Z2-even leaders with Nφ = 8, Nder = 0.

We can form two total derivative combinations including these singlets:

1

12
∂µ(σ4σ2(µ))

L→ (χiχiµ)2ϕ2 + (χ2
i )(χiχiµ)ϕϕµ + susy-writable, (D.10)

1

12
∂2(σ4σ2)

L→ 4(χiχiµ)2ϕ2 + 8(χ2
i )(χiχiµ)ϕϕµ + (χ2

i )
2ϕ2

µ − 2(χ2
i )

2ϕω + susy-writable.

A third one ∂µ(σ2σ4(µ)) is linearly dependent with these two at the susy-null level. One

can also check that 1
3∂µ(σ3σ3(µ)) = 1

18∂
2(σ2

3) has the same susy-null part as 1
12∂

2(σ4σ2).

Taking these into account, there remains exactly one susy-null singlet scalar at this level

which is not a total derivative, whose explicit expression is

σ2
3(µ) −

4

3
σ2(µ)σ4(µ) +

1

3
σ1(µ)σ5(µ) = [(χ2

i )
2ϕ2

µ]∆=12 + [follower]∆=13 + . . . (D.11)

Finally, at Nφ = 6, Nder = 4 with ∆ 6 12 we find only susy-writable leaders, obtained

from σ6 dressed with derivatives.

D.4 Nφ = 8, 10

Leaders with Nφ = 8 and Nder = 0 with ∆ 6 12 arise from 5 singlets:

σ8, σ1σ7, σ2σ6, σ3σ5, σ2
4, (D.12)

but there are only three independent leaders with ∆ 6 12: two susy-writable and one

susy-null (table 8). This is because three linear combinations σ2σ6− 12
7 σ1σ7, σ3σ5− 15

7 σ1σ7

and σ2
4− 16

7 σ1σ7 all have the same ∆ = 12 leading term (χ2
i )

2ϕ4. Taking further differences

we could cancel this leading term and exhibit further leaders of higher dimensions. We will

not do it here since we are interested only in ∆ 6 12.

The only scalar leader with Nφ = 8, Nder = 2 and ∆ 6 12 comes from σ8(µ)(µ), which

is equivalent to the total derivative ∂2σ8 (modulo EOM and σ1σ7).

There is only one ∆ 6 12 leader with Nφ = 10, and it is susy-writable:

σ10 = [45(χ2
i )ϕ

8 + 10ϕ9ω]∆=12 + . . . (D.13)

E Free L0 propagators

Propagators follow from (2.21), putting V (ϕ) = 0. The ϕ-ϕ and ω-ϕ propagators are

obtained by diagonalizing the quadratic terms containing ϕ and ω:

Gϕϕ(q) =
H

q4
, Gωϕ(q) =

1

q2
. (E.1)
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Figure 11. (From left to right) Propagators Gϕϕ(p) [solid line], Gωϕ(p) [dotted half connects to

ω, solid to ϕ] and Gχiχj
(p) [wavy line, indices i, j understood].

The χ-χ is obtained from the χ kinetic term, taking into account the constraint
∑n
i=2 χi = 0;

it is given by:

Gχiχj (q) =
Kij

q2
, Kij ≡ δij −

1

n− 1
Πij , (E.2)

where Πij = 1 for all i, j = 2, . . . , n. This computation is done either by realizing the

constraint by a Lagrange multiplier, or equivalently by eliminating one of the fields via the

constraint, and inverting the quadratic term for the remaining independent fields. E.g. by

eliminating χ2 we get the quadratic action 1
2

∑n
i,j=3(∂µχi)(δij + Πij)(∂

µχj) which gives the

above propagator.

In position space the propagators read

Gϕϕ(x) =
HAd

2(d− 4)

1

(x2)
d
2

−2
, Gωϕ(x) =

Ad

(x2)
d
2

−1
, Gχiχj (x) = Ad

Kij

(x2)
d
2

−1
, (E.3)

where Ad =
Γ( d

2
−1)2d−2

(4π)
d
2

. It is easy to check that ∂2Gϕϕ = −HGωϕ consistently with the

equation of motion ∂2ϕ = −Hω. When drawing Feynman diagrams, propagators are

denoted as in figure 11.

The matrix Kij satisfies some useful relations, which are easy to check:

KT = K, K2 = K, trK = n− 2,
n∑

i=2

Kij = 0,
n∑

i,j=2

KijKij = n− 2,

n∑

i=2

Kijχi = χj ,
n∑

i,j=2

Kijχ
m
i χj =

n∑

i=2

χm+1
i . (E.4)

The last two relations follow using
∑n
i=2 χi = 0.

Our RG calculations will only involve the χi fields of the L0 theory. Some calculations

could be equivalently performed using the LSUSY theory. For completeness we give the cor-

responding propagators obtained by setting V = 0 in (2.27). The ϕ-ϕ and ϕ-ω propagators

are the same as for L0, while the ψ̄-ψ one is

Gψ̄ψ(x) = Gϕω(x) , (E.5)

in agreement with the general relation (2.31) for SUSY 2pt functions, be that free or

interacting. All individual propagators can be extracted from the superfield propagator

GΦΦ(x, θ) =
Ad
d− 4

1

(x2 − (4/H)θθ̄)
d−4

2

. (E.6)
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F RG at one loop

In this section we will discuss how to set up RG computations of beta functions and

anomalous dimensions. To keep technical details to a minimum, we discuss renormalization

here at one loop, and then in appendix G at two loops. At one loop there is no wavefunction

renormalization, and we can think in terms of the free theory L(0) defined by setting V = 0

in (2.21), in d = 6 − ε dimensions and perturbed by scalar operator V =
(
4ωϕ3 + 6χ2

iϕ
2
)

of dimension ∆0
V = 6− 2ε:

L = L(0) + µε
λ

4!
V. (F.1)

Here µ is an arbitrary mass scale. We use dimensional regularization as the regulator.

We start by discussing renormalization of local operators in the theory L, and later use the

same principles for renormalization of λ. Renormalized operators Oi are related to the bare

operators OBi built from bare fields (B stands for “bare”), via a mixing (renormalization)

matrix Zij as follows:

OBi = ZijOj . (F.2)

While correlators of bare operators have poles in ε, renormalized operators Oj are defined

so that their correlation functions do not have such poles.

The matrix Zij admits an expansion in powers of 1/ε and λ, which at one loop as we

are interested here takes the form

Zij = δij +
λ

ε
zij + . . . . (F.3)

It can be shown that the matrix zij has a simple block diagonal form, where each block

corresponds to operators with equal number of fields and the same classical dimension,

∆0
i = ∆0

j , where ∆0
i is the bare dimension of Oi.

The anomalous dimension matrix is defined in terms of the Z matrix as follows:

Γ(λ) ≡ Z−1.
d

d logµ
Z . (F.4)

Then, by using d
d logµZ = dZ

dλ
dλ

d logµ and βλ ≡ ∂λ
∂ logµ = −ελ + O(λ2) (see below for the

discussion of the beta-function), we obtain a simple formula relating Γij and zij :

Γij(λ) = −λzij +O(λ2). (F.5)

To compute the anomalous dimensions of operators at the fixed point, we should evaluate

the anomalous dimension matrix at the fixed point coupling: Γ ≡ Γ(λ∗).

Diagonalizing Γ one obtains the set of renormalized operators with well defined anoma-

lous dimensions. Namely given an eigenvector e(m) such that
∑
i e

(m)
i Γij = γme

(m)
i , one ob-

tains the renormalized operators ORm =
(
1 + γm

ε

)∑
j e

(m)
j OBj with anomalous dimension γm.

Sometimes it will happen for us that Γ is not fully diagonalizable, i.e. it has fewer

eigenvalues than its size. In this case we can still bring Γ to a Jordan normal form,

and define generalized eigenvectors e
(1)
i , . . . ., e

(r)
i associated to each eigenvalue γ, where
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r is the rank of the corresponding Jordan block, which satisfy the Jordan chain prop-

erty
∑
i e

(k)
i (Γij − γ1) = (1 − δk1)e

(k−1)
i . The associated renormalized operators ORk =

(
1 + γ

ε

)∑
j e

(k)
j OBj (k = 1, . . . , r) define a logarithmic multiplet which satisfies the property

D




ORr
ORr−1

...

OR1




=




∆ 1

∆ 1
. . .

. . .







ORr
ORr−1

...

OR1



, (F.6)

where D is the dilatation operator and ∆ = ∆0 +γ (where ∆0 is the classical dimension of

the operators which undergo mixing). The presence of logarithmic multiplets signals that

we are working in a logarithmic CFT. This is somewhat expected since we are studying

a theory with Sn symmetry in the limit n→ 0 [40].

F.1 OPE method

Another simplification which arises at one loop is that the RG functions can be quickly

computed using the OPE method, which we will review here. This is not obligatory and

the same results can be obtained with Feynman diagrams. The OPE method saves a lot of

time especially in situations when one has to disentangle mixing of many operators. Our

presentation of the OPE method mimics [36]. A classic reference for the OPE method

is [104], chapter 5 (although it uses a real-space cutoff, not dim.reg. like us).

We consider a correlation functions 〈OBi (0) . . .〉 of a bare scalar operator OBi with an

arbitrary number . . . of other operators. The leading order correction to this correlator can

be computed by expanding the functional integral (associated to the Lagrangian (F.1)) at

first order, and is given by

− λµε

4!

∫
ddx〈V(x)OBi (0) . . .〉, (F.7)

with d = 6− ε. To renormalize Oi, we need to understand the 1/ε pole of this expression,

associated with the x→ 0 part of the integration region. This is easy to do using the OPE

between the operators OBi and the interaction. The OPE takes the form

V(x)×OBi (0) =
∑

j

Ci,j |x|−∆0
V +∆0

i −∆0
jOBj (0) (F.8)

(this form is adequate for the case when the operator OBi does not contain derivatives, see

below for the general case). This needs to be integrated for x near 0, say over |x| 6 1,

the upper limit being arbitrary. For ∆0
V = 6 − 2ε as we are considering, the integral∫

|x|61 d
dx |x|−∆0

V +∆0
i −∆0

j gives a pole in ε as long as ∆0
i − ∆0

j = O(ε). It can be shown

similarly to [36] that a selection rule guarantees that all such operators with nonzero OPE

coefficients Ci,j have ∆0
i = ∆0

j .
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In our case the OPE matrix Ci,j also has selection rules between the three operator

classes:

V × susy-null = susy-null,

V × susy-writable = susy-writable + susy-null, (F.9)

V × non-susy-writable = non-susy-writable + susy-writable + susy-null.

I.e. OPE of V with a susy-null operator produces only susy-null operators in the r.h.s.,

etc. These rules follow by the symmetry considerations as in the mixing discussion in

section 8.4.

Going back to eq. (F.8), it implies that any correlator 〈OBi (0) . . .〉 has poles in ε

proportional to λ〈OBj (0) . . .〉. The renormalized operators are defined by correcting OBi to

cancel these poles. We see that this can be achieved by

Oi = OBi + ε−1 λ

4!

∑

j

Ci,jSdOBj , (F.10)

where Sd = 2πd/2

Γ(d/2) denotes the area of the unit sphere in d dimensions. Inverting this

relation, we obtain the matrix zi,j (F.3) as: zij = − λ
4!Ci,jSd.

By eq. (F.9), this matrix (and hence Z itself) has a block-triangular structure among

the three operator classes (susy-null, susy-writable, and non-susy-writable, in this order):

Z =




∗ 0 0

∗ ∗ 0

∗ ∗ ∗


 . (F.11)

Symmetry considerations from section 8.4 show that this structure should hold gener-

ally, at any number of loops. Furthermore, the same block-triangular structure in inherited

by the anomalous dimension matrix (F.4).

The above explains the general idea, up to the need to generalize eq. (F.8) a bit when

considering operators containing derivatives. The more general expression used in our

computations is

V(x)×OBi (0) ∼
∑

k

Ci,k
xµ1 . . . xµℓ

|x|∆0
V +ℓk

(Tk)µ1...µℓk
(0) , (F.12)

where (Tk)µ1...µℓj
is a tensor of rank ℓk (not necessarily traceless) and of dimension ∆0

k = ∆0
i .

The OPE coefficient function is now a tensorial function of scaling −∆0
V , and it will give

an ε pole when integrated near x = 0, projecting the operator Tk on its scalar component

(see below).

Let us give an example of how (F.12) works. If we consider the OPE of OBi = ϕω

we find 3 possible operators Tk with the same dimension of OBi : the two scalars ϕω, χ2
i

and the rank-2 tensor operator ∂µ1∂µ2ϕ2. The scalars are the remaining operators after

we take two Wick contractions of fields in Oi and in V,
(
4ωϕ3 + 6χ2

iϕ
2
)

(x)×ϕω(0) ∼ 6×2〈ϕϕ〉0〈ϕω〉0χ2
i (0)+4×6〈ϕϕ〉0〈ϕω〉0ϕω(0)+. . . (F.13)
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Here the factor 2 in the first term and 6 in the second, are the combinatorial factors which

count the possible Wick contractions. We use the notation 〈. . .〉0 to denote the 2-point

functions of L(0). Since it is free, we have simply 〈ϕω〉0 = 〈ϕ(x)ω(0)〉0 = 〈ϕ(0)ω(x)〉0 =

Gωϕ(x) and 〈ϕϕ〉0 = Gϕϕ(x). The 2-tensor operator arises from the following OPE:

(
4ωϕ3 + 6χ2

iϕ
2
)

(x)× ϕω(0) ∼ 4× 3〈ϕω〉0〈ϕω〉0ϕ2(x) + . . .

= 4× 3〈ϕω〉0〈ϕω〉0
xµ1xµ2

2
∂µ2∂µ2ϕ

2(0) + . . .
(F.14)

In this case the tensor structure is obtained by Taylor expanding the remaining field ϕ2 of

V(x), keeping only the second order term since it gives a field of the same dimensions as

ϕω (others do not produce poles in ε when integrated near x = 0).

When integrating (F.12) over x, we have to deal with tensorial integrals. E.g. after

using (F.14) we are led to an integral of the form
∫

|x|61 d
dx |x|−∆0

V −2xµ1xµ2 , whose pole

part is easily seen equal to ε−1Sdδ
µ1µ2/d by rotation invariance. For general ℓ we have:

∫
dΩ x̂µ1 . . . x̂µℓ = P

(d)
ℓ δ(µ1µ2 . . . δµℓ−1µℓ)Sd, (F.15)

where P
(d)
2ℓ = (2ℓ−1)!!

2ℓ(d/2)ℓ
, P

(d)
2ℓ+1 = 0 and the brackets imply symmetrization of the indices.

After performing these integrals we are left with a product of Kronecker deltas con-

tracted with the tensor operators, i.e. scalars. E.g. the operator ∂µ2∂µ2ϕ
2(0) of (F.14)

after integration is contracted with δµ1µ2 and becomes equal to ∂2ϕ2 = 2∂ϕ∂ϕ+ 2ϕ∂2ϕ =

2∂ϕ∂ϕ− 2Hϕω. More generally we want to write the contraction of (Tk)µ1...µℓ
with δµν ’s

in (F.15) in terms of the scalar operators OBi that we want to study. We write these as

δ(µ1µ2 . . . δµℓ−1µℓ)(Tk)µ1...µℓ
=
∑

j

n
(k)
j OBj (0), (F.16)

where the above formula can be read as a definition for the coefficients n
(k)
j .

Putting these ingredients together, we rewrite the integral of the k-th operator in (F.12)

(up to the overall factor −λµε

4! Ci,j) as follows,

∫
ddx

xµ1 . . . xµℓ

|x|∆0
V +ℓ

〈(Tk)µ1...µℓ
(0) . . .〉 =

1

ε
P

(d)
ℓk
Sd
∑

j

n
(k)
j 〈OBj (0) . . .〉. (F.17)

This shows how one should generalize (F.10). From here we obtain a final formula for zij ,

and therefore for the 1-loop anomalous dimensions matrix,

Γij(λ) =
λ

4!
Sd
∑

k

P
(d)
ℓk

Ci,kn
(k)
j . (F.18)

Given the block-triangular structure (F.11) with respect the three operator classes, only

diagonal blocks of this matrix matter for the purposes of computing the anomalous di-

mensions. The off-diagonal blocks do influence the eigenperturbations (e.g. scaling susy-

writable operators will have an admixture of susy-nulls), but do not modify the eigenvalues.
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Furthermore, while using equation (F.18) we will encounter operators that will be

related to one another by addition of a total derivative. Perturbing the action by an

integral of a total derivative of course has no effect on physics since the integral vanishes.

This can be also expressed by saying that under RG, total derivatives may generate only

total derivatives. In the OPE formalism this manifests itself as the fact that when we take

the OPE of V with a total derivative operator, only total derivatives occur in the r.h.s.69

These observations can be used to simplify the computations of anomalous dimensions, as

follows. We will say that two operators O and O′ belong to the same equivalence class

{O} if they are proportional up to adding a total derivative, i.e. O′ = αO + ∂µÕµ for

some constant α and operator Oµ. For each {Oi} we will choose a single representative

element Oi while all other elements can be written in terms of Oi by adding a suitable

total derivative. Eg. in the equivalence class {ω2} we have an operator O = ω2, and also

another operator O′ = ∂µϕ∂µω = Hω2 + ∂µ (ω∂µϕ), which we can see can be written in

terms of O by using equation of motion and adding a total derivative.

Replacing operators by their equivalence classes (picking one representative in each

class), we eliminate total derivative operators from the problem and get a smaller eigenvalue

system to solve, which however gives rise to the same anomalous dimension for the non-

total-derivative operators as the full system. In some cases one may be interested to recover

in each equivalence class a primary, i.e. an operator which has good scaling behavior under

RG, including the total derivative part, and has zero 2-point functions with other primaries.

The problem of finding such a scaling operator is harder, and to solve it one has to work

with the full operators, not with the equivalence classes, i.e. to diagonalize the full matrix Γ.

F.2 Beta function

One can also compute beta function of the coupling λ with the OPE approach. Once again

Feynman diagrams will give the same result. Consider the interaction in (F.1) with µε λ4!

replaced by λB
4! . We should find a relation between the bare and renormalized couplings,

λB and λ of the form,70

λB = µεZλλ, (F.19)

which removes poles in ε when everything is expressed in terms of λ. Here at leading order

Zλ = 1 + λ/ε. Note that the wavefunction renormalization of fields ϕ, ω and χ starts at

O(λ2), see the next section. Now take any correlator 〈A〉 where A is a product of some

fields. Consider its first and second order corrections, which are given below:

− λB
4!

∫
ddx〈V(x)A〉+

1

2

(
λB
4!

)2 ∫
ddx

∫
ddy〈V(x+ y)V(x)A〉. (F.20)

The second term will have an ε pole due to the singularity as y → 0. We choose Zλ such

that this pole is canceled by the first term. For this we consider the OPE (we can do this

69This is obvious, by differentiating the OPE of the parent operator.
70Strictly speaking we should treat the two vertices ϕ3ω and ϕ2χ2 differently. If their coupling constants

are λ(1)
B and λ(2)

B respectively, we should write λ(1)
B = Z

(1)
λ λ(1) and λ(2)

B = Z
(2)
λ λ(2). However as commented

later, when λ
(1)
B = λ

(2)
B it turns out Z(1)

λ = Z
(2)
λ .
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for x = 0 by translational invariance):

ϕ3ω(y)× ϕ3ω(0) ∼ 36〈ϕω〉0〈ϕϕ〉0ϕ3ω(0) + . . . (F.21)

The product 〈ϕω〉0〈ϕϕ〉0 gives a pole in ε when integrated over y near 0. Plugging this

into (F.20) and demanding the cancellation we get

Zλ = 1 +
3λH

(4π)3ε
. (F.22)

The beta function βλ ≡ µ∂λ∂µ can then be obtained using that the bare coupling does not

depend on µ:

0 =
∂ log λB
∂ logµ

=
∂

∂ logµ
[log (µεZλλ)] = ε+

3H

(4π)3ε
βλ +

1

λ
βλ, (F.23)

from where

βλ = −ελ+
3Hλ2

64π3
+O(λ3) . (F.24)

This is the beta function (3.6) of our theory. It gives a fixed point at λ∗ = 64π3ε
3H +O

(
ε2
)
.

We can also consider the OPEs that generate χ2
iϕ

2. It will give rise to the same Zλ
and the same beta function. This can be seen a consequence of the O(n) symmetry in

n → 0 limit, or of the hidden supersymmetry which becomes manifest in the form (2.27)

that we get from (2.21) once we substitute χi with ψ, ψ̄ using (2.26).

We could also discuss renormalization of the mass term m2
(
ϕω + 1

2χ
2
i

)
in the same

language. This term renormalizes as a whole for the same reasons. This matches nicely

with the fact that to reach the critical point (phase transition) we have to tune a single

parameter (m2).

G RG at two loops

After one-loop RG in appendix F, here we set up the more general scheme valid at any loop

order. In practice we will go to the maximum of two loops in some anomalous dimension

computations for which the one-loop result vanishes. The regulator will be the same as in

appendix F (dim. reg.). The OPE method losing its simplicity beyond one loop, here we

will be using instead Feynman diagram to extract poles in ε. We are assuming the reader is

somewhat familiar with dimensionally regulated computations for the Wilson-Fisher fixed

point (see e.g. a nice review in [105]), to which our case is rather similar.

We will present the setup for computations in terms of the fields χi, Although susy-

writable computations can be done (and even become easier) in terms of ψ, ψ̄, we need the

general setup for computations of anomalous dimensions of susy-null and non-susy-writable

operators.

G.1 Beta function

We start with Lagrangian (2.22) with zero mass term and all quantities set to their bare

values:

L0 = ∂ϕB∂ωB −
H

2
ω2
B +

1

2
(∂χB)2 +

λB
4!

(
4ωBϕ

3
B + 6χ2

Bϕ
2
B

)
. (G.1)
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The bare quantities are related to the renormalized ones by:

ϕB = Zϕϕ, ωB = Zωω, χB = Zχχ, λB = Zλµ
ελ. (G.2)

where Zi are renormalization constants, and µ is an arbitrary mass scale. Correlators of

renormalized fields ϕ, ω, χ have to be free of poles in ε when expanded in the renormalized

coupling dimensionless coupling λ. Compared to appendix F we are adding wavefunction

renormalization constants Zϕ, Zω, Zχ, necessary beyond one loop.

Plugging (G.2) into (G.1) we get:

L0 = ZϕZω∂ϕ∂ω − Z2
ω

H

2
ω2 +

Z2
χ

2
(∂χi)

2 +
Zλµ

ελ

4!

(
4Z3

ϕZωωϕ
3 + 6Z2

χZ
2
ϕχ

2
iϕ

2
)
. (G.3)

In the Minimal Subtraction (MS) scheme, the renormalization constant Zλ takes the

form:

Zλ = 1 +
∑

p>1

∑

16q6p

z
(p,q)
λ λpε−q. (G.4)

(compare to (F.3)). The quantities Zϕ, Zω, Zχ have similar expansions, except that the

corresponding z(1,1) vanishes (see appendix G.2).

Let us use this formalism to re-compute the one-loop beta function (two-loop beta

function is not needed in this paper). We will consider the momentum-space 4-point

function 〈ϕ(p1)ϕ(p2)ϕ(p3)ϕ(p4)〉 and the condition that it should be free of poles in ε will

determine z
(1,1)
λ . At tree level this 4-point function involves a single ωϕ3 vertex. At one

loop, we have the first diagram in figure 12 (and two diagrams for the crossed channels).

Factoring out the trivial dependence on the external momenta coming from the propagators

on the external legs, we get the amputated 4-point function

〈ϕ(p1)ϕ(p2)ϕ(p3)ϕ(p4)〉amp = Zλµ
ελ+ (Zλµ

ελ)2 Iωϕ3 , (G.5)

where we have set the wavefunction renormalization constants to 1, and Iωϕ3 is the one-loop

integral

Iωϕ3 = − H

(2π)d

∫
ddl

(l2)2(p1 + p2 + l)2
+ (t,u channels) , (G.6)

having an ε−1 pole which we need to cancel. This ε-pole is extracted in the usual way (we

need the UV ε-pole, and the external momenta propagating through the loop serve as a

IR regulator). Omitting these standard details (see e.g. [105]), we get

Iωϕ3 = − 3H

(4π)3ε
+O

(
ε0
)
. (G.7)

Note that while the finite piece of Iωϕ3 has nontrivial dependence of the external

momenta, the pole is p-independent so we can cancel it against the tree level contribution

in (G.5). This determines

Zλ = 1 +
3λH

(4π)3ε
, (G.8)

the same result as in the previous section. Hence we get the same beta function (F.24).
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<latexit sha1_base64="v0/vP4Il+nxU5vg1a4XbDiBSmjE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0kg9qgXHGr7kJkHbwcKpCrOSh/9YcxSyOukElqTM9zE/QzqlEwyWelfmp4QtmEjnjPoqIRN362WHVGLqwzJGGs7VNIFu7viYxGxkyjwHZGFMdmtTY3/6v1Ugyv/UyoJEWu2PKjMJUEYzK/mwyF5gzl1AJlWthdCRtTTRnadEo2BG/15HVo16qe5furSuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPHwEGjZk=</latexit><latexit sha1_base64="v0/vP4Il+nxU5vg1a4XbDiBSmjE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0kg9qgXHGr7kJkHbwcKpCrOSh/9YcxSyOukElqTM9zE/QzqlEwyWelfmp4QtmEjnjPoqIRN362WHVGLqwzJGGs7VNIFu7viYxGxkyjwHZGFMdmtTY3/6v1Ugyv/UyoJEWu2PKjMJUEYzK/mwyF5gzl1AJlWthdCRtTTRnadEo2BG/15HVo16qe5furSuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPHwEGjZk=</latexit><latexit sha1_base64="v0/vP4Il+nxU5vg1a4XbDiBSmjE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0kg9qgXHGr7kJkHbwcKpCrOSh/9YcxSyOukElqTM9zE/QzqlEwyWelfmp4QtmEjnjPoqIRN362WHVGLqwzJGGs7VNIFu7viYxGxkyjwHZGFMdmtTY3/6v1Ugyv/UyoJEWu2PKjMJUEYzK/mwyF5gzl1AJlWthdCRtTTRnadEo2BG/15HVo16qe5furSuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPHwEGjZk=</latexit><latexit sha1_base64="v0/vP4Il+nxU5vg1a4XbDiBSmjE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0kg9qgXHGr7kJkHbwcKpCrOSh/9YcxSyOukElqTM9zE/QzqlEwyWelfmp4QtmEjnjPoqIRN362WHVGLqwzJGGs7VNIFu7viYxGxkyjwHZGFMdmtTY3/6v1Ugyv/UyoJEWu2PKjMJUEYzK/mwyF5gzl1AJlWthdCRtTTRnadEo2BG/15HVo16qe5furSuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPHwEGjZk=</latexit>

p3
<latexit sha1_base64="uxN1TeCtw/JouRtuqyBIwjhbrqs=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSLeix6MVjRfsBbSib7aRdutmE3Y1QQn+CFw+KePUXefPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e2s3n5CpXksH80kQT+iQ8lDzqix1kPSv+yXK27VnYusgpdDBXI1+uWv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtShqh9rP5qlNyZp0BCWNlnzRk7v6eyGik9SQKbGdEzUgv12bmf7VuasJrP+MySQ1KtvgoTAUxMZndTQZcITNiYoEyxe2uhI2ooszYdEo2BG/55FVoXVQ9y/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzmfPwKKjZo=</latexit><latexit sha1_base64="uxN1TeCtw/JouRtuqyBIwjhbrqs=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSLeix6MVjRfsBbSib7aRdutmE3Y1QQn+CFw+KePUXefPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e2s3n5CpXksH80kQT+iQ8lDzqix1kPSv+yXK27VnYusgpdDBXI1+uWv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtShqh9rP5qlNyZp0BCWNlnzRk7v6eyGik9SQKbGdEzUgv12bmf7VuasJrP+MySQ1KtvgoTAUxMZndTQZcITNiYoEyxe2uhI2ooszYdEo2BG/55FVoXVQ9y/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzmfPwKKjZo=</latexit><latexit sha1_base64="uxN1TeCtw/JouRtuqyBIwjhbrqs=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSLeix6MVjRfsBbSib7aRdutmE3Y1QQn+CFw+KePUXefPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e2s3n5CpXksH80kQT+iQ8lDzqix1kPSv+yXK27VnYusgpdDBXI1+uWv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtShqh9rP5qlNyZp0BCWNlnzRk7v6eyGik9SQKbGdEzUgv12bmf7VuasJrP+MySQ1KtvgoTAUxMZndTQZcITNiYoEyxe2uhI2ooszYdEo2BG/55FVoXVQ9y/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzmfPwKKjZo=</latexit><latexit sha1_base64="uxN1TeCtw/JouRtuqyBIwjhbrqs=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSLeix6MVjRfsBbSib7aRdutmE3Y1QQn+CFw+KePUXefPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e2s3n5CpXksH80kQT+iQ8lDzqix1kPSv+yXK27VnYusgpdDBXI1+uWv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtShqh9rP5qlNyZp0BCWNlnzRk7v6eyGik9SQKbGdEzUgv12bmf7VuasJrP+MySQ1KtvgoTAUxMZndTQZcITNiYoEyxe2uhI2ooszYdEo2BG/55FVoXVQ9y/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzmfPwKKjZo=</latexit>

p1
<latexit sha1_base64="YgAuzWg+wuyQict0QiuK5Kx+fug=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtIu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9ZD2/b5b9WreXGQV/AKqUKjRd796g4RlMUrDBNW663upCXKqDGcCp5VepjGlbEyH2LUoaYw6yOerTsmZdQYkSpR90pC5+3sip7HWkzi0nTE1I71cm5n/1bqZia6DnMs0MyjZ4qMoE8QkZHY3GXCFzIiJBcoUt7sSNqKKMmPTqdgQ/OWTV6F1UfMt319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOcF+fd+Vi0lpxi5hj+yPn8Af9zjZg=</latexit><latexit sha1_base64="YgAuzWg+wuyQict0QiuK5Kx+fug=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtIu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9ZD2/b5b9WreXGQV/AKqUKjRd796g4RlMUrDBNW663upCXKqDGcCp5VepjGlbEyH2LUoaYw6yOerTsmZdQYkSpR90pC5+3sip7HWkzi0nTE1I71cm5n/1bqZia6DnMs0MyjZ4qMoE8QkZHY3GXCFzIiJBcoUt7sSNqKKMmPTqdgQ/OWTV6F1UfMt319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOcF+fd+Vi0lpxi5hj+yPn8Af9zjZg=</latexit><latexit sha1_base64="YgAuzWg+wuyQict0QiuK5Kx+fug=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtIu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9ZD2/b5b9WreXGQV/AKqUKjRd796g4RlMUrDBNW663upCXKqDGcCp5VepjGlbEyH2LUoaYw6yOerTsmZdQYkSpR90pC5+3sip7HWkzi0nTE1I71cm5n/1bqZia6DnMs0MyjZ4qMoE8QkZHY3GXCFzIiJBcoUt7sSNqKKMmPTqdgQ/OWTV6F1UfMt319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOcF+fd+Vi0lpxi5hj+yPn8Af9zjZg=</latexit><latexit sha1_base64="YgAuzWg+wuyQict0QiuK5Kx+fug=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtIu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9ZD2/b5b9WreXGQV/AKqUKjRd796g4RlMUrDBNW663upCXKqDGcCp5VepjGlbEyH2LUoaYw6yOerTsmZdQYkSpR90pC5+3sip7HWkzi0nTE1I71cm5n/1bqZia6DnMs0MyjZ4qMoE8QkZHY3GXCFzIiJBcoUt7sSNqKKMmPTqdgQ/OWTV6F1UfMt319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOcF+fd+Vi0lpxi5hj+yPn8Af9zjZg=</latexit>

➤

➤

p1
<latexit sha1_base64="YgAuzWg+wuyQict0QiuK5Kx+fug=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtIu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9ZD2/b5b9WreXGQV/AKqUKjRd796g4RlMUrDBNW663upCXKqDGcCp5VepjGlbEyH2LUoaYw6yOerTsmZdQYkSpR90pC5+3sip7HWkzi0nTE1I71cm5n/1bqZia6DnMs0MyjZ4qMoE8QkZHY3GXCFzIiJBcoUt7sSNqKKMmPTqdgQ/OWTV6F1UfMt319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOcF+fd+Vi0lpxi5hj+yPn8Af9zjZg=</latexit><latexit sha1_base64="YgAuzWg+wuyQict0QiuK5Kx+fug=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtIu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9ZD2/b5b9WreXGQV/AKqUKjRd796g4RlMUrDBNW663upCXKqDGcCp5VepjGlbEyH2LUoaYw6yOerTsmZdQYkSpR90pC5+3sip7HWkzi0nTE1I71cm5n/1bqZia6DnMs0MyjZ4qMoE8QkZHY3GXCFzIiJBcoUt7sSNqKKMmPTqdgQ/OWTV6F1UfMt319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOcF+fd+Vi0lpxi5hj+yPn8Af9zjZg=</latexit><latexit sha1_base64="YgAuzWg+wuyQict0QiuK5Kx+fug=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtIu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9ZD2/b5b9WreXGQV/AKqUKjRd796g4RlMUrDBNW663upCXKqDGcCp5VepjGlbEyH2LUoaYw6yOerTsmZdQYkSpR90pC5+3sip7HWkzi0nTE1I71cm5n/1bqZia6DnMs0MyjZ4qMoE8QkZHY3GXCFzIiJBcoUt7sSNqKKMmPTqdgQ/OWTV6F1UfMt319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOcF+fd+Vi0lpxi5hj+yPn8Af9zjZg=</latexit><latexit sha1_base64="YgAuzWg+wuyQict0QiuK5Kx+fug=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtIu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9ZD2/b5b9WreXGQV/AKqUKjRd796g4RlMUrDBNW663upCXKqDGcCp5VepjGlbEyH2LUoaYw6yOerTsmZdQYkSpR90pC5+3sip7HWkzi0nTE1I71cm5n/1bqZia6DnMs0MyjZ4qMoE8QkZHY3GXCFzIiJBcoUt7sSNqKKMmPTqdgQ/OWTV6F1UfMt319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOcF+fd+Vi0lpxi5hj+yPn8Af9zjZg=</latexit>

p2
<latexit sha1_base64="v0/vP4Il+nxU5vg1a4XbDiBSmjE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0kg9qgXHGr7kJkHbwcKpCrOSh/9YcxSyOukElqTM9zE/QzqlEwyWelfmp4QtmEjnjPoqIRN362WHVGLqwzJGGs7VNIFu7viYxGxkyjwHZGFMdmtTY3/6v1Ugyv/UyoJEWu2PKjMJUEYzK/mwyF5gzl1AJlWthdCRtTTRnadEo2BG/15HVo16qe5furSuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPHwEGjZk=</latexit><latexit sha1_base64="v0/vP4Il+nxU5vg1a4XbDiBSmjE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0kg9qgXHGr7kJkHbwcKpCrOSh/9YcxSyOukElqTM9zE/QzqlEwyWelfmp4QtmEjnjPoqIRN362WHVGLqwzJGGs7VNIFu7viYxGxkyjwHZGFMdmtTY3/6v1Ugyv/UyoJEWu2PKjMJUEYzK/mwyF5gzl1AJlWthdCRtTTRnadEo2BG/15HVo16qe5furSuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPHwEGjZk=</latexit><latexit sha1_base64="v0/vP4Il+nxU5vg1a4XbDiBSmjE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0kg9qgXHGr7kJkHbwcKpCrOSh/9YcxSyOukElqTM9zE/QzqlEwyWelfmp4QtmEjnjPoqIRN362WHVGLqwzJGGs7VNIFu7viYxGxkyjwHZGFMdmtTY3/6v1Ugyv/UyoJEWu2PKjMJUEYzK/mwyF5gzl1AJlWthdCRtTTRnadEo2BG/15HVo16qe5furSuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPHwEGjZk=</latexit><latexit sha1_base64="v0/vP4Il+nxU5vg1a4XbDiBSmjE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0kg9qgXHGr7kJkHbwcKpCrOSh/9YcxSyOukElqTM9zE/QzqlEwyWelfmp4QtmEjnjPoqIRN362WHVGLqwzJGGs7VNIFu7viYxGxkyjwHZGFMdmtTY3/6v1Ugyv/UyoJEWu2PKjMJUEYzK/mwyF5gzl1AJlWthdCRtTTRnadEo2BG/15HVo16qe5furSuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPHwEGjZk=</latexit>

p3
<latexit sha1_base64="uxN1TeCtw/JouRtuqyBIwjhbrqs=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSLeix6MVjRfsBbSib7aRdutmE3Y1QQn+CFw+KePUXefPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e2s3n5CpXksH80kQT+iQ8lDzqix1kPSv+yXK27VnYusgpdDBXI1+uWv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtShqh9rP5qlNyZp0BCWNlnzRk7v6eyGik9SQKbGdEzUgv12bmf7VuasJrP+MySQ1KtvgoTAUxMZndTQZcITNiYoEyxe2uhI2ooszYdEo2BG/55FVoXVQ9y/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzmfPwKKjZo=</latexit><latexit sha1_base64="uxN1TeCtw/JouRtuqyBIwjhbrqs=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSLeix6MVjRfsBbSib7aRdutmE3Y1QQn+CFw+KePUXefPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e2s3n5CpXksH80kQT+iQ8lDzqix1kPSv+yXK27VnYusgpdDBXI1+uWv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtShqh9rP5qlNyZp0BCWNlnzRk7v6eyGik9SQKbGdEzUgv12bmf7VuasJrP+MySQ1KtvgoTAUxMZndTQZcITNiYoEyxe2uhI2ooszYdEo2BG/55FVoXVQ9y/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzmfPwKKjZo=</latexit><latexit sha1_base64="uxN1TeCtw/JouRtuqyBIwjhbrqs=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSLeix6MVjRfsBbSib7aRdutmE3Y1QQn+CFw+KePUXefPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e2s3n5CpXksH80kQT+iQ8lDzqix1kPSv+yXK27VnYusgpdDBXI1+uWv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtShqh9rP5qlNyZp0BCWNlnzRk7v6eyGik9SQKbGdEzUgv12bmf7VuasJrP+MySQ1KtvgoTAUxMZndTQZcITNiYoEyxe2uhI2ooszYdEo2BG/55FVoXVQ9y/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzmfPwKKjZo=</latexit><latexit sha1_base64="uxN1TeCtw/JouRtuqyBIwjhbrqs=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSLeix6MVjRfsBbSib7aRdutmE3Y1QQn+CFw+KePUXefPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e2s3n5CpXksH80kQT+iQ8lDzqix1kPSv+yXK27VnYusgpdDBXI1+uWv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtShqh9rP5qlNyZp0BCWNlnzRk7v6eyGik9SQKbGdEzUgv12bmf7VuasJrP+MySQ1KtvgoTAUxMZndTQZcITNiYoEyxe2uhI2ooszYdEo2BG/55FVoXVQ9y/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzmfPwKKjZo=</latexit>

p4
<latexit sha1_base64="XjExIuN720nXN9wFn/WS9ivKs8o=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSKdRj0YvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0kg9qgXHGr7kJkHbwcKpCrOSh/9YcxSyOukElqTM9zE/QzqlEwyWelfmp4QtmEjnjPoqIRN362WHVGLqwzJGGs7VNIFu7viYxGxkyjwHZGFMdmtTY3/6v1Ugyv/UyoJEWu2PKjMJUEYzK/mwyF5gzl1AJlWthdCRtTTRnadEo2BG/15HVoX1U9y/e1SuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPHwQOjZs=</latexit><latexit sha1_base64="XjExIuN720nXN9wFn/WS9ivKs8o=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSKdRj0YvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0kg9qgXHGr7kJkHbwcKpCrOSh/9YcxSyOukElqTM9zE/QzqlEwyWelfmp4QtmEjnjPoqIRN362WHVGLqwzJGGs7VNIFu7viYxGxkyjwHZGFMdmtTY3/6v1Ugyv/UyoJEWu2PKjMJUEYzK/mwyF5gzl1AJlWthdCRtTTRnadEo2BG/15HVoX1U9y/e1SuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPHwQOjZs=</latexit><latexit sha1_base64="XjExIuN720nXN9wFn/WS9ivKs8o=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSKdRj0YvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0kg9qgXHGr7kJkHbwcKpCrOSh/9YcxSyOukElqTM9zE/QzqlEwyWelfmp4QtmEjnjPoqIRN362WHVGLqwzJGGs7VNIFu7viYxGxkyjwHZGFMdmtTY3/6v1Ugyv/UyoJEWu2PKjMJUEYzK/mwyF5gzl1AJlWthdCRtTTRnadEo2BG/15HVoX1U9y/e1SuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPHwQOjZs=</latexit><latexit sha1_base64="XjExIuN720nXN9wFn/WS9ivKs8o=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSKdRj0YvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0kg9qgXHGr7kJkHbwcKpCrOSh/9YcxSyOukElqTM9zE/QzqlEwyWelfmp4QtmEjnjPoqIRN362WHVGLqwzJGGs7VNIFu7viYxGxkyjwHZGFMdmtTY3/6v1Ugyv/UyoJEWu2PKjMJUEYzK/mwyF5gzl1AJlWthdCRtTTRnadEo2BG/15HVoX1U9y/e1SuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPHwQOjZs=</latexit>

p1
<latexit sha1_base64="YgAuzWg+wuyQict0QiuK5Kx+fug=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtIu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9ZD2/b5b9WreXGQV/AKqUKjRd796g4RlMUrDBNW663upCXKqDGcCp5VepjGlbEyH2LUoaYw6yOerTsmZdQYkSpR90pC5+3sip7HWkzi0nTE1I71cm5n/1bqZia6DnMs0MyjZ4qMoE8QkZHY3GXCFzIiJBcoUt7sSNqKKMmPTqdgQ/OWTV6F1UfMt319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOcF+fd+Vi0lpxi5hj+yPn8Af9zjZg=</latexit><latexit sha1_base64="YgAuzWg+wuyQict0QiuK5Kx+fug=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtIu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9ZD2/b5b9WreXGQV/AKqUKjRd796g4RlMUrDBNW663upCXKqDGcCp5VepjGlbEyH2LUoaYw6yOerTsmZdQYkSpR90pC5+3sip7HWkzi0nTE1I71cm5n/1bqZia6DnMs0MyjZ4qMoE8QkZHY3GXCFzIiJBcoUt7sSNqKKMmPTqdgQ/OWTV6F1UfMt319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOcF+fd+Vi0lpxi5hj+yPn8Af9zjZg=</latexit><latexit sha1_base64="YgAuzWg+wuyQict0QiuK5Kx+fug=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtIu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9ZD2/b5b9WreXGQV/AKqUKjRd796g4RlMUrDBNW663upCXKqDGcCp5VepjGlbEyH2LUoaYw6yOerTsmZdQYkSpR90pC5+3sip7HWkzi0nTE1I71cm5n/1bqZia6DnMs0MyjZ4qMoE8QkZHY3GXCFzIiJBcoUt7sSNqKKMmPTqdgQ/OWTV6F1UfMt319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOcF+fd+Vi0lpxi5hj+yPn8Af9zjZg=</latexit><latexit sha1_base64="YgAuzWg+wuyQict0QiuK5Kx+fug=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtIu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9ZD2/b5b9WreXGQV/AKqUKjRd796g4RlMUrDBNW663upCXKqDGcCp5VepjGlbEyH2LUoaYw6yOerTsmZdQYkSpR90pC5+3sip7HWkzi0nTE1I71cm5n/1bqZia6DnMs0MyjZ4qMoE8QkZHY3GXCFzIiJBcoUt7sSNqKKMmPTqdgQ/OWTV6F1UfMt319W6zdFHGU4gVM4Bx+uoA530IAmMBjCM7zCmyOcF+fd+Vi0lpxi5hj+yPn8Af9zjZg=</latexit>

p2
<latexit sha1_base64="v0/vP4Il+nxU5vg1a4XbDiBSmjE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0kg9qgXHGr7kJkHbwcKpCrOSh/9YcxSyOukElqTM9zE/QzqlEwyWelfmp4QtmEjnjPoqIRN362WHVGLqwzJGGs7VNIFu7viYxGxkyjwHZGFMdmtTY3/6v1Ugyv/UyoJEWu2PKjMJUEYzK/mwyF5gzl1AJlWthdCRtTTRnadEo2BG/15HVo16qe5furSuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPHwEGjZk=</latexit><latexit sha1_base64="v0/vP4Il+nxU5vg1a4XbDiBSmjE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0kg9qgXHGr7kJkHbwcKpCrOSh/9YcxSyOukElqTM9zE/QzqlEwyWelfmp4QtmEjnjPoqIRN362WHVGLqwzJGGs7VNIFu7viYxGxkyjwHZGFMdmtTY3/6v1Ugyv/UyoJEWu2PKjMJUEYzK/mwyF5gzl1AJlWthdCRtTTRnadEo2BG/15HVo16qe5furSuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPHwEGjZk=</latexit><latexit sha1_base64="v0/vP4Il+nxU5vg1a4XbDiBSmjE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0kg9qgXHGr7kJkHbwcKpCrOSh/9YcxSyOukElqTM9zE/QzqlEwyWelfmp4QtmEjnjPoqIRN362WHVGLqwzJGGs7VNIFu7viYxGxkyjwHZGFMdmtTY3/6v1Ugyv/UyoJEWu2PKjMJUEYzK/mwyF5gzl1AJlWthdCRtTTRnadEo2BG/15HVo16qe5furSuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPHwEGjZk=</latexit><latexit sha1_base64="v0/vP4Il+nxU5vg1a4XbDiBSmjE=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0kg9qgXHGr7kJkHbwcKpCrOSh/9YcxSyOukElqTM9zE/QzqlEwyWelfmp4QtmEjnjPoqIRN362WHVGLqwzJGGs7VNIFu7viYxGxkyjwHZGFMdmtTY3/6v1Ugyv/UyoJEWu2PKjMJUEYzK/mwyF5gzl1AJlWthdCRtTTRnadEo2BG/15HVo16qe5furSuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPHwEGjZk=</latexit>

p3
<latexit sha1_base64="uxN1TeCtw/JouRtuqyBIwjhbrqs=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSLeix6MVjRfsBbSib7aRdutmE3Y1QQn+CFw+KePUXefPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e2s3n5CpXksH80kQT+iQ8lDzqix1kPSv+yXK27VnYusgpdDBXI1+uWv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtShqh9rP5qlNyZp0BCWNlnzRk7v6eyGik9SQKbGdEzUgv12bmf7VuasJrP+MySQ1KtvgoTAUxMZndTQZcITNiYoEyxe2uhI2ooszYdEo2BG/55FVoXVQ9y/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzmfPwKKjZo=</latexit><latexit sha1_base64="uxN1TeCtw/JouRtuqyBIwjhbrqs=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSLeix6MVjRfsBbSib7aRdutmE3Y1QQn+CFw+KePUXefPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e2s3n5CpXksH80kQT+iQ8lDzqix1kPSv+yXK27VnYusgpdDBXI1+uWv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtShqh9rP5qlNyZp0BCWNlnzRk7v6eyGik9SQKbGdEzUgv12bmf7VuasJrP+MySQ1KtvgoTAUxMZndTQZcITNiYoEyxe2uhI2ooszYdEo2BG/55FVoXVQ9y/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzmfPwKKjZo=</latexit><latexit sha1_base64="uxN1TeCtw/JouRtuqyBIwjhbrqs=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSLeix6MVjRfsBbSib7aRdutmE3Y1QQn+CFw+KePUXefPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e2s3n5CpXksH80kQT+iQ8lDzqix1kPSv+yXK27VnYusgpdDBXI1+uWv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtShqh9rP5qlNyZp0BCWNlnzRk7v6eyGik9SQKbGdEzUgv12bmf7VuasJrP+MySQ1KtvgoTAUxMZndTQZcITNiYoEyxe2uhI2ooszYdEo2BG/55FVoXVQ9y/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzmfPwKKjZo=</latexit><latexit sha1_base64="uxN1TeCtw/JouRtuqyBIwjhbrqs=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSLeix6MVjRfsBbSib7aRdutmE3Y1QQn+CFw+KePUXefPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e2s3n5CpXksH80kQT+iQ8lDzqix1kPSv+yXK27VnYusgpdDBXI1+uWv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtShqh9rP5qlNyZp0BCWNlnzRk7v6eyGik9SQKbGdEzUgv12bmf7VuasJrP+MySQ1KtvgoTAUxMZndTQZcITNiYoEyxe2uhI2ooszYdEo2BG/55FVoXVQ9y/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzmfPwKKjZo=</latexit>

p4
<latexit sha1_base64="XjExIuN720nXN9wFn/WS9ivKs8o=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSKdRj0YvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0kg9qgXHGr7kJkHbwcKpCrOSh/9YcxSyOukElqTM9zE/QzqlEwyWelfmp4QtmEjnjPoqIRN362WHVGLqwzJGGs7VNIFu7viYxGxkyjwHZGFMdmtTY3/6v1Ugyv/UyoJEWu2PKjMJUEYzK/mwyF5gzl1AJlWthdCRtTTRnadEo2BG/15HVoX1U9y/e1SuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPHwQOjZs=</latexit><latexit sha1_base64="XjExIuN720nXN9wFn/WS9ivKs8o=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSKdRj0YvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0kg9qgXHGr7kJkHbwcKpCrOSh/9YcxSyOukElqTM9zE/QzqlEwyWelfmp4QtmEjnjPoqIRN362WHVGLqwzJGGs7VNIFu7viYxGxkyjwHZGFMdmtTY3/6v1Ugyv/UyoJEWu2PKjMJUEYzK/mwyF5gzl1AJlWthdCRtTTRnadEo2BG/15HVoX1U9y/e1SuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPHwQOjZs=</latexit><latexit sha1_base64="XjExIuN720nXN9wFn/WS9ivKs8o=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSKdRj0YvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0kg9qgXHGr7kJkHbwcKpCrOSh/9YcxSyOukElqTM9zE/QzqlEwyWelfmp4QtmEjnjPoqIRN362WHVGLqwzJGGs7VNIFu7viYxGxkyjwHZGFMdmtTY3/6v1Ugyv/UyoJEWu2PKjMJUEYzK/mwyF5gzl1AJlWthdCRtTTRnadEo2BG/15HVoX1U9y/e1SuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPHwQOjZs=</latexit><latexit sha1_base64="XjExIuN720nXN9wFn/WS9ivKs8o=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSKdRj0YvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz0kg9qgXHGr7kJkHbwcKpCrOSh/9YcxSyOukElqTM9zE/QzqlEwyWelfmp4QtmEjnjPoqIRN362WHVGLqwzJGGs7VNIFu7viYxGxkyjwHZGFMdmtTY3/6v1Ugyv/UyoJEWu2PKjMJUEYzK/mwyF5gzl1AJlWthdCRtTTRnadEo2BG/15HVoX1U9y/e1SuMmj6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hj5zPHwQOjZs=</latexit>

l + p1 + p2
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Figure 12. The Feynman diagrams for the one-loop renormalization of λ. The first diagram

corrects 〈ϕ(p1)ϕ(p2)ϕ(p3)ϕ(p4)〉, while the other two would arise for 〈χj(p1)χj(p2)ϕ(p3)ϕ(p4)〉.
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p
<latexit sha1_base64="Pxex4gxdEG6Av/OmfvhlQK0fZNY=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjrWYyKFfcqrsQWQcvhwrkagzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWZQ0Qu1ni0Vn5MI6QxLGyj5pyML9PZHRSOtpFNjOiJqxXq3Nzf9qvdSEN37GZZIalGz5UZgKYmIyv5oMuUJmxNQCZYrbXQkbU0WZsdmUbAje6snr0L6qepab15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh85nz/aG4z0</latexit> <latexit sha1_base64="Pxex4gxdEG6Av/OmfvhlQK0fZNY=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjrWYyKFfcqrsQWQcvhwrkagzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWZQ0Qu1ni0Vn5MI6QxLGyj5pyML9PZHRSOtpFNjOiJqxXq3Nzf9qvdSEN37GZZIalGz5UZgKYmIyv5oMuUJmxNQCZYrbXQkbU0WZsdmUbAje6snr0L6qepab15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh85nz/aG4z0</latexit> <latexit sha1_base64="Pxex4gxdEG6Av/OmfvhlQK0fZNY=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjrWYyKFfcqrsQWQcvhwrkagzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWZQ0Qu1ni0Vn5MI6QxLGyj5pyML9PZHRSOtpFNjOiJqxXq3Nzf9qvdSEN37GZZIalGz5UZgKYmIyv5oMuUJmxNQCZYrbXQkbU0WZsdmUbAje6snr0L6qepab15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh85nz/aG4z0</latexit> <latexit sha1_base64="Pxex4gxdEG6Av/OmfvhlQK0fZNY=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjrWYyKFfcqrsQWQcvhwrkagzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWZQ0Qu1ni0Vn5MI6QxLGyj5pyML9PZHRSOtpFNjOiJqxXq3Nzf9qvdSEN37GZZIalGz5UZgKYmIyv5oMuUJmxNQCZYrbXQkbU0WZsdmUbAje6snr0L6qepab15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh85nz/aG4z0</latexit>

p
<latexit sha1_base64="Pxex4gxdEG6Av/OmfvhlQK0fZNY=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjrWYyKFfcqrsQWQcvhwrkagzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWZQ0Qu1ni0Vn5MI6QxLGyj5pyML9PZHRSOtpFNjOiJqxXq3Nzf9qvdSEN37GZZIalGz5UZgKYmIyv5oMuUJmxNQCZYrbXQkbU0WZsdmUbAje6snr0L6qepab15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh85nz/aG4z0</latexit><latexit sha1_base64="Pxex4gxdEG6Av/OmfvhlQK0fZNY=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjrWYyKFfcqrsQWQcvhwrkagzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWZQ0Qu1ni0Vn5MI6QxLGyj5pyML9PZHRSOtpFNjOiJqxXq3Nzf9qvdSEN37GZZIalGz5UZgKYmIyv5oMuUJmxNQCZYrbXQkbU0WZsdmUbAje6snr0L6qepab15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh85nz/aG4z0</latexit><latexit sha1_base64="Pxex4gxdEG6Av/OmfvhlQK0fZNY=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjrWYyKFfcqrsQWQcvhwrkagzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWZQ0Qu1ni0Vn5MI6QxLGyj5pyML9PZHRSOtpFNjOiJqxXq3Nzf9qvdSEN37GZZIalGz5UZgKYmIyv5oMuUJmxNQCZYrbXQkbU0WZsdmUbAje6snr0L6qepab15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh85nz/aG4z0</latexit> <latexit sha1_base64="Pxex4gxdEG6Av/OmfvhlQK0fZNY=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjrWYyKFfcqrsQWQcvhwrkagzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWZQ0Qu1ni0Vn5MI6QxLGyj5pyML9PZHRSOtpFNjOiJqxXq3Nzf9qvdSEN37GZZIalGz5UZgKYmIyv5oMuUJmxNQCZYrbXQkbU0WZsdmUbAje6snr0L6qepab15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh85nz/aG4z0</latexit>

l2
<latexit sha1_base64="YTO6seXZu7zHYbj3se5C6PKcvho=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz3IQW1QrrhVdyGyDl4OFcjVHJS/+sOYpRFXyCQ1pue5CfoZ1SiY5LNSPzU8oWxCR7xnUdGIGz9brDojF9YZkjDW9ikkC/f3REYjY6ZRYDsjimOzWpub/9V6KYbXfiZUkiJXbPlRmEqCMZnfTYZCc4ZyaoEyLeyuhI2ppgxtOiUbgrd68jq0a1XP8v1VpXGTx1GEMziHS/CgDg24gya0gMEInuEV3hzpvDjvzseyteDkM6fwR87nD/rfjZU=</latexit> <latexit sha1_base64="YTO6seXZu7zHYbj3se5C6PKcvho=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz3IQW1QrrhVdyGyDl4OFcjVHJS/+sOYpRFXyCQ1pue5CfoZ1SiY5LNSPzU8oWxCR7xnUdGIGz9brDojF9YZkjDW9ikkC/f3REYjY6ZRYDsjimOzWpub/9V6KYbXfiZUkiJXbPlRmEqCMZnfTYZCc4ZyaoEyLeyuhI2ppgxtOiUbgrd68jq0a1XP8v1VpXGTx1GEMziHS/CgDg24gya0gMEInuEV3hzpvDjvzseyteDkM6fwR87nD/rfjZU=</latexit> <latexit sha1_base64="YTO6seXZu7zHYbj3se5C6PKcvho=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz3IQW1QrrhVdyGyDl4OFcjVHJS/+sOYpRFXyCQ1pue5CfoZ1SiY5LNSPzU8oWxCR7xnUdGIGz9brDojF9YZkjDW9ikkC/f3REYjY6ZRYDsjimOzWpub/9V6KYbXfiZUkiJXbPlRmEqCMZnfTYZCc4ZyaoEyLeyuhI2ppgxtOiUbgrd68jq0a1XP8v1VpXGTx1GEMziHS/CgDg24gya0gMEInuEV3hzpvDjvzseyteDkM6fwR87nD/rfjZU=</latexit><latexit sha1_base64="YTO6seXZu7zHYbj3se5C6PKcvho=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz3IQW1QrrhVdyGyDl4OFcjVHJS/+sOYpRFXyCQ1pue5CfoZ1SiY5LNSPzU8oWxCR7xnUdGIGz9brDojF9YZkjDW9ikkC/f3REYjY6ZRYDsjimOzWpub/9V6KYbXfiZUkiJXbPlRmEqCMZnfTYZCc4ZyaoEyLeyuhI2ppgxtOiUbgrd68jq0a1XP8v1VpXGTx1GEMziHS/CgDg24gya0gMEInuEV3hzpvDjvzseyteDkM6fwR87nD/rfjZU=</latexit>

l1 + l2 + p
<latexit sha1_base64="q6cdWaXpGEW65xQWCh/I17uIx/U=">AAAB8HicbZDLSgMxFIbP1Futt6pLN8EiCIUyUwq6LLpxWcFepB2GTJppQ5PMkGSEMvQp3LhQxK2P4863MW1noa0/BD7+cw455w8TzrRx3W+nsLG5tb1T3C3t7R8cHpWPTzo6ThWhbRLzWPVCrClnkrYNM5z2EkWxCDnthpPbeb37RJVmsXww04T6Ao8kixjBxlqPPPCqPKhXk6BccWvuQmgdvBwqkKsVlL8Gw5ikgkpDONa677mJ8TOsDCOczkqDVNMEkwke0b5FiQXVfrZYeIYurDNEUazskwYt3N8TGRZaT0VoOwU2Y71am5v/1fqpia79jMkkNVSS5UdRypGJ0fx6NGSKEsOnFjBRzO6KyBgrTIzNqGRD8FZPXodOveZZvm9Umjd5HEU4g3O4BA+uoAl30II2EBDwDK/w5ijnxXl3PpatBSefOYU/cj5/AIzMj5M=</latexit> <latexit sha1_base64="q6cdWaXpGEW65xQWCh/I17uIx/U=">AAAB8HicbZDLSgMxFIbP1Futt6pLN8EiCIUyUwq6LLpxWcFepB2GTJppQ5PMkGSEMvQp3LhQxK2P4863MW1noa0/BD7+cw455w8TzrRx3W+nsLG5tb1T3C3t7R8cHpWPTzo6ThWhbRLzWPVCrClnkrYNM5z2EkWxCDnthpPbeb37RJVmsXww04T6Ao8kixjBxlqPPPCqPKhXk6BccWvuQmgdvBwqkKsVlL8Gw5ikgkpDONa677mJ8TOsDCOczkqDVNMEkwke0b5FiQXVfrZYeIYurDNEUazskwYt3N8TGRZaT0VoOwU2Y71am5v/1fqpia79jMkkNVSS5UdRypGJ0fx6NGSKEsOnFjBRzO6KyBgrTIzNqGRD8FZPXodOveZZvm9Umjd5HEU4g3O4BA+uoAl30II2EBDwDK/w5ijnxXl3PpatBSefOYU/cj5/AIzMj5M=</latexit><latexit sha1_base64="q6cdWaXpGEW65xQWCh/I17uIx/U=">AAAB8HicbZDLSgMxFIbP1Futt6pLN8EiCIUyUwq6LLpxWcFepB2GTJppQ5PMkGSEMvQp3LhQxK2P4863MW1noa0/BD7+cw455w8TzrRx3W+nsLG5tb1T3C3t7R8cHpWPTzo6ThWhbRLzWPVCrClnkrYNM5z2EkWxCDnthpPbeb37RJVmsXww04T6Ao8kixjBxlqPPPCqPKhXk6BccWvuQmgdvBwqkKsVlL8Gw5ikgkpDONa677mJ8TOsDCOczkqDVNMEkwke0b5FiQXVfrZYeIYurDNEUazskwYt3N8TGRZaT0VoOwU2Y71am5v/1fqpia79jMkkNVSS5UdRypGJ0fx6NGSKEsOnFjBRzO6KyBgrTIzNqGRD8FZPXodOveZZvm9Umjd5HEU4g3O4BA+uoAl30II2EBDwDK/w5ijnxXl3PpatBSefOYU/cj5/AIzMj5M=</latexit><latexit sha1_base64="q6cdWaXpGEW65xQWCh/I17uIx/U=">AAAB8HicbZDLSgMxFIbP1Futt6pLN8EiCIUyUwq6LLpxWcFepB2GTJppQ5PMkGSEMvQp3LhQxK2P4863MW1noa0/BD7+cw455w8TzrRx3W+nsLG5tb1T3C3t7R8cHpWPTzo6ThWhbRLzWPVCrClnkrYNM5z2EkWxCDnthpPbeb37RJVmsXww04T6Ao8kixjBxlqPPPCqPKhXk6BccWvuQmgdvBwqkKsVlL8Gw5ikgkpDONa677mJ8TOsDCOczkqDVNMEkwke0b5FiQXVfrZYeIYurDNEUazskwYt3N8TGRZaT0VoOwU2Y71am5v/1fqpia79jMkkNVSS5UdRypGJ0fx6NGSKEsOnFjBRzO6KyBgrTIzNqGRD8FZPXodOveZZvm9Umjd5HEU4g3O4BA+uoAl30II2EBDwDK/w5ijnxXl3PpatBSefOYU/cj5/AIzMj5M=</latexit>

p
<latexit sha1_base64="Pxex4gxdEG6Av/OmfvhlQK0fZNY=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjrWYyKFfcqrsQWQcvhwrkagzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWZQ0Qu1ni0Vn5MI6QxLGyj5pyML9PZHRSOtpFNjOiJqxXq3Nzf9qvdSEN37GZZIalGz5UZgKYmIyv5oMuUJmxNQCZYrbXQkbU0WZsdmUbAje6snr0L6qepab15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh85nz/aG4z0</latexit><latexit sha1_base64="Pxex4gxdEG6Av/OmfvhlQK0fZNY=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjrWYyKFfcqrsQWQcvhwrkagzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWZQ0Qu1ni0Vn5MI6QxLGyj5pyML9PZHRSOtpFNjOiJqxXq3Nzf9qvdSEN37GZZIalGz5UZgKYmIyv5oMuUJmxNQCZYrbXQkbU0WZsdmUbAje6snr0L6qepab15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh85nz/aG4z0</latexit><latexit sha1_base64="Pxex4gxdEG6Av/OmfvhlQK0fZNY=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjrWYyKFfcqrsQWQcvhwrkagzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWZQ0Qu1ni0Vn5MI6QxLGyj5pyML9PZHRSOtpFNjOiJqxXq3Nzf9qvdSEN37GZZIalGz5UZgKYmIyv5oMuUJmxNQCZYrbXQkbU0WZsdmUbAje6snr0L6qepab15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh85nz/aG4z0</latexit> <latexit sha1_base64="Pxex4gxdEG6Av/OmfvhlQK0fZNY=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjrWYyKFfcqrsQWQcvhwrkagzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWZQ0Qu1ni0Vn5MI6QxLGyj5pyML9PZHRSOtpFNjOiJqxXq3Nzf9qvdSEN37GZZIalGz5UZgKYmIyv5oMuUJmxNQCZYrbXQkbU0WZsdmUbAje6snr0L6qepab15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh85nz/aG4z0</latexit>
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➤ ➤ ➤

Figure 13. Two-loop corrections to 〈ϕ(p)ω(−p)〉 and 〈χi(p)χj(−p)〉 (labels i, j omitted).
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<latexit sha1_base64="Pxex4gxdEG6Av/OmfvhlQK0fZNY=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjrWYyKFfcqrsQWQcvhwrkagzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWZQ0Qu1ni0Vn5MI6QxLGyj5pyML9PZHRSOtpFNjOiJqxXq3Nzf9qvdSEN37GZZIalGz5UZgKYmIyv5oMuUJmxNQCZYrbXQkbU0WZsdmUbAje6snr0L6qepab15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh85nz/aG4z0</latexit><latexit sha1_base64="Pxex4gxdEG6Av/OmfvhlQK0fZNY=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjrWYyKFfcqrsQWQcvhwrkagzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWZQ0Qu1ni0Vn5MI6QxLGyj5pyML9PZHRSOtpFNjOiJqxXq3Nzf9qvdSEN37GZZIalGz5UZgKYmIyv5oMuUJmxNQCZYrbXQkbU0WZsdmUbAje6snr0L6qepab15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh85nz/aG4z0</latexit><latexit sha1_base64="Pxex4gxdEG6Av/OmfvhlQK0fZNY=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjrWYyKFfcqrsQWQcvhwrkagzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWZQ0Qu1ni0Vn5MI6QxLGyj5pyML9PZHRSOtpFNjOiJqxXq3Nzf9qvdSEN37GZZIalGz5UZgKYmIyv5oMuUJmxNQCZYrbXQkbU0WZsdmUbAje6snr0L6qepab15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh85nz/aG4z0</latexit> <latexit sha1_base64="Pxex4gxdEG6Av/OmfvhlQK0fZNY=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjrWYyKFfcqrsQWQcvhwrkagzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWZQ0Qu1ni0Vn5MI6QxLGyj5pyML9PZHRSOtpFNjOiJqxXq3Nzf9qvdSEN37GZZIalGz5UZgKYmIyv5oMuUJmxNQCZYrbXQkbU0WZsdmUbAje6snr0L6qepab15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh85nz/aG4z0</latexit>

p
<latexit sha1_base64="Pxex4gxdEG6Av/OmfvhlQK0fZNY=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjrWYyKFfcqrsQWQcvhwrkagzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWZQ0Qu1ni0Vn5MI6QxLGyj5pyML9PZHRSOtpFNjOiJqxXq3Nzf9qvdSEN37GZZIalGz5UZgKYmIyv5oMuUJmxNQCZYrbXQkbU0WZsdmUbAje6snr0L6qepab15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh85nz/aG4z0</latexit> <latexit sha1_base64="Pxex4gxdEG6Av/OmfvhlQK0fZNY=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjrWYyKFfcqrsQWQcvhwrkagzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWZQ0Qu1ni0Vn5MI6QxLGyj5pyML9PZHRSOtpFNjOiJqxXq3Nzf9qvdSEN37GZZIalGz5UZgKYmIyv5oMuUJmxNQCZYrbXQkbU0WZsdmUbAje6snr0L6qepab15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh85nz/aG4z0</latexit> <latexit sha1_base64="Pxex4gxdEG6Av/OmfvhlQK0fZNY=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjrWYyKFfcqrsQWQcvhwrkagzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWZQ0Qu1ni0Vn5MI6QxLGyj5pyML9PZHRSOtpFNjOiJqxXq3Nzf9qvdSEN37GZZIalGz5UZgKYmIyv5oMuUJmxNQCZYrbXQkbU0WZsdmUbAje6snr0L6qepab15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh85nz/aG4z0</latexit><latexit sha1_base64="Pxex4gxdEG6Av/OmfvhlQK0fZNY=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjrWYyKFfcqrsQWQcvhwrkagzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWZQ0Qu1ni0Vn5MI6QxLGyj5pyML9PZHRSOtpFNjOiJqxXq3Nzf9qvdSEN37GZZIalGz5UZgKYmIyv5oMuUJmxNQCZYrbXQkbU0WZsdmUbAje6snr0L6qepab15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh85nz/aG4z0</latexit>

l1
<latexit sha1_base64="berNMFBEL75BVbf5uEM+UZJp20k=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtIu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9SD6ft+tejVvLrIKfgFVKNTou1+9QcKyGKVhgmrd9b3UBDlVhjOB00ov05hSNqZD7FqUNEYd5PNVp+TMOgMSJco+acjc/T2R01jrSRzazpiakV6uzcz/at3MRNdBzmWaGZRs8VGUCWISMrubDLhCZsTEAmWK210JG1FFmbHpVGwI/vLJq9C6qPmW7y+r9ZsijjKcwCmcgw9XUIc7aEATGAzhGV7hzRHOi/PufCxaS04xcwx/5Hz+APlbjZQ=</latexit><latexit sha1_base64="berNMFBEL75BVbf5uEM+UZJp20k=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtIu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9SD6ft+tejVvLrIKfgFVKNTou1+9QcKyGKVhgmrd9b3UBDlVhjOB00ov05hSNqZD7FqUNEYd5PNVp+TMOgMSJco+acjc/T2R01jrSRzazpiakV6uzcz/at3MRNdBzmWaGZRs8VGUCWISMrubDLhCZsTEAmWK210JG1FFmbHpVGwI/vLJq9C6qPmW7y+r9ZsijjKcwCmcgw9XUIc7aEATGAzhGV7hzRHOi/PufCxaS04xcwx/5Hz+APlbjZQ=</latexit> <latexit sha1_base64="berNMFBEL75BVbf5uEM+UZJp20k=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtIu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9SD6ft+tejVvLrIKfgFVKNTou1+9QcKyGKVhgmrd9b3UBDlVhjOB00ov05hSNqZD7FqUNEYd5PNVp+TMOgMSJco+acjc/T2R01jrSRzazpiakV6uzcz/at3MRNdBzmWaGZRs8VGUCWISMrubDLhCZsTEAmWK210JG1FFmbHpVGwI/vLJq9C6qPmW7y+r9ZsijjKcwCmcgw9XUIc7aEATGAzhGV7hzRHOi/PufCxaS04xcwx/5Hz+APlbjZQ=</latexit><latexit sha1_base64="berNMFBEL75BVbf5uEM+UZJp20k=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtIu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9SD6ft+tejVvLrIKfgFVKNTou1+9QcKyGKVhgmrd9b3UBDlVhjOB00ov05hSNqZD7FqUNEYd5PNVp+TMOgMSJco+acjc/T2R01jrSRzazpiakV6uzcz/at3MRNdBzmWaGZRs8VGUCWISMrubDLhCZsTEAmWK210JG1FFmbHpVGwI/vLJq9C6qPmW7y+r9ZsijjKcwCmcgw9XUIc7aEATGAzhGV7hzRHOi/PufCxaS04xcwx/5Hz+APlbjZQ=</latexit>

l2
<latexit sha1_base64="YTO6seXZu7zHYbj3se5C6PKcvho=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz3IQW1QrrhVdyGyDl4OFcjVHJS/+sOYpRFXyCQ1pue5CfoZ1SiY5LNSPzU8oWxCR7xnUdGIGz9brDojF9YZkjDW9ikkC/f3REYjY6ZRYDsjimOzWpub/9V6KYbXfiZUkiJXbPlRmEqCMZnfTYZCc4ZyaoEyLeyuhI2ppgxtOiUbgrd68jq0a1XP8v1VpXGTx1GEMziHS/CgDg24gya0gMEInuEV3hzpvDjvzseyteDkM6fwR87nD/rfjZU=</latexit><latexit sha1_base64="YTO6seXZu7zHYbj3se5C6PKcvho=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz3IQW1QrrhVdyGyDl4OFcjVHJS/+sOYpRFXyCQ1pue5CfoZ1SiY5LNSPzU8oWxCR7xnUdGIGz9brDojF9YZkjDW9ikkC/f3REYjY6ZRYDsjimOzWpub/9V6KYbXfiZUkiJXbPlRmEqCMZnfTYZCc4ZyaoEyLeyuhI2ppgxtOiUbgrd68jq0a1XP8v1VpXGTx1GEMziHS/CgDg24gya0gMEInuEV3hzpvDjvzseyteDkM6fwR87nD/rfjZU=</latexit><latexit sha1_base64="YTO6seXZu7zHYbj3se5C6PKcvho=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz3IQW1QrrhVdyGyDl4OFcjVHJS/+sOYpRFXyCQ1pue5CfoZ1SiY5LNSPzU8oWxCR7xnUdGIGz9brDojF9YZkjDW9ikkC/f3REYjY6ZRYDsjimOzWpub/9V6KYbXfiZUkiJXbPlRmEqCMZnfTYZCc4ZyaoEyLeyuhI2ppgxtOiUbgrd68jq0a1XP8v1VpXGTx1GEMziHS/CgDg24gya0gMEInuEV3hzpvDjvzseyteDkM6fwR87nD/rfjZU=</latexit> <latexit sha1_base64="YTO6seXZu7zHYbj3se5C6PKcvho=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEihUHX/XYKG5tb2zvF3dLe/sHhUfn4pG3iVDPeYrGMdTeghkuheAsFSt5NNKdRIHknmNzO650nro2I1SNOE+5HdKREKBhFaz3IQW1QrrhVdyGyDl4OFcjVHJS/+sOYpRFXyCQ1pue5CfoZ1SiY5LNSPzU8oWxCR7xnUdGIGz9brDojF9YZkjDW9ikkC/f3REYjY6ZRYDsjimOzWpub/9V6KYbXfiZUkiJXbPlRmEqCMZnfTYZCc4ZyaoEyLeyuhI2ppgxtOiUbgrd68jq0a1XP8v1VpXGTx1GEMziHS/CgDg24gya0gMEInuEV3hzpvDjvzseyteDkM6fwR87nD/rfjZU=</latexit>

l1 + l2 + p
<latexit sha1_base64="q6cdWaXpGEW65xQWCh/I17uIx/U=">AAAB8HicbZDLSgMxFIbP1Futt6pLN8EiCIUyUwq6LLpxWcFepB2GTJppQ5PMkGSEMvQp3LhQxK2P4863MW1noa0/BD7+cw455w8TzrRx3W+nsLG5tb1T3C3t7R8cHpWPTzo6ThWhbRLzWPVCrClnkrYNM5z2EkWxCDnthpPbeb37RJVmsXww04T6Ao8kixjBxlqPPPCqPKhXk6BccWvuQmgdvBwqkKsVlL8Gw5ikgkpDONa677mJ8TOsDCOczkqDVNMEkwke0b5FiQXVfrZYeIYurDNEUazskwYt3N8TGRZaT0VoOwU2Y71am5v/1fqpia79jMkkNVSS5UdRypGJ0fx6NGSKEsOnFjBRzO6KyBgrTIzNqGRD8FZPXodOveZZvm9Umjd5HEU4g3O4BA+uoAl30II2EBDwDK/w5ijnxXl3PpatBSefOYU/cj5/AIzMj5M=</latexit> <latexit sha1_base64="q6cdWaXpGEW65xQWCh/I17uIx/U=">AAAB8HicbZDLSgMxFIbP1Futt6pLN8EiCIUyUwq6LLpxWcFepB2GTJppQ5PMkGSEMvQp3LhQxK2P4863MW1noa0/BD7+cw455w8TzrRx3W+nsLG5tb1T3C3t7R8cHpWPTzo6ThWhbRLzWPVCrClnkrYNM5z2EkWxCDnthpPbeb37RJVmsXww04T6Ao8kixjBxlqPPPCqPKhXk6BccWvuQmgdvBwqkKsVlL8Gw5ikgkpDONa677mJ8TOsDCOczkqDVNMEkwke0b5FiQXVfrZYeIYurDNEUazskwYt3N8TGRZaT0VoOwU2Y71am5v/1fqpia79jMkkNVSS5UdRypGJ0fx6NGSKEsOnFjBRzO6KyBgrTIzNqGRD8FZPXodOveZZvm9Umjd5HEU4g3O4BA+uoAl30II2EBDwDK/w5ijnxXl3PpatBSefOYU/cj5/AIzMj5M=</latexit> <latexit sha1_base64="q6cdWaXpGEW65xQWCh/I17uIx/U=">AAAB8HicbZDLSgMxFIbP1Futt6pLN8EiCIUyUwq6LLpxWcFepB2GTJppQ5PMkGSEMvQp3LhQxK2P4863MW1noa0/BD7+cw455w8TzrRx3W+nsLG5tb1T3C3t7R8cHpWPTzo6ThWhbRLzWPVCrClnkrYNM5z2EkWxCDnthpPbeb37RJVmsXww04T6Ao8kixjBxlqPPPCqPKhXk6BccWvuQmgdvBwqkKsVlL8Gw5ikgkpDONa677mJ8TOsDCOczkqDVNMEkwke0b5FiQXVfrZYeIYurDNEUazskwYt3N8TGRZaT0VoOwU2Y71am5v/1fqpia79jMkkNVSS5UdRypGJ0fx6NGSKEsOnFjBRzO6KyBgrTIzNqGRD8FZPXodOveZZvm9Umjd5HEU4g3O4BA+uoAl30II2EBDwDK/w5ijnxXl3PpatBSefOYU/cj5/AIzMj5M=</latexit> <latexit sha1_base64="q6cdWaXpGEW65xQWCh/I17uIx/U=">AAAB8HicbZDLSgMxFIbP1Futt6pLN8EiCIUyUwq6LLpxWcFepB2GTJppQ5PMkGSEMvQp3LhQxK2P4863MW1noa0/BD7+cw455w8TzrRx3W+nsLG5tb1T3C3t7R8cHpWPTzo6ThWhbRLzWPVCrClnkrYNM5z2EkWxCDnthpPbeb37RJVmsXww04T6Ao8kixjBxlqPPPCqPKhXk6BccWvuQmgdvBwqkKsVlL8Gw5ikgkpDONa677mJ8TOsDCOczkqDVNMEkwke0b5FiQXVfrZYeIYurDNEUazskwYt3N8TGRZaT0VoOwU2Y71am5v/1fqpia79jMkkNVSS5UdRypGJ0fx6NGSKEsOnFjBRzO6KyBgrTIzNqGRD8FZPXodOveZZvm9Umjd5HEU4g3O4BA+uoAl30II2EBDwDK/w5ijnxXl3PpatBSefOYU/cj5/AIzMj5M=</latexit>

p
<latexit sha1_base64="Pxex4gxdEG6Av/OmfvhlQK0fZNY=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjrWYyKFfcqrsQWQcvhwrkagzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWZQ0Qu1ni0Vn5MI6QxLGyj5pyML9PZHRSOtpFNjOiJqxXq3Nzf9qvdSEN37GZZIalGz5UZgKYmIyv5oMuUJmxNQCZYrbXQkbU0WZsdmUbAje6snr0L6qepab15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh85nz/aG4z0</latexit> <latexit sha1_base64="Pxex4gxdEG6Av/OmfvhlQK0fZNY=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjrWYyKFfcqrsQWQcvhwrkagzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWZQ0Qu1ni0Vn5MI6QxLGyj5pyML9PZHRSOtpFNjOiJqxXq3Nzf9qvdSEN37GZZIalGz5UZgKYmIyv5oMuUJmxNQCZYrbXQkbU0WZsdmUbAje6snr0L6qepab15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh85nz/aG4z0</latexit> <latexit sha1_base64="Pxex4gxdEG6Av/OmfvhlQK0fZNY=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjrWYyKFfcqrsQWQcvhwrkagzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWZQ0Qu1ni0Vn5MI6QxLGyj5pyML9PZHRSOtpFNjOiJqxXq3Nzf9qvdSEN37GZZIalGz5UZgKYmIyv5oMuUJmxNQCZYrbXQkbU0WZsdmUbAje6snr0L6qepab15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh85nz/aG4z0</latexit><latexit sha1_base64="Pxex4gxdEG6Av/OmfvhlQK0fZNY=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjrWYyKFfcqrsQWQcvhwrkagzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWZQ0Qu1ni0Vn5MI6QxLGyj5pyML9PZHRSOtpFNjOiJqxXq3Nzf9qvdSEN37GZZIalGz5UZgKYmIyv5oMuUJmxNQCZYrbXQkbU0WZsdmUbAje6snr0L6qepab15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh85nz/aG4z0</latexit>

Figure 14. Two-loop corrections to 〈ϕ(p)ϕ(−p)〉.

Alternatively we could consider 〈χj(p1)χj(p2)ϕ(p3)ϕ(p4)〉. At one loop we have the last

two diagrams in figure 12. Here too, at one-loop the dependence on the external momenta

and i, j indices is proportional to that in tree level, but now involving the other vertex χ2
iϕ

2.

The amputated function once again gives the same correction z
(1,1)
λ . This can be seen as a

consequence of the equivalence of (2.21) with the SUSY theory (2.27). We omit the details.

G.2 Wavefunction renormalization

Here we will calculate the wavefunction renormalization constants Zϕ, Zω, Zχ, which get

the first correction at two loops (we will need it in our two-loop anomalous dimension

computations). These renormalization constants are determined by requiring the 2-point

functions 〈ϕ(p)ω(−p)〉, 〈ϕ(p)ϕ(−p)〉 and 〈χi(p)χj(−p)〉 be free of ε poles. These 2-point

functions receive two-loop corrections shown in figures 13 and 14.

These loop integrals are similar to the usual Wilson-Fisher two-loop field renormaliza-

tion integral [105]. One integral common to all corrections is:

Iϕω(p2) =
λ2H2

(2π)2d

∫ ∫
ddl1d

dl2
(l21)2(l22)2(p+ l1 + l2)2

= −λ
2H2p2

6(4π)6ε
+O

(
ε0
)
. (G.9)

For the correction to 〈ϕ(p)ϕ(−p)〉 we have an extra integral:

Iϕϕ =
λ2H2

(2π)2d

∫ ∫
ddl1d

dl2
(l21)2(l22)2((p+ l1 + l2)2)2

= − λ2H2

2(4π)6ε
+O

(
ε0
)
. (G.10)
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Putting in the appropriate symmetry factors, we obtain the following two-loop corrected

2-point functions (where we keep Zϕ, Zω, Zχ at tree level but set them to one in the cor-

rection):

〈ϕ(p)ω(−p)〉 =
1

p2

[
1

ZϕZω
− λ2H2

12(4π)6ε
+O

(
λ2ε0

)]
,

〈χi(p)χj(−p)〉 =
1

p2

[
1

Z2
χ

− λ2H2

12(4π)6ε
+O

(
λ2ε0

)]
, (G.11)

〈ϕ(p)ϕ(−p)〉 =
H

(p2)2

[
1

Z2
ϕ

− λ2H2

12(4π)6ε
+O

(
λ2ε0

)]
.

Requiring that ε poles cancel determines:

ZϕZω = Z2
ϕ = Z2

χ = 1− λ2H2

12(4π)6ε
+O(λ3). (G.12)

Thus we find Zϕ = Zω = Zχ. In particular Zϕ = Zω can be interpreted as the non-

renormalization of H. Recall that our theory is equivalent to the supersymmetric the-

ory (2.27), and H is a parameter in the SUSY transformations. As commented in sec-

tion 3.1, dimensional regularization preserves full SUSY and hence H. (In section 7.1 we

instead discussed that in other regularization schemes H can renormalize, using a slightly

different notation for wavefunction renormalization constants, see eq. (7.2).)

Finally, from Zϕ, Zω, Zχ by the usual definitions we compute the anomalous dimensions

of the fields:

γϕ = γω = γχ =

[
∂ logZϕ
∂ logµ

]

λ=λ∗

=
ε2

108
+O

(
ε3
)
, (G.13)

equal to γ
φ̂

at the usual Wilson-Fisher fixed point, consistently with the dimensional re-

duction.

H Details of anomalous dimension computations

In this appendix we will show the details of the anomalous dimension computations pre-

sented in section 9. Throughout this section we will denote by γO = ∆O−∆0
O the anomalous

dimension for an operator O, where ∆O is the dimension of O at the fixed point (3.7) and

∆0
O is its dimension at the Gaussian (free theory) fixed point at d = 6− ε.

Recall that the three operator classes have the block-diagonal mixing structure shown

in (F.11), which allows to compute anomalous dimensions in each class separately (although

the true scaling susy-writable operators will have an admixture of susy-nulls, while non-

susy-writables will have an admixture of both susy-writables and susy-nulls). We will try

to remind the reader of that whenever a confusion might arise.

H.1 Susy-writable operators

As explained in section 8.3, susy-writable operators have well-defined anomalous dimen-

sions equal to the ones of the Wilson-Fisher (WF) in d = 4− ε dimensions. Here we give a
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few examples of such operators and their anomalous dimensions. In this section we work

at one loop and the reported computations have been performed using the OPE formalism

from appendix F.

In our computations we used the χ-formulation, but in the discussions and in the

comparison with WF it is also convenient to use the superfields. The superfield formulation

by construction misses all contributions proportional to susy-null operators, which are

instead non-vanishing in the χ-formulation. As already mentioned several times, susy-

null operators cannot generate susy-writables under RG (while the opposite may happen),

so that their mixing matrix is triangular, which ensures that anomalous dimensions of

susy-writable operators can be computed by setting to zero susy-null contributions. In

the following we will use this shortcut. We will be also able to recover the susy-null

contributions by asking that the complete operator is an eigenperturbation.

Let us start by considering the operators (Φ2)θθ̄, T
µµ

θθ̄
, ∂2(Φ2)θθ̄, (Φ4)θθ̄, (Φ2T µµ)θθ̄

discussed in the main text. As a first step we rewrite all terms involving ψ, ψ̄ using the

χ-formulation (see appendix C). It is then easy to check that the anomalous dimensions

of these operators are respectively equal to ε/3, 0, ε/3, 2ε, (13/9)ε, as expected from the

WF counterpart [38].

We can further study if some susy-null contributions should be added. It is easy to

check that the first four operators above do not get modified by susy-null terms. On

the other hand the last operator is an eigenpertubation only when we add to it a term

proportional to (χ2)2, namely

(Φ2T µµ)θθ̄ +
15

26
(χ2)2. (H.1)

As we explain in the main text, the only susy-writable operator which may play an impor-

tant role in destabilizing the susy RG is the so called box superfield Bab,cd, which transforms

in the (2, 2) representation of OSp(d|2) (recall that unitarity bounds for this representation

are too weak to ensure that the operator is irrelevant). Its WF counterpart is defined in

the main text as

B̂µν,ρσ =

(
φ̂,µν φ̂,ρσφ̂

2 − 2d̂

d̂− 2
φ̂,µφ̂,ν φ̂,ρσφ̂

)Y
. (H.2)

The anomalous dimension of (H.2) was computed in [38] and it equals (7/9)ε. We would like

to reproduce this result by studying the superfield Bab,cd. This is a very non-trivial check

that dimensional reduction works also for operators in non-trivial OSp(d|2) representations.

While doing so, we will also show the explicit expression in components for this operator.

We mainly focus on (Bθθ̄,θθ̄)θθ̄, since this component is bosonic, supertranslation in-

variant (it is the highest component of a superfield) and it is a scalar with respect to SO(d).

Because of these features, this operator is generated in our RG flow and could destabilize

it (if it becomes relevant).

First let us spell out the SO(d̂) Young symmetrizer denoted by Y in (H.2). This is

a tensor with two sets of four indices, each set transforming in the SO(d̂) representation

(2, 2). By contracting the indices µνρσ inside the brackets of (H.2) with one set, we obtain

an operator depending on the second set of indices, which transforms properly in the (2, 2)
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irrep. It is convenient to represent the symmetrizer (see [106–108]) by contracting its eight

indices with auxiliary R
d̂ vectors — the symmetric indices in each row are contracted with

the same vector. The first set is contracted with X1 and X2, while the second set with Z1

and Z2. The result is expressed in the following polynomial form:

Π2,2(X1,X2;Z1,Z2) = c2,2
{−(X1 ·X1)(Z1 ·Z1)(X2 ·Z2)2−2(X1 ·X2)2(Z1 ·Z2)2

+2(X1 ·X1)(Z1 ·Z2)(X2 ·Z1)(X2 ·Z2)+2(X1 ·X1)(X2 ·X2)(Z1 ·Z2)2

+2(X1 ·X2)2(Z1 ·Z1)(Z2 ·Z2)−2(X1 ·X1)(X2 ·X2)(Z1 ·Z1)(Z2 ·Z2)

+(d̂−1)(X2 ·X2)(Z1 ·Z1)(X1 ·Z2)2−2(d̂−1)(X1 ·X2)(Z1 ·Z1)(X1 ·Z2)(X2 ·Z2)

−2(d̂−1)(X2 ·X2)(Z1 ·Z2)(X1 ·Z1)(X1 ·Z2)+2(d̂−1)(X1 ·X2)(Z1 ·Z2)(X1 ·Z2)(X2 ·Z1)

+2(d̂−1)(X1 ·X2)(Z1 ·Z2)(X1 ·Z1)(X2 ·Z2)+(d̂−1)(X2 ·X2)(Z2 ·Z2)(X1 ·Z1)2 (H.3)

−2(d̂−1)(X1 ·X2)(Z2 ·Z2)(X1 ·Z1)(X2 ·Z1)+(d̂−1)(X1 ·X1)(Z2 ·Z2)(X2 ·Z1)2

−(d̂−2)(d̂−1)(X1 ·Z2)2(X2 ·Z1)2 +2(d̂−2)(d̂−1)(X1 ·Z1)(X1 ·Z2)(X2 ·Z1)(X2 ·Z2)

−(d̂−2)(d̂−1)(X1 ·Z1)2(X2 ·Z2)2 + d̂(X1 ·X1)(Z1 ·Z1)(X2 ·Z2)2

−2d̂(X1 ·X1)(Z1 ·Z2)(X2 ·Z1)(X2 ·Z2)
}
,

where c2,2 = − 1

3(−2+d̂)(−1+d̂)
is a normalization constant which ensures that the sym-

metrizer is idempotent. In order to get back the indices it is then sufficient to take

derivatives with respect to the auxiliary vectors.71 As explained in [1], this con-

tracted form of the Young symmetrizer is also convenient since it trivially generalizes

to OSp(d|2) representations, by considering vectors Xi, Zi in R
d|2 and the scalar product

X · Y = Xag
ab
Y b, with the usual OSp(d|2) metric gab. We stress that the dependence of

the symmetrizer on the parameter d̂ must not be changed (indeed d̂ = d− 2 is equal to the

supertrace).

By some manipulations of this projector, we are able to obtain the final form for the

box superfield,

(Bθθ̄,θθ̄)θθ̄ =
1

6

{−ϕ2ψ,µνψ̄,µν + ψψ̄(−ϕ2
,µν − 20ϕ,µω,µ + 54ω2) + 4ϕϕ,µ(ψ,νψ̄,µν + ψ,µνψ̄,ν)

+2ϕ,µϕ,ν(ψψ̄,µν + ψ,µνψ̄)− 2ϕϕ,µν(ψψ̄,µν + ψ,µνψ̄)− 42ϕωψ,µψ̄,µ

+2ϕϕ,µν(ψ,µψ̄,ν + ψ,νψ̄,µ) + 4ϕ,µϕ,µν(ψψ̄,ν + ψ,νψ̄)− ϕωϕ2
,µν + 54ϕω3

−12ωϕ,µ(ψψ̄,µ + ψ,µψ̄) + 10ϕω,µ(ψψ̄,µ + ψ,µψ̄)− 30ψψ̄ψ,µψ̄,µ

+2ωϕ,µϕ,νϕ,µν + 4ϕω,µϕ,νϕ,µν + ϕ(2ϕ,µϕ,ν − ϕϕ,µν)ω,µν + 5ϕ2ω2
,µ

−6ω2ϕ2
,µ − 32ϕωϕ,µω,µ

}
, (H.5)

where for short the expression is written for d = d̂+ 2 = 6. We checked that this operator,

upon substitution ψ, ψ̄ → χ has indeed anomalous dimension (7/9)ε as expected.

71E.g. we can compute the dimensions of the representation as the trace of the projector, which entails
freeing all the indices and contracting them pairwise (up to a combinatorial factor):

dim(2,2) =
1

16
∂µ

X1
∂µ

Z1
∂ν

X1
∂ν

Z1
∂ρ

X2
∂ρ

Z2
∂σ

X2
∂σ

Z2
Π2,2(X1, X2;Z1, Z2) =

1

12
(d̂− 3)d̂(d̂+ 1)(d̂+ 2) , (H.4)

This matches e.g. eq. (10.68) of [109]. We use this result in section 11.2.2.
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Notice that (H.5) contains the term ψψ̄ψ,µψ̄,µ which can be mapped in two different

ways (as explained in appendix C, eq. (C.7)) in terms of χ. Both choices are equally good,

since their difference is proportional to the susy-null operator ∂2(χ2)2 (which can be set to

zero for anomalous dimensions computations). As usual we can also determine the susy-

null contribution by requiring that the full operator is an eigenperturbation: this gives the

above (Bθθ̄,θθ̄)θθ̄ with ψψ̄ψ,µψ̄,µ → 1
4χiχiχj,µχj,µ + 5

84∂
2(χ2)2.

As a final example we compute the anomalous dimensions of all susy-writable (and

one susy-null) operators at dimensions ∆ = 10 made of four fields. One of such operators

is (H.5), and we would like to check that all of the others also have dimensions consistent

from dimensional reduction. In practice we consider a list of 32 monomials: the 22 sum-

mands of (H.5) (terms of the form e.g. ψψ̄,ν + ψ,νψ̄ are counted as one after the ψ, ψ̄ → χ

map), the susy-null operator ∂2(χ2)2 discussed above and the following 9 extra operators

ϕ2
,µχ

2
,ν , ϕ,µχ,µϕ,νχ,ν , ϕ2ϕ2

,µνσ, ϕϕ,µϕ,νσϕ,µνσ, ϕ2
,νϕ

2
,µσ (H.6)

ϕϕ,µνϕ,µσϕ,νσ, ϕ,µω,µϕ
2
,ν , ϕ,µϕ,νϕ,σϕ,µνσ, ϕ,νϕ,σϕ,µνϕ,µσ.

This list of 32 monomials is closed upon renormalization, mixing in a non-trivial way.

Diagonalizing the resulting 32 × 32 mixing matrix gives the following list of anomalous

dimensions:

2ε, 2ε,
13ε

9
,
13ε

9
,
13ε

9
,
13ε

9
,
13ε

9
,
19ε

15
,
10ε

9
,
10ε

9
, ε, ε, ε, ε, (H.7)

14ε

15
,
8ε

9
,
8ε

9
,
8ε

9
,
8ε

9
,
7ε

9
,
7ε

9
,
7ε

9
,
7ε

9
,
ε

2
,
ε

2
,
4ε

9
,
ε

3
,
2ε

9
,
ε

9
, 0, 0, 0.

Let us see next how this list can be related to WF computations. First, we would like to

emphasize that many of the numbers in (H.7) are associated to descendants. Indeed, we

can redo the computation only using equivalence classes of operators defined up to total

derivatives (as discussed in appendix F). The result is that only 8 of the above operators

are not descendants. The associated anomalous dimensions are 10ε
9 , 14ε

15 ,
8ε
9 ,

7ε
9 ,

ε
2 ,

ε
3 ,

ε
9 , 0, 0.

This also explains why in (H.7) there are many repeated anomalous dimensions: they

correspond to total derivatives of different components of the superfield. To clarify this, let

us focus on the anomalous dimension 7ε
9 (the one of the box operator). This appears four

times in (H.7) and only one of these is not a total derivative — this indeed corresponds to

the operator (H.5). The other three occurrences are related to the following descendants

(we also checked this explicitly):

∂2(Bθθ̄,θθ̄)0, ∂µ∂ν(Bθθ̄,µν)0, ∂µ(Bθθ̄,θµ)θ̄. (H.8)

E.g. the first one, before applying ∂2, takes the form

(Bθθ̄,θθ̄)0 → −
1

6
ϕ2ϕ2

,µν +
2

3
ϕϕ,µϕ,νϕ,µν −

5

6
ϕ2χ2

i,µ +
10

3
ϕχiϕµχi,µ − 2ϕωϕ2

,µ

+
7ϕ2ω2

3
− 20

3
ϕχ2

iω −
[

10(χ2
i )

2

7

]
, (H.9)

where we also included, in square brackets, the susy-null contribution.
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We also notice that different anomalous dimensions in (H.7) occur a different number

of times. It is easy to see why this happens. This depends on the superprimary Osp(d|2)

representation, and on how many times we need to differentiate to get to the needed dimen-

sion. E.g. 2ε in (H.7) is related to the superprimary Φ4 in the following two combinations:

(∂2)2Φ4
θθ̄

, (∂2)3Φ4
0. Here, since Φ4 is a scalar, there is a single OSp component to use (in

constrast with non-scalar operators). Also only total derivatives appear because the super-

field itself has too low bare dimension: [Φ4
0] = 4, [Φ4

θθ̄
] = 6. As a final example, the value

13ε
9 in (H.7) is related to five possible descendants of the superfield Φ2T ab: (∂2)2(Φ2T θθ̄)0,

∂2∂µ∂ν(Φ
2T µν)0, ∂2∂µ(Φ2T µθ̄)θ, ∂2(Φ2T θθ̄)θθ̄, ∂µ∂ν(Φ2T µν)θθ̄.

We do not present here a detailed explanation for all anomalous dimensions in (H.7).

However we stress that we checked that they are all in agreement with available WF

results: not only the anomalous dimensions match but also the occurrences (of primaries

and descendants) are the ones expected.

Most of the checks are done by comparing with table 4 of [38] (using the entries with

n = 4 fields),72 where all operators built out of 5 or less derivatives are presented. However

the list (H.7) is also sensitive to operators with six derivatives: indeed the lowest component

of a superfield with four Φ’s and six derivatives has dimension 10. Unfortunately such oper-

ators were not fully classified in the WF literature, except for a scalar operator considered

in [33] with γ = ε/3 (see equation (3.12)), which indeed matches our computation.

We can therefore predict that in the WF spectrum of operators with four fields and

six derivatives, there are three operators with anomalous dimensions 0, ε/9, (14/15)ε. We

can further say something about their possible SO(d̂) representation. Indeed the operators

in our list must have an even number of indices which are set to θ and θ̄ (otherwise

the resulting operator would be fermionic or it would not be an SO(d̂) scalar). We thus

conclude that these three operators must transform either in the scalar, or spin two, or

(2, 2) representation of SO(d̂).73

Finally let us comment on the three operators with γ = 0. Only one of them is a de-

scendant: the susy-null operator ∂2(χ2)2. One of the other two operators is a primary, an

operator with six derivatives. The third operator in this group is actually not an eigenvec-

tor, but a generalized eigenvector forming a logarithmic multiplet together with the γ = 0

primary. This is a recurrent feature of our non-unitary theory: mixing matrices may not be

fully diagonalizable and can be organized in Jordan blocks, as discussed around eq. (F.6).

H.2 Susy-null leaders

We next consider all the susy-null leaders with 6d classical dimension up to 12 (one at

dimension 8, one at 10, and four at 12). For each of them we compute the one-loop

anomalous dimension, or the two-loop one if the one-loop result is trivial. We use the OPE

method at one loop, and Feynman diagrams whenever we have to go to two loops.

72As explained in [38], for Z2 symmetry, the anomalous dimensions are the numbers in the table times ε/3.
73We thank Johan Henriksson, who confirmed us in a private communication that there exist two WF

operators with four fields and six derivatives in the spin-two representation of SO(d̂) with anomalous
dimensions equal to ε/9 and (14/15)ε. On the other hand the operator with anomalous dimensions 0 was
not found in the scalar and spin-two sector, so it must transform in the box (2, 2) representation of SO(d̂).
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H.2.1 ∆0 = 8 + O(ε), n = 4

The lowest susy-null leader is (χ2
i )

2, of classical dimension ∆0 = 8 − 2ε in d = 6 − ε (see

table 1). It is easy to see that it does not receive any anomalous dimension at one loop,

so we proceed to study the 2-loop contribution. Denoting by ((χ2
i )

2)B the operator built

of bare fields, and by (χ2
i )

2 the renormalized operator whose correlators should be free of

poles in ε, they are related by

((χ2
i )

2)B = Z (χ2
i )

2, (H.10)

To find the renormalization factor Z we consider the correlator 〈(χ2
i )

2(p =

0)χj(p1)χk(p2)χl(p3)χm(p4)〉. A nonzero two-loop diagram is shown in figure 4. Another

two loop diagram (a double bubble diagram of the type shown in figure 15) vanishes because

it is proportional to n, from contractions of the Kij matrices in the χ-χ propagator (E.2).

At two loops we must also consider the propagator computed in section G.2.

Taking everything into account, the two-loop corrected amputated correlator equals

the tree-level one, times

Z−1 +
[
I(χ2

i )2 + (t,u channels)
]

+
1

4

4∑

i=1

Iϕω(p2
i )/p

2
i . (H.11)

Here Iϕω is the integral in (G.9) which comes from the external leg corrections. The I(χ2
i )2

comes from the loop diagram of figure 4. It is given by (see [105] for the standard details):

I(χ2
i )2 =

H2λ2

(2π)2d

∫
ddl1d

dl2
l21(l22)2(l1 + p3 + p4)2((l1 + l2 − p1)2)2

=
H2λ2

2(4π)6ε
+O

(
ε0
)
. (H.12)

The Z is obtained by demanding that ε−1 poles cancel:

Z−1 = 1− 4

3

H2λ2

(4π)6ε
. (H.13)

From this we get the anomalous dimension of (χ2
i )

2 as follows:

γ(χ2
i )2 = µ

∂

∂µ
logZ = − 8

27
ε2. (H.14)

H.2.2 ∆0 = 10 + O(ε), n = 6

The next susy-null leader is ϕ2(χ2
i )

2 (table 7), of bare dimension ∆0 = 10 − 3ε. It gets

a nonzero one-loop anomalous dimension, which we compute by the OPE method (ap-

pendix F). The following OPEs are important:

ϕ2(χ2
i )

2(x)× χ2
jϕ

2(0) ∼ 32〈ϕ(x)ϕ(0)〉0〈χi(x)χj(0)〉0 ϕ2(χ2
k)χiχj(0) + . . .

ϕ2(χ2
i )

2(x)× ωϕ3(0) ∼ 6〈ϕ(x)ϕ(0)〉0〈ϕ(x)ω(0)〉0 ϕ2(χ2
i )

2(0) + . . . (H.15)

From this and using the formula (F.18) we get

γϕ2(χ2
i )2 =

[
9Hλ

64π3

]

λ=λ∗

= 3ε+O
(
ε2
)
. (H.16)
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H.2.3 ∆0 = 12 + O(ε), n = 6

At dimension ∆0 = 12 − 3ε we have three independent susy-null leaders which are com-

posites of 6 fields. Two of them are shown in table 7 and the third in eq. (D.11).

To compute their anomalous dimensions it is convenient to work with equivalence

classes of operators defined up to total derivatives (as discussed in the end of ap-

pendix F.1). We can parametrize the equivalence classes by the following three operators:

O1 = ϕω(χ2)2, O2 = (χ2)3 and74 O3 = 1
H (∂ϕ)2 (χ2

i )
2. E.g. ϕ∂ϕ(χi∂χi)(χ

2
j ) is not con-

sidered as an independent operator since it can be written in terms of O1 and O2 up to a

total derivative, namely ϕ∂ϕ(χi∂χi)(χ
2
j ) = 1

4∂
µ
[
ϕ∂µϕ(χ2

j )
2
]

+ H
4 O1 − H

4 O2.

To compute the mixing matrix we consider the following OPEs of the operators Oi
with the interaction V

ϕω(χ2)2(0)× χ2ϕ2(x) ∼ 16〈ϕϕ〉0〈χiχj〉0 ϕωχ2χiχj + 2〈ϕϕ〉0〈ϕω〉0(χ2)3

+8xµxν〈ϕω〉0〈χiχj〉0 ϕχ2χi∂µ∂ν (ϕχj) + . . . (H.17)

ϕω(χ2)2(0)× ϕ3ω(x) ∼ 6〈ϕϕ〉0〈ϕω〉0ϕω(χ2)2

+3xµxν〈ϕω〉0〈ϕω〉0
(
∂µ∂νϕ

2
)

(χ2)2 + . . . (H.18)

(χ2)3(0)× χ2ϕ2(x) ∼ 24〈χiχj〉0〈χiχj〉0
(
∂µ∂νϕ

2
)

(χ2)2

+6〈χiχj〉0〈χiχk〉0
(
∂µ∂νϕ

2
)
χ2χjχk + . . . (H.19)

(∂ϕ)2 (χ2)2(0)× ϕ3ω(x) ∼ 6xµxν∂σ〈ϕϕ〉0 ∂σ〈ϕω〉0
(
∂µ∂νϕ

2
)

(χ2)2

+6∂σ〈ϕϕ〉0 ∂σ〈ϕϕ〉0ϕω(χ2)2 + . . . (H.20)

(∂ϕ)2 (χ2)2(0)× χ2ϕ2(x) ∼ −32xν〈χiχj〉0∂µ〈ϕϕ〉0 (∂µϕ)χ2χi∂ν (ϕχj)

+2∂〈ϕϕ〉0∂〈ϕϕ〉0(χ2)3 + . . . (H.21)

In the above OPEs we have expanded the r.h.s. in x wherever needed and kept only the

terms that give 1/ε pole. Following the discussion in appendix F.1, we finally obtain the

3× 3 anomalous dimension matrix:

Γ =
ε

18




24 −12 2

3 0 3

−2 12 20


 . (H.22)

This matrix is not fully diagonalizable, but it admits a Jordan decomposition (see around

formula (F.6)) with eigenvalues 0 and (11/9)ε, to which there correspond true eigenvectors

e(1) =
{
−1,−11

6 , 1
}

and e(2) = {−1, 0, 1}. There is also a generalized eigenvector e(3) =
{
−99

2ε ,−27
4ε , 0

}
which forms a rank-2 Jordan block with e(2), namely

(
Γij − 11

9 εδij
)
e

(3)
j =

e
(2)
i . Therefore, corresponding to the anomalous dimension 11

9 ε, there is a 2 × 2 Jordan

74We add a factor 1/H to (∂ϕ)2 (χ2)2 so that the mixing matrix is free of H.
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block and a logarithmic multiplet {OR1 ,OR2 }, such that75

D


O

R
2

OR1


 =


 12− 16ε

9 ε

0 12− 16ε
9




O

R
2

OR1


 , (H.23)

where the dilatation operator D is acting on the renormalized operators OR1 ≡ −O1 +O3

and OR2 ≡ −99
2 O1 − 27

4 O2. Here the operators OR1 and OR2 should not be considered as

the actual renormalized operators, since they only parametrize the equivalence classes of

operators up to derivatives.

For the sake of completeness we also performed a much more general computation

which gives us the exact form of the renormalized operators. Computing the anomalous

dimensions matrix of the 49 possible operators which are built out of 6 fields and have

dimensions 12 in d = 6, we obtained that OR1 was actually a correct eigenperturbation.

On the other hand, the operator OR2 should have been corrected by some total derivatives,

namely by adding to it 231
32 ∂µ(ϕ,µϕχ

2
iχ

2
j )− 33

16∂µ(ϕ2χiχi,µχ
2
j ).

H.2.4 ∆0 = 12 + O(ε), n = 8

With 8 fields and dimension ∆ = 12 +O (ε) we have a single susy-null leader, ϕ4(χ2)2 (See

table 8). Its O (ε) anomalous dimension can be obtained from the following OPEs:

ϕ4(χ2)2(0)× χ2ϕ2(x) ∼ 64〈ϕϕ〉0〈χiχj〉0 ϕ4χ2χiχj

ϕ4(χ2)2(0)× ϕ3ω(x) ∼ 36〈ϕϕ〉0〈ϕω〉0ϕ4(χ2)2. (H.24)

Following (F.18) we get the anomalous dimension:

γϕ4(χ2)2 =
22ε

3
. (H.25)

H.3 Non-susy-writable leaders

We will now compute the anomalous dimensions for some specific non-susy writable leaders.

For ∆ 6 12 the only non-susy writable leader operator comes from the Feldman F6. We

will consider this operator first and then will generalize to higher Feldman operators Fk.
This way we revisit the result of [29] that these operators have negative leading anomalous

dimensions.

As shown in the main text the leader for Feldman operators have the structure:

(Fk)L =
k−2∑

l=2

(−1)l
(
k

l

)(∑′
χli

) (∑′
χk−l
j

)
. (H.26)

In particular (F6)L = (χ3
i )

2 − 3
2(χ2

i )(χ
4
i ) up to a constant factor. We will see in a second

that (F6)L has no anomalous dimension at one loop, so we are setting up a two-loop

computation. Let OBi be all leader operators of bare dimension 12 with which OB1 = (F6)L
might mix, related to the renormalized operators by OBi = ZijOj . Since (F6)L is the lowest

75We rescaled the operator OR
2 so that it has order one coefficients, and as a consequence the upper right

corner of the dilatation matrix is ε and not 1. The ε → 0 limit is smooth in this form.
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➤

➤

➤ ➤

➤

➤
➤

➤ ➤

➤

Figure 15. Two-loop diagrams correcting the correlator 〈(Fk)L(p = 0)χi1
(p1) . . . χik

(pk)〉.

non-susy-writable leader, all these other operators are susy-null or susy-writable, hence the

mixing matrix has the form (see (F.11))

Z =




Z11 ∗ . . .
0 ∗ . . .
0 ∗ . . .
...

...
. . .



, (H.27)

i.e. in the first column only Z11 is nonzero. Because of this, we only need to know Z11

to compute the anomalous dimension of (F6)L. We would need to know the potentially

nonzero entries marked by ∗ to compute the full eigenoperator, but we will not do this here.

To compute Z11 we consider the correlator 〈(F6)L(p = 0)χi1(p1) . . . χi6(p6)〉. It is easy

to see that there is no one-loop diagram which contributes to this correlator. This implies

that O(λ) correction to Z11 vanishes, i.e. as promised (F6)L has no one-loop anomalous

dimension. [On the other hand some of the entries marked by ∗ in the first row are nonzero

at one loop. As a result the eigenoperator gets a susy-null admixture already at one loop.

See section H.3.1 for a discussion.] At two loops the correlator gets contributions from the

two diagrams in figure 15 (for k = 6), both with a 1/ε pole.

The first diagram’s tensor structure in the χi indices is precisely that of (F6)L itself

(this is obvious because of K2 = K, see (E.4)). Performing Kij-tensor contractions, the

second diagram is instead proportional to the tree-level diagram with insertion of the susy-

null operator (χ2
i )

3. This is an example of a susy-null admixture, a nonzero ∗ entry in the

first row of (H.27). So only the first diagram contributes to Z11.

That the second diagram does not contribute to Z11 in fact holds for general k, and

we will need this fact below, so let us show it. Its tensor structure splits into two groups of

indices separated by the ϕ loop. The right tensor structure is just that of χ2
i . The left tensor

structure with its χ-loop can be obtained by applying Krs
δ
δχr

δ
δχs

to the Feldman leader

expression. This calculation is greatly simplified using the equivalent equation (see (5.16))

(Fk)L = 2
n∑

i=2

(−χi)k +
n∑

i,j=2

(χi − χj)k, (H.28)

and it gives 2k(k − 1)(Fk−2)L after a few lines of algebra, i.e. a multiple of the lower

Feldman leader. Thus the total tensor structure is that of (χ2
i )(Fk−2)L. For k = 6 this

reduces to (χ2
i )

3 as claimed, since (F4)L ∝ (χ2
i )

2.
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Let us next evaluate the first diagram in (15), also for general k. The loop integral

is the same as I(χ2
i )2 in (H.12), the computation being similar to the one for the (χ2)2

in section H.2.1. (Eq. (H.29) below reduces to (H.13) for k → 4.) Taking into account

external leg corrections and combinatorial factors, we get:

Z−1
11 = 1− k(k − 1)

4
[I(χ2

i )2 ]1/ε −
k

4

[
Iϕω(p2)

p2

]

1/ε

= 1− k(3k − 4)

24

H2λ2

(4π)6ε
. (H.29)

Setting here k = 6 we get the anomalous dimension:

γ(F6)L
= −7

9
ε2. (H.30)

With a small extra input we can upgrade the above discussion and extract the anomalous

dimensions of (Fk)L for general k. We just need to check if one more element of the

mixing matrix is zero. We have seen above that (Fk)L requires adding (χ2
i )(Fk−2)L to get

a finite operator. For k = 6 the latter operator was susy-null, hence the inverse mixing was

guaranteed not to happen. For k > 6 the operator (χ2
i )(Fk−2)L is non-susy-writable, so we

need to see if it mixes back to (Fk)L. It is however easy to see that this does not happen.

Using eq. (H.26), operator (χ2
i )(Fk−2)L can be expanded in monomials each of which is a

product of three O(n−2) singlets of the form (χ2
i1

)(χai2)(χbi3), where a+b = k−2. If any of

these singlets is plugged into the second diagram in figure 15, it returns a monomial which

is a product of four or three singlets (depending on how the χ-loop is contracted). Since

(Fk)L is made of products of two singlets, its tensor structure cannot arise. This discussion

implies that the anomalous dimension of (Fk)L for any k is not modified by mixing with

(χ2
i )(Fk−2)L and can be computed from Z11 given in (H.29). We obtain:

γ(Fk)L
= −k(3k − 4)

108
ε2. (H.31)

This nicely matches the result of [29]. In the future it would be interesting to analyze other

non-susy-writable leaders with the same classical dimension as (Fk)L for k > 6, one obvious

example being
(
2ωϕ+ χ2

i

)
(Fk−2)L, to see if any of these has the corrected dimension even

lower than (Fk)L.

H.3.1 Remark on admixture of susy-nulls

As mentioned above, the leader (F6)L experiences a susy-null mixing already at one-loop

level, which does not modify its anomalous dimension (zero at one loop), but does mod-

ify the form of the eigenvector. In fact the correct eigenvector at one loop is the linear

combination:

(χ3
i )

2 − 3

2
(χ2

i )(χ
4
j ) +

3

2
(χ2

i )
3, (H.32)

where the first two terms are (proportional to) (F6)L, while the last term is susy-null.

The form of this one-loop eigenvector can be determined e.g. using the OPE method (ap-

pendix F).

Here we would like to point out that (H.32) can also be determined using group theory

reasoning. Namely, we expect that leaders with well-defined anomalous dimensions will
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transform in irreducible O(n − 2) representations, which should correspond to symmetric

traceless tensors. Eq. (H.32) can be written as the contraction of 6 χ’s with the symmetric

6-tensor

T =

(
δ3 ⊗ δ3 −

3

2
δ2 ⊗ δ4 +

3

2
δ2 ⊗ δ2 ⊗ δ2

)

sym
. (H.33)

Here sym is the symmetrization, and δp denotes the rank k-tensor whose only nonzero

components are (δp) ii...i︸︷︷︸
p

= 1 i.e. when all p indices coincide (the indices run from 2 to

n). E.g. (δ2)ij = δij is the Kronecker delta tensor, while δ1 is the (1, 1, . . .) vector. The

appropriate trace taking into account the constraint
∑′ χi = 0 is:76

(tr′ T )... =
n∑

i,j=2

(δij + Πij)Tij.... (H.34)

It is then easy to work out (we define δ0 = −1, a constant):

tr′δp = 2δp−2, (H.35)

tr′(δp⊗δq)sym = [Ap,q2δp−2⊗δq+Aq,p2δp⊗δq−2+(1−Ap,q−Aq,p)(δp+q−2+δp−1⊗δq−1)]sym,

where Ap,q =
(p+q−2
p−2

)/(p+q
p

)
= p(p−1)

(p+q)(p+q−1) , and similarly for higher tensor products.

Using these rules, one can check that the tensor (H.33) is indeed traceless, while it would

not have been traceless without the last term.

I Remarks about tuning the disorder distribution

As discussed in section 11.2.1, one might be able to look for the SUSY fixed point in

numerical simulations of the RFIM, by tuning the disorder distribution within a family

depending on more than one parameter. Here we discuss some ideas about what parameter

to tune, to set the relevant operator to 0, assuming for simplicity that a single perturbation

has turned relevant, the one corresponding to the susy-null leader (χ2)2. This discussion

is meant as schematic and non-rigorous.

Our starting point is the analysis of Brézin-De Dominicis ([27], section 1) who used the

Hubbard-Stratonovich identity to rewrite an Ising spin system in terms of a scalar field.

Introducing replicas and integrating out the disorder, they arrived at the system of n scalar

fields on the lattice with the Sn-invariant potential ([27], eq. (1.9))

V =
1

2
(τ2 − 1)σ2 −

τ2

2
σ2

1 +
1

12
(1 + 3τ4 − 4τ2)σ4 +

1

24
(3τ2

2 − τ4)σ4
1

+
1

8
(τ2

2 − τ4)σ2
2 +

1

3
(τ2 − τ4)σ1σ3 −

1

4
(τ2

2 − τ4)σ2
1σ2 +O(φ6), (I.1)

where σk =
∑n
i=1 φ

k
i as in section 5.1, and the quantities τp are defined as

τp =

∫ ∞

−∞
dhP (h)(cosh h)n(tanh h)p →

∫ ∞

−∞
dhP (h)(tanh h)p (n→ 0). (I.2)

76See footnote 10 for the definition of Πij ; δij + Πij is the n → 0 limit of δij − 1
n−1

Πij .
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Now let us refer to the toy model RG analysis in appendix B. We can express the quartic

part of the potential in terms of eigenperturbations given in table 4: O1 = σ4, O2 = σ4
1,

O3 = σ1σ
2
2, O4 = σ2

2 + 2σ1σ3 and O5 = σ2
2 − 4

3σ1σ3: V =
∑5
a=1 caOa. We are particularly

interested in the coefficient of O5, which comes out equal:

c5 = − 1

40
(4τ2 − 3τ2

2 − τ4). (I.3)

Indeed, the operator O5 has the leader (χ2)2 and we are assuming that this direction is

relevant, so we coefficient c5 needs to be tuned to reach the SUSY fixed point in the IR. The

needed value of c5 at the UV scale depends on the microscopic details (it may be positive

or negative depending on the sign of the contributions that c5 gets under RG running).

Since c5 is a linear combination involving the second and fourth moments of the disorder,

one can imagine that the necessary tuning may be obtained by adjusting the kurtosis

of the distribution.77 It should be stressed that the Oa’s are not exact nonperturbative

eigenperturbations, and so the tuning which we described should not be taken too literally.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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