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Abstract: Quenched disorder is very important but notoriously hard. In 1979, Parisi and

Sourlas proposed an interesting and powerful conjecture about the infrared fixed points with

random field type of disorder: such fixed points should possess an unusual supersymmetry,

by which they reduce in two less spatial dimensions to usual non-supersymmetric non-

disordered fixed points. This conjecture however is known to fail in some simple cases, but

there is no consensus on why this happens. In this paper we give new non-perturbative

arguments for dimensional reduction. We recast the problem in the language of Conformal

Field Theory (CFT). We then exhibit a map of operators and correlation functions from

Parisi-Sourlas supersymmetric CFT in d dimensions to a (d − 2)-dimensional ordinary

CFT. The reduced theory is local, i.e. it has a local conserved stress tensor operator. As

required by reduction, we show a perfect match between superconformal blocks and the

usual conformal blocks in two dimensions lower. This also leads to a new relation between

conformal blocks across dimensions. This paper concerns the second half of the Parisi-

Sourlas conjecture, while the first half (existence of a supersymmetric fixed point) will be

examined in a companion work.
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1 Introduction

Physical systems realized in nature often have some kind of random impurities. The pres-

ence of such impurities may change the behavior of a system. It is therefore of great

importance to understand how these changes can occur. In order to investigate this ques-

tion one typically considers a statistical model and adds a disorder interaction. Physical

observables are then computed by averaging over the disorder.

Depending on the physical system there are two types of averaging possible. If the

impurities achieve thermal equilibrium, they have to be treated like another degree of

freedom. Hence a sum over disorder configurations should be included in the partition

function. This is called annealed disorder.

In this paper we are concerned with the second case, that of quenched disorder. Here

impurities are not in thermal equilibrium. The observables (e.g. correlation functions)

are computed for a fixed disorder configuration and the disorder average is performed in

the end.

We will consider a specific class of quenched disordered theories, where a disorder field

is coupled to a local order parameter. An interesting example of this, which has a wide

range of physical applications, is the Random Field Ising Model (RFIM). One can think

of this as the regular Ising model in a random magnetic field (or in presence of random

magnetic impurities). This has the Hamiltonian

H = −J
∑

〈ij〉

sisj + hisi , (1.1)

with si = ±1. The hi is a random magnetic field. It is drawn from some distribution,

which we choose to be Gaussian with zero mean hi = 0, and is characterized by the

variance hihj = Hδij .
1 For a nice review on this topic see chapter 8 of [1].

For a fixed configuration of hi, one studies the thermal fluctuations of the spins at a

finite temperature, and then averages over {hi}. The presence of random field drastically

changes critical behavior, in particular the lower and upper critical dimensions are shifted

to 2 and 6. For d ≤ 2, the system is in the disordered phase ( |〈s〉| = 0) at any temperature.

This is dictated by the Imry-Ma criterion [2], from an estimate of the free energy cost due

to the flipping of a domain wall. For d > 2, the phase diagram is as in figure 1. There is an

ordered phase and a disordered phase separated by a second-order phase transition. From

the two fixed points shown in the figure, the IM-FP controls the usual critical behavior (no

quenched disorder), while RFIM-FP controls the critical behavior with quenched disorder

turned on. The interesting case is 2 < d < 6, when the latter fixed point is non-gaussian.

The continuous version of RFIM can be realized with a scalar theory having a φ4

interaction: ∫
ddx

[
1

2
(∂φ(x))2 +m2φ2(x) + λφ4(x) + h(x)φ(x)

]
. (1.2)

1Averages over h will be denoted by an overline.
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Figure 1. The RFIM phase diagram for d > 2.

One can study its fixed point by perturbation theory, in d = 6− ǫ dimension. This yields

the surprising result2 that the critical exponents are exactly equal to those of the usual

Wilson-Fisher fixed point in d = 4− ǫ.

An explanation of this is provided by a remarkable conjecture due to Parisi and Sourlas

in 1979 [4].3 The idea is that there is a relation between the IR fixed points of three

seemingly unrelated models:

• The fixed point of a random field model in d dimensions (RF-FPd),

• The fixed point of a supersymmetric field theory without disorder in d dimensions

(SCFTd),

• The fixed point of a model without disorder in d− 2 dimensions (CFTd−2),

as we show in figure 2. The link A in figure 2 is intriguing, as it relates the fixed point of a

complicated disordered model to the fixed point of a pure system (which can be described by

standard techniques). Even more surprisingly, the pure theory lives in two less dimensions,

providing an unexpected relation between different universality classes across dimensions.

The Parisi and Sourlas conjecture thus explains the link A through B followed by C.

Link B in figure 2 means that the fixed point of a random field theory should possess

an enhanced symmetry, called Parisi-Sourlas supersymmetry. Theories with this kind of

supersymmetry have very unusual features, at least to a high energy physicist. Most

notably they violate spin-statistics, as their anticommuting degrees of freedom transform

as scalars of the rotation group (i.e. fermions have no spinorial indices). In particular, they

are non-unitary. For the case of RFIM, the SUSY theory in d dimensions is given by
∫
ddxdθdθ

[
1

2
∂aΦ(x, θ, θ)∂aΦ(x, θ, θ) +m2Φ2(x, θ, θ) + λΦ4(x, θ, θ)

]
, (1.3)

2This was first noticed by Aharony, Imry and Ma in 1976 [3]. They gave a strong evidence for this

connection by showing that at any order in perturbation theory the most IR-divergent Feynman diagrams

of the random field theory can be equivalently written in terms of diagrams of a d− 2 dimensional theory.
3Parisi and Sourlas have stated the conjecture in different terms, in particular without mentioning CFTs.

We propose a natural reformulation in modern language, which we will find useful.
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SCFTd
<latexit sha1_base64="zkvozmbKCiDsrcvOJg9b6bZGmY8=">AAAB+HicbZDLSsNAFIYn9VbrpVGXbgaL4KokIuiyWBCXFXuDNoTJZNIOnVyYORFryJO4caGIWx/FnW/jtM1CW38Y+PjPOZwzv5cIrsCyvo3S2vrG5lZ5u7Kzu7dfNQ8OuypOJWUdGotY9j2imOAR6wAHwfqJZCT0BOt5k+as3ntgUvE4asM0YU5IRhEPOCWgLdesDoE9QnbfvGnnbubnrlmz6tZceBXsAmqoUMs1v4Z+TNOQRUAFUWpgWwk4GZHAqWB5ZZgqlhA6ISM20BiRkCknmx+e41Pt+DiIpX4R4Ln7eyIjoVLT0NOdIYGxWq7NzP9qgxSCKyfjUZICi+hiUZAKDDGepYB9LhkFMdVAqOT6VkzHRBIKOquKDsFe/vIqdM/rtua7i1rjuoijjI7RCTpDNrpEDXSLWqiDKErRM3pFb8aT8WK8Gx+L1pJRzByhPzI+fwD1vpNF</latexit><latexit sha1_base64="zkvozmbKCiDsrcvOJg9b6bZGmY8=">AAAB+HicbZDLSsNAFIYn9VbrpVGXbgaL4KokIuiyWBCXFXuDNoTJZNIOnVyYORFryJO4caGIWx/FnW/jtM1CW38Y+PjPOZwzv5cIrsCyvo3S2vrG5lZ5u7Kzu7dfNQ8OuypOJWUdGotY9j2imOAR6wAHwfqJZCT0BOt5k+as3ntgUvE4asM0YU5IRhEPOCWgLdesDoE9QnbfvGnnbubnrlmz6tZceBXsAmqoUMs1v4Z+TNOQRUAFUWpgWwk4GZHAqWB5ZZgqlhA6ISM20BiRkCknmx+e41Pt+DiIpX4R4Ln7eyIjoVLT0NOdIYGxWq7NzP9qgxSCKyfjUZICi+hiUZAKDDGepYB9LhkFMdVAqOT6VkzHRBIKOquKDsFe/vIqdM/rtua7i1rjuoijjI7RCTpDNrpEDXSLWqiDKErRM3pFb8aT8WK8Gx+L1pJRzByhPzI+fwD1vpNF</latexit><latexit sha1_base64="zkvozmbKCiDsrcvOJg9b6bZGmY8=">AAAB+HicbZDLSsNAFIYn9VbrpVGXbgaL4KokIuiyWBCXFXuDNoTJZNIOnVyYORFryJO4caGIWx/FnW/jtM1CW38Y+PjPOZwzv5cIrsCyvo3S2vrG5lZ5u7Kzu7dfNQ8OuypOJWUdGotY9j2imOAR6wAHwfqJZCT0BOt5k+as3ntgUvE4asM0YU5IRhEPOCWgLdesDoE9QnbfvGnnbubnrlmz6tZceBXsAmqoUMs1v4Z+TNOQRUAFUWpgWwk4GZHAqWB5ZZgqlhA6ISM20BiRkCknmx+e41Pt+DiIpX4R4Ln7eyIjoVLT0NOdIYGxWq7NzP9qgxSCKyfjUZICi+hiUZAKDDGepYB9LhkFMdVAqOT6VkzHRBIKOquKDsFe/vIqdM/rtua7i1rjuoijjI7RCTpDNrpEDXSLWqiDKErRM3pFb8aT8WK8Gx+L1pJRzByhPzI+fwD1vpNF</latexit><latexit sha1_base64="zkvozmbKCiDsrcvOJg9b6bZGmY8=">AAAB+HicbZDLSsNAFIYn9VbrpVGXbgaL4KokIuiyWBCXFXuDNoTJZNIOnVyYORFryJO4caGIWx/FnW/jtM1CW38Y+PjPOZwzv5cIrsCyvo3S2vrG5lZ5u7Kzu7dfNQ8OuypOJWUdGotY9j2imOAR6wAHwfqJZCT0BOt5k+as3ntgUvE4asM0YU5IRhEPOCWgLdesDoE9QnbfvGnnbubnrlmz6tZceBXsAmqoUMs1v4Z+TNOQRUAFUWpgWwk4GZHAqWB5ZZgqlhA6ISM20BiRkCknmx+e41Pt+DiIpX4R4Ln7eyIjoVLT0NOdIYGxWq7NzP9qgxSCKyfjUZICi+hiUZAKDDGepYB9LhkFMdVAqOT6VkzHRBIKOquKDsFe/vIqdM/rtua7i1rjuoijjI7RCTpDNrpEDXSLWqiDKErRM3pFb8aT8WK8Gx+L1pJRzByhPzI+fwD1vpNF</latexit>

CFTd−2
<latexit sha1_base64="OV0hUSyHC58MqUhnwqUht+K9mDQ=">AAAB+XicbZDLSsNAFIYn9VbrLerSzWAR3FiSIuiyWBCXFXqDNoTJZNIOnVyYOSmWkDdx40IRt76JO9/GaZuFtv4w8PGfczhnfi8RXIFlfRuljc2t7Z3ybmVv/+DwyDw+6ao4lZR1aCxi2feIYoJHrAMcBOsnkpHQE6znTZrzem/KpOJx1IZZwpyQjCIecEpAW65pDoE9Qda8b+du5l/Vc9esWjVrIbwOdgFVVKjlml9DP6ZpyCKggig1sK0EnIxI4FSwvDJMFUsInZARG2iMSMiUky0uz/GFdnwcxFK/CPDC/T2RkVCpWejpzpDAWK3W5uZ/tUEKwa2T8ShJgUV0uShIBYYYz2PAPpeMgphpIFRyfSumYyIJBR1WRYdgr355Hbr1mq358brauCviKKMzdI4ukY1uUAM9oBbqIIqm6Bm9ojcjM16Md+Nj2VoyiplT9EfG5w8y3JNb</latexit><latexit sha1_base64="OV0hUSyHC58MqUhnwqUht+K9mDQ=">AAAB+XicbZDLSsNAFIYn9VbrLerSzWAR3FiSIuiyWBCXFXqDNoTJZNIOnVyYOSmWkDdx40IRt76JO9/GaZuFtv4w8PGfczhnfi8RXIFlfRuljc2t7Z3ybmVv/+DwyDw+6ao4lZR1aCxi2feIYoJHrAMcBOsnkpHQE6znTZrzem/KpOJx1IZZwpyQjCIecEpAW65pDoE9Qda8b+du5l/Vc9esWjVrIbwOdgFVVKjlml9DP6ZpyCKggig1sK0EnIxI4FSwvDJMFUsInZARG2iMSMiUky0uz/GFdnwcxFK/CPDC/T2RkVCpWejpzpDAWK3W5uZ/tUEKwa2T8ShJgUV0uShIBYYYz2PAPpeMgphpIFRyfSumYyIJBR1WRYdgr355Hbr1mq358brauCviKKMzdI4ukY1uUAM9oBbqIIqm6Bm9ojcjM16Md+Nj2VoyiplT9EfG5w8y3JNb</latexit><latexit sha1_base64="OV0hUSyHC58MqUhnwqUht+K9mDQ=">AAAB+XicbZDLSsNAFIYn9VbrLerSzWAR3FiSIuiyWBCXFXqDNoTJZNIOnVyYOSmWkDdx40IRt76JO9/GaZuFtv4w8PGfczhnfi8RXIFlfRuljc2t7Z3ybmVv/+DwyDw+6ao4lZR1aCxi2feIYoJHrAMcBOsnkpHQE6znTZrzem/KpOJx1IZZwpyQjCIecEpAW65pDoE9Qda8b+du5l/Vc9esWjVrIbwOdgFVVKjlml9DP6ZpyCKggig1sK0EnIxI4FSwvDJMFUsInZARG2iMSMiUky0uz/GFdnwcxFK/CPDC/T2RkVCpWejpzpDAWK3W5uZ/tUEKwa2T8ShJgUV0uShIBYYYz2PAPpeMgphpIFRyfSumYyIJBR1WRYdgr355Hbr1mq358brauCviKKMzdI4ukY1uUAM9oBbqIIqm6Bm9ojcjM16Md+Nj2VoyiplT9EfG5w8y3JNb</latexit><latexit sha1_base64="OV0hUSyHC58MqUhnwqUht+K9mDQ=">AAAB+XicbZDLSsNAFIYn9VbrLerSzWAR3FiSIuiyWBCXFXqDNoTJZNIOnVyYOSmWkDdx40IRt76JO9/GaZuFtv4w8PGfczhnfi8RXIFlfRuljc2t7Z3ybmVv/+DwyDw+6ao4lZR1aCxi2feIYoJHrAMcBOsnkpHQE6znTZrzem/KpOJx1IZZwpyQjCIecEpAW65pDoE9Qda8b+du5l/Vc9esWjVrIbwOdgFVVKjlml9DP6ZpyCKggig1sK0EnIxI4FSwvDJMFUsInZARG2iMSMiUky0uz/GFdnwcxFK/CPDC/T2RkVCpWejpzpDAWK3W5uZ/tUEKwa2T8ShJgUV0uShIBYYYz2PAPpeMgphpIFRyfSumYyIJBR1WRYdgr355Hbr1mq358brauCviKKMzdI4ukY1uUAM9oBbqIIqm6Bm9ojcjM16Md+Nj2VoyiplT9EfG5w8y3JNb</latexit>

RF-FPd
<latexit sha1_base64="xrYdnEDxhpyodcW29p5s5CQd8sk=">AAAB9XicbZDJSgNBEIZ74hbjFvXopTEIXgwzIugxKASPUcwCyRh6emqSJj0L3TVqGPIeXjwo4tV38ebb2FkOmvhDw8dfVVT17yVSaLTtbyu3tLyyupZfL2xsbm3vFHf3GjpOFYc6j2WsWh7TIEUEdRQooZUoYKEnoekNrsb15gMoLeLoDocJuCHrRSIQnKGx7jsIT5jdVk+qtVHX7xZLdtmeiC6CM4MSmanWLX51/JinIUTIJdO67dgJuhlTKLiEUaGTakgYH7AetA1GLATtZpOrR/TIOD4NYmVehHTi/p7IWKj1MPRMZ8iwr+drY/O/WjvF4MLNRJSkCBGfLgpSSTGm4wioLxRwlEMDjCthbqW8zxTjaIIqmBCc+S8vQuO07Bi+OStVLmdx5MkBOSTHxCHnpEKuSY3UCSeKPJNX8mY9Wi/Wu/Uxbc1Zs5l98kfW5w8bsJI9</latexit><latexit sha1_base64="xrYdnEDxhpyodcW29p5s5CQd8sk=">AAAB9XicbZDJSgNBEIZ74hbjFvXopTEIXgwzIugxKASPUcwCyRh6emqSJj0L3TVqGPIeXjwo4tV38ebb2FkOmvhDw8dfVVT17yVSaLTtbyu3tLyyupZfL2xsbm3vFHf3GjpOFYc6j2WsWh7TIEUEdRQooZUoYKEnoekNrsb15gMoLeLoDocJuCHrRSIQnKGx7jsIT5jdVk+qtVHX7xZLdtmeiC6CM4MSmanWLX51/JinIUTIJdO67dgJuhlTKLiEUaGTakgYH7AetA1GLATtZpOrR/TIOD4NYmVehHTi/p7IWKj1MPRMZ8iwr+drY/O/WjvF4MLNRJSkCBGfLgpSSTGm4wioLxRwlEMDjCthbqW8zxTjaIIqmBCc+S8vQuO07Bi+OStVLmdx5MkBOSTHxCHnpEKuSY3UCSeKPJNX8mY9Wi/Wu/Uxbc1Zs5l98kfW5w8bsJI9</latexit><latexit sha1_base64="xrYdnEDxhpyodcW29p5s5CQd8sk=">AAAB9XicbZDJSgNBEIZ74hbjFvXopTEIXgwzIugxKASPUcwCyRh6emqSJj0L3TVqGPIeXjwo4tV38ebb2FkOmvhDw8dfVVT17yVSaLTtbyu3tLyyupZfL2xsbm3vFHf3GjpOFYc6j2WsWh7TIEUEdRQooZUoYKEnoekNrsb15gMoLeLoDocJuCHrRSIQnKGx7jsIT5jdVk+qtVHX7xZLdtmeiC6CM4MSmanWLX51/JinIUTIJdO67dgJuhlTKLiEUaGTakgYH7AetA1GLATtZpOrR/TIOD4NYmVehHTi/p7IWKj1MPRMZ8iwr+drY/O/WjvF4MLNRJSkCBGfLgpSSTGm4wioLxRwlEMDjCthbqW8zxTjaIIqmBCc+S8vQuO07Bi+OStVLmdx5MkBOSTHxCHnpEKuSY3UCSeKPJNX8mY9Wi/Wu/Uxbc1Zs5l98kfW5w8bsJI9</latexit><latexit sha1_base64="xrYdnEDxhpyodcW29p5s5CQd8sk=">AAAB9XicbZDJSgNBEIZ74hbjFvXopTEIXgwzIugxKASPUcwCyRh6emqSJj0L3TVqGPIeXjwo4tV38ebb2FkOmvhDw8dfVVT17yVSaLTtbyu3tLyyupZfL2xsbm3vFHf3GjpOFYc6j2WsWh7TIEUEdRQooZUoYKEnoekNrsb15gMoLeLoDocJuCHrRSIQnKGx7jsIT5jdVk+qtVHX7xZLdtmeiC6CM4MSmanWLX51/JinIUTIJdO67dgJuhlTKLiEUaGTakgYH7AetA1GLATtZpOrR/TIOD4NYmVehHTi/p7IWKj1MPRMZ8iwr+drY/O/WjvF4MLNRJSkCBGfLgpSSTGm4wioLxRwlEMDjCthbqW8zxTjaIIqmBCc+S8vQuO07Bi+OStVLmdx5MkBOSTHxCHnpEKuSY3UCSeKPJNX8mY9Wi/Wu/Uxbc1Zs5l98kfW5w8bsJI9</latexit>

A C

B

RF-FPd SCFTd

CFTd−2

Figure 2. The Parisi-Sourlas conjecture (our schematic formulation).

where Φ is a superfield and ∂a is the derivative in superspace. This will be discussed in

detail in section 2.

Finally, link C in figure 2 is called “dimensional reduction”. It says that the correlation

functions of the SUSY theory reduce to those of a d − 2 dimensional theory, which is

identical to the disordered model but without the disorder interaction. The dimensional

reduction heavily relies on the special supersymmetry of the theory. Roughly speaking

in this supersymmetry two fermionic degrees of freedom eat two bosonic ones, effectively

reducing the dimensionality of the system. This mechanism is reminiscent to what happens

in Gaussian theories, where fermionic integrals cancel bosonic ones. As a final remark, we

point out that dimensional reduction was proposed not only for the IR fixed point, but

also all along the RG flow, thus relating quantum field theories in d and d− 2 dimensions.

In some examples, non-perturbative studies have verified some aspects of the Parisi-

Sourlas conjecture. In particular, the critical point of branched polymers in 2 < d < 8

has been shown to undergo dimensional reduction for all integer d [5–7], confirming its

equivalence to the Lee-Yang class of fixed points in d− 2 dimensions. To be precise, these

studies verified directly the A link of the conjecture by establishing an equivalence at the

microscopic level, without considering the B and C links.

On the contrary, the conjecture was found to imply wrong results for the random field

Ising model in d = 3 and 4. E.g. according to the conjecture RFIMd=3 should be related

to Ising model at d = 1, but this does not work: the latter does not even have a phase

transition, but the former does, by the Imry-Ma criterion and by the rigorous results [8, 9].

In the 4 → 2 case there is also a discrepancy: both models have a phase transition, but

the critical exponents of RFIM in d = 4 are found to be significantly far from critical

Ising model in d = 2 [10]. On the positive side, dimensional reduction and supersymmetry

predictions for the case of 5 → 3 have been confirmed by recent numerical studies [11, 12].

There seems to be no consensus on how the conjecture works or fails, prompting us to

undertake our own study.4 Link B will be studied in the companion paper [13], where the

RG flow of the random field theories is analyzed to see if it leads to supersymmetric fixed

points. Here instead we will focus on C, giving new non-perturbative arguments in its

favor. Indeed, one gap in most justifications of C that we have seen is that they rely on a

4There are several proposals in literature to explain its failure. State of the art will be reviewed in a

companion paper [13]. Our impression from studying the vast literature is that link C is usually considered

more trustworthy than B.
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weakly coupled Lagrangian description, while the fixed points in question become strongly

coupled unless d is close to 6. Our aim will be to close this gap.

Our main tool will be to reformulate the problem axiomatically, using the modern lan-

guage of conformal field theory (CFT). This language is non-perturbative, so it lends itself

naturally to our task. Using this language, we will illustrate the properties of conformal

field theories with Parisi-Sourlas supersymmetry, and check the absence of any pathological

feature. We will then explain the meaning of dimensional reduction in axiomatic CFT, and

what this implies.

The paper is organized as follows. We start by reviewing the Parisi-Sourlas conjecture

in section 2. In section 3 we develop the non-perturbative theory of Parisi-Sourlas super-

symmetric fixed points using the CFT language. In section 4, we show how dimensional

reduction takes place in Parisi-Sourlas CFTs. We show that the d− 2 dimensional theory

is local, and that the superconformal blocks of the Parisi-Sourlas CFT in d dimensions are

equal to standard conformal blocks in d − 2 dimensions. As a byproduct, we find a nice

formula relating conformal blocks in d and d− 2 dimensions. We end the paper with some

concluding remarks in section 5.

2 Review of the Parisi-Sourlas conjecture

2.1 From random fields to Parisi-Sourlas supersymmetry

In the introduction we explained that the random field models are conjectured to have

an IR fixed point with enhanced supersymmetry [4] (see also [14, 15]). The aim of this

section is to review how this conjecture comes about. In the following we describe the main

ingredients that we need for this — the replica method and a field redefinition introduced

by Cardy.

Let us start with the theory of a single scalar field φ coupled to a random quenched

magnetic field h(x). The partition function of the model is defined by

Zh =

∫
Dφe−S[φ,h] , S[φ, h] =

∫
ddx

[
1

2
(∂φ)2 + V (φ) + h(x)φ

]
, (2.1)

where we are mostly interested in the case where the potential is V (φ) = m2φ2+λφ4 which

defines the random field Ising model (another interesting case is the cubic potential which

describes the random field Lee-Yang fixed point).5 The partition function Zh depends on

the shape of h(x), which is sampled from a distribution P (h) with zero mean h(x) = 0 and

no spacial correlation h(x)h(x′) = Hδ(x − x′). Observables like correlation functions are

computed by averaging over the disorder:

〈A(φ)〉 =
∫

DhP (h)
∫
Dφ A(φ) e−S[φ,h]

Zh
. (2.2)

Here 〈A(φ)〉 denotes any correlation function built out of φ’s, e.g. 〈A(φ)〉=〈φ(x1)φ(x2) · · · 〉.
Computing this average directly is hard because of the Z−1

h factor.

5The mass term has to be finetuned to reach the fixed point. This physically corresponds to tuning the

temperature to the transition. The finetuned valued of m2 is regulator dependent and generally nonzero

(although it would be zero in dimensional regularization).
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2.1.1 Method of replicas

In order to circumvent this problem, it is customary to utilize the method of replicas [1].

The idea is to consider n copies of the theory, whose partition function is simply Zn
h . From

the n→ 0 limit we obtain the averaged free energy logZ = limn→0 n
−1(Zn − 1).

Here we will present an alternative way to implement the replica method, more suitable

to compute correlation functions [16]. For this let us insert 1 = Zn−1
h /Zn−1

h inside the h-

integral in (2.2). This gives

〈A(φ)〉 =
∫

DhP (h)
∫
D~φ A(φ1) e−

∑n
i=1 S[φi,h]

Zn
h

. (2.3)

In the above φi denotes i-th replica field, where i = 1, . . . , n. Notice that the r.h.s. of

this equation reproduces the l.h.s. for any n, as long as it’s a positive integer. If we can

somehow analytically continue it to complex n, we may take the limit n → 0, for which

the denominator Zn
h → 1. Assuming that the limit exists and commutes with the integral

over h, we get the following:

〈A(φ)〉 = lim
n→0

∫
DhP (h)

∫
D~φ A(φ1) e−

∑n
i=1 S[φi,h] . (2.4)

To make further progress, we assume that the magnetic field distribution is Gaussian,

i.e. P (h) ∝ e−
1

2H

∫
ddxh(x)2 . Doing the path integral over h, we end up with a simple

expression:

〈A(φ)〉 = lim
n→0

∫
D~φ A(φ1) e−Sn[~φ] , (2.5)

where the action is now free of disorder, however it contains a term which couples the n

replicas:

Sn[~φ] =

∫
ddx


1
2

n∑

i=1

(∂φi)
2 +

n∑

i=1

V (φi)− 1

2
H

(
n∑

i=1

φi

)2

 . (2.6)

Equations (2.5) and (2.6) define averaged correlation functions. In this formalism we can

also access more observables, like random averages of products of correlation functions:

〈A(φ)〉〈B(φ)〉 = lim
n→0

∫
D~φA(φ1)B(φi) e

−Sn[~φ] (i 6= 1) . (2.7)

To summarize, with the replica method, we obtained a prescription to compute ob-

servables in a disordered theory in terms of correlation functions of a quantum field theory

of n interacting fields. The price to pay is that we have to perform the subtle limit n→ 0.

2.1.2 Cardy transformations

The action (2.6) is invariant under the permutation of the n replicas. However, in (2.5)

and (2.7), the direction φ1 is treated differently from the directions φj for j 6= 1. This

motivates the field redefinition introduced by Cardy [17] (see also [18]), that makes manifest

only the permutation symmetry of n − 1 replicas and better captures the physics of the

n→ 0 limit:

ϕ =
1

2

(
φ1 + ρ

)
, ω = φ1 − ρ , χi = φi − ρ (i = 2, . . . , n) , (2.8)
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where we introduced the notation ρ ≡ 1
n−1

(
φ2 + · · · + φn

)
. Note that only n − 2 field

χi are actually independent since
∑n

i=2 χi = 0. When we use the transformation (2.8) in

the Lagrangian (2.6) we obtain a somewhat complicated result which can be schematically

written as

Sn[~φ] =

∫
ddx
[
L0 + L1 + L2

]
, (2.9)

where L0 is defined as

L0 ≡ ∂ω∂ϕ− H

2
ω2 + ωV ′(ϕ) +

1

2

n∑

i=2

[
(∂χi)

2 + χ2
iV

′′(ϕ)
]
. (2.10)

All the terms suppressed by some powers of n are put in the Lagrangian L2. All the

remaining terms are assigned in the Lagrangian L1. It can be checked that all these L1

terms are less relevant than any term in the Lagrangian L0 (w.r.t. dimension assignments

which follow from L0’s kinetic term ∂ω∂ϕ− H
2 ω

2). In particular if one considers a potential

V such that ωV ′(ϕ), χ2
iV

′′(ϕ) are marginal, then L1 only contains irrelevant terms. For

the sake of clarity we show here a few of the possible terms contained in L1 and L2:

L1 ⊃ V ′′′(ϕ)×
{

n∑

i=2

χ3
i ,

n∑

i=2

χ2
iω , ω

3 , . . .

}
, (2.11)

L2 ⊃ n
{
(∂ϕ)2 , Hϕω , V (ϕ) , . . .

}
. (2.12)

Following Cardy, in the present paper we will focus on the theory defined by L0 and we

will discard L1 and L2 terms. Naively this is legitimate, since they are either irrelevant

or vanish as n → 0. One point of the companion paper [13] will be to carefully analyze

how the discarded terms affect the RG flow of the replicated theory, and to see if there is

any subtlety.

2.1.3 The emergence of Parisi-Sourlas supersymmetry

In the following we want to show that, in the limit of zero replicas, L0 reduces to a

Lagrangian with Parisi-Sourlas supersymmetry.

Taking the limit n → 0 of the Lagrangian L0 may not look straightforward since the

dependence on n appears through the fields χi, which are n − 2 in number (n − 1 fields

subject to one constraint). However it is easy to show that in the limit of n → 0 we can

replace the n− 2 fields χi with two anticommuting scalar fields ψ and ψ:

1

2

n∑

i=2

χi[−∂2 + V ′′(ϕ)]χi
n→0−→ ψ[−∂2 + V ′′(ϕ)]ψ . (2.13)

The proof of this statement consists in integrating out the fields χi and ψ, ψ in their

respective functional integrals and check that the result is the same. This manipulation is

possible because the fields enter only quadratically in the Lagrangian. The final result is

that limn→0 L0 is equivalent to the theory defined by

LSUSY = ∂µω∂µϕ− H

2
ω2 + ωV ′(ϕ) + ∂µψ∂µψ + ψψV ′′(ϕ) . (2.14)
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This is the celebrated Parisi-Sourlas Lagrangian, which surprisingly is invariant under

super-Poincaré transformations (see section 3). In order to make the supersymmetry man-

ifest it is convenient to write the action in superspace:

SSUSY = 2π

∫
ddxdθdθ

[
−1

2
Φ∂a∂aΦ+ V (Φ)

]
, (2.15)

where θ and θ are scalar Grassmann coordinates. For later convenience we set H = 2 and∫
dθdθ θθ = 1/(2π).6 The super-Laplacian is defined in superspace as ∂a∂a = ∂2 + 2∂θ∂θ.

The superfield Φ(x, θ, θ) is a function in superspace which can be expanded in components

as follows:

Φ(x, θ, θ) = ϕ(x) + θψ(x) + θψ(x) + θθω(x) . (2.16)

It is straightforward to check that by integrating out the variables θ, θ in SSUSY, we recover

the Lagrangian LSUSY.

To summarize, we reviewed the logical path which brings one from the disordered

theory (2.1) to the supersymmetric Parisi-Sourlas action (2.15). This suggests that the

IR fixed point of a random field model may be described by a supersymmetric theory.

However, the path was long and involved some assumptions and approximations which are

not obviously under control. These subtle issues are postponed to [13] (where we will also

review the vast literature and other approaches). In this paper we will study the SUSY

theory (2.15) in its own right.

2.1.4 Relation between correlation functions

Finally it is important to understand how the observables can be computed using the

different actions. Here, as an example, we focus on the two point function of φ of the

random field theory (2.1). Generalizations are straightforward. Using eqs. (2.5) and (2.7)

we obtain two independent physical quantities:

〈φ(x1)φ(x2)〉 = lim
n→0

〈φ1(x1)φ1(x2)〉n , 〈φ(x1)〉〈φ(x2)〉 = lim
n→0

〈φ1(x1)φi(x2)〉n (i 6= 1) ,

(2.17)

where correlators in the r.h.s. are the path integrals with the action Sn, as in the

r.h.s. of (2.5) and (2.7). We may simplify the second equation in (2.17) using the per-

mutation symmetry of φi 6=1, by replacing φi → 1
n−1

∑n
i=2 φi = ρ. Further using the Cardy

transformations (2.8) to rewrite φ1 = ϕ+ ω
2 and ρ = ϕ− ω

2 , we get

〈φ(x1)〉〈φ(x2)〉 =
〈
(ϕ(x1) +

1
2ω(x1))(ϕ(x2)− 1

2ω(x2))
〉
, (2.18)

where the r.h.s. can be now evaluated from the action SSUSY. The first equation in (2.17)

can also be treated in a similar way. The resulting equations then involve the two point

functions 〈ϕϕ〉, 〈ϕω〉 and 〈ωω〉. As we will explain in a moment, 〈ωω〉 is zero if we assume

6 If one wants to work with a general H, nice formulas will arise if one normalizes the Berezin integral as∫
dθdθ θθ = H/(4π), and the superspace metric (see below) as x2 − 4

H
θθ. The choice of H can be thought

of as a choice of units. Note that at the level of the SUSY Lagrangian (2.14) we can change H by rescaling

the fields, ϕ̃ = αϕ, ω̃ = ω/α, Ṽ (φ̃) = α2V (φ), ψ,ψ = inv for some constant α.
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supersymmetry, and then it can be dropped. Physically important quantities are the

disconnected and connected correlation functions, which then acquire particularly simple

expressions:

〈φ(x1)〉〈φ(x2)〉= 〈ϕ(x1)ϕ(x2)〉 , 〈φ(x1)φ(x2)〉−〈φ(x1)〉〈φ(x2)〉= 〈ϕ(x1)ω(x2)〉 . (2.19)

Now consider the two point function of the superfield Φ:

〈
Φ(x1, θ1, θ1)Φ(x2, θ2, θ2))

〉
= F [(x1 − x2)

2 − 2(θ1 − θ2)(θ1 − θ2)] , (2.20)

which by super-Poincaré invariance should be, as shown, some function of the superspace

distance. This has several consequences. First expanding in θ’s we get

〈
Φ(x1, θ1, θ1)Φ(x2, θ2, θ2))

〉
= F [(x1 − x2)

2]− 2(θ1 − θ2)(θ1 − θ2)F
′[(x1 − x2)

2] . (2.21)

Notice that the r.h.s. does not contain the quartic Grassmann term θ1θ1θ2θ2. Via expan-

sion (2.16), the coefficient of that term would be a two point function 〈ω(x1)ω(x2)〉 which
therefore vanishes by supersymmetry as claimed above.

To extract further consequences we set x2 = θ2 = θ2 = 0 and match with (2.16); we get

〈
Φ(x, θ, θ)Φ(0)

〉
= F (x2 − 2θθ) = 〈ϕ(x)ϕ(0)〉+ θθ 〈ϕ(x)ω(0)〉 . (2.22)

The two correlators in the r.h.s. are precisely the two point functions of the random field

theory (2.19). Matching the coefficients of the θ expansion, we get the following supersym-

metric relation between them:

〈ϕ(x)ω(0)〉 = −1

r
∂r 〈ϕ(x)ϕ(0)〉 , (2.23)

where r =
√
xµxµ. Putting together (2.19) and (2.23) one gets a supersymmetric relation

between connected and disconnected two point functions, which was checked by numerical

studies in the RFIM in d = 5 [12]. We will come back to the two point functions of generic

superfields in section 3.2.2.

2.2 Parisi-Sourlas supersymmetry and dimensional reduction

As we explained in the introduction, the Parisi-Sourlas supersymmetric theories (2.15)

undergo dimensional reduction. We now review the original argument by Parisi and

Sourlas [4].

The main claim is that the action (2.15) can be reduced to a d− 2 dimensional action

with no supersymmetry:

Sred = 2π

∫
dd−2x̂

[
−1

2
φ̂ ∂2 φ̂+ V (φ̂ )

]
, (2.24)

where the potential V is the same in the three formulations (2.1), (2.15) and (2.24). The

reduction is in the sense that correlation functions of the SUSY theory SSUSY are equivalent

to the ones of Sred, when restricted to the submanifold defined by xd−1 = xd = θ = θ = 0.

For example

〈Φ(x̂1) . . .Φ(x̂n)〉 = 〈φ̂(x̂1) . . . φ̂(x̂n)〉 , (2.25)
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where x̂i ∈ R
d−2. A similar relation should hold for correlation functions of composite

operators built out of Φ.

Parisi-Sourlas proved the above correspondence perturbatively. Their argument relied

on this simple equality between integrals:

∫
ddx dθ dθ f(y2) =

∫
dd−2 x̂ f(x̂2) , (2.26)

where y2 = x2 − 2θθ is the norm (recall footnote 6) of the superspace vector y ∈ R
d|2

with x ∈ R
d (as we will review in the next section), while x̂2 is the norm of x̂ ∈ R

d−2.

For (2.26) to hold, we assume d ≥ 2 and that f(r2) decays faster than r−(d−2) at large r.7

This argument can be extended to generic Feynman integrals thus obtaining a perturbative

proof of dimensional reduction to all orders in perturbation theory. This is reviewed in

appendix A.

As is clear from (2.15) and (2.24), the map of the two actions is quite simple. The

functional forms of the two Lagrangians are the same, with the replacement Φ → φ̂. This

suggests a simple map between the operators of the two theories, for example

Φm → φ̂m . (2.27)

As clear from (2.25), this map also dictates the dimensional reduction of correlation

functions.

3 Non-perturbative Parisi-Sourlas superconformal symmetry

In the previous section we reviewed how Parisi-Sourlas dimensional reduction arises. Usual

arguments rely on the form of the Lagrangian (2.15). For example the original proof

of [4] was only perturbative. Later, some non-perturbative arguments, based on somewhat

formal manipulations of the functional integral, appeared in [19] and in [20] (the latter

ones were put on a firmer mathematical ground in [21]). As a downside they all rely on the

form of the Lagrangian (2.15) and, strictly speaking, prove dimensional reductions only

for n-point functions of the fundamental field φ. A different strategy to prove dimensional

reduction was proposed by Zaboronsky [22] by means of supersymmetric localization. This

proof clarifies which is the set of observables that undergoes dimensional reduction but still

it relies on a Lagrangian formulation.

In the following we pursue a different, axiomatic approach. This is at the foundation of

the recent revival of the conformal bootstrap. In recent years a new way to compute CFT

observables was discovered and applied to many important cases (for a review see [23]).

7To obtain (2.26) one integrates out the Grassmann coordinates:

∫
ddx dθ dθ f(y2) = −

1

2π

∫
ddx

1

r
∂rf(r

2) = −
Ωd

2π

∫
dr rd−2 ∂rf(r

2) = Ωd−2

∫
dr rd−3f(r2) .

Recall our non-standard normalization of the Berezin integral, footnote 6. In the last steps we integrated

by parts to simplify the radial integral, and reduced the angular part Ωd = 2π
d

2

Γ( d

2
)
to Ωd−2. For d = 2 the

r.h.s. of (2.26) simply becomes f(0).
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The idea is that observables can be fixed by requiring that the theory satisfies very general

axioms which arise from symmetries and the existence of an associative operator product

expansion (OPE) in combination with extra assumptions like unitarity. This perspective

has proven incredibly powerful to pinpoint CFTs and it suggests that this axiomatic point

of view should be taken to define the CFTs themselves. The aim of this section is to

show how a CFT with Parisi-Sourlas supersymmetry is defined in this language. The

consequences of dimensional reduction for CFTs will be addressed in section 4.8

In the following subsection 3.1 we will focus on the symmetries and representations

of Parisi-Sourlas theories. In subsection 3.2 we will describe how to make the symmetries

more manifest by means of an auxiliary embedding space. In this formalism it will be easy

to describe correlation functions of the superconformal theory, as shown in subsection 3.2.2.

The OPE and conformal blocks decomposition are finally discussed in subsection 3.2.3.

3.1 Symmetries and representations

The goal of this section is to describe the symmetries and associated representation of the

IR fixed point of the Parisi-Sourlas theories. For pedagogical reasons, we first focus on

the symmetries of the theory along the RG flow. This allows us to carefully introduce the

orthosymplectic group OSp(d|2) and its representations which will play a crucial role in the

rest of the paper. In subsection 3.1.2 we proceed to analyze the Parisi-Sourlas supercon-

formal fixed point, we illustrate the superconformal algebra and the representations under

which the CFT operators transform.

3.1.1 The symmetries along the flow

By construction, the action (2.15) enjoys super-Poincaré symmetry, namely it is invari-

ant under supertranslations and superrotations. Let us now forget about the action and

describe the implications of the symmetries themselves.

The supertranslations act as shifts in the superspace coordinates, both in the bosonic

coordinates xµ and in the fermionic coordinates θ, θ. It is convenient to introduce the

superspace coordinate ya ≡ (xα, θ, θ) where a = 1, . . . d, θ, θ and α = 1, . . . , d (unless

explicitly said, we will consistently use lower case latin letters for superspace indices and

greek letters for R
d indices). Supertranslations, in superspace notation, take the form:

ya → y′a = ya + ca , (3.1)

where ca are constants. Notice that cα are Grassmann-even (bosonic) while cθ, cθ

Grassmann-odd (fermionic). The translation generators Pa = (Pα, Pθ, Pθ) act as deriva-

tives ∂a ≡ ∂/∂ya in superspace. Pα are bosonic generators, while Pθ, Pθ are fermionic.

They graded-commute as

[Pa, Pb} = 0 . (3.2)

As usual, the graded commutator [X,Y } is defined as the anticommutator [X,Y } = {X,Y }
if both X and Y are Grassmann-odd and as the commutator [X,Y } = [X,Y ] if one or

both of them are Grassmann-even.
8There is no relation between our work and the non-rigorous attempts to use the numerical conformal

bootstrap for the problem of dimensional reduction by Hikami [24, 25].
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The superrotations form the orthosymplectic supergroup OSp(d|2). This group will

play a very important role in characterizing the little group of the superconformal field

theory, thus defining the transformations of superprimary operators. For this reason in the

following we carefully explain its action, algebra and representations. The orthosymplectic

supergroup OSp(d|2) is the group of super-linear transformations ya → y′a = Ra
b y

b that

preserves the norm (recall that we set H = 2)

y2 ≡ yaya = yagaby
b = x2 − 2θθ . (3.3)

The orthosymplectic metric gab is an invariant tensor of the group. It can be easily ex-

pressed in a block diagonal form, in terms of the d-dimensional flat metric and the sym-

plectic metric:

gab ≡
(
Id 0

0 J2

)
, Id ≡ diag(

d︷ ︸︸ ︷
1, 1, . . . , 1) , J2 ≡

(
0 −1

1 0

)
. (3.4)

The elements of the group OSp(d|2) can be realized as (d+ 2)× (d+ 2) matrices Ra
b

which satisfy the following relation:

Ra
bR

c
d gac = gbd . (3.5)

The matrices forming the supergroup can be written in block form as

Ra
b =

(
Rα

β R
α
q

Rp
β Rp

q

)
, (3.6)

where we split indices a = (α, p), b = (β, q) and p, q ∈ θ, θ run over the Grassmann

directions. The coefficients Rα
β and Rp

q are even elements of a Grassmann algebra, while

Rα
q and Rp

β are odd elements of a Grassmann algebra.9

It is convenient to introduce the Lie algebra of OSp(d|2), denoted as osp(d|2) [27, 28].
We name the generators of superrotations as Mab, where a, b = 1, . . . , d, θ, θ. They are

bosonic if both a and b have the same grading and fermionic otherwise. Mab are graded

antisymmetric, meaning that Mab = −(−1)[a][b]M ba, where [a] = 0 if for bosonic coordi-

nates and [a] = 1 for fermionic ones (notice in particular that generators with two equal

Grassmann indices M θθ and M θ θ are non-zero, consistently with this equation). They

satisfy the following commutation relations:

[Mab,M cd}= gcbMad−(−1)[a][b]gcaM bd−(−1)[c][d]gdbMac+(−1)[a][b]+[c][d]gdaM bc . (3.7)

So far we encountered the generators Pa which are in a vector representation of OSp(d|2)
and Mab which are in the graded antisymmetric. In the following it will be crucial to have

under control more generic finite dimensional representations of the superrotations. To

9We can consider a Grassmann algebra generated by an infinite set of anticommuting Grassmann vari-

ables θ1, θ2, . . . However this description is redundant. It suffices to consider 2d independent Grasmann

variables to generate all the group elements. These are in one-to-one correspondence with the odd genera-

tors of the OSp(d|2) algebra (see e.g. [26]).
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this end we now classify tensor representations of OSp(d|2). They are associated to graded

Young tableaux which take the following form [29]:

··· ··· ··· ··· ··· ···

.

.

.

.

.

.

.

.

.

.

.

. . .
.

··· ···

.

.

.

}
[d2 ]

, (3.8)

where the i-th row has length li and li ≥ li+1. The first [d2 ] rows can be arbitrarily long

and they are roughly speaking associated to the SO(d) part of the group. Similarly the

first column may contain an arbitrary number of boxes, and it is related to Sp(2).

The graded Young tableaux is a straightforward generalization of the usual Young

tableaux, with the following rules:

• Indices along the rows are graded symmetrized,

• Indices along the columns are graded antisymmetrized,

• All the super-traces are removed.

The idea can be illustrated with the following examples of tensors with two indices respec-

tively belonging to the graded symmetric and the graded antisymmetric representations:

a b tab =
1

2

(
tab + (−1)[a][b]tba

)
− tcc

gab

d− 2
, (3.9)

a

b
tab =

1

2

(
tab − (−1)[a][b]tba

)
. (3.10)

As already mentioned, the generators Mab belong to the second type (3.10). The action of

the generators of superrotations on a tensor with ℓ indices takes the following form:

[Mab, ta1...aℓ} =
ℓ∑

k=1

σ
(k)
{ai}

[Σab]akc t
c a1...ak−1ak+1...aℓ , [Σab]dc ≡ gdbδac − (−1)[a][b]gdaδbc ,

(3.11)

where σ
(k)
{ai}

is the sign acquired by the tensor ta1...aℓ after commuting ak to the left of a1,

namely ta1...aℓ = σ
(k)
{ai}

taka1...ak−1ak+1...aℓ . For example Mab rotates the index of P c giving

the following commutation relation:

[Mab, P c} = gcbP a − (−1)[a][b]gcaP b . (3.12)

In the following it will be often convenient to use an index-free formalism. This can be

achieved by contracting tensors with polarization vectors of the form

wa ≡ (zα, ζ, ζ) , (3.13)
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where zα is a Grassmann even d-dimensional vector while ζ, ζ are Grassmann odd variables.

For example, a graded symmetric tensor of spin ℓ is encoded by the following index-free

notation:

t(w) ≡ waℓ · · ·wa1t
a1...aℓ . (3.14)

This is consistent since the polarization vectors graded-commute between themselves. A

further simplification is to encode the super-tracelessness of the tensor by using polarization

vectors which are null: 0 = wawa = z2 − 2ζζ. The original tensor components can be

extracted from t(w) by taking derivatives:

ta1...aℓ =
1

ℓ!(d2 − 2)ℓ
Da1

w · · ·Daℓ
w t(w) , (3.15)

where Da
w is an appropriate differential operator:

Da
w =

(
d

2
− 2 + w · ∂w

)
∂aw − 1

2
wa∂2w . (3.16)

Here the dot-product and the square are defined to build scalars of OSp(d|2), e.g. w1 ·w2 ≡
wa
1 w2 a for some vectors w1, w2. Of course to take derivatives we have to extend t(w) away

from the null cone wawa = 0, but the point of this construction is that the result does

not depend on how the extension is taken and gives back the original graded symmetric,

super-traceless tensor. This technology matches the one used in [30] for SO(d) tensors,

besides that (3.15) and (3.16) depend on a shifted value of the dimension d→ d− 2. More

general representations are handled by generalizing the strategy of [31–33]: we contract the

mixed symmetric tensors with a sequence of polarization vectors, where the indices of the

i-th graded symmetric row of the Young tableau are contracted with polarization vectors

wi. We further ask for wi · wj = 0 to encode tracelessness. To undo the contractions and

recover the original components, we apply derivatives ∂awi
and contract the resulting indices

with opportune projectors. Interestingly the projectors for OSp(d|2) take the same form

as the ones of SO(d) [32] after the shift d→ d− 2 (one example of this is visible in (3.9)).

Finally, let us mention that the finite dimensional representations of OSp(d|2) can

be decomposed in terms of representations of O(d) × Sp(2). The standard technique is

explained in [34, 35].

3.1.2 The symmetries of the fixed point

In this section we focus on the symmetries of fixed point of the RG flow of the action (2.15).

This is, by definition, invariant under superdilations. We will also assume that, along with

superdilations, it is invariant under special superconformal transformations. Supercon-

formal transformations are defined by analogy with conformal transformations as being

locally given as a composition of a superrotation and a superdilation. The assumption

of superconformal invariance can be justified by the usual arguments involving a traceless

stress tensor, as for the usual scale vs conformal invariance story, and with usual caveats.

We will see this later in this section. Superconformal invariance of free massless theory

(i.e. V = 0 in (2.15)) can be checked explicitly [36].
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The generators of the transformations form the Parisi-Sourlas superconformal algebra,

which is denoted by osp(d + 1, 1|2). In this section we show some features of this algebra

and its representations.10

The algebra osp(d + 1, 1|2) consists of the generators of superrotations Mab, super-

translations P a, superdilations D and special superconformal transformations Ka, which

correspond to the following superspace vector fields:

P a= ∂a , Mab= ya∂b−(−1)[a][b]yb∂a , D=−ya∂a , Ka=2yayb∂b−ybyb∂a . (3.17)

Their graded algebra takes the form:

[D,P a} = P a ,

[D,Ka} = −Ka ,

[Ka, P b} = 2gbaD − 2Mab ,

(3.18)

where g is the orthosymplectic metric (3.4). Here we omitted the commutator of super-

rotation generators which already appeared in (3.7) and (3.12) (the commutator of Mab

and Ka takes the same form as (3.12), since Ka is also an OSp(d|2) vector). All the other

commutators vanish.

The graded-commutators (3.18) describe a ladder algebra with raising and lowering

operators P a and Ka. Superfields transform in the representation of the little group

OSp(d|2) × U(1) generated by the superrotations Mab and superdilations D. A super-

primary operator diagonalizes the superdilation operator and is annihilated by Ka:

[Ka,O(0)} = 0 , [D,O(0)} = ∆O(x) . (3.19)

Since the condition for superprimaries includes the operator to be annihilated by the two

Grassmann charges Kθ,Kθ, it is more restrictive that the condition for SO(d + 1, 1) pri-

maries which are only annihilated by Kα. Superrotations act on the operator O(0) by

rotating its OSp(d|2) indices according to (3.11). Finally P a creates superdescendants.

So far we explained how to organize the operators of the theory in terms of superfields

which transform naturally under the little group. Since every superconformal theory is

also conformal, it is interesting to know how the spectrum splits in conformal multiplets of

SO(d+ 1, 1). Let us show how this works for an operator O with super-dimension ∆ and

transforming in a graded-commuting representation of spin ℓ of OSp(d|2). First we expand
the superfield in θ, θ:

Oa1...aℓ(x, θ, θ)︸ ︷︷ ︸
∆

= Oa1...aℓ
0 (x)︸ ︷︷ ︸

∆

+θOa1...aℓ
θ (x)︸ ︷︷ ︸
∆+1

+θOa1...aℓ
θ

(x)
︸ ︷︷ ︸

∆+1

+θθOa1...aℓ
θθ

(x)
︸ ︷︷ ︸

∆+2

. (3.20)

The four coefficients of the θ, θ polynomial, which we dubbed O0,Oθ,Oθ,Oθθ, have the

same spin under OSp(d|2), but they have shifted conformal dimensions, according to the

10There is little literature about representations of this superconformal algebra, which violates spin statis-

tics and thus cannot occur in unitary theories of interest to high energy physicists. The only relevant paper

known to us is [36], which however treats explicitly only scalar superprimaries, and does not relate super-

conformal invariance to the super-stress tensor.
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mnemonic dimension rule that [θ] = [θ] = −1. The indices ai are naturally organized

in finite irreducible representations of OSp(d|2). We can further decide to exhibit the

rotation symmetry of the CFTd by reorganizing the OSp(d|2) representations in terms of

the SO(d) ones. E.g. the zero component of a vector Oa can be written as a collection

of one SO(d) vector (boson) and two scalars (fermions) as follows Oa
0 = (Oα

0 ,Oθ
0,Oθ

0). A

similar decomposition holds for Oa
θ , Oa

θ
except for the opposite statistics of vector and

scalar components. Each of the four constituents Oa1...aℓ
I (I = 0, θ, θ, θθ) of a general

graded-symmetric OSp(d|2) spin ℓ ≥ 2 tensor superprimary multiplet would thus give rise

to four conformal primaries Oµ1...µℓ

I , Oµ1...µℓ−1θ
I , Oµ1...µℓ−1θ

I and Oµ1...µℓ−2θθ
I of decreasing

SO(d) spins ℓ, ℓ− 1, ℓ− 1 and ℓ− 2 and of accordingly alternating statistics.11

Let us now discuss some features of short superconformal multiplets. To begin, we

shall see how shortening conditions are used to fix the scaling dimension of the supermul-

tiplet. As a first example we consider the free scalar superprimary |O〉 ≡ O(y = 0)|0〉,
defined by P aPa|O〉 = 0. By asking that its norm vanishes and using the commutation

relations (3.18), we discover that the dimension of O is fixed as d/2− 2. We can similarly

consider a conserved superprimary operator Oa1...aℓ , in the graded symmetric representa-

tion of OSp(d|2). We require that the norm of P a|O a2...aℓ
a 〉 vanishes. This then fixes its

superconformal dimensions to ∆ = ℓ+ d− 4. As an example, when ℓ = 1, we have

0 = 〈Ob|KbP
a|Oa〉 = 〈Ob|[Kb, P

a}|Oa〉 = 2(∆− d+ 3)〈Oa|Oa〉 . (3.21)

Here we defined a conjugate state by |O〉† ≡ 〈O| ≡ limy→0 |y|−2∆〈0|O(ya/y2) (when an

operator has indices they have to be contracted with reflection matrices gba − 2yayb/y2).

Since the conjugation is defined by superspace inversion, we can apply the usual logic and

obtain that P †
a = Ka — indeed the generator of special superconfrormal transformations is

obtained from the successive application of inversion-translation-inversion in superspace.

We continue our discussion by showing how short CFTd multiplets are embedded into

the short superconformal multiplets of the Parisi-Sourlas CFT. Let us exemplify how

this works for a spin-two superprimary T ab (generalizations to other short multiplets are

straightforward), which satisfies the conservation equation:

∂aTab = 0 . (3.22)

We recall that graded symmetry and the super-tracelessness respectively imply

Tab = (−1)[a][b]Tba and gabTab = 0. Furthermore, as we showed above, conservation (3.22)

fixes the dimension of T ab as d − 2. We refer to T ab as the super-stress tensor of the

Parisi-Sourlas CFT, associated with the supertranslation symmetry. Of course since every

Parisi-Sourlas CFT is also a usual CFTd, as such it should contain the usual stress tensor

Tαβ primary, of dimension d. It would be natural to guess that Tαβ is contained in the T ab

supermultiplet, and indeed that’s what happens. Expanding Tab(x, θ) as in (3.20) we get

T ab(x, θ, θ)︸ ︷︷ ︸
d−2

= T ab
0 (x)︸ ︷︷ ︸
d−2

+θ T ab
θ (x)︸ ︷︷ ︸
d−1

+θ T ab
θ

(x)
︸ ︷︷ ︸

d−1

+θθ T ab
θθ

(x)
︸ ︷︷ ︸

d

. (3.23)

11Since we are assuming graded symmetry, if we set two indices to the same Grassmann value we obtain

zero, e.g. O
µ1...µℓ−2θθ

I = 0.
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By dimensionality one can guess that the usual d-dimensional stress tensor Tαβ = T αβ

θθ
,

the spin-two part of the highest-dimension constituent T ab
θθ

. As a check let us verify that

equation (3.22) implies the conservation of T αβ

θθ
. In fact by plugging (3.23) in (3.22) and

taking the θθ coefficient, one gets precisely

∂αT αβ

θθ
(x) = 0 , (3.24)

where α, β run from 1 to d.12 Since T αβ

θθ
is a conserved spin-two tensor of SO(d), with

conformal dimension d, we conclude that it should correspond to the d-dimensional stress

tensor. It is instructive to explicitly check this statement in free theory as we show in

appendix C.

The super stress tensor is a very important operator since many properties of a CFT

descend from its existence. We shall define locality of the Parisi-Sourlas theory by the

following equation: ∫

V
ddxdθdθ ∂aTab(y)O(0) = ∂bO(0) , (3.25)

where the l.h.s. is an integral over a region V ⊂ R
d|2 that contains the point y = 0 and O is

local operator which, for simplicity, we consider to be a scalar.13 By using Stokes’ theorem

(see e.g. [37]) the integral in (3.25) can be written as a surface integral on the boundary ∂V

of the region V . Because of the conservation of the stress tensor, the l.h.s. of (3.25) defines

a topological surface operator, which does not depend on the shape of the surface ∂V (as

long as other operator insertions are not crossed). We can e.g. consider V ∈ R
d|2 to be a

superball of radius ̺, its boundary a supersphere. Since ̺ can be taken arbitrarily small, we

expect the r.h.s. to be written as a local operator inserted at the origin. Moreover, since the

super-stress tensor generates supertranslations, the r.h.s. is fixed in terms of a superspace

derivative acting on O. Eq. (3.25) also fixes the normalization of the super-stress tensor.

Finally let us come back to the assumption of superconformal invariance. In usual

CFTs, conformal invariance descends from the condition of tracelessness of the stress tensor.

Dilation invariance of the fixed point imposes that the stress tensor is either traceless or it

satisfies Tµ
µ = ∂µVµ for some vector field Vµ called “virial current”. Conformal invariance

follows from scale invariance if the virial current is absent (or it is a descendant of some spin-

two operator Wµρ, namely Vµ = ∂ρWµρ) [38]. In practice we are trading the assumption

of conformal invariance with the assumption of the absence of a virial current. The latter

is clearly more satisfying since we do not expect to have, in a generic interacting CFT,

a non-conserved vector operator with dimension d − 1. This expectation should hold in

unitary and non-unitary theories alike.

The same kind of logic can be adopted in our supersymmetric setup. Indeed the

absence of a super-virial current Va — non-conserved and with superdimension (d − 3)

12Grassmann derivatives like ∂θT
θβ cannot contribute to this equation because they can never produce

a θθ term.
13The superspace topology is defined by its reduced bosonic topology. The mnemonic rule being that

Grassmann variables are much smaller than the bosonic ones, since they square to zero. E.g. the interior

of a superball is identified by the interior of the ball obtained by setting its Grassmann coordinates to zero.

See [37] for a review on topology and integration over supermanifolds.
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— and the presence of superdilations are enough to impose that the super-stress tensor is

traceless and therefore to establish superconformal symmetry.14

3.2 Super-embedding space and correlation functions

In this section we analyze the correlation functions of the Parisi-Sourlas CFT. We first in-

troduce the super-embedding space formalism, which generalizes the usual embedding space

formalisms of [30]. This simplifies the action of conformal transformations and trivializes

the problem of finding conformal invariant combinations to build correlation functions. We

then apply this technique to correlation functions and give a few examples of how they are

constrained by supersymmetry. Finally we focus on the OPE and on how this can be used

to decompose four point functions in superconformal blocks.

3.2.1 Superembedding space

The Parisi-Sourlas CFT is invariant under the orthosymplectic group OSp(d+1, 1|2), which
does not act linearly in superspace R

d|2. The idea of the super-embedding formalism is to

uplift the theory to the space R
1,d+1|2, where the group acts linearly. It is then possible to

go back to the usual superspace R
d|2 by using a simple projection.

Given a point PM = (P 0, Pµ, P d+1, θ, θ) in the super-embedding space R
1,d+1|2, its

norm is defined as

P 2 ≡ PMPM ≡ PMg
MNPN = −(P 0)2 + (Pµ)2 + (P d+1)2 + 2 θθ , (3.26)

where the metric g is a block diagonal matrix build in terms of two pieces: the flat metric

I1,d+1 of R1,d+1 and the symplectic metric J2 of Sp(2):

gAB =

(
I1,d+1 0

0 J2

)
, where I1,d+1 = diag(−1, 1, . . . , 1︸ ︷︷ ︸

d+2

) , J2 =

(
0 −1

1 0

)
. (3.27)

In order to get rid of the two extra dimensions we consider only the points PM which

belong to the projective null cone P 2 = 0 with P ∼ λP . To get back a result parametrized

by the coordinates (x, θ, θ) in physical space, we will restrict each point PA to lie in the

super-Poincaré (sP) section:

PA
∣∣
sP

=

(
1 + x2 + 2θθ

2
, xµ,

1− x2 − 2θθ

2
, θ, θ

)
. (3.28)

Scalar primary superfields extended to the projective null cone satisfy the following homo-

geneity condition:

O(λP ) = λ−∆O(P ) , (3.29)

14Tracelessness of the super-stress tensor is equivalent to the invariance under local rescaling of the

superspace metric (near flat space). The latter is sufficient to reconstruct all the superconformal Killing

vectors including the ones associated to special superconformal transformations. As in usual CFTs, one

can then further define additional topological surface operators integrating Tab(y) of (3.25) against the

superconformal Killing vectors ǫb(y), thus recovering all generators of (3.17).
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for any λ ∈ R. We can further uplift operators that transform as OSp(d|2) tensors, by

imposing (3.29) and by allowing their indices to take values A = 0, . . . , d+1, θ, θ. To get a

description which is not redundant, the operators are required to satisfy the transversality

condition PA1OA1A2...Aℓ(P ) = 0. We also have a condition that “pure gauge” tensors

proportional to PAi
project to zero. To deal with these constraints, it is convenient to

contract the tensor indices with super-embedding space polarization vectors. For example

for a spin ℓ graded symmetric superfield we define

O(P,Z) ≡ OA1...Aℓ(P ) ZAℓ
· · ·ZA1 , (3.30)

where polarization vectors are chosen as ZM = (Z0, zµ, Zd+1, ζ, ζ) and ζ, ζ are Grassmann

odd coordinates while Z0, zµ, Zd+1 are Grassmann even and zµ is a d-dimensional vector.

The transversality condition and the super-tracelessness conditions can be encoded by

choosing polarization vectors that respectively satisfy P · Z = 0 and Z2 = 0. When we

restrict coordinates to the super-Poincaré section, the polarization vectors are projected to

vectors tangent to this section, as follows:

ZM
∣∣
sP

=
(
(x · z + ζθ + ζθ), zµ,−(x · z + ζθ + ζθ), ζ, ζ

)
. (3.31)

Notice that the condition Z2 = 0 is projected to Z2
∣∣
sP

= z2 − 2ζζ = 0 in physical space,

which indeed encodes the super-tracelessness condition of OSp(d|2) tensors as explained

below (3.14). One can also consider more generic representations for the superfields O,

analogously to what was done in [31] for the usual conformal group. Tensors of OSp(d|2) can
be associated to Young tableaux of the form (3.8). One can contract the indices of each row

with a polarization vector Z(i) such that P ·Z(i) = 0. It is possible to choose Z(i) ·Z(j) = 0.

Finally one can project them into the super-Poincaré section in terms of physical space

polarization vectors z(i), ζ(i), ζ(i) by a straightforward generalization of (3.31).

In super-embedding space, the generators of infinitesimal orthosymplectic transforma-

tions LAB take a particularly simple form:

LAB ≡ PA∂PB
− (−1)[A][B]PB∂PA

. (3.32)

LAB packages together supertranslation, superrotations, superdilations and special super-

conformal transformations, while making the OSp(d+ 1, 1|2) action linear, and the invari-

ance manifest. Indeed it is easy to see that LAB satisfies the osp(d + 1, 1|2) algebra. In

this notation the quadratic superconformal Casimir takes a very compact form:

1

2
gADgBCLABLCD . (3.33)

The eigenvalue of the Casimir on any operator within a superconformal multiplet labelled

by the super-dimension ∆ and the OSp(d|2) spin ℓ is

c
d|2
∆,ℓ = ∆

(
∆− (d− 2)

)
+ ℓ
(
ℓ+ (d− 2)− 2

)
. (3.34)

This can be obtained by a direct computation as we explain in section 4.4. Notice that

this eigenvalue exactly equals the Casimir eigenvalue for a spin ℓ, dimension ∆ primary in

a non-supersymmetric CFT living in d − 2 dimensions. This property is indeed true also

for generic representations. This fact will be crucial for the dimensional reduction to work.
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3.2.2 Correlation functions in super-embedding space

Using the super-embedding formalism it is easy to classify superconformal invariants which

in turn can be used to write correlation functions. In the following we show how to use this

formalism in some simple examples. It will be clear that all applications are straightforward

generalizations of what happens in usual CFTs as detailed in [30].

Since OSp(d + 1, 1|2) transformations act as linear transformations of the points PA,

conformal invariants are just scalar products Pi · Pj . For example a two point function of

a scalar operator O with superconformal dimension ∆ can be written as

〈O(P1)O(P2)〉 =
1

(P12)∆
, (3.35)

where the scaling is fixed by the requirement (3.29) and we defined Pij ≡ −2Pi · Pj where

−2 is a convenient normalization. This restricts to the super-Poincaré section as

−2Pi · Pj

∣∣
sP

= y2ij = (xij)
2 − 2θijθij , (3.36)

where θij ≡ θi − θj , θij ≡ θi − θj . Thus restricting (3.35) to the Poincaré section, we get

the two point function in superspace: By further expanding the two point function as a

polynomial in the Grassmann coordinates we obtain

〈O(P1)O(P2)〉
∣∣
sP

=
1

(x12 − 2θ12θ12)2∆
. (3.37)

This is similar to eq. (2.20) from the previous section for the fundamental superfield Φ

of the Parisi-Sourlas Lagrangian. In particular we extract correlation functions between

constituents of the θ expansion of O:

〈O0(x1)O0(x2)〉 =
1

(x12)2∆
, 〈O0(x1)Oθθ(x2)〉 =

2∆

(xij)2(∆+1)
, (3.38)

in agreement with (2.23), while the highest dimension constituent Oθθ has zero two point

function by the argument for the vanishing 〈ωω〉 given there:15

〈Oθθ(x1)Oθθ(x2)〉 = 0 . (3.39)

It is important to stress that one should not consider ω or more generally any Oθθ as

null states which can be modded out from the theory, in fact their correlation function

with other operators may be non-zero, as is evidenced already by the non-zero two point

function 〈ω(x)ϕ(y)〉 6= 0.

We can also consider two point functions of operators O transforming in non-trivial

representation of OSp(d|2). For example if O is a graded symmetric superprimary with

super-dimension ∆ and spin ℓ, we have

〈O(P1, Z1)O(P2, Z2) =
(H12)

ℓ

(P12)∆
, (3.40)

15In fact this is a generic property of any n-point function: the highest component, proportional to

θ1θ1 · · · θnθn, has to vanish. This is a simple consequence of supertranslation invariance, which can be used

to translate any θi to zero.
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where the denominator is fixed by (3.29) and H12 is the unique conformal invariant which

does not scale in Pi and can be built out of null and transverse polarization vectors Zi

(see [30]):

Hij ≡
(Zi · Zj)(Pi · Pj)− (Zi · Pj)(Zi · Pj)

Pi · Pj
. (3.41)

More complicated representations can be taken into account generalizing the formalism

of [31–33].

Let us see how to apply this technology to three point functions. E.g. take two scalar

operators O1,O2 with dimensions ∆1,∆2 and a spin ℓ operator O3 dimensions ∆3. Their

three point function is written as

〈O1(P1)O2(P2)O3(P3, Z3)〉 =
λ123 V

ℓ
3,12

(P12)
∆1+∆2−∆3

2 (P23)
∆2+∆3−∆1

2 (P13)
∆3+∆1−∆2

2

, (3.42)

where λ123 is the associated OPE coefficient. The powers of Pij are fixed by the require-

ment (3.29). The term V3,12 does not scale in Pi and it is the only conformal invariant

which can be built out of the null and transverse polarization vector Z3 [30]:

Vi,jk ≡ (Zi · Pj)(Pi · Pk)− (Zi · Pk)(Pi · Pj)√
(Pj · Pk)(Pj · Pi)(Pk · Pi)

. (3.43)

More complicated cases are again handled by following e.g. [33].

Let us then consider a four point function of scalar superprimaries Oi with dimensions

∆i:

〈O1(P1)O2(P2)O3(P3)O4(P4)〉 = K(Pi)f(U, V ) , K(Pi) ≡

(
P24
P14

)∆1−∆2
2

(
P14
P13

)∆3−∆4
2

(P12)
∆1+∆2

2 (P34)
∆3+∆4

2

,

(3.44)

where K(Pi) is a kinematic function that takes into account the correct scaling required

by (3.29). The result is fixed up to a function f of the two super-cross-ratios which are

scaleless in Pi:

U ≡ P12 P34

P13 P24
, V ≡ P14 P23

P13 P24
. (3.45)

Finally we can apply the same reasoning to a four point function of spinning operators

Oi(Pi, Zi). In super-embedding space, the conformal invariants are the same as the ones

introduced by [30], namely one needs combinations Pi·Pj and Pi·Zj which scale opportunely

in the Pi, Zi and which are transverse.

The reader used to the formalism introduced in [30], may have recognized that the

super-embedding formalism is a straightforward generalization. So we avoid further details.

3.2.3 OPE and conformal blocks decomposition

In this section we exemplify how the OPE works in a Parisi-Sourlas CFT. We then apply

the OPE to a four point function to obtain its superconformal block decomposition.
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The OPE can be conveniently expressed in superspace. For simplicity we focus on the

OPE between two scalar superfields O1,O2 with dimensions ∆1,∆2:

O1(y)O2(0) =
∑

∆,ℓ

λ12O
|y|∆1+∆2−∆+ℓ

[yaℓ · · · ya1Oa1...aℓ(0) + superdesc.] , (3.46)

where the sum runs over the possible graded symmetric tensor superprimaries O with

dimension ∆ and OSp(d|2)-spin ℓ. Indeed since O1,O2 are scalars, the indices of the ex-

changed operators can only be contracted with the superspace points ya, which graded com-

mute between themselves, so only graded symmetric primaries contribute. The ‘superdesc.’

in (3.46) denotes the contribution of the superdescendants, i.e. superspace derivatives (∂a

and higher order) of the superprimaries. As usual, these terms are completely fixed by

superconformal invariance. Quantities not fixed by the symmetry are the dimensions of

fields and the coefficients λ12O, which already appeared in the three point function (3.42).

By taking the OPE of operators 12 and 34 inside the four point function (3.44), we

can express the function f as a sum over superconformal blocks gd|2:

f(U, V ) =
∑

∆,ℓ

λ12OλO34 g
d|2
∆,ℓ(U, V ) , (3.47)

where, as in (3.46), the sum runs over superprimaries O labelled by ∆, ℓ and λO34 are the

OPE coefficients of the right channel 34. Each conformal block resums the contribution of

the primary O and all its descendants into a single function of the super-cross-ratios (3.45).

Even if the superblocks can be defined by applying the left and right OPEs to a two point

function, there are more convenient techniques to compute them. One of the most efficient

ones is the super-analogue of [39] — to find them via the eigenfunctions of a second-order

partial differential operator, the super-Casimir C:

C G
d|2
∆,ℓ(Pi) = c

d|2
∆,ℓ G

d|2
∆,ℓ(Pi) , G

d|2
∆,ℓ(Pi) ≡ K(Pi)g

d|2
∆,ℓ(U, V ) . (3.48)

The eigenfunctions G are sometimes called conformal partial wave and are related to the

conformal blocks g by the kinematic factor (3.44). The eigenvalue c
d|2
∆,ℓ of the Casimir

equation is given by (3.34) and the super-Casimir differential operator C takes the form:

C ≡ 1

2
gADgBC(L1 + L2)AB(L1 + L2)CD , (3.49)

where Li are the generators of rotations (3.32) acting on points Pi. This discussion can be

easily extended to four point functions of non-scalar operators by considering generators

of the rotations Li which also act on the polarization vectors of the external operators.

More generic exchanged operators can be taken into account by considering the opportune

eigenvalues. In section 4.4 we will show how to compute the superconformal blocks in

terms of conformal blocks of a non-supersymmetric CFT.

4 Dimensional reduction

In this section we want to show how dimensional reduction [4, 19–22] works in the context

of axiomatic CFTs. In particular we want to clarify how the Parisi-Sourlas CFT is related

to a CFT that lives in d− 2 dimensions.
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In the next section we define what we mean by dimensional reduction. Then we

explain that the locality of the Parisi-Sourlas CFT implies the locality of the theory in

d − 2. We further demonstrate how dimensional reduction works by showing that the

superconformal blocks of the Parisi-Sourlas CFT match the conformal blocks of a d − 2

dimensional CFT. Finally we describe how the equality of blocks implies a neat relation

between usual conformal blocks in d and d− 2 dimensions.

4.1 Dimensional reduction and correlation functions

The basic idea of dimensional reduction is that certain correlation functions of the Parisi-

Sourlas CFT restricted to the subspace R
d−2 ⊂ R

d become correlation functions of a d− 2

dimensional CFT without supersymmetry. Of course any CFT restricted to a subspace

defines a set of conformal correlators living in that subspace. This follows simply from the

fact that d-dimensional conformal group restricts to the conformal group of the subspace.

What is unusual and non-trivial about the Parisi-Sourlas dimensional reduction is that,

unlike a simple restriction, it produces a local theory. Before we explain this, let us recall

some basic features of usual restrictions.

A “restriction” is what happens to a CFTd when we restrict all its correlators to

a linear subspace, or hyperplane, R
p ⊂ R

d (which is sometimes called “trivial defect”).

By selecting this hyperplane we break the symmetry of the theory from SO(d + 1, 1) to

SO(p+1, 1)×SO(d−p). The group SO(p+1, 1) realizes conformal symmetry on R
p, while

SO(d− p) is understood as a global symmetry under which the CFTp operators transform.

The resulting CFTp however is non-local, meaning that it does not contain a conserved

SO(p)-spin two operator with dimension p which could be identified as its stress tensor.

In fact the restriction of the CFTd stress tensor Tµν does produce in p-dimension a spin-2

operator Tαβ
r = (Tαβ − trace) if we select α, β = 1, . . . p, as well as SO(p) vectors and

scalars. However the Tαβ
r does not have the correct scaling dimension, which is still d,

nor is it conserved. These facts are of course related because conserved spin-2 primary

in d − 2 dimensions should have dimension d − 2. In fact the stress tensor conservation

in d dimension involves derivatives both tangent and orthogonal to R
p and thus does not

descend to conservation of Tαβ
r . Physically this is clear: the energy in this setup is not

conserved on R
p because it can escape in the orthogonal directions.

Besides the absence of the stress tensor, the correlation functions of CFTp are well

defined and satisfy the other CFT axioms. In particular, the associative OPE of the CFTd

induces an associative OPE in the restricted theory. As a consequence of this, all four

point functions of the CFTp can be expanded in p-dimensional conformal blocks (CBp).

It follows that any CFTd correlator, which is expandable in CBd, when restricted can

also be expanded in CBp. The way these two facts are compatible is that every CBd

can be expressed as a linear combination of CBp [40]. The linear combination is infinite,

because an SO(d + 1, 1) conformal multiplet decomposes into a direct sum of infinitely

many SO(p+ 1, 1) conformal multiplets.

We now come back to our specific problem of Parisi-Sourlas dimensional reduction.

This will be understood as a special kind of restriction which will only apply to a subsector

of the full Parisi-Sourlas theory. First of all, the restriction will be from the superspace R
d|2
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to a bosonic R
d−2 subspace defined by setting two bosonic coordinates and both fermionic

ones to zero:

Md−2 ≡
{
y = (x1, . . . xd−2, xd−1, xd, θ, θ) ∈ R

d|2 : xd−1 = xd = θ = θ = 0

}
. (4.1)

This subspace breaks the symmetry from OSp(d+ 1, 1|2) to SO(d− 1, 1)×OSp(2|2).
Second, dimensional reduction will only apply to the subsector of the supersymmetric

theory which consists of OSp(2|2) singlets of the broken symmetry. Let us illustrate how to

construct such operators. This can be done by simply considering a superfield O(y) inserted

at a point y ∈ Md−2 and contracting it with polarization vectors that also live in Md−2 (an

analogous construction is detailed in [33, 41] in the context of defect CFTs). For example

we may consider a superfield O(y, w) which transforms in the spin ℓ graded symmetric

representation of OSp(d|2) (we recall that w is a polarization vector). By restricting both

y and w to Md−2 we obtain an operator Ô with SO(p)-spin ℓ:

O(y, w)|Md−2
→ Ô(x̂, ẑ) , ẑ ≡ w|Md−2

, x̂ ≡ y|Md−2
. (4.2)

We will denote the restricted operators as Ô and their coordinates as x̂ ∈ R
d−2. A hatted

operator with indices Ôαβ···, will automatically imply α, β = 1, . . . , d−2. It is clear from the

SO(d− 1, 1) symmetry that the restricted operators belong to a CFT in d− 2 dimensions.

Since x̂ and ẑ are at the origin of the R
2|2 space which is fixed by OSp(2|2), the operators

defined by (4.2) are annihilated by all generators of OSp(2|2), hence they are OSp(2|2)-
singlets. The definition (4.2) also implies that if O is a superprimary with superconformal

dimension ∆ then Ô transforms under SO(d− 1, 1) as a CFTd−2 primary of dimension ∆.

This follows straightforwardly from (3.19), as Ô is annihilated by Kµ (µ = 1, · · · , d − 2)

and diagonalizes the (d− 2)-dilations D.

Note that (4.2) automatically gives the right symmetry structure of the reduced op-

erators. E.g. a super-traceless graded symmetric OSp(d|2) spin ℓ tensor is projected to

a traceless symmetric spin ℓ tensor in d − 2 dimensions. In components, eq. (4.2) means

that Ô is obtained from O by two operations. First, we restrict the OSp(d + 1|2) indices
to the directions in Md−2. Second, we subtract the traces. The latter operation is implicit

in (4.2) because ẑµẑµ = 0. We can demonstrate this with the following simple example of

a spin 2 superprimary Oab which is super-traceless and graded symmetric. We first restrict

the indices a = µ, b = ν so that µ, ν ∈ {1, . . . , d− 2}, and then subtract the trace, so that:

Ôµν(x̂) = Oµν(x̂)−
gµν
d− 2

Oα
α(x̂) ≡ Oµν(x̂) +

gµν
d− 2

gab2|2Oab(x̂) . (4.3)

Since Oab is assumed traceless in full superspace, we have equivalently rewriten the sub-

tracted d − 2 dimensional trace Oα
α as minus the trace over the directions orthogonal to

Md−2, with g2|2 the corresponding OSp(2|2) invariant metric.

The procedure (4.2) works for any operator O (for a generic mixed symmetric rep-

resentations we only have to introduce different polarization vectors for each row of their

graded Young tableau). The restriction to θ, θ = 0 selects the bottom component O0 of

the superfield as defined in (3.20). It follows that the bottom component of any given

superprimary operator O gives rise to an operator Ô which is a singlet of OSp(2|2).

– 23 –



J
H
E
P
0
4
(
2
0
2
0
)
0
9
0

We emphasize that construction (4.2) can be applied to any operator O of the Parisi-

Sourlas theory. To be sure, there is no requirement that the operator O should have some

protected dimension, or anything of the sort. Thus we obtain a huge number of operators

Ô in (d− 2) dimensions. The construction works simplest for scalars when no indices are

involved, but also for spinning primaries. There is however one subtlety: the attentive

reader may have noticed that depending on the dimension d, for some operators O trans-

forming in complicated OSp(d|2) representations, the resulting operator Ô may come out

identically zero. This subtlety does not occur for most commonly occurring representations

such as graded symmetric traceless tensors as long as d ≥ 4 (so that the reduced space has

dimension at least 2). We will assume that d ≥ 4 in the rest of this paper.16

We wish to consider the theory in (d− 2) dimensions which consists of primary opera-

tors Ô defined via (4.2) and of their (d−2) dimensional descendants. Let us call this space

of operators S0. It should be pointed out that there are other OSp(2|2) invariant operators
which are not in S0. E.g. we can take the trace of operator O with respect to orthogo-

nal directions (i.e. the superspace components not in Md−2), or we can take derivatives

with respect to these orthogonal directions and contract them with the OSp(2|2) invari-

ant metric g2|2. Let us call operators of these latter types S1. E.g. in (4.3), the trace

part Oα
α = −gab2|2Oab and hence can be regarded as an S1 operator. Both S0 and S1 are

OSp(2|2) singlets, but it turns out that S1 operators containing g2|2 decouple: correlation

functions of an arbitrary number of singlet operators with an S1 operator vanish on Md−2.

This will be explained in section 4.2. Also, exchanges of S1 operators will be shown not

to contribute to correlation functions of S0 operators on Md−2. For this reason it makes

sense to restrict our attention only to S0 operators.

Now we see that the considered reduction works rather differently from the usually

considered trivial defect theories. From each superprimary operator of the d-dimensional

theory we obtain one primary operator of the (d− 2) dimensional theory. In usual trivial

defect theories, even if we restrict to the subsector of operators preserved by the defect,

reduction is one to many. This is because analogues of operators we called above S1 do

not decouple for trivial defects.

Let us now discuss the features of the CFTd−2 thus defined by dimensional reduction.

A generic correlation function in the CFTd−2 is obtained from that of the OSp(d+ 1, 1|2)
theory by restricting to Md−2 as follows:

〈Ô1(x̂1) . . . Ôn(x̂n)〉 = 〈O1(y1) . . .On(yn)〉
∣∣∣∣
Md−2

. (4.4)

In the above equation, Ôi is the projection of a superprimary Oi on Md−2 via (4.2).

Equation (4.4) looks like a usual restriction, however the resulting CFTd−2 has further

special properties. The most surprising one is that it has a conserved stress tensor, as we

16We could in principle also consider the reduction from 3 to 1 dimensions. Since spin does not exist in 1d,

the story changes a bit. In this special case scalars superprimaries reduce to scalars, vector superprimaries

reduce to parity odd scalars, while any other representation reduces to zero. In particular super stress

tensor reduces to zero, so that we do not get a stress tensor in 1d. This is of course natural because we do

not expect local CFTs in 1d. In what follows we will not consider this special case.
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shall demonstrate in section 4.3. From usual arguments, the reduced theory is endowed

with an OPE which arises from the restriction of the full OPE to R
d−2. Of course the OPE is

closed in the subsector of singlet operators of OSp(2|2), meaning that the OPE of two singlet

operators only exchanges singlets (moreover, as we show in section 4.4, type S1 operators

decouple, so the OPE can be truncated to operators Ô and their (d − 2)-dimensional

descendants). By using the OPE, any four point correlation function of the reduced theory

can be expanded in CBd−2, which means there should be a relation between the superblocks

of Parisi-Sourlas theory and the blocks of the CFTd−2. Quite remarkably, this relation is

extremely simple. Indeed, as we prove in section 4.4, each superblock is mapped to a

single (d− 2)-dimensional block! So the operators defined as the OSp(2|2)-singlet parts of
superprimaries of the Parisi-Sourlas theory give rise to a local CFT in d− 2 dimensions.

We have given a general picture of how Parisi-Sourlas dimensional reduction works.

In the next section we discuss the decoupling of S1 operators. This will be important in

the following sections where we prove that the dimensionally reduced theory is indeed local

and that the superblocks are equal to conformal blocks in (d−2)-dimensions. Additionally,

we will show how this equivalence gives a new relation between CBd−2 and CBd.

4.2 Decoupling of S1 operators

As we explained in the last section, there is an important difference between operators S0
and S1, since the latter decouple from the singlet sector. Let us show how this happens.

Recall that S0 consists of primaries generated using (4.2) and their (d − 2)-dimensional

descendants. These operators are constructed from the (d− 2)-dimensional components of

O’s and of their (d−2)-dimensional derivatives. The objects orthogonal to Md−2 are never

involved, thus ensuring the OSp(2|2) invariance of the obtained states. On the other hand,

S1 operators are defined by including the orthogonal objects (derivatives or components)

but in singlet combinations, i.e. by contracting them with the metric g2|2 on the space R
2|2

(d = 2 case of (3.4)). Some examples of S1 operators are:17

gab2|2Oab , gab2|2∂aOb , gab2|2∂a∂bO . (4.5)

With these definitions, S0 and S1 operators span the space of all OSp(2|2) singlets.
Now we will explain that, within singlets, the S1 operators completely decouple on

Md−2 in the following sense. Consider a correlation function of an arbitrary S1 operator

and any number of singlets (which may be S0 or S1). We claim that this correlator vanishes

on Md−2:

〈Õ O1 . . .On〉 = 0 on Md−2, for Õ ∈ S1, Oi ∈ S0 ⊕ S1. (4.6)

We repeat that this is only true if all operators are singlets and they all are positioned

on Md−2. Because of this limitations, it would be wrong to say that the S1 operators are

identically zero, although they do decouple in the described sense.

Vanishing of (4.6) is proven as follows. By definition of S1 operators, (4.6) is some

OSp(2|2)-invariant expression containing at least one metric g2|2, and which depends on

coordinates of operators, all in Md−2. When constructing the invariant, the indices of

17Recall also the simple example of dimensional reduction (4.3), where Oα
α = −gab2|2Oab is an S1 operator.
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g2|2 may be contracted with the reduced space objects (e.g. x̂, ẑ or the reduced metric),

which will trivially give zero. Alternatively, the indices of g2|2 may be contracted with the

indices of some other g2|2 floating around, such as if there are more than one S1 operators

in (4.6). However, the latter contraction gives the supertrace (g2|2)
a

a = 2 − 2 = 0, which

also vanishes. In other words it is not possible to build a nontrivial OSp(2|2) singlet out

of g2|2 and reduced tensors. Hence all singlet correlation functions involving an operator

S1 must vanish.

The lack of singlets built out of g2|2 plays a crucial role in all proofs related to dimen-

sional reduction. E.g. this fact is hidden in various steps of the demonstrations of locality

(see section 4.3) and dimensional reduction of the superblocks (see section 4.4).

4.3 The stress tensor multiplet

In this section we shall demonstrate that, assuming that the OSp(d+1, 1|2) theory is local,

the singlet sector of its restriction to Md−2 is also local. The first step is to show that if

the super-conformal theory has a super stress tensor Tab, then the dimensionally reduced

theory also has a spin two operator with dimension d − 2, which satisfies a conservation

equation.

We discussed in section 3.1.2 the super stress tensor Tab and its conservation. Following

the rule (4.2), the dimensionally reduced stress tensor T̂ will be related to T by the following

equation:

T̂ (x̂, ẑ) ≡ T (y, w)|Md−2
. (4.7)

Setting the transverse coordinates, in particular θ, θ, to zero, picks out the bottom compo-

nent T0 which has the same dimension as the Tab superdimension, that is d − 2. Since T̂

has the correct conformal dimension and spin, it is a good candidate for the stress tensor

of the CFTd−2. Let us see that the conservation of T implies conservation of T̂ . We have

0 = ∂aTaν =
d−2∑

α=1

∂αg
αβ
d−2Tβν + ∂ag

ab
2|2Tbν , (4.8)

where we denoted by gd−2 and g2|2 the metrics along and orthogonal to Md−2. The second

term is an operator of type S1 in the sense of the previous section. In the first term we

have Tβν = T̂βν modulo another S1 operator, see (4.3). So we conclude that ∂αT̂αβ = 0

modulo S1 operators. As we showed in section 4.2, correlation functions of S1 with other

singlets vanish on Md−2. So T̂ is conserved within the singlet sector.18

So far we only discussed conservation of T̂µν away from other insertions. In the fol-

lowing we would like to see how the contact terms dimensionally reduce. This would fully

prove that the stress tensor candidate T̂µν generates translations in the CFTd−2, hence

it is the true stress tensor, and the CFTd−2 is local. In (3.25) we defined the meaning

of locality for a Parisi-Sourlas theory. In what follows we use an alternative definition of

18The just given argument can be succinctly expressed using the differential operator (3.16), which “opens

up” indices of tensors contracted with the external polarization vectors, by showing that (∂y ·Dw)T (y, w) = 0

implies (∂x̂ ·Dẑ)T̂ (x̂, ẑ) = 0 in the singlet sector (where Dµ

ẑ is used to open the indices of SO(d−2) tensors).

In fact, one can see that on Md−2, the operator ∂y ·Dw acts as ∂x̂ ·Dẑ modulo terms of S1-type.
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locality which repackages equation (3.25) in terms of a condition on the OPE between Tab
and O. This is done by analogy with the non-supersymmetric story in [42] (see also the

lucid discussion of such matters in [43]). Indeed (3.25) is related to the following OPE

contribution:

Tab(y)O(0) ∼ · · ·+Bab
c(y)∂cO(0) + · · · , (4.9)

where the tensor structure B has to satisfy the following property:

∫

V
ddxdθdθ ∂aBabc(y) = gcb , (4.10)

where V is the interior of a supersphere with radius ̺.

We would like to show that, if (4.9) and (4.10) hold, then the operator T̂µν has the

following OPE with Ô:

T̂µν(x̂)Ô(0) ∼ · · ·+Bµν
ρ(x̂)∂ρÔ(0) + · · · , (4.11)

with the condition ∫

V̂
dd−2x̂ ∂µBµνρ(x̂) = gνρ , (4.12)

where V̂ is the projection of V on Md−2. These equations then imply that T̂ generates

(d− 2) dimensional translations.

Before entering the proof, it is convenient to fix the structure of Babc(y). This is

determined by requiring Ba
ac = 0 and ∂aBabc = 0 (away from y = 0), respectively from

the tracelessness and conservation of the super stress tensor, as well as scaling as 1/yd−2

for dimensional reasons. This implies:

Babc(y) = C

[
yagcb + ybgac − 2

d−2ycgba

(yaya)
d
2
−1

+ (d− 4)
(yayb − gba

d−2y
eye)yc

(yaya)
d
2

]
, (4.13)

with an overall normalization constant C = d−2
2(d−3)Sd−2

(where Sd−2 is the area of the sphere

in d− 2 dimensions), which we computed by performing the integral (4.10) explicitly.

Now that B is fixed, it is easy to show that the OPE (4.11) follows directly from (4.9),

by simply projecting it to Md−2. Indeed a, b are trivially projected to µ, ν and it is easy

to see that Bµν
c∂cO = Bµν

ρ∂ρO (in fact Bµν
c vanishes when y = x̂ ∈ Md−2 and c is an

index orthogonal to Md−2).

We are then left to show how (4.12) follows from (4.10). For this it is convenient to

use the following equation:

∫
ddxdθdθf(wµ

i xµ, y
2) =

∫
dd−2x̂f(wµ

i x̂µ, x̂
2) , (4.14)

where y2 = x2 + 2θθ and wµ
i are vectors in Md−2. To derive it we apply the d = 2 case

of (2.26) integrating over xd−1, xd, θ, θ and treating the rest of the variables as spectators

(since wµ
i ∈ Md−2, the function being integrated is OSp(2|2) invariant).
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Eq. (4.10) can be put in the form (4.14) as follows. First we note that in (4.14) the

integral is over the whole R
d|2 while in (4.10) it is over the super-ball V . We just replace the

latter with an integral over R
d|2 with an appropriate step-function Θ(̺−

√
y2). Then we

contract the indices of (4.10) with polarization vectors wb
1, w

c
2 that are restricted to Md−2.

In summary we use (4.14) with f ≡ Θ(̺−
√
y2)∂aBabcw

b
1w

c
2. Finally we need to show that

∂aBaνρ(y)|y∈Md−2
= ∂µBµνρ(x̂). This is easy to see from a direct computation and basically

descends from the fact that the superdivergence ∂aya = d − 2 is equal to the divergence

∂µx̂µ in R
d−2. Putting together all the ingredients, the equation (4.10) reduces to

gνρ =

∫

V
ddxdθdθ ∂aBaνρ(y) =

∫

V̂
dd−2x̂ ∂µBµνρ(x̂) , (4.15)

which proves the condition (4.12). Not surprisingly, the dimensionally reduced B has the

same functional form as that one given by Cardy [42].

The proof above may look technical, but it is rather explicit and has the advantage

of clearly showing how the contact terms are dimensionally reduced. We thus reach the

important conclusion that the locality of the Parisi-Sourlas CFT implies the locality of

the CFTd−2. Here it is important to stress that by CFTd−2 we are referring to the

OSp(2|2)-singlet sector of the restricted theory. Indeed for operators which are charged

under OSp(2|2) we would not be able to use (4.14), and our proof would not go through.

4.4 OPE and conformal blocks

4.4.1 Dimensional reduction of OPE

Let us show the implications of the decoupling (4.6) for the OPE. Consider the OPE of

two scalar primaries Ôi ∈ S0 of dimensions ∆i. We can obtain this OPE by dimensionally

reducing the superspace OPE (3.46), which gives the expression of the form:

Ô1(x̂)Ô2(0) =
∑

O

λ
12Ô

|x̂|∆1+∆2−∆+ℓ
[x̂αℓ

· · · x̂α1Oα1...αℓ(0) + superdesc.] . (4.16)

We can further rearrange the r.h.s of this equation. First of all we want to replace the

components of O by the components of the d− 2 dimensional traceless symmetric primary

Ô defined via (4.2). As explained in section 4.1, this involves some subtracted traces which

are S1 operators. We also want to split the superdescendant contributions into those

of usual d − 2 dimensional descendants and the rest, i.e. the superdescendants involving

superderivatives orthogonal to Md−2. The latter are also S1 operators: they must appear

in OSp(2|2) singlet combinations, hence will involve contracting superderivatives with the

g2|2 metric. Thus after rearrangement we get:

Ô1(x̂)Ô2(0)=
∑

Ô∈S0

λ
12Ô

|x̂|∆1+∆2−∆+ℓ

[
x̂α1 · · · x̂αℓ

Ôα1...αℓ(0)+desc.
]
+S1 contribution , (4.17)

So, any superprimary O with dimension ∆ and OSp(d|2)-spin ℓ in the superOPE (3.46) gave

rise to an S0 primary Ô contributing to the OPE (4.17), of the same scaling dimension
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and with the same OPE coefficient: λ
12Ô

= λ12O. This primary is accompanied by its

(d− 2)-dimensional descendants, as indicated in (4.17).

Now suppose we are interested in correlation functions of Ôi ∈ S0, e.g. their four

point function. To compute the four point function, we use OPE (4.17) twice. Then we

are reduced to two point functions of exchanged operators. However as noticed above

the S1 operators have vanishing two point functions with any singlet, in particular among

themselves, and will drop out. Thus, for purposes of any such computation we can truncate

the OPE (4.17) dropping the S1 contribution:

Ô1(x̂)Ô2(0) =
∑

Ô

λ
12Ô

|x̂|∆1+∆2−∆+ℓ

[
x̂α1 · · · x̂αℓ

Ôα1...αℓ(0) + desc.
]
. (4.18)

It is in this sense that the OPE of S0 operators is closed on themselves, as already antici-

pated in section 4.1.

It is nice to rephrase this conclusion in terms of conformal blocks. Indeed, since the

S1 operators decouple, the superblocks will have a very simple relation with the CBd−2.

This will be discussed in the next subsection.

4.4.2 Dimensional reductions of superconformal blocks

In this section we want to prove that the OSp(d + 1, 1|2) conformal blocks are equal to

conformal blocks in d−2 dimensions. Our strategy is to show that the two functions satisfy

the same differential equation, which arises by applying the (super) conformal Casimir. In

order to make the computation easier the argument is formulated in super-embedding

space, where the super-Casimir operator takes a very simple form.

For simplicity we will first focus on a four point function of scalar superprimaries and

we will analyze the super-Casimir equation (3.48) for the exchange of an operator O with

super-dimension ∆ and which transforms in a graded symmetric representation of OSp(d|2)
with spin ℓ:

C G
d|2
∆,ℓ(Pi) = c

d|2
∆,ℓ G

d|2
∆,ℓ(Pi) , (4.19)

where Pi are points defined in super-embedding space of section 3.2. The eigenvalue ap-

pearing in this equation is given in eq. (3.34) and, as mentioned there, is equal to the

eigenvalue of the d − 2 dimensional Casimir equation. We are thus left to check that ac-

tion of the differential operator C takes the same form as the Casimir differential operator

in d − 2 dimensions when we restrict this equation to the submanifold Md−2 defined in

section 4.1. This must be true, since the Casimir differential operators are equal up to

terms belonging to S1, which vanish according to (4.6). However, to be more transparent,

let us show in more details how this match takes place.

For the purpose of the proof, it is convenient to write the superconformal Casimir C,

see eqs. (3.49), (3.32), as follows:

C = CP1 + CP2 + CP1,P2 , (4.20)

– 29 –



J
H
E
P
0
4
(
2
0
2
0
)
0
9
0

where the operators CP and CP,Q are defined as

CP ≡ (d− 2 + P · ∂P )P · ∂P − P 2∂2P︸ ︷︷ ︸
=0

, CP,Q ≡ 2PAQB(∂P )B(∂Q)A − 2(P ·Q)(∂P · ∂Q) ,

(4.21)

where the term P 2∂2P can be dropped as shown since P 2 = 0 on the projective lightcone.

The terms in (4.20) arise by collecting the contributions (L1)
2, (L2)

2 and L1L2 in (3.49)

and by commuting all the derivatives to the right.19 The relations (4.21) are also useful

to explicitly check the expression for the eigenvalue (3.34). In fact the action of Casimir

on O(P,Z) takes the form CP + CZ + CP,Z , where CP,Z reduces to 2Z · ∂Z . By using the

scaling properties of O(P,Z) one directly recovers (3.34).

We now want to consider the action of C on the function G
d|2
∆,ℓ(Pi) when we restrict

the points Pi on the manifold Md−2. With this restriction, we can simply drop all the

terms which give a contribution proportional to P d−1, P d, θ, θ. Then it is easy to see that

the operators CPi
reduce to

CPi
G

d|2
∆,ℓ(Pj)

∣∣
Md−2

=

(
d− 2 +

d−2∑

α=0

Pα
i · ∂Pα

i

)
d−2∑

α=0

Pα
i ∂Pα

i
G

d|2
∆,ℓ(Pk)

∣∣
Md−2

, (4.22)

which takes the same form as their d− 2 dimensional counterpart. For the operator CP1,P2

the proof is slightly more complicated. By dropping terms proportional to xd−1, xd, θ, θ we

only obtain

CP1,P2G
d|2
∆,ℓ(Pj)

∣∣
Md−2

= −


2

d−2∑

α=0

Pα
1 · P2α

d−2∑

α=0

∂Pα
1
∂P2α − 2

d−2∑

α,β=0

Pα
1 P

β
2 (∂P1)β(∂P2)α


G

d|2
∆,ℓ(Pj)

∣∣
Md−2

− 2
d−2∑

α=0

Pα
1 · P2α

[(
∂P d−1

1
∂P d−1

2
+ ∂P d

1
∂P d

2

)
−
(
∂θ1∂θ2 + ∂θ2∂θ1

)]
G

d|2
∆,ℓ(Pj)

∣∣
Md−2

.

The first line reproduces exactly the term needed for dimensional reduction to hold. It is

straightforward to show that the second line vanishes. Indeed, by conformal invariance,

the blocks are functions of the scalar products Pi ·Pj . The two terms in the square brackets

have the same action on any function f(Pi · Pj)
∣∣
Md−2

, with opposite signs, so that their

contribution exactly cancels.20

19To this end it is useful to apply the following formula

1

2
gADgBCL(Pi)ABL(Pj)CD = PA

i ∂
B
i (Pj)B(∂j)A − (−1)[C][D]gACgBD(Pi)A(∂i)B(Pj)C(∂j)D .

Other useful relations are collected in appendix B.
20To make the argument more explicit let us consider some examples. First we act with the square

bracket on a term (P1 · P3)(P2 · P4). The result of the action is P d−1
3 P d−1

4 + P d
3 P

d
4 − θ3θ4 − θ4θ3, which

vanishes on Md−2 because all terms are projected to zero. In order to obtain a result that is not trivially

projected to zero, one can consider the action of the square bracket on (P1 ·P2). However this would give a

term proportional to the super-trace of the orthogonal space which is zero, (1 + 1)− (1 + 1) = 0. It is easy

to see that the action of the square bracket on any function of (Pi ·Pj) will either be proportional to terms

which vanish on Md−2 or give the vanishing super-trace result. Indeed this is only an explicit example of

the decoupling described in section 4.2.
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We therefore proved that the super-Casimir differential equation restricted to Md−2 is

equal to the Casimir equation in d− 2 dimensions. It is also straightforward to show that

the boundary condition at short distances that the conformal partial waves have to satisfy,

and which follows from the OPE, is the same. Hence, the conformal partial waves G
d|2
∆,ℓ(Pi)

are identical to the partial waves Gd−2
∆,ℓ (P̂i) of a d − 2 theory when the points Pi = P̂i are

restricted to Md−2. This implies that conformal blocks, to which conformal partial waves

are proportional as shown in eq. (3.48), should agree as functions of u, v:

g
d|2
O (u, v) = gd−2

O (u, v) . (4.23)

Indeed, by conformal invariance, knowing conformal blocks on Md−2 is enough to fix their

functional form completely. Note that in the main case of our interest d ≥ 4, d− 2 ≥ 2, we

have two independent cross ratios u, v both before and after reduction.

The only difference between the blocks is the meaning of the argument at which they

are usually evaluated: gd−2 at the standard cross ratios u, v, the superblock gd|2 at the

super-cross-ratios U, V of (3.45).

So far we only considered the case of a spin ℓ exchange in a scalar four point function,

however we can easily run the same argument for generic spinning external operators and

for the exchange of an operator in a generic OSp(d|2) representation. For example, given

a four point function of operators Oi(Pi, Zi) with spin ℓi, the super-Casimir operator in

the embedding space can be written as a sum of terms CPi
, CZi

, CZi,Zj
, CPi,Zj

, CPi,Pj
as

defined in (4.21). For all such terms we already proved that dimensional reduction works

as long as they act on scalar functions of Pi and Zj (by superconformal invariance the

superblocks are scalar functions dependent only on the combinations Pi ·Pj , Pi ·Zj , Zi ·Zj)

and as long as we set Pi, Zj ∈ Md−2.

With this simple argument we thus proved a very general result: the equality of su-

perconformal partial wave and usual CFTd−2 partial waves. There are some exceptions to

the above rule. E.g. when the exchanged operator belongs to a representation which does

not exist in d− 2 dimensions. In this case the associated conformal partial wave vanishes

when restricted to Md−2.
21 See also the discussion in section 4.5. Another case is when the

kinematics of the reduced space does not allow for the complete reconstruction of the su-

perconformal partial wave. For example by going from 3d to 1d we should interpret (4.23)

as a relation between the superblock restricted to a line and the 1d block (where both of

them depend on a single cross ratio).

Equality of conformal blocks for common representations has very important implica-

tions for the understanding of dimensional reduction, which we will discuss in section 4.5.

Before doing so, we show how this result also has interesting consequences for the theory

of conformal blocks.

21Notice however that some representations which naively do not exist in d−2 dimensions, may be dualized

to allowed representation, and then this vanishing does not occur. E.g. the representation with ℓ Young

tableau boxes in the first row and 1 box in the second row naively is not realized in three dimensions,

however by contracting it to an epsilon tensor we can transform it to a Young tableau which exists; it

corresponds to a parity odd traceless and symmetric representation of spin ℓ.
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4.4.3 Relations between conformal blocks in different dimensions

In the previous section we showed that the OSp(d+1, 1|2) superconformal blocks are equal

to blocks in d − 2 dimensions. On the other hand, it is a completely standard fact that

the superconformal block can be decomposed as a sum of regular d-dimensional blocks

which sum up the contributions of all the conformal primaries in the supermultiplet of the

exchanged superprimary operator. Combining these two facts we are led to a somewhat un-

expected conjecture: there should be a linear relation expressing a single conformal block

in d − 2 dimensions as a finite linear combination of conformal blocks in d dimensions.

Normally, relations between conformal blocks are studied the other way around. Indeed,

reduction of a d dimensional CFT to a trivial d−2 dimensional defect implies that a single

d dimensional block should be expressible as an infinite linear combination of d− 2 dimen-

sional blocks. Such infinite linear combinations have been worked out by Hogervorst [40]

for reduction d→ d− 1, and by using his formulas twice we will get a doubly infinite sum

for reduction d→ d− 2. We thus claim that these doubly infinite sums can be inverted by

a finite linear combination!

Surprising as it is, such a magic finite relation indeed exists, and it takes the following

form, beautiful to the eye of any conformal block expert:

g
(d−2)
∆,ℓ = g

(d)
∆,ℓ + c2,0 g

(d)
∆+2,ℓ + c1,−1 g

(d)
∆+1,ℓ−1 + c0,−2 g

(d)
∆,ℓ−2 + c2,−2 g

(d)
∆+2,ℓ−2 , (4.24)

where the generic scalar block in d − 2 dimensions is written as a linear combination of

only five blocks in d dimensions. The coefficients can be written in closed form as follows:

c2,0=− (∆−1)∆(∆−∆12+ℓ)(∆+∆12+ℓ)(∆−∆34+ℓ)(∆+∆34+ℓ)

4(d−2∆−4)(d−2∆−2)(∆+ℓ−1)(∆+ℓ)2(∆+ℓ+1)
,

c1,−1=− (∆−1)∆12∆34ℓ

(∆+ℓ−2)(∆+ℓ)(d−∆+ℓ−4)(d−∆+ℓ−2)
, (4.25)

c0,−2=− (ℓ−1)ℓ

(d+2ℓ−6)(d+2ℓ−4)
,

c2,−2=
(∆−1)∆(ℓ−1)ℓ(d−∆−∆12+ℓ−4)(d−∆+∆12+ℓ−4)(d−∆−∆34+ℓ−4)(d−∆+∆34+ℓ−4)

4(d−2∆−4)(d−2∆−2)(d+2ℓ−6)(d+2ℓ−4)(d−∆+ℓ−5)(d−∆+ℓ−4)2(d−∆+ℓ−3)
.

where as usual ∆ij = ∆i −∆j are dimension differences of the external scalar primaries.

This assumes conformal blocks normalized as in [39, 44, 45] (see table I in [23] for a

comparison of different normalizations). We were able to obtain these relations in generic

dimensions even though the conformal blocks are not known in a closed form. To do so we

used the recurrence relation [45, 46] which determines the conformal blocks as an expansion

in the radial cross ratio r of [47]. In fact all the coefficients ci,j (for arbitrary values of the

spin ℓ) of the ansatz (4.24) are completely fixed already at order O(r2). We then checked

that higher orders in r also agree with eqs. (4.24), (4.25).22

22We also checked that eqs. (4.24) and (4.25) are satisfied by some closed form expressions of conformal

blocks. In particular for the relation between 2 and 4 dimensions — where both blocks are known from the

early work of [39, 44] — and for 1 and 3 dimensions. In the latter case the 1d blocks depend on a single

cross ratio and should be compared to the 3d diagonal blocks (for ℓ = 0) of [48, 49].
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Our relation (4.24) is reminiscent of a relation between conformal blocks in different

dimensions found by Dolan and Osborn (see eq. (5.4) of [39] and eq. (4.42) of [50]). However

the two relations are different. In fact the latter relates one block in d dimensions to five

blocks in d− 2 dimensions (so it works in the opposite way). Moreover the d-dimensional

block is multiplied by some function of the cross ratios, while in our relation all coefficients

are pure numbers. Although the connection is not obvious, it turns out that by judiciously

combining eq. (5.4) of [39] with eqs. (5.1), (5.2) of the same article, one can eliminate the

prefactor and obtain our recursion relation.23

Eq. (4.24) is very useful to demonstrate some features of the OSp(d+1, 1|2) represen-
tation theory, which we explained in the previous sections. For example, we may look at

the expansion of a superfield in the Grassmann variables, as shown in (3.20). An operator

Oa1...aℓ in traceless graded-symmetric representation of OSp(d|2) of spin ℓ, contains exactly
five classes of Grassmann-even primary operators (which transforms under SO(d)):

Oa1...aℓ ⊃ Oα1...αℓ
0︸ ︷︷ ︸
∆,ℓ

, Oα1...αℓ

θθ︸ ︷︷ ︸
∆+2,ℓ

, Oθα2...αℓ

θ ,Oθα2...αℓ

θ Oθα2...αℓ

θ
Oθα2...αℓ

θ︸ ︷︷ ︸
∆+1,ℓ−1

, Oθθα3...αℓ
0︸ ︷︷ ︸
∆,ℓ−2

, Oθθα3...αℓ

θθ︸ ︷︷ ︸
∆+2,ℓ−2

.

(4.26)

Since the tensor indices θ and θ can at most appear once (because of graded-symmetry),

primaries with ℓ − 3, ℓ − 4, . . . are forbidden. Hence, from this simple analysis, we obtain

the form of (4.24). Of course for low spins ℓ = 0, 1, some of the five mentioned classes

of representations vanish. For these low spins the corresponding coefficients ci,j vanish, as

can be seen from (4.25).

Another interesting feature of the coefficients ci,j is that they are not sign-definite, in

fact they are all negative for large ∆. This is related to the fact that the Parisi-Sourlas

theory is non-unitary. Notice that the above-mentioned infinite reductions from larger to

smaller d give rise to expressions with positive coefficients.

We can perform an even more refined consistency check, by obtaining the exact form

of the coefficients (4.25) by studying the decomposition of the superconformal multiplets

into conformal multiplets. As an example we recover the coefficient c2,0 for the case of

ℓ = 0, which multiplies g
(d)
∆+2,ℓ=0. This conformal block is associated to a scalar primary

operator Õ which is a descendant at the level two of a scalar superprimary O. In order to

have the right quantum numbers the operator Õ has to have the form:

|Õ〉 = (PαPα + a P θP θ)|O〉 , (4.27)

where the coefficient a can be fixed by requiring that Õ is a primary operator, Kµ|Õ〉 = 0.

We thus find

a = 2∆− d+ 2 . (4.28)

The coefficient c2,0 arises because of the different normalization of Õ, which is a superde-

scendant, and therefore is not canonically normalized as a primary operators. In particular

23We thank Hugh Osborn for pointing this out and for sending us the derivation after our paper ap-

peared [51].
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the coefficient c2,0 is written as

c2,0(ℓ = 0) =
M(∆12)M(∆34)

N
, (4.29)

where the coefficients N and M are respectively defined in terms of the norm of |Õ〉 and
its three point functions with other two operators:

〈Õ|Õ〉 ≡ N 〈O|O〉 , 〈OiOjÕ〉 ≡M(∆ij) 〈OiOjO〉 . (4.30)

By using the commutation relations of the superalgebra (3.18) (or equivalently by taking

derivatives on a two point function), we obtain

N = −4∆(∆ + 1)(d− 2(∆ + 1))(d− 2(∆ + 2)) . (4.31)

In order to computeM we conveniently choose to act with the combination (PαPα+aP
θP θ)

on the leading OPE O(x, θ, θ)Oi(0) ∼ cOij(x
2 − 2θθ)−(∆+∆ij)/2Oj(0), following the con-

ventions of [45]. In practice this gives us a very straightforward definition of M :

(∂α∂α + a ∂θ∂θ)(x2 − 2θθ)−
∆+∆ij

2

∣∣∣∣
θ,θ=0

≡M(∆ij) (x
2)−

∆+2+∆12
2 . (4.32)

The result of this computation is

M(∆ij) = (∆ij −∆) (∆ +∆ij) . (4.33)

By using formula (4.29) and replacing (4.31) and (4.33), we finally recover the exact form

of c2,0(ℓ = 0), as predicted by (4.25). One could, of course, recover all the other coefficients

(also for generic ℓ) through similar computations. We did not invest time in doing so.

4.5 Comments

In section 4.4 we showed that each superconformal block of the Parisi-Sourlas theory re-

duces to a single CBd−2. This means that in the OPE all the superdescendant exchanges

are reduced to descendant exchanges. As we explained in sections 4.1 and 4.4.1, this is

somewhat non-trivial because contrary to how reductions work for trivial defects. In fact

typically we would expect that a given supermultiplet would reduce to an infinite tower of

CFTd−2 multiplets. Our analysis shows that the infinite tower decouples inside the dimen-

sionally reduced four point function, leaving only the contribution of a single multiplet. In

the language of (4.17), this is the consequence of the fact that the S1 contributions drops

out. It was already explained there but we would like to emphasize this again. We thereby

obtain that the superconformal block decomposition of a scalar four point function reduces

as follows:

〈O1(P1) . . .O4(P4)〉=
∑

∆,ℓ

λ12∆,ℓλ∆,ℓ34G
d|2
∆,ℓ(Pi)−→〈Ô1(P̂1) . . . Ô4(P̂4)〉=

∑

∆,ℓ

λ12∆,ℓλ∆,ℓ34G
d−2
∆,ℓ (P̂i) ,

(4.34)

where P̂i are the dimensionally reduced counterparts of Pi. The two sums run over the same

spectrum, meaning that the exchanged operators are labelled by the same values (∆, ℓ).
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Furthermore all OPE coefficients match. In addition, in section 4.3, we detailed how the

reduction of the super-stress tensor implies that the CFTd−2 is local. These results explic-

itly show in which sense a sector of the Parisi-Sourlas theory, given by OSp(2|2)-singlet
operators, is described by a local non-supersymmetric CFTd−2. A few more comments

related to this picture are in order.

From what we say above, and from the definition (4.2), it may seem that any super-

primary operator in the SUSY theory descends to a primary operator in the CFTd−2 with

the same dimension ∆ and which transform in a representation of SO(d − 2) labelled by

the same Young tableau. However this is not always true. Some superprimaries have no

description in terms of primaries of the CFTd−2. This happens when the Young tableau of

OSp(d|2) cannot be associated to a Young tableau of SO(d−2). Indeed Young tableaux of

SO(d− 2) only have [d2 − 1] lines while the ones of OSp(d|2) are of the form (3.8). So, for

example, in the Parisi-Sourlas theory there are operators labelled by a column of n graded-

antisymmetric boxes (for generic values of n), which are not there in the CFTd−2 when

n is sufficiently large. Indeed one can see that the procedure (4.2), to generate a singlet

of OSp(2|2), would project such operators to zero. In other word, we cannot associate to

all the supersymmetric operators an OSp(2|2) singlet, hence the spectrum of the CFTd−2

does not contain information of all the superprimaries of the Parisi-Sourlas theory.

Let us discuss some simple consequences of this fact. The first trivial comment is that,

if a superprimary O′ is projected to zero by (4.2), then all correlation functions which

contain O′ are projected to zero. One may then ask what happens when O′ is exchanged

inside the OPE of two superprimary operators O1,O2 which are not projected to zero. The

answer is that the exchange of O′ would be projected to zero. This is bound to happen

since it is not possible to build the SO(d−2) tensor structure which multiplies the projected

operator Ô′ inside the OPE.24 The associated partial wave vanishes since its leading OPE,

which sets the boundary condition of the Casimir equation, is zero.

Finally it is interesting to wonder if the opposite of dimensional reduction may also

work. Namely, given an abstract local CFTd−2, can we always uplift it to a superspace

R
d|2 and obtain a Parisi-Sourlas CFT? This procedure indeed looks viable since a huge

part of the SUSY CFT data is described by the lower dimensional theory. For example all

four point functions of scalar operators of the CFTd−2 can be easily uplifted preserving all

CFT axioms. In fact it is clear that we can change the direction of the arrow in (4.34).

However, the presence of the operators of the kind O′, discussed above, stops us from

making the strong claim, since information about them cannot be obtained from lower

dimensions. One could hope that this part of the spectrum can be fixed by imposing extra

consistency conditions, as we speculate in the conclusions. Because of this complication,

reconstruction of the full SUSY CFTd from CFTd−2 is not a completely trivial problem

and requires further analysis. This problem has an interesting analogy in the problem of

critical dynamics, which we review in appendix D.

24E.g. we can consider O1,O2 to transform in a spin ℓ representations in 5d. In their 5-dimensional

OPE we may find operators O′ labeled by two equal rows of length ℓ in the Young tableau. While this

representation exists in 5d, it does not exist in 3d (for ℓ > 1). For ℓ = 1 instead this may be dualized to a

parity odd vector representation, which does exist in d = 3. See also footnote 21.
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5 Conclusions

In this paper we studied the implication of Parisi-Sourlas superconformal symmetry. This is

conjectured to be realized in RG fixed points of models with random field type of disorder.25

The full Parisi-Sourlas conjecture works in some cases and to fail in others, as we will

revisit in a forthcoming paper. Here we narrowed the scope, and studied the problem from

a different point of view, by focussing on the supersymmetric fixed points themselves.

These fixed points enjoy OSp(d+1, 1|2) superconformal symmetry. They possess some

unusual features which escape the conventional classifications of superconformal theories

available in the high-energy physics literature.26 In fact Parisi-Sourlas theories are non-

unitary and the generators of their supersymmetries transform not as spinors but as scalars

or vectors under rotations. While lack of unitarity may seem unusual to a particle physicist,

unitarity is not a request of fundamental importance in statistical physics context, and

numerous non-unitary theories are known to play a role in nature.

In section 3 we showed how these superconformal theories work from an axiomatic

point of view. We started with a detailed analysis of their symmetries and representations.

We explained how to embed the stress tensor of the theory in a superconformal multiplet.

We then analyzed correlation functions by introducing a super-embedding space formalism

and we exemplified it in some simple cases. Finally we showed how to define the OPE and

the superconformal block decomposition of four point functions. While this analysis could

have revealed some pathological features, it did not: these theories seem perfectly healthy.

The most compelling aspect of Parisi-Sourlas supersymmetric theories is that they

undergo the so called “dimensional reduction”. Namely that a sector (the OSp(2|2)-singlet
sector) of the SUSY theory is described by a d−2 dimensional CFT. In section 4 we carefully

explain the meaning of dimensional reduction and its implications at the level of axiomatic

CFTs. We showed that the locality of the Parisi-Sourlas CFT implies the locality of the

d − 2 dimensional theory. We then explained that every superprimary descends under

dimensional reduction to one primary, while infinitely many additional operators which

would naively also be expected to arise (as they do arise for reductions to trivial defects)

decouple. This is explained by direct inspection of the OPE and by the computation of the

superconformal blocks of the theory, which we prove to be equal to the usual conformal

blocks in d− 2 dimensions. Finally, from the study of superconformal blocks, we obtained

a new finite-term linear relation involving conformal blocks in d and d−2 dimensions. This

relation is between non-supersymmetric blocks and may look like it has nothing to do with

supersymmetry. However, the existence of this surprising relation is a direct consequence

of the Parisi-Sourlas supersymmetry and could not have been guessed otherwise.

25This should be distinguished from random bond type of disorder, which corresponds to disorder in the

coupling J in Hamiltonian (1.1). Random-bond disorder is also interesting but the physics involved is quite

different; see [52] for recent work.
26E.g. the classification of [53] assumes that the generators of the supersymmetries transform in the

fundamental spinor representation of the Lorentz group. One may be confused since the algebra OSp(d+

1, 1|2) also describes some unitary theories, as the six-dimensional (2, 0) SCFTs. However, even when the

algebra is of the Parisi-Sourlas type, the generators of the superconformal symmetries classified by [53] are

embedded inside the orthosymplectic rotations in a different way, see e.g. [54].
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We have thus illustrated that the Parisi-Sourlas CFTs are axiomatically well defined

and that they undergo dimensional reduction. These facts have some important conse-

quences. First we confirm that such SUSY fixed points do exist, hence they could be

reached at the end of an RG flow. One reason why they are not always reached at the end

of the random field theory flow could be their RG instability. If this is the case, it follows

that they should be reachable by tuning extra parameters (e.g. by changing the disorder

distribution). We find this hypothesis very tempting and it would be really exciting to see

experimental and numerical evidences of this fact. We will have more to say in [13].

A straightforward extension of this work is to study theories with superconformal

symmetry OSp(d − 1 + 2n, 1|2n). Loosely speaking, here the 2n fermionic degrees of

freedom should effectively cancel with 2n bosonic ones. So with an analysis analogous to

ours it should be possible to see that these theories undergo a dimensional reduction by

2n. Perhaps such theories also describe observables of some critical disordered theories.

We would like to mention here another, seemingly unrelated, known class of examples,

when supersymmetric theories reduced to a trivial defect also give a local theory: N = 2

superconformal theories in d = 4 and six-dimensional (2, 0) theories in d = 6. Reduced to a

plane, they give 2d chiral algebras possessing a local stress tensor [55, 56]. These chiral al-

gebras capture correlation functions of certain supersymmetrically protected operators put

in the plane and contracted with x-dependent polarization vectors (“twisted-translated”).

In [55, 56], the higher dimensional SCFT is unitary, while the reduced chiral algebra is

non-unitary. This is opposite to our case, when the higher dimensional theory is always

non-unitary, while the reduced theory may well be unitary.

Finally we want to comment on a very deep but speculative direction hinted at in

our work. From our analysis there seems to exist a very general relation which connects

CFTs in different dimensions. Indeed we found that the dimensionally reduced CFTd−2

captures a huge part of the CFT data of the Parisi-Sourlas theories. For example the whole

spectrum of scalar superprimaries and all the three point function coefficients appearing

in their OPEs is determined by the CFTd−2. This seems to suggest that the opposite of

dimensional reduction (“dimensional lift”) may also work. Namely that any given CFTd−2

can be lifted to R
d|2 to define a theory with OSp(d+1, 1|2) supersymmetry. (This idea can

also be inspired by an analogy in the problem of critical dynamics reviewed in appendix D.)

However, as we explained in section 4.5, this uplift is not trivial because some superprimary

operators of the Parisi-Sourlas theory have no counterpart in the CFTd−2. It would be

interesting to see if this part of the spectrum can be reconstructed from crossing symmetry

consistency conditions. For example, it should be possible to constrain the CFT data

of these operators by bootstrapping their correlation functions in the higher dimensional

theory. If this picture is proven correct we would conclude that the existence of a local

CFTd, automatically implies the existence of a discrete sequence of CFTd+2n for integer

n, which are local, non-unitary and supersymmetric. Alternatively, if the conjecture is

incorrect, there should be a condition which determines which CFTs can be lifted and

which cannot. Either way this is exciting and deserves further investigation.
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A Perturbative dimensional reduction

The equivalence of the supersymmetric theory in (2.15) and the d − 2 dimensional the-

ory (2.24) can be shown from perturbation theory. In this appendix we explain how to

recover (2.25) by showing that any general Feynman integral from the SUSY action reduces

to a Feynman integral of the (d− 2)-theory.

We assume a general polynomial form of V (Φ) =
∑

m≥2 gmΦm. Then a generic super-

field diagram would be:

F (y1, · · · , yn) = (2π)pmax

∫
[dyp]

∏

i<j

(
GΦΦ(yij)

)qij . (A.1)

Here [dyp] =
∏

p d
dxpdθpdθp, and p ∈ I = {1, . . . pmax} labels the internal points (vertices)

of the diagrams. We shall use indices i, j, . . . to number generic points, internal or external.

Also let us call the total number of propagators as N . The factor outside the integral arises

from rescaling of the coupling constants due to the overall factor in the SUSY action (2.15).

The number qij denotes the power with which a certain GΦΦ(yij) arises, where yij = yi−yj
and GΦΦ is the free theory propagator of the superfield Φ. We can obtain GΦΦ (with the

appropriate normalization factor) from (2.15) by setting V (Φ) = 0,

GΦΦ(y) =
a

(
x2 + 2θθ

) d−4
2

, (A.2)

where a ≡ Γ
(
d
2 − 2

)
/(8π

d
2 ). For simplicity we are using massless propagators and treating

mass as a perturbation. In what follows it will be convenient to split the coordinates in

different groups:

ya ≡ {xα, θ, θ} = {x̂α, x⊥α
, θ, θ} , x̂α ≡ {x1, · · · , xd−2} , x⊥

α ≡ {xd−1, xd} . (A.3)

In order to prove dimensional reduction of (A.1), we want to show that if we set

x⊥i
α
= θi = θi = 0 for any external point yi, the integral reduces to

F (x̂1, · · · , x̂n) = (2π)pmax

∫
[dx̂p]

∏

i<j

(
G

φ̂φ̂
(x̂ij)

)qij , (A.4)
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where [dx̂p] =
∏

p d
d−2x̂p. The function G

φ̂φ̂
(x̂12) = a (x̂212)

− d−4
2 is the free theory prop-

agator of φ̂ from (2.24) . Notice that the normalizations of the propagators of φ̂ and Φ

are the same, which is crucial to the simplification of the computations. This follows from

Fourier transforming their respective momentum space propagators as a direct consequence

of (4.14).27

A useful tool to handle propagators in position space is the Schwinger parametrization:

1

Ar
=

1

Γ(r)

∫ ∞

0
du ur−1e−uA . (A.5)

Introducing one Schwinger parameter uij per propagator, eq. (A.1) becomes

F (y1, · · · ,yn)=NaN (2π)pmax

∫
[dyp]

∫
[duij ]

∏

i<j

(
u
qij(

d
2
−3)

ij

)
exp

[
−
∑

i,j

(
xi ·xjMij+2θiθjMij

)]
.

(A.6)

Here [duij ] =
∏

i<j duij , N is a product of Gamma functions, and the matrix Mij is given

by (this matrix is obtained by expanding x2ij and θijθij in terms of xi, θi, θj):

Mij =

{∑
k uik, if i = j

−uij (≡ −uji), otherwise .
(A.7)

Now separating the variables as in (A.3) we can rewrite (A.6) as

F (y1, · · · ,yn)=NaN (2π)pmax

∫
[duij ]

∏

i<j

(
u
qij(

d
2
−3)

ij

)∫
[dx̂p] exp

[
−
∑

i,j

x̂i ·x̂jMij

]

×
∫
[dx⊥p ][dθp][dθp] exp

[
−
∑

i,j

(
x⊥i ·x⊥j Mij+2θiθjMij

)]
.

(A.8)

Let us focus on the integral in the second line of (A.8). By setting x⊥i
α
= θi = θi = 0

for the external points, only internal points contribute to the sum over i, j. Namely the

integral becomes

I =

∫
[dx⊥p ][dθp][dθp] exp

[
−

∑

p1,p2∈I

(
x⊥p1 · x⊥p2M̃p1p2 + 2θp1θp2M̃p1p2

)]
, (A.9)

where I is the set of internal points and M̃p1p2 is a pmax × pmax matrix (recall that pmax is

the number of internal points) obtained by restricting Mij∈I. Now, since the integrals over

x⊥, θa, θa are Gaussian, I can be computed as follows:

I =

[
πpmax

det(M̃)

]
×
[
det(M̃)

πpmax

]
= 1 . (A.10)

27It is possible to normalize both propagators to one, which amounts to rescaling the kinetic terms in the

two actions (2.15) and (2.24).
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Here the results in the left (right) square brackets is obtained from the bosonic (fermionic)

integral. We therefore conclude that

F (x̂1, · · · , x̂n) = NaN (2π)pmax

∫
[duij ]

∏

i<j

(
u
qij(

d
2
−3)

ij

)∫
[dx̂p] exp

[
−
∑

i,j

x̂i · x̂jMij

]

= (2π)pmax

∫
[dx̂p]

∏

i<j

(
G

φ̂φ̂
(x̂ij)

)qij . (A.11)

So we get the same Feynman integral as in d − 2 dimensions. Although it may not be

obvious, the mechanism for dimensional reduction is similar to what was demonstrated

in (2.26). Namely, for integrals of functions of distances, the fermionic components cancel

out with two of the bosonic ones, which results in dimensional reduction.

B Useful relations in super(embedding)space

In order to make more clear of the computations of section 4 we collect here some useful

properties of the superspace and the super-embedding space.

We shall first consider the super-embedding space R
d+1,1|1. The metric gAB defined

in (3.27) is non-diagonal and non-symmetric because of the J2 piece so we need to be

careful with the position of the indices:

PAPB = (−1)[A][B]PBPA , gAB = (−1)[A][B]gBA , (B.1)

where [A] = 0 if A = 0, . . . , d + 1 and [A] = 1 for the remaining two grassmannian

coordinates. Equations (B.1) in turn imply that the scalar product is symmetric P · Q =

Q · P . In order to raise and lower indices we use the following conventions:

PA ≡ gABP
B , PA ≡ gBAPB . (B.2)

By using the above formulas on the metric itself we obtain that gAB = δAB and g A
B =

δAB(−1)[A][B]. Hence gAA = d+4 while g B
B = d. Furthermore it is important to remember

that gAB is not the inverse of gAB. In fact

gABgBC = (−1)[B]([A]+[C])gBAgCB = (−1)[B](2[A])gBAgCB = g A
C = (−1)[A][C]δAC . (B.3)

Let us now exemplify how the derivatives ∂M ≡ ∂PM = (∂P 0 , ∂Pµ , ∂P d+1 , ∂θ , ∂θ) act in

super-embedding space. It is again important to keep track of the order of the indices in

all computations. For example,

∂MP
N = δNM , ∂MPN = gNM , ∂MPN = gNM , ∂MPN = (−1)[M ][N ]δMN . (B.4)

All the previous equations can be alternatively defined in superspace R
d|2. The results are

basically the same after the map:

gAB → gab , PA → ya , (B.5)
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where ya = (xα, θ, θ) ∈ R
d|2 are the superspace points and gab is the superspace metric

defined in (3.4). In particular let us emphasize that by taking different traces of the

superspace metric the following two results can be obtained:

gaa = d+ 2 , g a
a = d− 2 . (B.6)

Finally we stress that the trace gaa depends on the choice of the tensor basis. The appro-

priate OSp(d|2) invariant trace, the so called supertrace, is g a
a . It is only the supertrace

that can appear in our computations.

C Example: free theory

As a demonstration let us consider the supersymmetric theory of a free massless scalar Φ,

which can be written as

SSUSY = 2π

∫
ddxdθdθ

1

2
gab∂aΦ∂bΦ . (C.1)

Because of the θ, θ integrals, the dimension of the super-Lagrangian is d− 2, which implies

that the dimension of Φ is d
2 − 2. Indeed this is the dimension of a scalar superprimary

that satisfies the equations of motions ∂a∂aΦ = 0, as we explained in subsection 3.1.2.

By expanding Φ in θ and θ (see equation (2.16)), we conclude that the dimensions of its

constituents are

[
ϕ
]
=
d

2
− 2 ,

[
ψ
]
=
[
ψ
]
=
d

2
− 1 ,

[
ω
]
=
d

2
. (C.2)

Noether’s theorem can be used to define a super-stress tensor:

T 0
ab =

δL
δ(∂aΦ)

∂bΦ− gbaL , (C.3)

with the conservation law, ∂aT 0
ab = 0. From (C.3) it is clear that [T 0] = d− 2, as predicted

in section 3.1.2. We construct an improved version of the super-stress tensor that satisfies

the tracelessness property T a
a = 0:

Tab = (∂(aΦ)(∂b]Φ)−
d− 4

d− 2
Φ∂a∂bΦ− gba

d− 2
(∂cΦ)(∂cΦ) , (C.4)

where (·] implements graded-symmetrization. It is easy to verify, following the equation of

motion of (C.1), that this satisfies a super-conservation equation like (3.22) . Expanding

in θ, θ, we get

T µν

θθ
= Tµν = 2∂(µϕ∂ν)ω + 2∂(µψ∂ν)ψ +

4− d

d− 2
(ϕ∂µ∂νω + ω∂µ∂νϕ+ ψ∂µ∂νψ − ψ∂µ∂νψ)

− 2gµν

d− 2
(∂ρϕ∂

ρω + ∂ρψ∂
ρψ) . (C.5)

This satisfies the conservation equation ∂µT
µν = 0 and hence is the stress-energy tensor of

the d-dimensional theory that one obtains from (C.1) by performing the θ, θ integral .
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Now let us use the formula (4.7) to obtain the SO(d−2) stress-tensor. This is given by

T̂αβ = (∂αϕ)(∂βϕ)−
d− 4

d− 2
ϕ∂α∂βϕ− gαβ

d− 2
(∂γϕ)(∂

γϕ) . (C.6)

Here α runs from 1 to d − 2. The above satisfies the conservation equation ∂αT̂αβ = 0 in

d− 2, given the theory is free, i.e. ∂2ϕ = 0.

D Supersymmetry in the problem of critical dynamics

In this paper we dealt with the appearance of Parisi-Sourlas supersymmetry in physics

of disordered systems. In this appendix we will review how supersymmetry plays a role

in another problem of statistical physics: critical dynamics. Our review is based on [57],

chapters 36, 16, and 17. See also [1], chapter 10.

Consider a d-dimensional system at a thermodynamic continuous phase transition.

We are interested in correlation functions of local operators, e.g. the fluctuating order

parameter field φ. The usual problem of critical statics concerns equilibrium correlation

functions, determined by the equilibrium Gibbs distribution. E.g. for the ferromagnetic

phase transition we might consider a d-dimensional path integral with the Landau-Ginzburg

action S[φ] =
∫
ddxH[φ], H(φ) = (∂φ)2 +m2φ2 + λφ4, tuning m2 to reach the IR fixed

point described by a CFTd. Time dependence is, by definition, absent in critical statics.

Physically, we are dealing with equal-time correlators:

〈φ(x1) . . . φ(xn)〉CFT = 〈φ(x1, t) . . . φ(xn, t)〉 , (D.1)

where the average is over equilibrium state, which is time independent.

The problem of critical dynamics is more general and concerns correlators at unequal

times, i.e.

〈φ(x1, t1) . . . φ(xn, tn)〉 . (D.2)

When we insert the operator φ(x1, t1) at the smallest time t1 (say), this disturbs the

system away from equilibrium and it starts relaxing back to it, so that when we complete

the measurement by inserting other operators at later times we probe a perturbed system.

If all operators are inserted at the same time t1 = . . . = tn this perturbation has not spread

and we measure the static correlators as before, but for unequal times we will measure

different quantities which will depend on time differences.

Unequal-time correlators (D.2) are expected to be scale invariant under the transfor-

mation

x→ λx, t→ λzt (λ > 0), (D.3)

where z is a parameter called the dynamical critical exponent. Unlike for static correla-

tors (D.1), there is no reason to expect any more complicated extended symmetry such as

conformal invariance.

While equilibrium equal-time correlators (D.1) depend only on the Gibbs distribution,

unequal-time correlators (D.2) depend on the additional piece of data: the mechanism

by which the system relaxes back to equilibrium. Various such mechanisms are listed
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in the literature, but two most well-known ones are Model A and Model B. Model B

conserves the average value of the order parameter, while Model A (also known as the

Glauber dynamics) does not. When doing Monte Carlo simulation of the lattice Ising

model, Model A is the usual Metropolis algorithm flipping individual spins, while Model

B is flipping only opposite sign pairs of nearby spins: +− ↔ −+. Universality holds for

critical dynamics, with models differing by symmetry considerations, like Model A and

Model B, corresponding to different universality classes. Thus each static universality class

may correspond to several dynamic universality classes, which will have different unequal-

time correlators (D.2), but will share the same equal-time correlators (D.1). In particular,

they have a different dynamical critical exponent z.

In the continuum description, approach to equilibrium can be described by the

Langevin equation

∂tφ(x, t) = − δ

δφ(x, t)
H[φ] + ν(x, t) , (D.4)

where ν is a Gaussian white noise, 〈ν(x, t)ν(x′, t′)〉 = 2δ(x−x′)δ(t− t′) (for this normaliza-

tion of its two-point function, the equilibrium Gibbs distribution is precisely e−S[φ]). This

equation does not preserve the average φ(x, t) so it corresponds to Model A. For other

models the story would be similar with a somewhat different Langevin equation, see [1, 57].

The next step is to encode (D.4) in a path integral. For this we introduce a Lagrange

multiplier field ω and two Grassmann fields c and c to reproduce the determinant arising

from the functional δ-function. Integrating over the noise, we get a path integral with the

action in d+ 1 dimensions (see [57], (16.128))

S[φ] =
∫
ddxdt

{
−ω2 + ω[φ̇+ δH/δφ]− c(∂t + δ2H/δφδφ)c

}
. (D.5)

One then introduces the superfield

Φ(x, t, θ, θ) = φ(x, t) + θc(x, t) + θc(x, t) + θθω(x, t) (D.6)

and rewrites the action as

S[φ] =
∫
ddx dt dθ dθ{DΦDΦ+H[Φ]} , (D.7)

where the superderivatives are D = ∂θ, D = ∂θ − θ∂t. This action has two supersymmetry

generators Q = ∂θ, Q = ∂θ + θ∂t.

This supersymmetry has a physical raison d’être. Any problem of critical dynamics

must satisfy a physical constraint known as the fluctuation-dissipation theorem, which

expresses the two point function 〈φ(x1, t1)φ(x2, t2)〉 as an integral of a response function

(see [1]). In the supersymmetric formulation, the response function is the two point func-

tion 〈φ(x1, t1)ω(x2, t2)〉, and the fluctuation-dissipation theorem can be recovered as a

supersymmetric Ward identity.

The problem of critical dynamics thus consists in taking a d-dimensional CFT describ-

ing critical statics and in finding a (d+1)-dimensional, space+time, supersymmetric theory

which reduces back to the CFT when all times are set equal. Stated this way, this problem
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is analogous to the problem of “dimensional lift” which we encountered in the random

field Ising model context in section 4.5 and in the conclusions. We find this analogy quite

suggestive, even though it is not complete, most notably because of the absence of any

symmetry mixing x and t in the critical dynamics case.

It should be noted that the d → d+ 1 connection does not play much of a role in the

currently existing practical methods of solving critical dynamics, which basically analyze

the (d + 1)-dimensional RG problem from scratch. It would be interesting to find an

alternative method which would take into account the d-dimensional static information

when it is available (e.g. when critical statics is exactly solved, as for the 2d Ising model).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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