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Abstract

In this paper, a Random Field Topic (RFT) model is pro-

posed for semantic region analysis from motions of objects

in crowded scenes. Different from existing approaches of

learning semantic regions either from optical flows or from

complete trajectories, our model assumes that fragments

of trajectories (called tracklets) are observed in crowded

scenes. It advances the existing Latent Dirichlet Allocation

topic model, by integrating the Markov random fields (MR-

F) as prior to enforce the spatial and temporal coherence

between tracklets during the learning process. Two kinds

of MRF, pairwise MRF and the forest of randomly span-

ning trees, are defined. Another contribution of this model

is to include sources and sinks as high-level semantic prior,

which effectively improves the learning of semantic regions

and the clustering of tracklets. Experiments on a large s-

cale data set, which includes 40, 000+ tracklets collected

from the crowded New York Grand Central station, show

that our model outperforms state-of-the-art methods both

on qualitative results of learning semantic regions and on

quantitative results of clustering tracklets.

1. Introduction

In far-field video surveillance, it is of great interest to

automatically segment the scene into semantic regions and

learn their models. These semantic regions correspond to

different paths commonly taken by objects, and activities

observed in the same semantic region have similar semantic

interpretation. Some examples are shown in Figure 1 (A).

Semantic regions can be used for activity analysis in a single

camera view [28, 13, 14, 30, 27] or in multiple camera views

[17, 15] at later stages. For example, in [28, 13, 14, 30]

local motions were classified into atomic activities if they

were observed in certain semantic regions and the global

behaviors of video clips were modeled as distributions of

(A) (B)

Figure 1. (A) The New York Grand Central station. Two semantic

regions learned by our algorithm are plotted on the background

image. They correspond to paths of pedestrians. Colors indicate

different moving directions of pedestrians. Activities observed on

the same semantic region have similar semantic interpretation such

as “pedestrians enter the hall from entrance a and leave from exit

b”.(B) Examples of tracklets collected in the scene. The goal of

this work is to learn semantic regions from tracklets.

over atomic activities. In [27], trajectories of objects were

classified into different activity categories according to the

semantic regions they passed through. In [17, 15], activities

in multiple camera views were jointly modeled by explor-

ing the correlations of semantic regions in different camera

views. Semantic regions were also used to improve object

detection, classification and tracking [11, 5, 7]. Semantic

regions are usually learned from motions of object in or-

der to better correlate with the activities of objects. Some

semantic regions as shown in Figure 1 (A) cannot be recog-

nized from the background image.

Generally speaking, the approaches of learning semantic

regions are in two categories: local motion based (such as

optical flows) [28, 15, 13, 14, 6] and complete trajectories

of objects [18, 9, 29, 27] based. Both have some limitation-

s. Without tracking objects, the information represented by

local motions is limited, which weakens the models’ dis-

criminative power. The semantic regions learned from lo-

cal motions are less accurate, tend to be in short range and

may fail in certain scenarios. See discussions in Section

1.2. The other type of approaches assumed that complete



trajectories of objects were available and semantic regions

were estimated from the spatial extents of trajectory cluster-

s. However this assumption is hard to be guaranteed due to

scene clutter and tracking errors, thus the learned semantic

regions are either oversegmented or improperly merged.

1.1. Our approach

We propose a new approach of learning semantic region-

s from tracklets, which are a mid-level representation be-

tween the two extremes discussed above 1. A tracklet is a

fragment of a trajectory and is obtained by a tracker within a

short period. Tracklets terminate when ambiguities caused

by occlusions and scene clutters arise. They are more con-

servative and less likely to drift than long trajectories. In our

approach, a KLT keypoint tracker [25] is used and tracklets

can be extracted even from very crowded scenes.

A Random Field Topic (RFT) model is proposed to learn

semantic regions from tracklets and to cluster tracklets. It

advances the Latent Dirichlet Allocation topic model (L-

DA) [3], by integrating MRF as prior to enforce the spatial

and temporal coherence between tracklets during the learn-

ing process. Different from existing trajectory clustering

approaches which assumed that trajectories were indepen-

dent given their cluster labels, our model defines two kinds

of MRF, pairwise MRF and the forest of randomly spanning

trees, over tracklets to model their spatial and temporal con-

nections.

Our model also includes sources and sinks as high-level

semantic prior. Although sources and sinks were explored

in existing works [18, 24, 29] as important scene structures,

to the best of our knowledge they were not well explored to

improve the segmentation of semantic regions or the clus-

tering of trajectories. Our work shows that incorporating

them in our Bayesian model effectively improves both the

learning of semantic regions and the clustering of tracklets.

Experiments on a large scale data set include more than

40, 000 tracklets collected from the New York Grand Cen-

tral station, which is a well known crowded and busy scene,

show that our model outperforms state-of-the-art methods

both on qualitative results of learning semantic regions and

on quantitative results of clustering tracklets.

1.2. Related works

Wang et al. [28] used hierarchical Bayesian models to

learn semantic regions from the co-occurrence of optical

flow features. It worked well for traffic scenes where at

different time different subsets of activities were observed.

However, our experiments show that it fails in a scene like

Figure 1 (A), where all types of activities happen togeth-

er most of the time with significant temporal overlaps. In

this type of scenes, the co-occurrence information is not

1Optical flows only track points between two frames. The other ex-

treme is to track objects throughout their existence in the scene.

discriminative enough. Some approaches [15, 13, 14, 6]

segmented semantic regions by grouping neighboring cell-

s with similar location or motion patterns. Their segmen-

tation results were not accurate and tended to be in short

ranges.

Many trajectory clustering approaches first defined the

pairwise distances [10, 12, 2] between trajectories, and then

the computed distance matrices were input to standard clus-

tering algorithms [9, 10]. Some other approaches [1, 31, 22]

of extracting features from trajectories for clustering were

proposed in recent years. Semantic regions were estimat-

ed from the spatial extents of trajectory clusters. Reviews

and comparisons of different trajectory clustering methods

can be found in [8, 20, 21]. It was difficult for those non-

Bayesian approaches to include high-level semantic priors

such as sources and sinks to improve clustering. Wang et

al. [27] proposed a Bayesian approach of simultaneously

learning semantic regions and clustering trajectories using

a topic model. This work was relevant to ours. Howev-

er, in their generative model, trajectories were assumed to

be independent given their cluster assignments and the s-

patial and temporal connections between trajectories were

not modeled. It worked well in sparse scenes where a large

portion of trajectories were complete, but not for crowded

scenes where only tracklets can be extracted reliably. It did

not include sources and sinks as prior either.

Tracklets were explored in previous works [4, 23, 16]

mainly for the purpose of connecting them into complete

trajectories for better tracking or human action recognition

but not for learning semantic regions or clustering trajecto-

ries. Our approach does not require first obtaining complete

trajectories from tracklets.

In recent years, topic models borrowed from language

processing were extended to capture spatial and temporal

dependency to solve computer vision problems. Hospedales

et al. [6] combined topic models with HMM to analyze the

temporal behaviors of video clips in surveillance. A tem-

poral order sensitive topic model was proposed by Li et al.

[15] to model activities in multiple camera views from local

motion features. Verbeek et al. [26] combined topic models

with MRF for object segmentation. Their model was rele-

vant to ours. In [26], MRF was used to model spatial de-

pendency among words within the same documents, while

our model captures the spatial and temporal dependency of

words across different documents. Moreover, our model has

extra structures to incorporate sources and sinks.

2. Random Field Topic Model

Figure 2 (A) is the graphical representation of the RFT

model and Figure 2 (B) shows an illustrative example.

Without loss of generality, we use the notations of topic

modeling in language processing. A tracklet is treated as a

document, and observations (points) on tracklets are quan-



tized into words according to a codebook based on their lo-

cations and velocity directions. It is assumed that the spatial

extents of sources and sinks of the scene are known a priori.

An observation on a tracklet has four variables (x, z, h,m).
x is the observed visual word. h and m are the labels of the

source and the sink associated with the observation. If the

tracklet of the observation starts from a source region or ter-

minates at a sink region, its h or m is observed. Otherwise,

they need to be inferred. z is a hidden variable indicating

the topic assigned to x. Λ denotes the MRF connection of

neighboring tracklets. The distribution of document i over

topics is specified by θi. (φk, ψk, ωk) are the model param-

eters of topic k. A topic corresponds to a semantic region,

whose spatial distribution is speficied by φk and whose dis-

tributions over sources and sinks are specified by ψk and

ωk. α, β, η and κ are hyper-parameters for Dirichlet distri-

butions. The joint distribution is

p({(xin, zin, hin,min)}, {θi}, {(φk, ψk, ωk)}|α, β, η, κ)
=

∏

k p(φk|β)p(ψk|η)p(ωk|κ)
∏

i p(θi|α)
p({zin}|{θi})

∏

i,n p(xin|φzin)p(hin|ψzin)p(min|ωzin).

(1)

i, n and k are indices of documents, words and topic-

s. θi, φk, ψk and ωk are multinomial variables sampled

from Dirichlet distributions, p(φk|β), p(ψk|η), p(ωk|κ) and

p(θi|α). xin, hin and min are discrete variables sampled

from discrete distributions p(xin|φzin), p(hin|ψzin) and

p(min|ωzin). p({zin}|{θi}) is specified by MRF,

p(Z|θ) ∝ exp





∑

i

logθi +
∑

j∈ε(i)

∑

n1,n2

Λ(zin1
, zjn2

)



 .

(2)

Z = {zij} and θ = {θi}. ε(i) is the set of tracklets which

have dependency with tracklet i and it is defined by the

structure of MRF. Λ weights the dependency between track-

lets. Two types of MRF are defined in the following section-

s. The intuition behind our model is interpreted as follows.

According to the property of topic models, words often co-

occurring in the same documents will be grouped into one

topic. Therefore, if two locations are connected by many

tracklets, they tend to be grouped into the same semantic

region. The MRF term Λ encourages tracklets which are

spatially and temporally close to have similar distributions

over semantic regions. Each semantic region has its pre-

ferred source and sink. Our model encourages the tracklets

to have the same sources and sinks as their semantic region-

s. Therefore the learned spatial distribution of a semantic

region will connect its source and sink regions.

2.1. Pairwise MRF

For pairwise MRF, ε() is defined as pairwise neighbor-

hood. A tracklet i starts at time tsi and ends at time tei . It-
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Figure 2. (A) Graphical representation of the RFT model. x is

shadowed since it is observed. h and m are half-shadowed be-

cause only some of the observations have observed h and m. (B)

Illustrative example of our RFT model. Two kinds of MRF con-

nect different tracklets with observed and unobserved source/sink

label to enforce their spatial and temporal coherence. The seman-

tic region for the spanning tree is also plotted.

s starting and ending points are at locations (xsi , y
s
i ) and

(xei , y
e
i ) with velocities vsi = (vsix, v

s
iy) and vei = (veix, v

e
iy).

Tracklet j is the neighbor of i (j ∈ ε(i)), if it satisfies

I. tei < tsj < tei + T,

II. |xei − x
s
j |+ |y

e
i − y

s
j | < S,

III.
vei · v

s
j

∥vei∥∥v
s
j∥

> C. (3)

I−III requires that tracklets i and j are temporally and spa-

tially close and have consistent moving directions. If these

conditions are satisfied and zin1
= zjn2

,

Λ(zin1
, zjn2

) = exp(
vei ·v

s
j

∥ve
i
∥∥vs

j
∥ − 1). (4)

Otherwise, Λ(zin1
, zjn2

) = 0.

2.2. Forest of randomly spanning trees

The pairwise MRF only captures the connection between

two neighboring tracklets. To capture the higher-level de-

pendencies among tracklets, the forest of randomly span-

ning trees is constructed on top of the neighborhood defined

by the pairwise MRF. Sources and sinks are also integrated



Algorithm Forest of Spanning Trees Construction

INPUT: tracklet set I
OUTPUT: Randomly spanning forest set T .

01: for each tracklet i∈ I do

02: initialize γ = ∅ /* γ is one spanning tree*/

03: Seek-tree(i) /*Recursively search appropriate tree*/

04: end

function Seek-tree(tracklet m)

/* Recursive search on neighboring tracklets defined

by Eq (3) */.

01: γ ← m

02: if tracklets in γ have at least one observed

source h and m do

03: T ← γ /*add the tree to forest set*/

04: break Seek-tree /*stop current search*/

05: end

06: for each j ∈ ε(m) do

07: Seek-tree(tracklet j)

08: end

09: pop out γ

end

Figure 3. Algorithm of constructing the forest of randomly span-

ning trees.

in the construction process. Sources and sinks refer to the

regions where objects appear and disappear in a scene. If

an object is correctly tracked all the time, its trajectory has

a starting point observed in a source region and an ending

point observed in a sink region. However, the sources and

sinks of many tracklets extracted from crowded scenes are

unknown due to tracking error. Our model assumes that

the boundaries of source and sink regions of the scene are

roughly known either by manual input or automatic estima-

tion [24, 18] 2. Experiments show that accurate boundaries

are not necessary. If the starting (or ending) point of a track-

let falls in a source (or sink) region, its h (or m) is observed

and is the label of that region. Otherwise h (or m) is unob-

served and needs to be inferred.

The algorithm of constructing the forest of randomly s-

panning tree γ is listed in Figure 3. A randomly spanning

tree is composed of several tracklets with pairwise connec-

tions, which are defined as the same in Eq (3). The ran-

domly spanning tree is constructed with the constraint that

2In our approach, source and sink regions are estimated using the Gaus-

sian mixture model [18]. Starting and ending points of tracklets caused by

tracking failures are filtered considering the distributions of accumulated

motion densities within their neighborhoods [29]. It is likely for a starting

(ending) point to be in a source (sink) region, if the accumulated motion

density quickly drops along the opposite (same) moving direction of it-

s tracklet. After filtering, high-density Gaussian clusters correspond to

sources and sinks. Low-density Gaussian clusters correspond to tracking

failures. We skip the details since this is not the focus of this paper.

it starts with a tracklet whose starting point has an observed

source h and ends with a tracklet whose ending point has an

observed sink m. Then ε() in Eq (2) is defined by the forest

of randomly spanning tree γ, i.e. if tracklet i and j are on

the same randomly spanning tree, j ∈ γ(i).

2.3. Inference

We derive a collapsed Gibbs sampler to do inference. It

integrates out {θ, φ, ψ, ω} and samples {z, h,m} iterative-

ly. The details of derivation are given in the supplementary

material. Here we just present the final result.

The posterior of zin given other variables is

p(zin = k|X,Z\in,H,M)

∝
n
(w)
k,\in + β

∑W
w=1(n

(w)
k,\in + β)

n
(p)
k,\in + η

∑P
p=1(n

(p)
k,\in + η)

n
(q)
k,\in + κ

∑Q

q=1(n
(q)
k,\in + κ)

n
(k)
i,\n + α

∑K

k=1(n
(k)
i,\n + α)

exp





∑

j∈γ(i)

∑

n′

Λ(zin, zjn′)



 . (5)

X = {xin},Z = {zin},H = {hin},M = {min}. Sub-

script \in denotes counts over the whole data set excluding

observation n on tracklet i. Assume that xin = w, hin =

p,min = q. n
(w)
k,\in denotes the count of observations with

value w and assigned to topic k. n
(p)
k,\in (n

(q)
k,\in) denotes the

count of observations being associated with source p (sink

q) and assigned to topic k. nk
i,\n denotes the count of obser-

vations assigned to topic k on tracklet i. W is the codebook

size. P and Q are the numbers of sources and sinks.

The posteriors of hin and min given other variables are,

p(hin = p|X,Z,H\i,M) ∝
n
(p)
k,\in + η

∑P
p=1(n

(p)
k,\in + η)

, (6)

p(min = q|X,Z,H,M\in) ∝
n
(q)
k,\in + κ

∑Q

q=1(n
(q)
k,\in + κ)

. (7)

If hin and min are unobserved, they are sampled based

on Eq (6) and (7). Otherwise, they are fixed and not up-

dated during Gibbs sampling. After sampling converges,



Algorithm Optimal Spanning Tree Ranking

INPUT: the online tracklet g, the learnt tracklet set I
OUTPUT: Optimal spanning tree γ̃(g) and zγ̃ for g.

01: Exhaustively Seek neighbor grids ε of trajectory g

based on Constraint II and III in set I
02: for each εi do

03: γi ← Seek-tree(g) on εi
04: Gibbs Sampling for zγi

03: P ← γi / * P is the potential tree set * /

04: end

05: γ̃(g)=argmin
γ∈P

H(Zγ)

/* H(Z) = −
∑

z

p(z)logp(z) is the information entropy,

computed over distribution of z for the spanning tree γi,

to select the optimal spanning tree */.

Figure 4. Algorithm of obtaining the optimal spanning tree for on-

line tracklet.

{θ, ψ, ω} could be estimated from any sample by

θ̂
(w)
k =

n
(w)
k + β

∑W

w=1(n
(w)
k + β)

, (8)

ψ̂
(p)
k =

n
(p)
k + η

∑P
p=1(n

(p)
k + η)

, (9)

ω̂
(q)
k =

n
(q)
k + κ

∑Q

q=1(n
(q)
k + κ)

. (10)

Once the RFT model is learnt, tracklets can be clustered

based on semantic regions they belong to. The topic label

of a tracklet is obtained by majority voting from its inferred

z.

2.4. Online tracklet prediction

After semantic regions are learned, our model can online

analyze the tracklets, i.e. classifying them into semantic re-

gions and predicting their sources and sinks. It is unreliable

to analyze an online tracklet alone using the models of se-

mantic regions. Instead, we first obtain its optimal spanning

tree from the training set using the algorithm in Figure 4. It

is assumed that a pedestrian’s behavior at one location is s-

tatistically correlated to the behaviors of pedestrians in the

training set at the same location. The algorithm first cor-

relates the online tracklet with the tracklets from the train-

ing set by generating several spanning trees. The spanning

tree with the minimum entropy on z is chosen for the online

tracklet to infer its topic label, source, and sink.

3. Experiments

Experiments are conducted on a 30 minutes long video

sequence collected from the New York’s Grand Central sta-
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Figure 5. (A) The histogram of tracklet lengths. (B) Detected

source and sink regions. (C) Statistics of sources and sinks of all

the tracklets. (D) The summary of observed sources and sinks of

the complete tracklets.

tion. Figure 2 (B) shows a single frame of this scene. The

video is at the resolution of 480 × 720. 47, 866 tracklets

are extracted. The codebook of observations is designed as

follows: the 480 × 720 scene is divided into cells of size

10 × 10 and the velocities of keypoints are quantized into

four directions. Thus the size of the codebook is 48×72×4.

Figure 5 shows the summary of collected tracklets. (A)

is the histogram of tracklet lengths. Most of tracklet lengths

are shorter than 100 pixels. (B) shows the detected sources

and sinks regions indexed by 1 ∽ 7. (C) shows the percent-

ages of four kinds of tracklets. Only a very small portion of

tracklets (3%) (labeled as “complete”) have both observed

sources and sinks. 24% tracklets (labeled as “only source”)

only have observed sources. 17% tracklets (labeled as “on-

ly sink”) only have observed sinks. For more than half of

tracklets (56%), neither sources nor sinks are observed. (D)

summarizes the observed sources and sinks of the complete

tracklets. The vertical axis is the source index, and hori-

zontal axis is the sink index. It shows that most complete

tracklets are between the source/sink regions 5 and 6 since

they are close in space. Therefore, if only complete track-

lets are used, most semantic regions cannot be well learned.

Hyper-parameters α, β, η, κ are uniform Dirichlet distri-

butions and are empirically chosen as 1. It takes around 2

hours for the Gibbs sampler to converge on this data set,

running on a computer with 3GHz core duo CPU in Visual

C++ implementation. The convergence is empirically de-

termined by the convergence of data likelihood. The online

tracklet prediction takes 0.5 seconds per tracklet.



3.1. Learning semantic regions

Our RFT model using the forest of randomly spanning

trees learns 30 semantic regions in this scene. Figure 6

(A) visualizes some representative semantic regions3. Ac-

cording to the learned ψ̂ and ω̂, the most probable source

and sink for each semantic region are also shown. The

learned semantic regions represent the primary visual flows

and paths in the scene. They spatially expand in long ranges

and well capture the global structures of the scene. Mean-

while, most paths are well separated and many structures

are revealed at fine scales with reasonably good accuracy.

Most learned semantic regions only have one source and

one sink, except semantic region 19 which has two sources.

Semantic region 14 also diverges. The results of these t-

wo regions need to be improved. It is observed that sources

and sinks, whose boundaries are defined beforehand, only

partially overlap with their semantic regions. One source

or sink may correspond to multiple semantic regions. This

means that although the prior provided by sources and sinks

effectively guides the learning of semantic regions, it does

not add strong regularization on the exact shapes of seman-

tic regions. Therefore our model only needs the boundaries

of sources and sinks to be roughly defined.

For comparison, the results of optical flow based HD-

P (OptHDP) model [28] and trajectory based Dual HDP

(TrajHDP) [27] are shown in Figure 6 (B) and (C). Both

methods are based on topic models. OptHDP learns the

semantic regions from the temporal co-occurrence of op-

tical flow features and it was reported to work well in traf-

fic scenes [28]. It assumed that at different time different

subsets of activities happened. If two types of activities al-

ways happen at the same time, they cannot be distinguished.

In our scene, pedestrians move slowly in a large hall. For

most of the time activities on different paths are simulta-

neously observed with large temporal overlaps. Temporal

co-occurrence information is not discriminative enough in

this scenario. As a result, different paths are incorrectly

merged into one semantic region by OptHDP. TrajHDP is

related to our method. It assumed that a significant portion

of trajectories were complete and that if two locations were

on the same semantic region they were connected by many

trajectories. However, a large number of complete trajecto-

ries are unavailable from this crowded scene. Without MRF

and source-sink priors, TrajHDP can only learn semantic re-

gions expanded in short ranges. Some paths close in space

are incorrectly merged. For example, the two paths (21 and

15 in Figure 6 (A)) learned by our approach are close in

the bottom-right region of the scene. They are separated by

our approach because they diverge toward different sinks in

the top region. However, since TrajHDP cannot well cap-

3The complete results of semantic regions and tracklet clustering can

be found in our supplementary material.

ture long-range distributions, they merge into one semantic

region shown in the fifth row of Figure 6 (C). Overall, the

semantic regions learned by our approach are more accurate

and informative than OptHDP and TrajHDP.

3.2. Tracklet clustering based on semantic regions

Figure 7 (A) shows some representative clusters of track-

lets obtained by our model using the forest of randomly s-

panning trees as MRF prior. Even though most tracklets are

broken, some tracklets far away in space are also grouped

into one cluster because they have the same semantic inter-

pretation. For example, the first cluster shown in Figure 7

(A) contains tracklets related to the activities of “pedestrian-

s from source 2 walk toward sink 7”. It is not easy to obtain

such a cluster, because most tracklets in this cluster are not

observed either in source 2 or in sink 7. Figure 7 (B) and

(C) show the representative clusters obtained by Hausdorff

distance-based Spectral Clustering (referred as SC) [2] and

TrajHDP [27]. They are all in short range spatially and it is

hard to interpret their semantic meanings.

To further quantitatively evaluate the clustering perfor-

mance, we use correctness and completeness introduced in

[19] as measurements of the clustering accuracy. Correct-

ness is the accuracy that two tracklets, which belong to d-

ifferent activity categories based on the ground truth, are

also grouped into different clusters by the algorithm. Com-

pleteness is the accuracy that two tracklets, which belong to

the same activity category, are also grouped into the same

cluster by the algorithm. In extreme cases, if all the track-

lets are grouped into one cluster, the completeness is 100%
while the correctness is 0%; if every tracklet is put into

a different cluster, the completeness is 0% while the cor-

rectness is 100%. A good cluster algorithm should have

both high correctness and high completeness. To measure

correctness (completeness), we manually label 2000 (1507)

pairs of tracklets and each pair of tracklets belong to dif-

ferent (the same) activity categories (category) as ground

truth. The accuracies of correctness and completeness for

our pairwise RFT model, tree RFT model, TrajHDP [27]

and SC [2] are reported in Table 1. Our tree RFT model

achieves the best performance in terms of both correctness

and completeness. The pairwise RFT model also outper-

forms TrajHDP and SC.

4. Discussion and Conclusion

In this paper we proposed a new approach of learning se-

mantic regions of crowded scenes from tracklets, which are

a mid-level representation between local motions and com-

plete trajectories of objects. It effectively uses the MRF pri-

or to capture the spatial and temporal dependency between

tracklets and uses the source-sink prior to guide the learn-

ing of semantic regions. The learned semantic regions well

capture the global structures of the scenes in long range with
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Figure 6. Representative semantic regions learned by (A) our model (semantic region indices are randomly assigned by learning process),

(B) OptHDP [28] and (C) TrajHDP [27]. The velocities are quantized into four directions represented by four colors. The two circles

on every semantic region represent the learned most probable source and sink. The boundaries of sources and sinks in the scene are

pre-detected and shown in Figure 5 (A). (Better view in color version)

(A) (B) (C)

Figure 7. Representative clusters of trajectories by (A)our model, (B)SC [2] and (C)TrajHDP [27]. Colors of every trajectories are randomly

assigned.

clear semantic interpretation. They are also able to separate

different paths at fine scales with good accuracy. Both qual-

itative and quantitative experimental evaluations show that

it outperforms state-of-the-art methods.

Our model also has other potential applications to be ex-

plored. For example, after inferring the sources and sinks

of tracklets, the transition probabilities between sources and

sinks can be estimated. It is of interest for crowd control and

flow prediction. Figure 8(A)(B) show the transition proba-

bilities from sources 2 and 6 to other sinks learned by our

RFT model. Our model can also predict the past and future

behaviors of individuals whose existence is only partially

observed in a crowded scene. As shown in Figure 8(C)(D),

two individuals are being tracked, two online tracklets are

generated. With the algorithm in Figure 4 to obtain the op-

timal spanning tree, our model could predict the most pos-

sible compact paths of the individuals and estimate where

they came from and where they would go. To estimate in-

dividual behavior in public crowded scenes is a critical feat

for intelligent surveillance systems. These applications will

be explored in details in the future work.
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