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Abstract—Correctly functioning caches have been shown
to leak critical secrets like encryption keys, through various
types of cache side-channel attacks. This nullifies the secu-
rity provided by strong encryption and allows confidentiality
breaches, impersonation attacks and fake services. Hence,
future cache designs must consider security, ideally without
degrading performance and power efficiency. We introduce a
new classification of cache side channel attacks: contention
based attacks and reuse based attacks. Previous secure cache
designs target only contention based attacks, and we show that
they cannot defend against reuse based attacks. We show the
surprising insight that the fundamental demand fetch policy
of a cache is a security vulnerability that causes the success
of reuse based attacks. We propose a novel random fill cache
architecture that replaces demand fetch with random cache
fill within a configurable neighborhood window. We show that
our random fill cache does not degrade performance, and in
fact, improves the performance for some types of applications.
We also show that it provides information-theoretic security
against reuse based attacks.

Keywords-cache; security; side channel attacks; cache colli-
sion attacks; secure caches; computer architecture.

I. INTRODUCTION

Recent findings on cache side channel attacks [1]–[7] have

shown that correctly functioning caches may leak critical

secrets like cryptographic keys, nullifying any protection

provided by strong cryptography. These attacks are easy to

perform and are effective on all platforms, from embedded

systems to cloud servers, that use hardware caches. There-

fore, future cache designs must take into account security,

ideally without degrading performance and power efficiency.

In cache side channel attacks, an attacker exploits the

large timing difference between cache hits and cache misses

to infer the key-dependent (i.e., security-critical) memory

addresses, and hence the secret information, during the

execution of cryptographic programs. We introduce a new

classification of cache side channel attacks, depending on

how the attacker infers memory addresses: contention based

attacks versus reuse based attacks. In contention based

attacks [2], [3], [5], the key-dependent memory accesses

may contend for the same cache set with the attacker’s

memory accesses, and result in eviction of one by the other,

in a deterministic way. This enables the attacker to infer the

memory address according to which cache set it maps to. In

contrast, the reuse based attacks [4], [6], [8], [9] do not rely

on any resource contention. Instead, they only exploit the

reuse of a previously accessed (and cached) security-critical

data to correlate the addresses of two memory accesses. We

point out that reuse of the cached data is exactly the purpose

of a cache, therefore reuse based attacks strike at the heart

of a cache and are much harder to defend against.

Several recent work [8], [10]–[14] investigated how to

design secure caches to provide built-in defenses against

cache side channel attacks. Wang and Lee proposed two

general design approaches [11]: the partition-based approach

[8], [11], [13], [14] that eliminates the cache contention, and

the randomization-based approach [10]–[12] that randomizes

the cache contention. However, these approaches only target

contention based attacks and are not effective in defeating

reuse based attacks. There are also some efforts that try

to achieve constant execution time by either not loading

security-critical data into the cache at all, or trying to ensure

all cache hits whenever security-critical data is accessed, by

frequently preloading or reloading all security-critical data

[8], [14], [15]. This approach may potentially defeat the

reuse based attacks, but at the cost of significant performance

degradation, and sometimes enabling other types of attacks.

In this paper, we try to find a general approach against

reuse based attacks, as a complement to existing secure

cache design approaches. We show that, contrary to conven-

tional wisdom, constant execution time is not the necessary

condition to defeat reuse based attacks. Surprisingly, we

find that the fundamental demand fetch policy of a cache

is a security vulnerability that causes the success of reuse

based attacks. With the demand fetch policy, the cache fill

is always correlated with a demand memory access, hence

the state of a cache reveals information about previous

memory accesses. Hence, we propose a general approach

against reuse based attacks: re-design the cache fill strategy

so that it is de-correlated with the demand memory access.

We propose a novel random fill cache architecture with

a new security-aware cache fill strategy. The random fill

cache architecture takes advantage of the random access

pattern found in cryptographic algorithms. Hence, it does

not degrade performance. In fact, it is more general and

flexible than the demand fetch strategy, and even enables

performance improvements for some types of applications.

Our main contributions are:
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• A new classification of cache side channel attacks as

contention based and reuse based attacks,

• A new general approach for securing caches against

reuse based attacks: the cache fill strategy must be

re-designed to de-correlate the cache fill and demand

memory accesses,

• A novel random fill cache architecture with a flexible

cache fill strategy, which replaces the demand fetch

with random cache fill within a configurable neighbor-

hood window,

• An information-theoretic proof of the security provided

by our random fill cache architecture,

• Performance evaluation of the proposed cache architec-

ture and study of the broader performance implications

of the random cache fill strategy to programs that are

not demand-fetch amenable.

The rest of the paper is organized as follows: Section

II gives some background on cache side channel attacks

and section III discusses past work. We introduce our new

random fill cache architecture in section IV. We provide

an information-theoretic proof of the security provided by

our random fill cache architecture in section V. We evaluate

the performance of our cache architecture in section VI.

We discuss the broader performance implications of our

cache architecture in section VII. We compare security and

performance with past work in section VIII and conclude in

section IX.

II. BACKGROUND

A. Overview of Cache Side Channel Attacks

The majority of cache side channel attacks exploit the

interaction of the key-dependent data flow in a program

with the underlying cache (mostly L1 data cache) to learn the

secret information. We primarily consider the information

flow in which the secret information is directly modulated

onto the memory address, in the form of key-dependent

table lookups. This is commonly found in the software

implementation of cryptographic algorithms. For example,

the substitution box (S-box) in the block ciphers (e.g., Data

Encryption Standard (DES), Advanced Encryption Standard

(AES), Blowfish), and the multipliers table in the public-key

algorithms (e.g., RSA) are all implemented as lookup tables

indexed by a linear function of the secret key. The attacker is

an unprivileged user-level process that aims to infer the key-

dependent memory addresses, indirectly through the cache

behavior.

B. Classification of Cache Side Channel Attacks

Table I summarizes the classification of all known cache

side channel attacks. Cache side channel attacks have

been conventionally classified as access-driven attacks and

timing-driven attacks [1], based on what can be measured

by the attacker. In the access-driven attacks, the attacker

can observe which cache lines the victim has accessed by

measuring the impact of the victim’s cache accesses to the

attacker’s own accesses. In the timing-driven attacks, the

attacker can measure the execution time of the victim pro-

cess. However, this classification is not helpful in identifying

root causes and potential countermeasures. We introduce

a new classification: contention based attacks and reuse

based attacks, based on how the attacker infers the memory

address.
Table I

CLASSIFICATION OF CACHE SIDE CHANNEL ATTACKS

Contention based
Attacks

Reuse based
Attacks

Access-driven
Attacks Prime-Probe Attacks

Flush-Reload
Attacks

Timing-driven
Attacks Evict-Time Attacks

Cache collision
Attacks

1) Contention based Attacks: The attacker may contend

for the same cache set with the victim process and the

contention results in eviction of one’s cache line by the other.

If the contention and eviction is deterministic, the attacker

can infer the memory address of the victim according to

which cache set it maps to. Figure 1 illustrates how this

works. There are two variations of contention based attacks:
Prime-Probe Attack [3], [5]: The attacker repeats the

following operations: 1) Prime: the attacker fills one or more

cache sets with his own data. 2) Idle: the attacker waits for a

pre-specified Prime-Probe interval while the victim process

is running and utilizing the cache. 3) Probe: the attacker

process runs again and measures the time to load each set

of his data. The Probe phase primes the cache for subsequent

observations. If the victim process uses some cache sets

during the Prime-Probe interval, some of the attacker’s cache

lines in these cache sets will be evicted, which causes cache

misses and thus a longer load time during the Probe phase.
Evict-Time Attack [5]: The attacker repeats the following

operations: 1) Evict: the attacker fills one specific cache set

with his own data and hence evicts the victim’s data in that

cache set. 2) Time: the attacker triggers the victim process

to perform a cryptographic operation, and measures the total

execution time. If the victim accesses the evicted data, his

execution time tends to be statistically higher, due to the

victim having a cache miss.

Memory Cache

Victim’s lookup table

K=0

K=1

K=2

K=3

K=4

contentionAttacker’s memory

3-ways

6 sets

Figure 1. How cache contention can be used to infer information. Each
square represents a cache line. Each memory line of the victim’s lookup
table is indexed by a different value of key bits K. The attacker occupies
one cache set. The contention with the victim tells the attacker that the
victim process has accessed the memory line corresponding to K = 2.
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2) Reuse based Attacks: Contention based attacks rely on

cache contention to learn where a memory line is placed in

the cache. However, reuse based attacks do not care about
the location of a memory line in the cache. Instead, they
only rely on the fact that a previously accessed data will be
cached, hence the reuse of the same data by a later memory
access will result in a cache hit. There are two variations of

reuse based attacks:

Flush-Reload Attack [6]: The attacker and the victim pro-

cess may share some address space. In particular, security-

critical data such as the lookup tables can be shared through

a shared library. The attacker repeats the following opera-

tions: 1) Flush: the attacker flushes the security-critical data

out of the cache to eliminate the impact of any previous

accesses to the security-critical data. 2) Idle: the attacker

waits for a pre-specified Flush-Reload interval while the

victim process is running and utilizing the cache. 3) Reload:

the attacker process runs again and measures the time

to reload the security-critical data. If the victim process

accesses some security-critical data during the Flush-Reload

interval, the attacker will get a significantly lower reload

time, since it will hit in the cache.

Cache Collision Attack [4]: The Flush-Reload Attack

exploits reuse of the shared data between the victim and

the attacker. However, sharing of security-critical data is not

common and can easily be disabled by not declaring the

security-critical data as read-only. The more serious threat

of reuse based attacks is to exploit the reuse of the cached

security-critical data within the victim process, which rep-

resents the intrinsic information leakage of a program. The

reuse of data is commonly called cache collision, meaning

that two memory accesses reference the same memory line.

The basic idea of a cache collision attack is to exploit

the impact of cache collision on the victim’s aggregated

execution time.

Premise of Cache Collision Attacks: Consider a series of

security-critical accesses to lookup table T :

...T [•], T [•], T [xi], T [•], T [•], T [xj ], T [•], T [•]... (1)

Denote the memory block address of x as 〈x〉. For any pair

of accesses to xi and xj , when 〈xi〉 = 〈xj〉, access to xj

will hit in the cache, whereas when 〈xi〉 �= 〈xj〉, access to

xj may or may not hit in the cache, depending on the rest

of the sequence and prior cache contents. Statistically, the

execution time of the cryptographic operation when 〈xi〉 =
〈xj〉 will be less than that when 〈xi〉 �= 〈xj〉. Assume xi

and xj both depend on the key K, where xi = f(K), and

xj = g(K). If the attacker learns 〈xi〉 = 〈xj〉 from the

timing measurement, he can establish a relationship for the

secret key as 〈f(K)〉 = 〈g(K)〉.
3) Discussion: As pointed out by Wang and Lee [11],

the root cause of contention based attacks is the deter-
ministic memory-to-cache mappings, causing deterministic
cache contention. The root cause of reuse based attacks is

more fundamental, since reuse of the data is the primary

goal of a cache. We observe that the hidden assumption

of the reuse based attacks is that the access to a security-

critical data will bring the requested memory line into the

cache (if not yet cached), which is exactly the demand fetch
policy of all existing caches, that take advantage of both

temporal and spatial locality of a program. With the demand
fetch policy, cache fills are always correlated with memory
accesses in a deterministic way, and the state of the cache
can “remember” information of previous demand accesses.

Resource contention of shared micro-architectural com-

ponents (either memoryless or storage components) [10],

[16]–[18] have been well-known as sources of information

leakage. Reuse based attacks are fundamentally different

since they do not rely on any resource contention, and

represent new threats specific to storage structures such as

cache and buffer structures that exploit the locality principle

to store recently-used data of a larger storage structure.

C. Case Study: Cache Collision Attacks against AES

As a concrete example, we show how the cache collision

attack works to extract the AES encryption keys (e.g., in the

OpenSSL implementation of AES). AES is a block cipher

that has 128-bit blocks with three possible key sizes: 128,

192, 256 bits. Depending on the key size, AES performs

10, 12 or 14 rounds, respectively [19]. We use 128-bit keys

in our discussion. The output of each round will be the

input for the next round, and the operations in each round

are implemented as table lookups for performance reasons.

OpenSSL uses ten 1-KB lookup tables, five for encryption

and five for decryption. Four tables are used in each round

except that the final round uses a different lookup table.

To perform the attack, the attacker sends random plaintext

blocks to the victim to do AES encryption, and measures the

time for each block encryption. Before triggering the next

block encryption, the attacker cleans the cache so that each

block encryption starts from a clean cache. Cache collision

attacks assume that the attacker either knows the plaintext

(first-round attack) or the ciphertext (final-round attack).

First-round attack: The index of the first round table

lookup xi is related with the key byte ki and plaintext

byte pi as xi = ki ⊕ pi. If the attacker learns that two

memory accesses collide, i.e., 〈xi〉 = 〈xj〉, he can infer that

〈ki ⊕ kj〉 = 〈pi ⊕ pj〉.
Final-round attack: The index of a final round table lookup

x10
u of table T4 is related with the final round key byte k10i

and ciphertext byte ci as T4[x
10
u ] ⊕ k10i = ci. Hence, by

learning two table lookups x10
u and x10

w collide in the final

round table lookups, the attacker can infer that k10i ⊕ k10j =
ci ⊕ cj .

Since a cache collision of two memory accesses xi and

xj means a lower execution time on average, the attacker

can aggregate the time measurements according to the value

of the XORed plaintext (or ciphertext) bytes and find the
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Figure 2. Timing characteristic chart for c0 ⊕ c1. The minimum average
encryption time occurs at c0 ⊕ c1 = 160, implying k100 ⊕ k101 = 160.

minimum encryption time. Figure 2 shows the average

encryption time for the samples with the same value of

XORed c0 ⊕ c1. The data is collected by running 217 block

encryptions on the cycle-accurate gem5 simulator [20]. The

attacker can easily find the point with minimum average

encryption time, then he can infer k100 ⊕k101 = c0⊕c1 = 160.

He can get similar timing characteristics for 15 XORed

ciphertext bytes (c0 ⊕ ci, i = 1, ..., 15), and thus infer

15 XORed key bytes to recover the full 16-bytes key (by

guessing just one key byte k100 ).

III. PAST WORK

A. Secure Cache Solutions

Designing secure caches can provide much higher perfor-

mance, and often greater security, than software solutions

for mitigating cache side channel attacks. Two general

approaches that have been used are partitioning the cache

and randomizing the memory-to-cache mapping.

Partitioning the Cache: The cache is partitioned into

different zones for different processes and each process can

only access the cache blocks in its zone, thus eliminating

contention between a victim process and an attacker process.

Partitioning can be achieved statically or dynamically.

NoMo [13] cache uses static cache partitioning by simply

reserving one or more ways of a set for each hardware

thread. However, it only works for the case when the victim

and the attacker processes are executing simultaneously in

a simultaneous multi-threading (SMT) processor.

PLcache [11] performs finer-grained, dynamic partition-

ing, which does not statically reserve any cache lines for

a process; instead it locks a protected cache line into the

cache and does not allow it to be evicted by another process.

Each cache line is extended with the process identifier

and a locking status bit. The architectural support also

includes special load/store instructions for fine-granularity

locking/unlocking. The special load/store instructions are

similar to the normal load/store instructions, except that if

the memory access hits in the cache or causes a cache line

to be fetched into the cache, the locking status bit is set

(lock) or cleared (unlock).

Randomizing memory-to-cache mapping: RPcache [11]

and Newcache [12] are cache designs using memory-to-

cache mapping randomization. In RPcache, there is a per-

mutation table for each trust domain, which can permute

the index bits to the cache set. If a process wants to replace

cache line X in cache set S, which belongs to a process in

another trust domain, a cache line Y in a randomly selected

cache set S′ will be evicted instead of evicting cache line

X . The cache indices of S and S′ will be swapped in the

process’ permutation table and other cache lines in S and

S′ belonging to the process are invalidated. Therefore, the

attacker cannot get useful information from the cache line

eviction and replacement.

Newcache [12], [21] can randomize the mapping to each

single cache line by adopting a logical direct-mapped cache

architecture, hence avoiding the swapping of cache sets

and invalidating of other lines in these swapped cache sets

– resulting in better performance. Newcache introduces a

remapping table as a level of indirection, which stores the

mapping from the index bits of the address to a real cache

line. Protected processes have different remapping tables,

while all unprotected processes share the same remapping

table. Newcache can avoid many conflict misses by using

a longer index (additional bits) than needed for the actual

size of the physical cache – again improving performance.

The remapping table is dynamically updated and random-

ized using a security-aware replacement algorithm, hence

randomizing the cache contention between the victim and

the attacker.

Both Partitioning and Randomization based approaches

only target contention based attacks, and cannot defeat reuse

based attacks. These approaches differ from the conventional

set-associative caches mainly in where the memory line can

be placed in the cache. Consider, for example, the data reuse

between memory accesses xi and xj , in the cache collision

attack. For the Partitioning based approaches, access to xi

will bring the memory line 〈xi〉 into its own cache partition,

and accesses to xj will hit in the cache when 〈xi〉 = 〈xj〉.
Similarly, in randomization based approaches, if memory

line 〈xi〉 was brought into a random location in the cache,

the second memory access would still result in a cache hit if

〈xi〉 = 〈xj〉. Hence, the root cause of cache collision attacks

still holds.

B. Constant Execution Time Solutions

Achieving constant execution time in cache accesses [4],

[8], [14] could potentially eliminate cache side channel

attacks based on the timing difference of cache hits and

misses, including reuse based attacks. One drastic approach

is to disable the cache for security-critical accesses [8] so

that all accesses to security-critical data miss in the cache.

This will severely degrade performance. Getting all cache

accesses to be hits is ideal, and this can be done using other

on-chip storage [22], rather than a cache.

Constant time using a cache can also be approached by

“preloading” all the security-critical data into the cache,

so that all accesses to them are cache hits. This has been

done by rewriting the software cipher to preload all the

critical data before each round [15]. However, performance
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is significantly degraded, and the preloaded data can still be

evicted within a round of encryption. With some hardware

support, performance may be improved. [14] proposed to

use the “informing loads” technique [23] to perform the

“preloading”. Critical data is loaded using informing load

instructions, and on a cache miss, a user-level exception

handler is invoked to perform the preloading. Security-

critical data can also be preloaded during context switches

[14] and then “locked” in the cache by the cache line locking

mechanism of PLcache [11]. “PLcache+preload” is simpler

than “informing loads” in terms of hardware and software

changes, and has better performance due to less frequent

invocation of the preloading routine on context switches

rather than cache misses.

Unfortunately, “preloading” based approaches still have

scalability and performance issues, and may cause new

security problems, which we will discuss in detail in sections

VI and VIII.

In this paper, we try to find a general approach against

reuse based attacks, as a complement to existing secure

cache design approaches, which only defend against con-

tention based attacks. Contrary to conventional wisdom, we

also show that constant execution time is not the necessary

condition to defeat cache collision attacks and other reuse

based attacks. Our defense strategy leads to a simpler

hardware based solution, without the need to frequently

preload or reload all the security-critical data into the cache.

IV. RANDOM FILL CACHE ARCHITECTURE

A. Random Cache Fill Strategy

Our key insight is that the root cause of reuse based

attacks suggests that the cache fill strategy has to be re-

designed to de-correlate the cache fill and the demand

memory access. We propose using a random cache fill

strategy to dynamically achieve the de-correlation. On a

cache miss, the missing data is sent to the processor without

filling the cache. To still get performance from the cache, we

fill the cache with randomized fetches within a configurable

neighborhood window of the missing memory line instead.

The idea is partially motivated by our observation that ac-

cesses to the security-critical data in cryptographic programs

usually have random patterns, due to the nonlinearity of

the lookup tables (e.g., S-box) and to the random keys.

Therefore, randomly fetching the neighborhood memory

lines is as good as demand fetching the missing memory

line. The random fetching within the spatial locality of

the neighboring memory locations is like prefetching, and

hence performance may not be degraded, and could even be

improved in some cases.

The random cache fill strategy represents a more general

and flexible cache fill strategy than the demand fetch policy,

and the degree of de-correlation can be configured by

changing the random fill window size. We will show in

section V that our random cache fill strategy can provide an

Figure 3. (a) block diagram of random fill cache, (b) blow up of random
fill engine

information-theoretic security assurance against reuse based

attacks by choosing a proper random fill window size. As a

cache fill strategy, it can be built on any existing secure cache

architecture (e.g., Newcache [12], [21]) to provide built-in

security against all known cache side channel attacks.

B. Random Fill Cache Architecture

A block diagram of the random fill cache architecture is

shown in Figure 3(a). We focus on the L1 data cache since

cache side-channels are most effective (fastest) in L1 data

caches. It is built upon a conventional non-blocking cache

and the hardware addition is very small (highlighted in bold

in Figure 3), essentially a random fill engine, a queue and

a multiplexer.

1) Hardware for No Demand Fill: In a non-blocking and

write-back cache, an entry in the miss queue records the

missing memory line address and the status of the request.

We add a field to miss queue entries to indicate the request

type: normal, nofill or random fill:

• Normal request is a demand fetch as in a conventional

cache that does demand fill; it fills the cache with the

missing line, and the data returned will be sent to the

processor.

• Nofill request is a demand fetch that directly forwards

returned data to the processor while not filling the

cache. This leverages the critical word first technique

typically implemented to reduce the cache miss latency,
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Figure 4. Efficient generation of the address of the random fill request.
The example shows a random fill window [i − 4, i + 3]. RR1 stores the
lower bound −a = −4 and RR2 stores the window size mask 23 − 1.
Both the range registers and RNG are 8-bits in width, and the generated
random fill request is i− 1.

so no extra hardware is required to implement the

forwarding of data.

• Random fill request only fills the cache but does not

send any data to the processor.

2) Random Fill Engine (Figure 3(b)): Upon a cache

miss, the demand requested memory line will not be filled

into the cache. Instead, the random fill engine generates a

random fill request with an address within a neighborhood

window [i − a, i + b] which is a memory lines before

and b memory lines after the demand request for memory

line i. The two boundaries a and b are stored in two new

range registers, RR1 and RR2, which bound the range of

the random number generated from a free running random

number generator (RNG). For example, the RNG can be

implemented as a pseudo random number generator with a

truly random seed. The use of RNG does not impact the

cycle time since it is used only during a cache miss and

hence is not in the critical path of the processor’s pipeline.

Furthermore, the random number can be generated ahead

of time and buffered. Note that when the range registers

are set to zero, randomized cache fill is essentially disabled.

In this case, the demand request will be sent as a normal

request and no random fill request is generated. The random

fill request goes to a random fill queue (a First In First Out

(FIFO) buffer) where it waits for idle cycles to lookup the

tag array of the data cache. If the random fill request hits in

the cache, it is dropped. Otherwise a random fill request is

issued and put into the miss queue.

Table II
ALTERNATIVE SYSTEM CALLS FOR CONFIGURING RANDOM FILL

WINDOW DYNAMICALLY (ONLY 1 NEEDED)

Declaration Description

set RR(int a, int b)
set range register RR1 and RR2 to
the given value a and b, respectively

set window(int lowerBound,
int n)

set the lower bound and size of the
random fill window to

lowerBound and 2n, respectively

3) System Interface: The two range registers, RR1 and

RR2, are configurable by the operating system (OS). As

shown in Table II, the OS provides a system call set RR to

set the range registers by the compiler and/or applications.

This system call provides a fine-granularity control of the

use of the random fill cache. By default, the two range

registers are set to zero and the random fill cache works just

like the conventional demand-fetch cache. The system call

can be inserted before the cryptographic operations either

by the compiler or by the applications to enable randomized

cache fill. They can be disabled afterwards by another call

to set RR. The range registers are part of the context of the

processor and need to be saved to, and restored from, the

process control block (PCB) for a context switch.

4) Optimization: Since it may be non-trivial to generate a

random number within an arbitrary bound, we also propose

an optimization that constrains bounds a and b so that

a + b + 1 = 2n, i.e., the window size is a power of two.

Instead of set RR, a different system call set window is

implemented: this takes the lower bound of the random fill

window (i.e., −a) and the logarithm of the window size

(i.e., n) as parameters. Instead of directly storing a and b,
the range registers store the lower bound −a and a mask

for the window (i.e., 2n − 1), as shown in Figure 4. The

masked random number is R′ = 3, which when added to

the lower bound −4 gives the bounded random number −1.

Since the bounded random number can be computed ahead

of time, the critical path only consists of one adder that adds

the demand miss line address i and the bounded random

number (as shown by the dotted arrow).

V. SECURITY EVALUATION

As shown in Table I, reuse based attacks consist of cache

collision attacks and Flush-Reload attacks, which correspond

to two information leakage channels: the timing channel

and the storage channel. By definition, the timing channel

exploits the timing characteristics of events to transfer in-

formation [24], [25], whereas the storage channel transfers

information through the setting of bits by one program and

the reading of those bits by another [24]. We show that our

random cache fill strategy is able to completely close the

known timing channel and provide a strong information-

theoretic security assurance against the storage channel,

when the random fill window of the victim process is

properly chosen.

A. Timing Channel

We analyze known cache collision attacks that exploit the

impact of the reuse of security-critical data on the aggregated

time. Data reuse always comes in a pair of memory accesses

(xi and xj , where xi precedes xj). We abstract the impact

as the difference of the expected execution time under the

conditions of cache collision (μ1) and no collision (μ2),

respectively:
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Table III
P1 − P2 AND THE NUMBER OF MEASUREMENTS FOR A SUCCESSFUL CACHE COLLISION ATTACK, FOR VARIOUS WINDOW SIZES

window size: size=1 size=2 size=4 size=8 size=16 size=32

Random fill + 4-way SA
P1 − P2 0.652 0.332 0.127 0.044 0.012 0.006

# measurements 65,000 1,866,000 16,653,000 no success after trying 224 measurements

Random fill + Newcache
P1 − P2 0.576 0.292 0.119 0.045 0.016 0.007

# measurements 244,000 2,106,000 no success after trying 224 measurements

μ1 = μ0 + P1 · thit + (1− P1) · tmiss

μ2 = μ0 + P2 · thit + (1− P2) · tmiss

(2)

where μ0 is the expectation of the aggregated time excluding

the security-critical access xj , thit and tmiss are the cache

hit and miss latencies, respectively. P1 and P2 are the cache

hit probabilities under the conditions of cache collision and

no collision, defined as follows:

P1 = P (xj hit|〈xi〉 = 〈xj〉)
P2 = P (xj hit|〈xi〉 �= 〈xj〉)

(3)

The expectation of the timing difference (μ2 − μ1) is the

signal that an attacker wants to extract, which depends on

P1 and P2 as follows:

μ2 − μ1 = (P1 − P2)(tmiss − thit) (4)

This means that no information can be extracted from the

timing characteristics if P1 − P2 = 0 for any arbitrary pair

of security-critical accesses. In fact, P1 − P2 (or μ2 − μ1)

directly reflects the difficulty of the attack. The number of

measurements required for a successful attack is related to

P1 − P2 as:

N ≈ 2Z2
α(

(P1 − P2)(tmiss − thit)

σT

)2 (5)

where α is the desired likelihood of discovering the secret

key, and represents how we define a successful attack. Zα

is the quantile of the standard normal distribution for a

probability α. σT is the variance of the execution time.

Equation (5) is obtained using a derivation similar to that

in [26] and [27]. It indicates that when P1 − P2 = 0, the

attack cannot succeed (infinite number of measurements are

required).

The purpose of the random cache fill strategy is to

zero out the signal that an attacker can extract, not just

simply add noise to the attacker’s measurements. In the

following, we show how the random cache fill strategy

achieves P1 − P2 = 0. Assume the security-critical data

is contained in a contiguous memory region with M cache

lines, starting at M0. Consider two memory accesses xi

and xj to the security-critical memory lines i and j where

i, j ∈ [M0,M0 + M − 1], respectively. Further assume 1)

the memory line i is not cached yet (i.e., the cache warm-

up phase) and the memory access xi initiates a random fill

within window [i− a, i+ b], 2) there are no other accesses

to memory line i in between xi and xj , 3) the cache state

is clean. This represents the best case for the attacker. Then

we can calculate the two conditional probabilities:

P1 =
1

a+ b+ 1

P2 =

⎧⎨
⎩

1

a+ b+ 1
, j ∈ [i− a, i+ b]

0, j /∈ [i− a, i+ b]

(6)

Equation (6) indicates that for arbitrary i and j, if j is in

the random fill window of i, P1−P2 = 0 always holds. The

sufficient and necessary condition that gives j ∈ [i−a, i+b]
is a, b ≥ M − 1. This means that when the random fill

window is sufficient to cover the whole lookup table, the

random fill cache ensures that P1 − P2 = 0 for any pair of

security-critical accesses, and hence completely closes the

timing channel. However, if we examine P1 − P2 for the

conventional set-associative cache, and for the Partitioning

and Randomization based secure caches, we find that P1 −
P2 ≈ 1 always holds under the same assumptions, since the

memory access xi will always bring the memory line i into

the cache.

Note that a cryptographic program may contain multiple

independent lookup tables, so the total size of all the
security-critical data may not be small – this is why other
solutions which require pre-loading all the security-critical
data may fail to scale when the size of security-critical data
is large. However, an individual table is usually small and the

random fetch window size is determined by the individual

table size, and thus is usually relatively small.

Case Study – Cache Collision Attacks against AES: In

fact, the timing channel can be substantially mitigated even

when the window size is small. In this section, we use cache

collision attacks against AES as a case study to investigate

how the random fill window size impacts the security of

a random fill cache. Consider the final round AES table

T4. It is 1 KB in size and contains 16 cache lines (assume

cache line size is 64 bytes). So, a random fill window with

a = b = 15 is large enough to cover the whole AES table

for any table lookup. There are 16 table lookups to T4 for

each block encryption. We use Monte Carlo simulation to

calculate the average P1 − P2 for all the table lookup pairs

within the 16 table lookups. We perform 100,000 trials in the

Monte Carlo simulation and each trial does AES encryption

of one block of random plaintext.
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Table III shows the average P1−P2 for different random

fill window sizes. We include results for two cases: 1)

the random fill cache built upon a conventional 4-way set-

associative (SA) cache (32 KB in size); 2) the random fill

cache built upon Newcache (with the same cache size as

the SA cache). The first column with “size=1” in Table

III also represents the 4-way SA cache and Newcache with

the demand fetch policy. We use a bidirectional random fill

window [i − 2n, i + 2n − 1], because the randomized table

lookups in cryptographic algorithms do not favor the forward

direction over the backward direction, so a bidirectional

random fill window has the best security.

We make the following observations: 1) Both SA cache

and Newcache have a large P1 − P2, thus are vulnerable

to cache collision attacks (the first column with “size=1”).

2) Our random cache fill strategy is effective against cache

collision attacks for both SA cache and Newcache. In fact, as

a cache fill strategy, it can be built on any cache architecture.

3) P1−P2 drops dramatically as the window size increases.

Note that due to the inaccuracy of the Monte Carlo method,

we cannot achieve exactly P1 − P2 = 0 when the window

size is 32.

We further verify our conclusions by performing real

cache collision attacks [4]. The simulator configuration is

similar to what we use for the performance evaluation (Table

IV) except we minimize the impact of a non-blocking cache

by using only 1 miss queue entry for 1 non-blocking cache

miss. This configuration favors the attacker since we find

that it requires about 1 order of magnitude less samples

compared to the baseline configuration in Table IV, which

has 4 miss queue entries. The results are shown in Table

III. When the window size increases, the number of mea-

surements required increases drastically. When the window

size is larger than 4, the attacks all fail after collecting 224

measurements. (It takes more than three weeks of continuous

simulation on gem5 to collect 224 measurements). Note that

attacking Newcache requires slightly more measurements

than attacking the SA cache because cache collision attacks

require each measurement to start from a clean cache, and

completely cleaning Newcache is harder than cleaning the

SA cache, due to Newcache’s random replacement algo-

rithm.

B. Storage Channel

For the storage channel, e.g., in a Flush-Reload attack, we

can directly calculate the channel capacity using the channel

model in [11]. Similar to the proof for the timing channel, we

assume the security-critical data is contained in a contiguous

memory region with M cache lines, starting at M0. The

victim process is the sender who accesses security-critical

memory line i ∈ [M0,M0+M−1], which can be represented

by a random variable S. Let j be the memory line that is

randomly filled into the cache due to the access of i, then

we have j ∈ [M0 − a,M0 +M − 1 + b] for the random fill
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Figure 5. Channel capacity for different window sizes. The window size
is normalized to the size of the security-critical data (contains M cache
lines). The channel capacity is normalized to the demand fetch case.

window of the form [i − a, i + b]. Due to the boundary

effect, memory lines that are outside the security-critical

region may be brought into the cache. Here, we assume the

best case for the attacker: the attacker can access the data

outside the security-critical region and hence can determine

which memory line is brought into the cache. Therefore,

the attacker is the receiver who can exactly observe the

symbol j, which can be represented by a random variable R.

Then the conditional probability that the attacker receives a

symbol j given the victim process sends symbol i is

Pij = P (R = j|S = i) =

{
1
W i− a ≤ j ≤ i+ b

0 otherwise
(7)

where W is the window size: W = a+ b+ 1.

The channel capacity is the mutual information of S and

R when S satisfies a uniform distribution, i.e., P (S = i) =
1/M . We have the channel capacity as [28]

C =
∑
i,j

P (S = i, R = j)log
P (S = i, R = j)

P (S = i) · P (R = j)

=
∑
i,j

1

M
Pij · logM · Pij∑

i

Pij

(8)

where M is the number of cache lines of the security-critical

data, Pij is the conditional probability defined in Equation

(7).

Figure 5 shows how the window size impacts the channel

capacity for various sizes of security-critical data. The chan-

nel capacity is normalized to the demand fetch case and the

window size is normalized to the size of the security-critical

data. Due to the boundary effect, the storage channel cannot

be completely closed. However, we find that the channel

capacity drops dramatically as the window size increases.

For example, the channel capacity is already reduced by

more than one order of magnitude when the window size

is twice the size of the security-critical region. The impact
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Table IV
SIMULATOR CONFIGURATIONS

Parameter Value
ISA ALPHA

Processor type 4-way out-of-order
L1 instruction cache 4-way 32 KB

L2 cache 8-way 2 MB
Cache line size 64 bytes

Cache replacement algorithm LRU
miss queue entries 4
L1/L2 hit latency 1 cycle / 20 cycles

DRAM frequency/channels DDR3-1600/1

of the boundary effect is smaller for larger security-critical

regions. As mentioned in section II, the Flush-Reload attack

requires the attacker and the victim to share the security-

critical data, which can be easily disabled by not declaring

the security-critical data as read-only, hence the information

leakage through the storage channel is a less serious threat

than the information leakage through the timing channel.

Nevertheless, our random fill cache still provides a strong

information-theoretic security assurance against this type of

side channel leakage even when sharing is allowed.

VI. PERFORMANCE EVALUATION

We implemented our random fill cache on a cycle-accurate

simulator, gem5 [20]. We use a 4-way, out-of-order proces-

sor with two levels of caches in our performance evaluation,

and the baseline configuration is shown in Table IV. The

baseline cache is a set-associative cache with least recently

used (LRU) replacement algorithm and without a prefetcher.

The DRAM models the detailed timing of a single channel

DDR3-1600.

Performance impact on cryptographic algorithm: We first

study how the random fill cache performs for cryptographic

algorithms. Our workload is the OpenSSL’s AES encryp-

tion that takes a 32 KB random input and does a cipher

block chaining (CBC) mode of encryption. The results are

shown in Figure 6 for various cache sizes and associativity.

The Instruction Per Cycle (IPC) metric is normalized to

the baseline demand-fetched cache with the same cache

size and associativity. We also compared the performance

with two previous constant-time solutions against the cache

collision attacks: the “disable cache” approach disables the

cache for security-critical accesses to the 5 AES tables

for encryption. The “PLcache+preload” approach pre-loads

all the 5 AES tables and uses the locking mechanism

provided by the PLcache to lock these tables in the cache.

We chose the “PLcache+preload” approach because it has

better performance than the “informing loads” approach

[14]. The random fill window is configured to be of the

form [i − 16, i + 15], which can cover the whole table for

any pair of security-critical accesses to the table.

As can be expected, the “disable cache” solution degrades

the performance by 45% for all the cache configurations,

since security-critical accesses contribute about 24% of
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Figure 7. Impact of window size for the random cache fill strategy built
on (a) SA cache, (b) Newcache, when running AES

the total accesses to the data cache. The performance of

“PLcache+preload” is sensitive to the cache size and asso-

ciativity. When the cache size is small (8KB), more than

half of the cache lines are locked for the security-critical

data. It incurs 15% degradation for the direct-mapped (DM)

cache and 3% degradation for the 4-way SA cache when the

cache size is 8 KB. “PLcache+preload” also does not work

well when the associativity is low; it incurs more than 4%

degradation for the DM cache even when the cache size is

32 KB. The random fill cache is less sensitive to the cache

size and associativity. The performance degradation is less

than 3.5% even when the cache size is 8 KB, and there is

no degradation for larger caches.

Note that our conclusions are not specific to AES. The

reason why the random fill cache can maintain good perfor-

mance is that it still takes advantage of the spatial locality

of the key-dependent data flow. The slight performance

degradation when the cache size is small is due to fetching

of unused data that is outside the security-critical region. We

also study how the performance is impacted when both the

L1 and L2 caches are random fill caches. We find that the

performance impact is negligible since the L2 cache is large

and can better tolerate the potential cache pollution due to

the random fill of unused data.

Impact of window size: Figure 7(a) shows that when

the random fill cache is built upon the SA cache, the

performance is not sensitive to the window size for both

the worst case (8 KB DM cache) and the best case (32 KB

4-way SA cache). When built upon Newcache (Figure 7(b)),

our random fill cache works slightly worse than for the SA

cache, when running AES. As the window size increases,
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Figure 8. Performance impact on other programs running concurrently

Figure 9. Effectiveness of random cache fill strategy for general workloads

the performance also decreases (maximum degradation is

9% when the window size is 32 for the 8 KB cache). This

is because when the window size is large, it is more likely

to fetch unused data into the cache and evict frequently-used

data through the random replacement algorithm.

Performance impact on other concurrent programs:
Since a random fill window of [0, 0] is used by default,

there is no impact to a non-cryptographic program when it

runs alone. Instead, we study how the performance of a non-

cryptographic program is impacted when it runs concurrently

with a cryptographic algorithm in a simultaneous multi-

threading (SMT) processor. To stress the cache, the crypto-

graphic program continuously does both AES decryption and

encryption of 32 KB random data. In this case, the security-

critical data includes 10 AES tables for both encrytion and

decryption. A bidirectional random fill window with a size

of 32 lines is used for the crpytographic program. The non-

cryptographic programs are 8 SPEC2006 benchmarks and

are run for 2 billion instructions with reference inputs. We

consider two cache configurations: 16 KB DM cache and

32 KB 4-way SA cache. The results are the normalized

throughput (IPC) for the non-cryptographic program.

As shown in Figure 8, for all the benchmarks, we observe

no impact of the random fill cache on the throughput of

the non-cryptographic programs, for both the case when

the random fill cache is built on the SA cache and when

it is built on the Newcache. This is because our ran-

dom fill cache does not need to reserve any cache lines;

for the non-cryptographic algorithms, random fill request

is no different than a demand fetch request. In contrast,

“PLcache+preload” incurs significant impact on the non-

cryptographic programs. When the cache size is relatively

small (16 KB), the performance degradation is 32% on

average. Even when cache size is 32 KB, it still incurs

an average degradation of 1%. Therefore, scalability is a

serious problem for the “PLcache+preload” approach. When

the size of the security-critical data is large (relative to the

cache size), the cache available for other data is reduced –

causing performance degradation of both the cryptographic

algorithm and other concurrently running programs. The

scalability issue is especially problematic for the L1 data

cache. L1 data cache is usually small but cache side channel

attacks are most effective on the L1 data cache, rather than

on the L2/L3 caches.

VII. PERFORMANCE BENEFITS OF RANDOM FILL

CACHE

Although our random fill cache is proposed for security,

it also provides architectural support for a more flexible and

general cache fill strategy than the demand fetch policy. We

now study the extent to which a general non-cryptographic

program can benefit from the random cache fill strategy to

improve its performance. The performance implication of

random fill is that it can take advantage of spatial locality

beyond a cache line, while the demand fetch strategy can

only take advantage of spatial locality within a cache line.

We first investigate the effectiveness of the random cache

fill strategy through profiling. Specifically, we study how
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Figure 10. (a) L1 data cache MPKI and (b) IPC for random fill cache with different random fill window sizes. [−a, b] indicates a range of a memory
lines before, to b memory lines after, the demand requested memory line

the performance of non-cryptographic programs is impacted

when a L1 data cache exploits random fill strategy. The

baseline configuration is the same as that in Table IV. We tag

each randomly filled memory line with an offset (denoted as

d) with respect to the associated demand requested memory

line. The effectiveness (reference ratio) of the random fill is

defined as the ratio of the number of cache lines that are

referenced before being evicted after being brought into the

cache, over the total number of fetched memory lines:

Eff(d) =
Nreferenced(d)

Nfetched(d)
(9)

Note that the profiling method essentially provides a way

to sample the spatial locality of a program. The profiling

results are shown in Figure 9, with a maximum d of ±16. We

find that many workloads only have spatial locality spanning

about four neighborhood cache lines or less. Therefore,

demand fetch will work well for these workloads. However,

there are some benchmarks that do not perform well under

demand fetch. For example, lots of irregular streaming

access patterns can be found in libquantum and lbm, which

shows wider spatial locality beyond a cache line, especially

in the forward direction. The random access patterns, as can

be found in AES, also show wide spatial locality beyond a

cache line.

Figure 10 shows the L1 data cache Misses Per Kilo

Instructions (MPKI) and IPC for the SPEC benchmarks

with different random fill window sizes (both forward and

bidirectional windows). The MPKI counts the number of

cache misses that cause a data fetch request to the L2 cache,

excluding outstanding misses to the same cache line. Note

that the random fill window [0, 0] means demand fetch only

(first bar for each benchmark in Figure 10). We simulate two

billion instructions using the reference inputs. We insert the

system call for setting the range registers of the random fill

cache at the beginning of the program, which essentially

enables random fill for all the memory accesses.

The MPKI results agree well with the profiling results in

Figure 9. Figure 10(a) shows that for benchmarks without

wide spatial locality, a larger random fill window tends to in-

crease the L1 cache MPKI, compared to demand fetch. Two

exceptions are lbm and libquantum. In these two bench-

marks with irregular streaming patterns, a larger random

fill window actually reduces the L1 cache MPKI compared

to demand fetch, especially with a forward window. Figure

10(b) shows that as the MPKI increases for larger window

sizes, the overall performance in IPC decreases, as expected

– except for lbm and libquantum.

For these streaming applications, we notice that the IPC

seems to improve more than the L1 MPKI decreases. For

libquantum, the best performance is achieved when the

random fill window is [0, 15]: the MPKI is reduced by 31%

while the IPC is increased by 57%. This is likely due to the

fact that our random fill cache reduces L2 MPKI in addition

to reducing L1 data cache MPKI. Consider the following

case: if a demand request to X[i] misses in both the L1 data

cache and the L2 cache, and the random fill request triggered

by the demand request also misses in the L2 cache, both the

cache line containing X[i] and one of its neighboring cache

lines will be brought into the L2 cache. Since these two

cache lines brought into the L2 cache are likely to be used

in the future, the L2 cache miss rate may be significantly

reduced. Meanwhile, although the cache line containing X[i]
does not fill the cache, which may cause extra cache misses

for the subsequent accesses to the same cache line, this need

not increase the overall L1 MPKI because a random fill

request for a neighboring cache line is generated and fetched

into the L1 data cache (if not already there), and this is likely

to be referenced in the near future, especially for irregular

streaming applications like libquantum, as shown in Figure
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9. Also, the extra cache misses for the accesses X[i + 1],
etc., in the same cache line as X[i], do not take a whole

cache miss latency in non-blocking caches (like the one we

simulate with 4 miss queue entries), if they occur during the

time X[i] is being fetched or in the miss queue.

Note that a random fill cache does increase L2 cache and

memory traffic due to extra random fill requests. For lbm
and libquantum, the traffic to the L2 cache is increased by

48% and 56%, but the traffic to the memory is increased

only by 0.03% and 22%, respectively.

Note that the streaming patterns in lbm and libquantum
are irregular and may be too complex for a simple hardware

prefetcher [29]. The use of our random fill cache may give

better performance than the demand-fetched cache with a

simple prefetcher for these benchmarks. For example, we

compare the result with a commonly used tagged prefetcher

[30], that associates a 1-bit tag with the cache line to

detect when a demand-fetched or prefetched cache line is

referenced for the first time, to fetch the next sequential

line. We find that the tagged prefetcher can only improve the

IPC performance by 11% for lbm and 26% for libquantum,

while our random fill cache improves IPC by 17% for lbm
and 57% for libquantum. Further performance improve-

ments with the random fill cache may be possible by getting

spatial locality profiles for different phases of the program,

and setting the appropriate window size for each phase.

While more sophisticated prefetchers can certainly give

better performance, our goal here is to show that design-

for-security need not necessarily degrade performance, but

may even improve performance, as shown by the random fill

cache for streaming applications like libquantum and lbm.

VIII. COMPARISON WITH PAST WORK

Our random fill cache provides architectural support for

a security-critical program to protect itself against reuse

based attacks, by properly configuring its own random

fill window size. A random fill cache hardly incurs any

performance degradation, and can sometimes even improve

the performance of programs that have irregular streaming

patterns. The hardware addition is very small, and only the

cache controller needs to be changed slightly. Also, only

trivial software changes are required: to set the window size

at the beginning of the cryptographic routine or the security-

critical or streaming program.

We now compare our Random Fill cache with the past

work described in section III. The Partition and memory-to-

cache mapping Randomization based secure cache designs

only target the contention based attacks and cannot defeat

the reuse based attacks, since they still exploit the demand

fetch policy, which we have identified as the root cause of

reuse based attacks. Our random fill cache can complement

these prior secure cache designs.

Although the constant execution time solutions, like

“PLcache+preload” and “informing loads” [14], may also

defeat reuse based attacks, they may also introduce new

security problems which could potentially be more danger-

ous than even cache side-channel attacks. (We refer to both

these techniques as hardware-assisted preloading, or just

preloading based approaches.) For example, the “informing

loads” approach may create a new vulnerability, since now

an attacker can essentially supply malware to be executed on

every cache miss. Also, the user-level exception handler for

each cache miss is not protected and can easily be attacked.

Both these hardware-assisted preloading based approaches

are also vulnerable to Denial-of-service (DoS) attacks. For

example, an attacker can abuse the locking mechanism of

PLcache by locking a lot of cache lines to prevent other

processes from utilizing the cache. For the “informing loads”

approach, if the attacker frequently evicts the security-

critical data, the exception handler for informing loads will

be frequently invoked, leading to huge slowdown for the

victim. In other words, the defense mechanism itself can be

abused by the attacker to create more havoc.

In contrast, the configurable random fill window in our

solution cannot be abused by an attacker, since using a large

random fill window for his own attack process only makes

his measurements harder, and the attacker cannot set the

victim’s window size. Also, since the random fill cache does

not need to preload all the security-critical data, it has much

lower performance overhead, and also better scalability to

larger amounts of security-critical data (section VI), than

the preloading based approaches. Furthermore, our random

fill cache is simpler in both hardware and software changes

required, and has a much simpler programming model

than the preloading based approaches. For example, the

“informing loads” approach requires writing and installing

of a correct and incorruptible user-level exception handler

to preload all the security-critical data, and also rewriting of

each cipher to use the new informing load instructions.

IX. CONCLUSIONS

Reuse based cache side channel attacks are serious new

sources of information leakage in the microprocessor, in

addition to the better-known contention based side channel

attacks. They do not rely on any resource contention and are

threats especially relevant to storage structures (like caches

and TLBs) which exploit the locality of data accesses to

store data from larger storage structures. We found that the

fundamental demand fetch policy in conventional caches is

the security vulnerability that causes the success of reuse

based attacks. We proposed a random fill cache architecture,

which is able to dynamically de-correlate the cache fill with

the demand memory access. We proved that the random

fill cache provides information-theoretic security against

reuse based attacks. We showed that our random fill cache

incurs very slight performance degradation for cryptographic

algorithms and has no performance impact on concurrent

non-security-critical programs. A very interesting result is
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that our random fill strategy can be built on existing secure

cache designs, e.g., Newcache, to provide comprehensive

defenses against all known cache side channel attacks –

without degrading performance. Furthermore, our random

fill cache provides a more general cache fill strategy than the

demand fetch strategy, and can provide performance benefit

to some applications that are not demand-fetch amenable,

by exploiting spatial locality beyond a cache line.
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