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Random focusing of tsunami waves

Henri Degueldre1,2, Jakob J. Metzger1,2, Theo Geisel1,2* and Ragnar Fleischmann1

Tsunamis exhibit surprisingly strong height fluctuations. An
in-depth understanding of the mechanisms that lead to these
variations in wave height is a prerequisite for reliable tsunami
forecasting. It is known, for example, that the presence
of large underwater islands1 or the shape of the tsunami
source2 can affect the wave heights. Here we show that the
consecutive effect of even tiny fluctuations in the profile of the
ocean floor (the bathymetry) can cause unexpectedly strong
fluctuations in the wave height of tsunamis, with maxima
several times higher than the average wave height. A novel
approach combining stochastic caustic theory and shallow
water wave dynamics allows us to determine the typical
propagation distance at which the strongly focused waves
appear. We demonstrate that owing to this mechanism the
small errors present in bathymetry measurements can lead
to drastic variations in predicted tsunami heights. Our results
show that a precise knowledge of the ocean’s bathymetry is
absolutely indispensable for reliable tsunami forecasts.

The devastating consequences of recent tsunami catastrophes
have led to strongly increased efforts in tsunami research in the past
decade, aiming at reliable predictions of tsunami properties3. Run-
up measurements and detailed simulations of past tsunami events
have shown pronounced fluctuations in the crest height of tsunamis
(see, for example, http://nctr.pmel.noaa.gov/honshu20110311). Al-
though in-detail numerical modelling of the wave propagation in
themeasured depth profile of the ocean floor captures many aspects
of these fluctuations, a theoretical understanding of the focusing
mechanisms that cause them will allow one to scrutinize and im-
prove the assumptionsmade in thesemodels. Figure 1 illustrates that
bathymetry fluctuations of the order of only a few per cent of the
ocean depth can indeed lead to tremendous variations in the wave
height. As we will show below, this is related to the phenomenon
of branched flow4, which has been observed in various contexts, in
particular for linear waves propagating in a weak random potential
or a weakly scattering randommediumwhen the fluctuations of the
medium are correlated on length scales longer than the wavelengths.
Examples include the propagation of electron waves through high-
mobility semiconductors4–7, sound propagation in the oceans8 and
microwave transmission through a field of weak random scatter-
ers9,10. It has also been related to the occurrence of freak waves in the
oceans11–13. The origin of branchedwave flows in these cases can best
be understood in a corresponding ray picture, where one observes
that consecutive weak scattering events in a random medium can
lead to surprisingly strong focusing effects connected to the forma-
tion of random caustics6,13–18.

The complexity of the geologic processes responsible for the
depth profile of the ocean floor makes it natural to describe the
bathymetry as a correlated random medium. As the stochastic
ray equations describing tsunami propagation are very different,
however, from the equations governing all the above-mentioned

wave systems (there is an extra multiplicative noise term in the
stochastic equations, see Methods), results obtained for the latter
cannot be carried over and an appropriate theoretical description
is required. In this Letter, we therefore present a theory for
the branching of tsunami waves and the statistics of random
focusing events. We derive the typical propagation distance for
the occurrence of strongly enhanced wave heights and confirm
our theoretical finding with extensive numerical experiments of
ray and wave propagation in randomly generated bathymetries.
We find that even bathymetry fluctuations as small as 2% of the
ocean depth, when they are correlated on length scales larger
than the wavelength, lead to focusing on length scales less than
2,000 km—that is, distances very relevant for tsunami propagation.
To underline the importance of understanding these effects for
tsunami forecasting, we will show by direct comparison of the wave
propagation in very similar bathymetries that small uncertainties in
the knowledge of the depth profile of the ocean can lead to vastly
different branching patterns and thus to very different predictions
of the tsunami propagation directions and heights.

Tsunami waves typically have wavelengths of several tens of
kilometres19 and propagate across oceans that are only a few
kilometres deep. Far from the coast, the amplitudes of such waves
are of the order of one metre19. In consequence, tsunami waves
are described well by the linearized shallow water wave equation
(see Methods). The main quantity that influences the evolution of
the waves is the bathymetry, which appears in the equation as a
dimensionless, reduced bathymetry function given by

β(x)=
B(x)+H0

H0

, with H0 =|〈B(x)〉| (1)

as illustrated in Fig. 1c. Here the bathymetry B(x)<0 is the actual
depth measured from the sea level. The variance of the scaled
bathymetry β(x), which we denote by 〈β2〉, is the crucial quantity
that represents the fluctuation strength of the bathymetry.

As a first demonstration of the significance of branching for
tsunami waves we study the propagation of shallow water waves
over the measured depth profile of a region of the Indian Ocean
(taken from the GEBCO database, http://www.gebco.net), shown
in Fig. 1. This particular region was chosen because it is free of
islands and very high underwater structures. It therefore allows
us to clearly demonstrate the branching behaviour unobscured by
strong scattering events. The waves, emitted from a point source,
have a wavelength of 20 km and are thus on the lower end of the
tsunami window. This wavelength was chosen for the sake of clarity
and the relative smallness of the island-free region. However, our
results rely neither on the specific wavelength nor on the shape of
the source, as demonstrated in the Supplementary Figs 3 and 4.
In the chosen region of the ocean the bathymetry varies only
slightly, with a standard deviation of only 6.9% of the ocean depth,
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Figure 1 | Random focusing of a tsunami wave by the weakly fluctuating depth profile of the Indian Ocean. a, A tsunami wave propagating from the

southwestern corner of the indicated region, extending from 8◦ 20′ S to 20◦ 50′ S in latitude and 73◦ 20′ E to 85◦ 50′ E in longitude. (A movie of the time

evolution can be found in Supplementary Movie 1). The colour codes the time-integrated wave intensity (which is defined in Methods, equation (21),

and is a measure of the wave energy passing in any given point), scaled by its space average—that is, a value of 1 corresponds to the mean of the energy

flux density over the whole region. The apparent strong fluctuations very close to the source are an artefact of the cutoff in the colour scale (at 4)

introduced to make the branches in the periphery visible. It is needed owing to the fact that the overall energy flux density falls off as the inverse distance

from the point source (details are given in Supplementary Figs 1 and 2). Data Source: http://www.gebco.net, ref. 22. b, 3D rendering of a section of the

bathymetry in the region of interest. c, Schematic view of a water wave propagating over a space-dependent bathymetry illustrating the quantities h(x, t),

B(x) and H0.

but strong fluctuations up to six times the average amplitude can
nevertheless be observed in Fig. 1 owing to random focusing of the
tsunami waves.

We now show how severe the impact of branching can be on
the predictions of tsunami heights. Our knowledge of the depth
profile of the ocean, as it is collected in the GEBCO database,
is of course not perfect. The collected bathymetry data stem
from different sources and are obtained by different methods,
most prominently by echo sounding from ships and gravitational
anomaly measurements from space. The uncertainty in the deep
ocean bathymetry can easily be of the order of a few hundred
metres20. In our example of the IndianOcean, with an average ocean
depth of 4 km, this corresponds to fluctuations of the order of several
percent in the relative bathymetry. To see what kind of impact
such uncertainties in the knowledge of the bathymetry could have,
we added fluctuations with a variance of 4% to the data extracted
from the database. As little is known of the statistical properties
of the actual errors, we assumed a correlation function with a
power-law decay, which is to be expected if the different sources
of error have different typical length scales. We have checked a
range of decay exponents γ , and also for comparison used Gaussian
correlation functions, and in all cases observed results similar to
the ones presented in Fig. 2, with γ = 1.2 (details are given in
Methods, see equation (24)). We also used various values for the
variance, going as low as 2%, and found the effect to be persistent.
Figure 2a,b shows the bathymetry taken from the database and
the bathymetry with added fluctuations, respectively. Already the
density plots of the wave evolution in Fig. 2c and d show that

these small additional fluctuations in the bathymetry change the
branching pattern and propagation directions severely. Cuts along
the green and the orange lines are shown in Fig. 2e, from which one
can see that peaks in wave height of five to six times the average
wave intensity appear at completely different positions for the
two bathymetries.

Nevertheless, it seems possible to predict the average distance
at which strong wave intensities first show up. With this aim and
to unambiguously attribute the observed height fluctuations to the
phenomenon of branched flow, we study the typical length scales
at which these branched structures emerge and compare these to
the typical length scale of caustic formation. In all of the previously
studied cases of branched flows mentioned in the introduction, the
wave dynamics is described well by a Schrödinger-type equation
and the random potential leads to a correlated, additive noise in the
corresponding stochastic dynamics of the rays. In these systems the
typical length scale of branching has been studied theoretically and
experimentally6,10,14–16. The linearized shallow water wave equations
describing tsunami waves in the deep ocean, however, lead to
multiplicative noise terms in the ray equations and earlier results
on branched flows cannot be used to quantitatively link height
fluctuations in the wave propagation to the branching mechanism
described in ray models.

In Methods we therefore study the stochastic dynamics of
tsunami rays analytically and derive the mean distance ℓf that
rays travel from the source before they hit the first caustic—
that is, the typical propagation distance at which rays start to be
strongly focused—as a function of the statistical parameters of the
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Figure 2 | Sensitivity of forecasts to errors in ocean topography.

a,c, Original bathymetry and the integrated intensities obtained in our

numerical experiment. b,d, Adding fluctuations with a standard deviation of

only 4% to the bathymetry (b) leads to strongest tsunami propagation in

very different directions (d). e, Cuts of the relative intensities at fixed

distance from the source as indicated by the green and orange circles in c

and d, respectively, and by the dashed lines in a and b. The vertical axis is

the time-averaged intensity (see equation (21) in Methods) scaled by its

mean value along the cut. Even though the two bathymetry models are very

similar and are both within the error margin of the measured bathymetry,

the resulting predictions for the evolution of the tsunami wave

differ strongly.

bathymetry. We find for small fluctuations in the bathymetry (that
is, 〈β2〉≪1) that

ℓf =αℓc〈β2〉−1/3 (2)

where ℓc is a characteristic or typical length scale on which the
correlation function of the bathymetry decays, 〈β2〉 is the relative
variance of the bathymetry and α is a proportionality constant that,
for example, depends on the shape of the source. In spite of the
different structure of the stochastic equations we still find the same
expression as for Newtonian particles or optical rays.

To link the analytical result obtained for the rays to the
propagation of tsunami waves, we perform extensive numerical
simulations of both tsunami ray and wave propagation in different
bathymetries, which we model as Gaussian correlated random
fields (see Methods). We first verify the scaling of the distance to
the first focusing in rays obtained in equation (2) by numerically
determining the mean distance to a caustic along rays in many
realizations of random bathymetries. Figure 3d shows excellent
agreement between the analytical results and the numerical
simulations in a broad range of variances of the bathymetry. We
will now show that the focusing of the tsunami rays is indeed

reflected in the wave fluctuations by comparing the characteristic
length scales. We do this by analysing the variance of the wave
intensity as a function of the propagation distance from the source10.
This quantity shows a peak when the wave fluctuations are highest,
which we attribute to the formation of caustics in the ray picture. To
verify this we check whether the mean distance to the maximum of
the variance of the wave intensity scales in the same way with the
parameters of the bathymetry as the distance to the first caustic.

More precisely, we normalize the variance and analyse the
scintillation index of the wave flow, S(x) (ref. 10), defined by

S(x)=
〈I 2〉y
〈I〉2y

−1 (3)

where I(x , y) is the time-integrated intensity of the wave (see
equation (21) in Methods), x the distance in the propagation
direction and y the coordinate in the transverse direction. The index
y in the variance andmean indicates that they are taken by averaging
over the y-direction. Figure 3a shows the time-integrated intensity
for one realization of a plane wave traversing a random potential.
(For the sake of clarity we use plane waves instead of spherical
waves. However, both have been shown to exhibit the same scaling
behaviour6,16,21.) Figure 3b shows the associated scintillation index.
We can see that the first peak of S(x) corresponds to the emergence
of the first strong fluctuations.

To verify the scaling of the peak of the tsunami wave fluctuations,
we averaged over 200 realization of the random bathymetry for
each value of the variance of the bathymetry. The results are shown
in Fig. 3c. The agreement between numerical simulation and the
analytical scaling is again excellent over two orders of magnitude
and thus confirms that our theory yields a very accurate forecast at
which distance tsunami wave fluctuations are to be expected.

Our results show that small uncertainties in the knowledge of the
bathymetry, when they are correlated on length scales comparable
to or larger than the wavelength of the tsunami, can lead to large
errors in the prediction of wave heights. Characterizing not only
the magnitude but also the spatial correlations of uncertainties
in the bathymetry model are thus fundamental prerequisites for
assessing the reliability of tsunami predictions. Our work represents
a general framework that can be used to account for the effect
of branching and focusing in tsunami forecasts. Similar questions
should be addressed about the impact of uncertainties of the source
characteristics on the profile of branched tsunami flows.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
In deep ocean conditions, tsunami waves are described well by the linearized
shallow water equation23,24:

∂2t η(x, t)=c20 (1−β(x))∇2η(x, t) (4)

where c0 =
√

gH0 is the celerity (that is, the phase velocity of the wave) with g
Earth’s gravitational acceleration and H0 the absolute value of the average depth of
the ocean.

The fractional surface elevation over the water surface at rest η(x, t) and the
rescaled bathymetry β(x) are defined by

η(x, t)=
h(x, t)

H0

, β(x)=
B(x)+H0

H0

, H0 =|〈B(x)〉| (5)

with h(x, t) the actual surface elevation over the surface at rest and B(x) the actual
bathymetry, measured from the sea level, as illustrated in Fig. 1c. We note that we
neglect the Coriolis force, as it is very weak, and the curvature of the Earth, as its
effect is negligible as long as the region of interest is well below the global scale24,
which is well satisfied by the examples we treat here. But as both influences are
smooth on very large scales even in larger simulations these corrections would
affect only quantitative details of individual predictions and not the nature of the
fluctuations we want to describe.

As focusing is an effect of the ray field associated with the waves25, we now turn
to a ray description of the flow. Following the derivation by Shankar24, one obtains
the ray equations for tsunami waves,

ẋ=(1−β(x))p (6)

ṗ=
c20∇β(x)

2(1−β(x))
(7)

The only assumption made during this derivation is that of the geometrical
optics limit, which requires the wavelength to be shorter than the correlation length
of the bathymetry. We have checked several regions of the Indian and Pacific
oceans using the GEBCO database (http://www.gebco.net) and verified that the
fluctuations in the bathymetry are typically correlated over length scales much
longer than the typical length scales of tsunamis. We note that the first of these ray
equations contains the multiplicative noise term β(x)p, which does not appear in
Newtonian rays and which prevents us from directly transferring earlier results (for
example, from ref. 16) to the random focusing of tsunami rays.

A crucial quantity describing the appearance of branches and thus of the
strongly focused waves is the distance to the first focal regions, or caustics. As
branched flow is due to random focusing, this distance is a stochastic quantity. We
study equations (6) and (7) with random fields β(x) and calculate the mean
distance to the first caustics. As we consider weakly fluctuating bathymetries, for
the purpose of our analytical considerations we assume that the distance travelled
in the main propagation direction is proportional to time, simplifying the problem
to that of the ray dynamics in the transverse direction (paraxial approximation).
Under these assumptions the correlated random bathymetry can be approximated
by uncorrelated white noise terms14–16,

β(x)→β0Γ1(t) (8)

β ′(x)→β1Γ2(t) (9)

with Γ1,2 defined by

〈Γi(t)Γj(t
′)〉=δijδ(t− t ′) (10)

The prefactors β0,1 now encode the properties of the random bathymetry and are
given by

β2
n =

1

c0

∫ ∞

−∞

[

∂2ny c(x ,y)
]∣

∣

∣

y=0
dx (11)

where c(x ,y) is the auto-correlation function of the bathymetry. The
calculation yields

β2
0 =

√
π

2c0
〈β2〉ℓc (12)

β2
1 =

√
π

c0ℓc
〈β2〉=

2

ℓ2c
β2
0 (13)

Here we assumed a Gaussian correlation function. However, the Gaussian
assumption is not necessary, and up to constant prefactors these expressions hold
for a wide range of correlation functions, including power laws, and we expect

them to lead to the same scaling behaviour16. We point out that, in contrast to the
analytical results, all numerical simulations reported below have been performed
using actual correlated bathymetries. With the above approximations, the ray
equations become a set of stochastic differential equations,

ẋ=(1−β0Γ1(t))p (14)

ṗ=
c20β0Γ2(t)√

2ℓc
(15)

where ℓc denotes the correlation length of the bathymetry. A general solution for
the distribution of the stochastic quantities x and p is not known, but its moments
can be calculated and used for the estimation of the mean propagation distance to a
focusing event in the following way: because the random medium is correlated,
neighbouring rays will initially travel in the same direction. Only when they have
travelled far enough in the main propagation direction such that they have
traversed at least one correlation length in the transverse direction will rays start to
intersect and focusing occur. A good estimate to the typical distance to a focusing
event is thus the distance (or time in the paraxial approximation) travelled until the
second moment of the distance covered in the transverse direction is equal to the
correlation length squared of the bathymetry15. From the stochastic differential
equations (14) and (15) we can derive the following Fokker–Planck equation,

∂tP(y ,p, t)=−
[

p(∂y −pβ2
0∂yy)+

c40β
2
0

2ℓ2c
∂pp

]

P(y ,p, t)

This can be used to calculated the second moment that is needed in the calculation
of the average distance to the first caustics. The closed set of equations for the
second moments is

d

dt

〈

y2
〉

=2
〈

yp
〉

+2β2
0

〈

p2
〉

(16)

d

dt

〈

py
〉

=
〈

p2
〉

(17)

d

dt

〈

p2
〉

=
c40β

2
0

ℓ2c
(18)

The integration of this linear set of equations is straightforward and, using the
initial conditions

〈

p2
〉

=
〈

py
〉

=
〈

y2
〉

=0 at time t=0, we obtain the second
moment of y

〈y2〉=
β2
0 c

4
0

3ℓ2c
t 3 +

β4
0 c

4
0

ℓ2c
t 2 (19)

and equating this with ℓ2c yields, assuming β0 ≪1,

ℓf =αℓc〈β2〉−1/3 (20)

where ℓf denotes the distance to the first caustic and α is a proportionality factor
that, for example, depends on the shape and characteristics of the source.
Equations (19) and (20) relate the distance at which caustics occur, and thus the
propagation distance at which large fluctuations in the wave height are to be
expected to the parameters of the bathymetry, and are the main analytical result of
this work. Interestingly, even though the linearized shallow water equations are
very different from the Schrödinger equations, the scaling law is the same for
both systems15,16.

The time-integrated intensity shown in the numerical plots we defined as

I(x)=
∫ T

0

η(x, t)2dt (21)

where η(x, t) is the wave height and the tsunami is excited at time t=0 and the
upper integration limit t=T was chosen such that the wave has left the region of
interest (that is, we neglect reflections, for example, from the coasts of continents,
that are returning at longer times, which is reasonable in all shown examples). I(x)
is a measure of the potential energy of the wave that has been propagating through
x . Because we can to good accuracy assume equipartition of kinetic and potential
energy of the propagating tsunami wave26, I(x) is an adequate measure of the total
energy flux in x .

For the numerical integration of the ray equations, we used a fourth-order
Runge–Kutta C++ solver. To simulate the linearized shallow water wave equations,
we used a finite-difference, leapfrog scheme presented in ref. 27. The data shown in
Fig. 3c was produced with a correlation-length-to-wavelength ratio of ℓc/λ=15.
We verified that the same scaling holds for different ratios. In all simulations we use
model sources that emit at a chosen wavelength, as described in ref. 28. The point
source can be written as

ψ(r)=
e−r2/(2a2)ea

2k20/4

a
√

πI0(a2k
2
0/2)

J0(k0r) (22)
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where r=
√

x2 +y2, k0 is the magnitude of the wavevector, a is a scaling factor and
I0 and J0 are Bessel functions. For plane waves, we use a very similar expression,
given by

ψ(x)=
e−x2/(2a2)ea

2k20/4

a
√

πI0(a2k
2
0/2)

J0(k0|x|) (23)

More details can be found in ref. 28.
The correlations in the Gaussian random field used to create the additional

fluctuations in the bathymetry for Fig. 2 have the form

c(r)=
(

1+(r/l)2
)γ

(24)

with γ =−1.2 and l=35km. In Supplementary Fig. 3 we used l=100km. We
checked that our results are not sensitive to the chosen values and obtained similar
results in a wide range of parameter values.
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