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ABSTRACT The quality of wireless user perception for cells in a particular scenario is reflected on a set

of indicators. Comprehensive evaluation of those cells is the base of network optimization for operators.

Traditional methods use weighted sum of all indicators as the evaluation result. However, these indicators

include some ineffective ones, which leads to an unconvincing evaluation result. To achieve a convincing

and accurate result, we propose a lightweight comprehensive evaluation method. Firstly, indicator selection

is implemented via random forest algorithm. Secondly, those selected indicators are weighted via entropy

method. Finally, we compute the score of all cells with the weights. Experiment results are given to show

that the cells with higher score perform better on all indicators, which is coincide with the actual situation.

Hence, our proposed method is not only lightweight but also obtain more accurate result.

INDEX TERMS Comprehensive evaluation methods, wireless user perception, indicator selection, random

forest (RF).

I. INTRODUCTION

With the development of wireless communications [1]–[14]

and internet of things (IoT) [15]–[18], terminal users put

forward higher requirements for the quality of wireless user

perception. In order to improve network performance as well

as users experience, operators always try to do more opti-

mization works. Key quality indicators (KQIs) are viewed

as important factors to optimize networks. In a single cell

scenario, there are many KQIs covering different fields such

as webs, videos and games. Hence, it has become an urgent

problem to comprehensively evaluate the quality of wireless

user perception.

Traditional methods such as deviation evaluation

method [19] and mean square deviation evaluation

The associate editor coordinating the review of this manuscript and

approving it for publication was Xuxun Liu .

method [20] often resort to the distribution of all indicator

values. However, some unimportant indicators probably have

an impact on other important indicators, which leads to an

unconvincing evaluation result. In terms of comprehensive

evaluation, for creating a more effective evaluation system,

many experts and scholars dedicate to obtain a comprehensive

evaluation result with few indicators. Wenjie et al. [21]

employ analytic hierarchy process (AHP) and the Crite-

ria Importance Though Intercrieria Correlation (CRITIC)

method to calculate a comprehensive weight to realize multi-

indicators evaluation. This method contains of an evaluation

matrix which is based on a lot of experience of engineers.

Hence, this method gives a subjective result in terms of the

evaluation of wireless user perception. Xie [22] introduce

a comprehensive evaluation method for multivariate based

on principle composition analysis (PCA) and back propaga-

tion (BP) neural network [23]. They convert all indicators into
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some principle components and obtain the comprehensive

result with these principle components. PCA depends on the

linear relationship among indicators. The principle compo-

nents have no credibility when there is no linear relationship

between indicators. To solve the drawbacks of PCA, it is

natural way to analyze nonlinear problem in comprehensive

evaluation with multiple indicators. Lin and Zhu use kernel

principle composition analysis (KPCA) to evaluate regional

economic and social development [24]. KPCA considers the

nonlinear relationship among indicators. For indicators of

KQI data, there is almost no linear or nonlinear relationships.

Hence, either PCA or KPCA performs poorly in the compre-

hensive evaluation based on KQI data.

As for a kind of machine learning algorithms, random

forest (RF) is used to solve pattern recognition problems.

Rogez et al. use RF for human pose detection due to the fact

that RF can perform very well in pattern recognition [25].

As an ensemble method, RF builds many trees as weak clas-

sifiers and aggregate them to predict. Training many different

trees from a single data set requires random sampling from

the data set. Therefore, there are a variety of random forests

according to how trees are built. One of the most popular

RFs is that of which building trees based on classification

and regression trees (CART) procedure [26]. During the

process of building trees, Gini index is used to calculate

the contribution of each feature, which is applied on feature

selection. RF is a state-of-the-art method on feature selection.

Considering the high dimension feature vectors which need

time and memory to be handled, Gharsalli et al. apply feature

selection on the wide feature set based on feature importance

score computed by RF [27].

In order to make the evaluation results more objective and

eliminate the adverse impact among indicators, we propose

a lightweight comprehensive evaluation method. Different

from the traditional comprehensive evaluation methods, our

proposed method provides an indicator pre-selection for KQI

data with plenty of indicators, making the indicator set more

efficient. More precisely, we train a RF network with a

labeled data set [28]. Then the contribution of each indicator

is calculated and converted into the importance score of all

the indicators. The indicators with high importance score are

selected and those with low score are eliminated according to

a threshold. Finally, we weight all selected indicators using

entropy method [29] and calculate the final score of each

cell in a particular scenario with these weights and order

them. We select ten cells including top five and bottom five

to analyze concretely. Experiment results show that our pro-

posed method gives a reasonable comprehensive evaluation

of wireless user perception which is coincide with actual

situation.

The rest of this paper is organized as follows. In Section II,

we introduce the source of the dataset in this evaluation

system. Section III gives the details of our evaluation system.

We analyze the performance of this system in Section IV.

Finally, the paper is concluded in section V.

TABLE 1. The relationship between Ii and 12 indicators.

TABLE 2. Labeled dataset for training RF.

II. SOURCE OF DATASET

KQIs are business quality parameters based on different ser-

vices. KQIs are mostly close to the life of users. Different

business categories are covered in theseKQIs includingwebs,

videos, instant communications and games. For the sake of

simple description, Ii (i = 1, 2, · · · , 12) is used to refer to

i-th indicator. The relationship between Ii and 12 indicators

is listed in Table 1. We can obtain the quality of experience

(QoE) [30] by analyzing the KQI data of wireless user per-

ception of a cell. In this evaluation system, a random forest

is trained by a dataset which is labeled according to actual

measurement to train a random forest. We take Table 2 as an

example of the labeled dataset. At last, we evaluate all cells

in a specific high-rise scenario to verify the performance of

our proposed method. There are 287 cells in this scenario.

Table 3 is taken as an example of the validation dataset.

III. SYSTEM DESIGN

In this section, we introduce the design of this proposed

system. Firstly, we give an overview of system structure, and

then introduce the detail of each step.

A. OVERVIEW OF SYSTEM STRUCTURE

As shown in Figure 1, we first build a labeled dataset.

A RF network is trained with this dataset. Each tree node

in this RF corresponds to an indicator. The importance of

these indicators is scored by calculating their contribution to

173478 VOLUME 7, 2019
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FIGURE 1. The structure of the comprehensive evaluation system.

TABLE 3. Validation dataset.

the classification. We set the threshold based on the distribu-

tion of importance scores and then we select the indicators

whose importance scores are above the threshold. Finally,

we weight these indicators using entropy method and calcu-

late the final weighted score of each cell as the evaluation

result.

B. INDICATOR SELECTION BY RF

Indicator selection [31] is the basis of the evaluation method.

For KQI data, the indicator system contains plenty of indica-

tors, which makes the evaluation system become sluggish.

In order to minimize those indicators and select the most

effective ones for comprehensive evaluation, we use indicator

importance-based technique. Various methods in machine

learning compute indicator importance scores. We choose RF

in variable selection problem when multivariate are handled.

RF is an efficient method which contains few parameters

to set. It is used usually for multi-class classification and

multi-variate regression problems. It is also successfully used

in many computer vision applications such as 2D and 3D face

analysis [32], action recognition [33] and facial expression

recognition.

RF is a kind of bootstrap aggregating (Bagging) algorithm,

which is an integration technique to train the k weak classi-

fiers by selecting k new datasets from the original dataset

through sampling with replacement randomly. By combining

several weak classifiers, the final results can be obtained by

voting or taking mean, so that the results of the overall model

have higher accuracy and generalization performance. The

use of the Out-Of-Bag (OOB) error estimation is one of the

most important characteristics of RF. The OOB is a sample

set not used in the training of the current tree. So, this internal

estimation of the generalization error enhances the accuracy

of tree classification. It is also crucial for feature importance

quantification. The weak classifiers work with CART, which

selects features based on Gini coefficient index. Since it

is a combination of binary trees, Gini coefficient can be

defined by

Gm(p) = 2pm(1 − pm) (1)

in which pm is the probability that the sample belongs to one

class in nodem. We measure the degradation of impurity with

the score of Gini coefficient, which is defined by

IM
(Gini)
jm = Gm − Gl − Gr (2)

where Gl and Gr represent the Gini coefficient of two new

nodes after the node m branching. The importance of j-th

indicator in i-th tree is given by

IMGini
ij =

∑

mǫM

IMGini
im (3)

where M represents the node set that j-th indicator shows

up in i-th tree. Assuming that there are n trees in RF,
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the importance score for the j-th indicator is defined by

IMGini
j =

n
∑

i=1

IMGini
im (4)

Finally, we normalize the score of all indicators and sort them.

We select the indicators whose importance score accounts

for more than half of the total score as the representative

to evaluate the quality of wireless user perception, which

eliminates the impact of some unimportant indicators.

C. CONSTRUCTION OF MULTI-INDICATOR

COMPREHENSIVE INDEX

The selected indicators are integrated to a score according to

comprehensive evaluation method for multi-indicator [34] in

order to make a comprehensive evaluation for wireless user

perception. Normalization and weight need to be performed

when constructing comprehensive evaluation index.

1) NORMALIZATION

As we can see from Table 2, all the indicators show with

different dimensions, whichmight have an impact on compre-

hensive evaluation. On the other hand, the indicators can be

divided into cost indicators like page response delay (ms) and

benefit indicators like page response rate (%). The smaller

the value of cost indicators is, the better the result is. The

bigger the value of benefit indicators is, the better the result

is. In order to eliminate the influence of dimensions, we nor-

malize these two kinds of indicators respectively. The nor-

malization of indicators can be defined as follows.

For cost indicators:

zij =

max
{

x1j, . . . , xnj
}

− xij

max
{

x1j, . . . , xnj
}

− min
{

x1j, . . . , xnj
} (5)

For benefit indicators:

zij =

xij − max
{

x1j, . . . , xnj
}

max
{

x1j, . . . , xnj
}

− min
{

x1j, . . . , xnj
} (6)

In both of the two equations, max
{

x1j, . . . , xnj
}

and

min
{

x1j, . . . , xnj
}

represent the maximum value and mini-

mum value, respectively under j-th indicator.

2) WEIGHTING

For comprehensive evaluation method in multi-indicator,

weighting plays an important role. There are a lot of meth-

ods to obtain weight including subjective and objective

methods [35]. Subjective weighting [36] works based on

the experience of some experts. On the contrary, objective

weighting [37] obtains the weight by mathematical or sta-

tistical analysis of the raw indicator information. In this

paper, we use entropy method, a kind of objective weighting,

to weight all the indicators selected.

First, we need to calculate the probability pij of i-th sample

xij in j-th indicator, which is given by

pij =

xij
∑n

i=1 xij
(7)

where n equals the number of samples. Then, the entropy ej
of j-th indicator can be calculated by

ej = −k

n
∑

i=1

pijlnpij (8)

where k =
1

ln(n)
> 0, hence ej > 0. After that, we calculate

the redundancy of entropy by

dj = 1 − ej (9)

where dj equals the entropy redundancy of j-th indicator.

Finally, the weight of j-th indicator wj can be defined as by

Ci =

m
∑

j=1

xijwj, i = 1, 2, . . . , n (10)

where xij represents the value of i-th cell in j-th indicator after

normalization. wj is the weight of j-th indicator and m equals

the number of indicators selected in a particular scenario.

IV. ALGORITHM EVALUATION

In order to evaluate the performance of this proposed compre-

hensive evaluation method, we opt for high-rise scenario to

verify the performance of this method. In this scenario, there

are 287 cells. We use proposed comprehensive evaluation

method, mean square deviation (MSD) method and weights

from expert experience to score all cells in this scenario. It is

worth noting that MSD methods have been also applied in

many fields [38]–[52].

A. PROPOSED COMPREHENSIVE

EVALUATION METHOD

We build a labeled dataset by measuring a number of history

data manually. Then we train the RF with labeled dataset and

calculate the importance of all indicators. The order of all

indicators according to the importance score is show in Fig. 2.

The sum score of top five indicators accounts for more than

half of total score. So we select these five indicators as the

representative of wireless user perception in this scenario.

We weight these indicators selected using entropy method

and calculate the final scores of all cells in Table 4.

According to the order of evaluation result, we pick the

top five and the bottom five cells to analyze the indicators

concretely. The final scores of them are shown in Table 4.

We analyze all indicators of these cells with the threshold

of each indicator. These thresholds come from experience in

business. We count the number of poor indicators as shown

in Fig. 3. Poor indicators refer to the value of which is greater

than threshold for cost indicators and less than threshold for

benefit indicators. We can see from Fig. 3, the top five cells

barely have poor indicators, while the bottom cells tend to

have more poor indicators. So the result of our proposed

method is in line with actual situation.

B. MSD METHOD

MSD method reflects the degree of dispersion of a data

set [20]. Generally, the larger the MSD of an indicator is,
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TABLE 4. Final score by proposed method.

FIGURE 2. The importance of all indicators in high-rise scenario.

FIGURE 3. The number of poor indicators in the ten cells.

the greater impact this indicator has for comprehensive eval-

uation. In this situation, this indicator should have larger

weight. On the contrary, the indicators with smaller MSD

should have small weight. We view each indicator as a ran-

dom variable. The dimensionless attribute value of each cell

Ci under indicator Ij is the value of the random variable.

Firstly, we need to calculate the MSD of each indicator and

normalize these MSD as the final weight of each indicator.

The calculation steps of this method are as follows:

(1) Calculate the means of each random variable:

E(Ij) =

1

n

n
∑

i=1

zij (11)

in which zij represents the value of cell Ci under indicator Ij.

TABLE 5. Final score by MSD method.

FIGURE 4. The number of poor indicators by MSD method.

(2) Calculate the MSD of each indicator Ij:

σ (Ij) =

√

√

√

√

n
∑

i=1

(zij − E(Ij))2 (12)

(3) Calculate the weight of each indicator:

wj =

σ (Ij)
∑m

j=1 σ (Ij)
(13)

After the calculation of weights, we need to score all cells

in high-rise scenario. The result is shown in Table 5. We pick

top five and bottom five cells to analyze concretely. The

numbers of poor indicators in these ten cells are presented

in Fig. 4.

As shown in Fig. 4, there are still two cells containing

two poor indicators in top five cells, which is unsatisfied for

comprehensive evaluation. On the other hand, this method

involves all indicators, which make the comprehensive eval-

uation system sluggish and leads to an unconvincing result.

C. SUBJECTIVE EVALUATION METHOD

The subjective evaluation method [36] is an important

category among variety methods of weighting. There are

many subjective methods including analytic hierarchy pro-

cess (AHP), binomial coefficient method, the least square
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TABLE 6. The weights of all indicators.

TABLE 7. Final score by subjective evaluation method.

FIGURE 5. The number of poor indicators by subjective evaluation
method.

method and so on. In this paper, we choose AHP to weight

all indicators. The final weights are listed in Table 6.

We score all cells in high-rise scenario with these weights.

The scores of all cells are shown in Table 7. As in the previous

analysis, we make statistics on the number of poor indicators

in ten cells, which is presented in Fig. 5. Obviously, even

though in the top five cells, there are still many poor indi-

cators. This method cannot evaluate the quality of wireless

user perception in a particular scenario correctly.

Based on the above analysis, MSD method and subjective

evaluation method involve all indicators, which makes the

whole evaluation sluggish and the final results of them are

inconsistent with actual situation. Our proposed lightweight

comprehensive evaluation method involves few indicators,

which makes the whole evaluation system more effective.

And the final result performs well. The comprehensive eval-

uation result provides considerable reference for network

optimization.

V. CONCLUSION

In this paper, we have proposed a lightweight multi-indicator

comprehensive evaluation method based on RF and entropy

method. This method can be effectively applied to multi-

indicator comprehensive evaluation of wireless user per-

ception in communities. By using this proposed method,

we can obtain a relatively accurate result with few indicators.

We have designed an experiment based on high-rise scenario.

The result showed that lightweight evaluation result is consis-

tent with actual situation, which means the proposed method

is convincing. In terms of indicator selection, the selection

of number of indicators is a fuzzy problem. Hence, it is

necessary to solve this problem in future work.
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