
Lawrence Berkeley National Laboratory
Recent Work

Title
Random forest machine learning models for interpretable X-ray absorption near-edge 
structure spectrum-property relationships

Permalink
https://escholarship.org/uc/item/14z7s21w

Journal
npj Computational Materials, 6(1)

ISSN
2057-3960

Authors
Torrisi, SB
Carbone, MR
Rohr, BA
et al.

Publication Date
2020-12-01

DOI
10.1038/s41524-020-00376-6
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/14z7s21w
https://escholarship.org/uc/item/14z7s21w#author
https://escholarship.org
http://www.cdlib.org/


ARTICLE OPEN

Random forest machine learning models for interpretable

X-ray absorption near-edge structure spectrum-property

relationships
Steven B. Torrisi 1,2✉, Matthew R. Carbone 3, Brian A. Rohr1, Joseph H. Montoya1, Yang Ha4, Junko Yano5, Santosh K. Suram 1✉ and

Linda Hung 1✉

X-ray absorption spectroscopy (XAS) produces a wealth of information about the local structure of materials, but interpretation of
spectra often relies on easily accessible trends and prior assumptions about the structure. Recently, researchers have demonstrated
that machine learning models can automate this process to predict the coordinating environments of absorbing atoms from their
XAS spectra. However, machine learning models are often difficult to interpret, making it challenging to determine when they are
valid and whether they are consistent with physical theories. In this work, we present three main advances to the data-driven
analysis of XAS spectra: we demonstrate the efficacy of random forests in solving two new property determination tasks (predicting
Bader charge and mean nearest neighbor distance), we address how choices in data representation affect model interpretability
and accuracy, and we show that multiscale featurization can elucidate the regions and trends in spectra that encode various local
properties. The multiscale featurization transforms the spectrum into a vector of polynomial-fit features, and is contrasted with the
commonly-used “pointwise” featurization that directly uses the entire spectrum as input. We find that across thousands of transition
metal oxide spectra, the relative importance of features describing the curvature of the spectrum can be localized to individual
energy ranges, and we can separate the importance of constant, linear, quadratic, and cubic trends, as well as the white line energy.
This work has the potential to assist rigorous theoretical interpretations, expedite experimental data collection, and automate
analysis of XAS spectra, thus accelerating the discovery of new functional materials.

npj Computational Materials           (2020) 6:109 ; https://doi.org/10.1038/s41524-020-00376-6

INTRODUCTION

Rapid extraction of structure-property relationships is critical to
the discovery of functional materials. One avenue to accelerate
this process involves the use of machine learning (ML) models,
which are becoming more reliable with the availability of libraries
generated by high-throughput materials experiments and calcula-
tions1–8. Using these libraries, data-driven techniques are now
powerful enough that bulk structure-property relationships can be
extracted from experimental X-ray diffraction data using auto-
mated agents9,10. Data-driven probes of relevant local properties
(such as those descriptive of electrochemical behavior11) could
further help to accelerate scientific discovery, with the ultimate
promise of in operando characterization and automated planning
of experiments2,12,13. However, accessing local chemical properties
of metal centers by spectroscopy can be challenging due to the
contribution of multiple factors, such as ligand type, coordination
numbers, and charge and spin states.
X-ray absorption spectroscopy (XAS)14,15 is a characterization

technique that is sensitive to local electronic and atomic structure,
and has been important for discovering and understanding
functional materials for a wide range of energy applications, such
as CO2 capture by metal oxide nanoparticles16,17, solar water
splitting18, and catalysis19–21. It is particularly suitable as a local
probe thanks to its general robustness, large signal-to-noise
ratio22, element specificity, and unique sensitivity to the chemical

environments of absorbing atoms23–27. A given XAS spectrum is
unique to the absorbing atom and the edge energy (from which a
core electron is excited), and can be divided into the X-ray
absorption near-edge structure (XANES) and extended X-ray
absorption fine structure (EXAFS) regions. Each region carries
unique information about the environment of absorbing atoms.
Among other things, XANES encodes symmetry and electronic
structure information of the absorbing site, while EXAFS expresses
the structure of excitations and back-scattering at photoelectron
energies exceeding the threshold for ionization26,27, thus contain-
ing information about neighboring atoms and excited state
phenomena. Because XANES spectra have an inherently higher
signal-to-noise ratio, they can be sampled in orders of magnitude
less time compared to EXAFS. Targeted spectrum-property
signatures accessible via XANES could thus enable high-
throughput experiments by targeting maximally informative
regions of interest. The impact of automation in analysis and
extraction of new spectrum-property trends make advances in
XANES characterization highly desirable to the community.
The XANES region is comprised of the pre-edge, rising-edge,

and post-edge regions. Over the years, certain trends in each
region have been identified which help characterize different local
chemical and structural properties such as oxidation state28,29 and
coordination environment30–34. Some trends associated with
electronic transitions can be explained by quantum mechanical
symmetry arguments; for example, Farges and co-workers30–32
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showed that in Ti and Ni complexes, pre-edge peak intensity is
suppressed as the coordination number increases from 4→ 6,
since the number of locally coordinated metal ligands can allow
certain electronic transitions (like ligand p-orbital mixing) in the
pre-edge energy region28,35,36. Further, for some Ni materials, this
pre-edge feature was found to correlate with the Ni-O distance32.
Similarly useful, but limited fingerprints exist for other properties
of interest. For instance, for some materials, the peak location
clearly shifts with the oxidation state27.
However, depending on the absorbing atom, ligand types, and

property of interest, previously known heuristics may not provide
sufficient information, and close study of a small group of
compounds is required to discover and understand new trends.
Farges pointed out that conventional heuristics fail for MnO and
MnCO3, which share the same oxidation state and coordination
number, yet exhibit radically different Mn K-edge shapes and a
large 4.5 eV shift between their peaks37. Known coordination
number heuristics are also not as straightforward to apply to
heavier transition metals like Fe33,38,39. Furthermore, oxidation
number heuristics differ based on the type(s) of ligand anions due
to differences in charge transfer processes.
In cases where heuristics fail, researchers typically must rely on

their existing knowledge of specific materials’ spectra, and also
use software such as FEFF40 to predict theoretical spectra from
input crystal structures. These known or computational spectra
can be used either through direct comparison or through
specialized algorithms, such as those in MXAN41–43 and Pyfitit44,45.
This theoretical mapping of crystal structure to spectra can
provide a thorough understanding of the materials under
investigation, as long as the material’s structure can be identified.
However, identifying the structure can be computationally
expensive if spectra for multiple geometrical configurations must
be computed during the search. The experimental material may
also have a structure that is significantly different from anything in
the current library or list of structural candidates (the sample could
even be amorphous) which would make it difficult to apply these
techniques.
Due to the desire to rapidly characterize spectra for arbitrary

local environments, data-driven methods for XAS are now

enjoying great interest across various communities46–51; for a
general overview, we recommend a review by Timoshenko and
Frenkel52. These methods attempt to exploit all of the information
contained within a spectrum, as opposed to the subset which a
heuristic describes, and are enabled by the high availability of
theoretical data and the promise of high-throughput experimental
XAS data. ML models have been used to automate the analysis of
experimental XANES and EXAFS data to gain insights into system
properties and behavior49,51,53,54. Previous work has demonstrated
the feasibility of classifying certain structural properties, such as
oxidation number and coordination, from said spectra via
ensemble learning55,56. Recent work has also used artificial neural
networks46 and random forests47 to focus on coordination alone.
Comparatively less attention has been paid to data-assisted

discovery of new spectrum-property trends with XANES57,
although feature ranking of input values to random forests have
seen success in discovering heuristics for materials behavior58,59.
Studies which focus on interpretable ML models are of particular
interest to the field, as they could yield physical insights from
automatically highlighted spectrum-property patterns. At a
coarser level of XANES interpretation, some works have studied
the importance of different spectral regions: the post-edge region
of XANES spectra has been shown to be important to coordination
classification from a marked drop in performance after training a
model without it46. A split into to three energy regions before, at,
and after the edge using random forests compared the relative
information content in different energy regions47.
In this work, we demonstrate three new capabilities of

interpretable ML models for XAS. First, we demonstrate successful
machine-learned analysis of XANES data for coordination, in
agreement with prior work46,47, and to our knowledge, the first
models for mean nearest-neighbor distance and Bader charge (the
partial charge distribution on atoms, which is correlated with the
oxidation state—see “Methods” section and Supplementary Figs.
4–11). Secondly, we represent XANES spectra using two types of
featurization and two choices of normalization, and find that
models using post-edge normalized data and multiscale poly-
nomial featurization are readily interpretable and conform with
multiple known trends. Finally, we use the multiscale polynomial

Fig. 1 Workflow summary. Visual description of our workflow. a The materials that we study consist of 3d transition metal oxide structures
drawn from the Materials Project (MP) database7 and Open Quantum Materials Database (OQMD)8. b The inputs to our ML models are XANES
spectra computed using FEFF 940, either downloaded from the MP or computed using the same set of parameters. c The local properties to be
predicted from spectra are the coordination number (limited to 4, 5, or 6), the mean nearest-neighbor distance, and the Bader charge. d The
models we train are random forests, where features are either the entire spectra projected onto a uniformly spaced 100-point energy grid, or
the coefficients of overlapping polynomials fit to partitions of the spectra. Feature rankings from the two different featurizations are compared
to each other and to known trends.
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featurization to uncover high-level spectrum-property relation-
ships for experimentally relevant material parameters, comparing
the relative importance of white line energy, absorption
magnitude, and linear/quadratic/cubic character of spectra across
elements and properties. The results of this study highlight which
energy regions are important, which could accelerate experi-
mental structural characterization depending on individual
elements and use cases. While most heuristics apply to a smaller
subset of materials, these trends are based on thousands of
spectra, and so may be applicable to a wide range of chemistries
and structures.
Figure 1 gives an overview of our workflow. Thousands of

computational XANES spectra are used to train random forest
models for eight absorbing elements; models specific to each
element take a spectrum as input to predict the absorbing atom’s
local coordination number, mean nearest-neighbor distance, and
Bader charge. We demonstrate strong performance for coordina-
tion number and regression of the mean nearest-neighbor
distances, and for some elements, show that Bader charges can
be accurately reproduced. We then compare and contrast the
interpretability based on property, featurization, and
normalization.
The XANES spectra used as input to models in the main text are

all post-edge normalized (we address the effect of normalization
in the discussion section and SI), and are featurized in two
different ways in order to coax enhanced interpretability from our
models. We refer to featurization based on the full 100 equally
spaced values of the spectrum as “pointwise” featurization.
Pointwise feature ranking illuminates which energy regions
matter, but it is unclear from the ranking alone if the slopes or
peaks of the spectra are what drive the predictions, or if the
spectral magnitudes are the primary contributors. This motivates
the use of a multiscale polynomial featurization which is new to
this work. Our featurization technique (depicted in Fig. 2) captures
information about the entire spectrum on both a coarse and fine
level, describing trends in subdivided domains ranging from
2.5 eV to 12.5 eV. Because the polynomial terms correspond to the
local constant, linear, quadratic, and cubic character of the spectra,
tracking the importance of each coefficient conveys if the
magnitude (a0) of μ

!ðEÞ is most important for the prediction task,
or if the local derivatives as parameterized by polynomial fits (a1,
a2, a3) are what matter. This disambiguates which aspects of the
spectrum are contributing to the decisions of the model. We
additionally add to the vector the white line energy, or peak
absorption energy. We find that trends in feature importance are
highly dependent on the element in question, the prediction task
at hand, and the normalization. Crucially, we find that featurizing
the spectra with overlapping polynomial fits usually results in
similar or improved model performance and improved interpret-
ability compared to pointwise featurization.

RESULTS

We present the performance across our pointwise-featurized
models in Fig. 3 and across our polynomially-featurized models in
Fig. 4. These plots include the accuracies (the percentage of the
test set classified correctly) and F1 scores (See Eq. 7 in SI)
associated with specific coordination number classes, as well as
coefficients of determination R2 (See Eq. 5 in SI) for nearest-
neighbor distance and Bader charge regression. Detailed metrics
and plots comparing the two performances are available in the SI;
we see only nominal changes in performance between the two
featurizations, with few exceptions (See Supplementary Fig. 1).
The baseline accuracy shown in the figures refers to a naive model
which simply guesses the modal class of 4-fold, 5-fold, or 6-fold
coordination depending on the element. The baseline accuracy is
higher for elements with a large modal class, and comparing

baseline accuracy to accuracy shows the resolving power that the
model has ‘learned’47.
In the following subsections, we comment on model perfor-

mance and the interpretations which follow from the models for
each property prediction task in turn. By comparing the feature
rankings from pointwise and polynomial featurizations, we
confirm which regions substantively inform model predictions,
and identify relevant local spectral behavior in the regions of
interest.

Coordination number

For models predicting coordination number, we find average
accuracies of 85.3/85.4% and average F1 scores of 81.8/81.7% for
the pointwise/polynomial fits, respectively. Our coordination
number dataset has significant class imbalances for all metals
except for V (see Table 1), and we find that the F1 scores tend to

Fig. 2 Featurization summary. a We start with the pointwise

representation of spectra, where values of μ
!ðEÞ are projected onto

100 uniformly-spaced values of E. For N= 4, 5, 10, and 20, we then
partition the spectrum into N equally-sized regions. b Cubic
polynomials a0+ a1x+ a2x

2
+ a3x

3 are fit to the spectrum within
each partition (setting x= 0 at the center of the partition). c Each
polynomial thus yields four coefficients (constant, linear, quadratic,
and cubic), which are used as input features to the model, for (4+
5+ 10+ 20) × 4= 156 total polynomial coefficients, and 157 fea-
tures total when including the peak energy value (a.k.a. the white
line energy).
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track the imbalances of each class. As seen in Figs 3 and 4, there is
poorer average performance for Mn, and Cu—largely owing to
difficulties in classifying fourfold coordinated spectra for each
case, and for Cr and Co, classifying fivefold coordinated spectra.
This may be due to a lack of distinguishing features for those
elements, as it was shown for Cr and Co in classifying five-fold and
six-fold coordinated structures (see subplots in Fig. 2 of ref. 46).
Despite the dataset class imbalances, however, we note that the
overall performance of the coordination accuracy is clustered
around an accuracy of 80–88% for every element, providing
sufficient basis for interpreting feature importance.
The F1 scores for coordination number here (over a test set

combining OQMD and MP structures) are slightly lower than those
in previous work using artificial neural networks for classification
on a smaller data set of only MP structures (see Table I of ref. 46);
the better performance of neural networks may also be explained
by their larger parameter space. We note that a direct
performance comparison with earlier work by Zheng and Chen
et al. is difficult, due to differences in the targeted property—
specific discrete coordination numbers here, compared to
continuously weighted coordination motifs in ref. 47. Their high
accuracies of >0.9 for the same absorbing elements suggest that
weighted coordinations may be a better choice of target for
training future ML models.
For both pointwise and polynomial featurization in Fig. 5, the

most informative parts of the spectra shift from the pre-edge
region to other regions of the spectrum when moving from lighter
to heavier 3d metals. The importance of the post-edge region
accords with prior work46,47, but our polynomial featurization
provides the additional insight that coordination is largely
determined by the constant terms of the polynomial in that
region, indicating that the magnitude of the spectra is more
important than local linear or quadratic behavior.
The most important non-constant features are located in the

pre-edge region for the four lighter metals (Ti, V, Cr, Mn), in
agreement with known qualitative trends31,60. The quadratic
character of Ti and V pre-edges as the second-most important
features perfectly lines up with domain knowledge that the
intensity of a pre-edge peak is critical for coordination classifica-
tion for lighter metals; Cr also has multiple higher order
coefficients ranking as important in the pre-edge region32. We
also see that pre-edge features remain important features for Mn,
Fe, Co, Ni, and Cu, consistent with earlier studies33,38,39. Still, for
the four heavier metals (Fe, Co, Ni, and Cu), the polynomial-
featurized models primarily rely on absorption in the edge and
post-edge regions. These findings have particular relevance in
identifying the minimum energy range for an experimental scan in
order to identify the coordination number an absorbing atom.

Fig. 3 Performance of random forest models using the pointwise
featurization of the spectrum μ(E) as input. Baseline accuracy is
shown in gray for the coordination number classification accuracy,
and describes performance of a naive model which simply guesses
the modal class. F1 scores for coordination number models are
presented for each class. Error bars represent ±1 standard deviation
obtained from 10 random forests trained on the same data with
different random seeds.

Fig. 4 Performance of random forest models using the poly-
nomial featurization of the spectrum μ(E) as input. See Fig. 3 for a
detailed description of the plot.

Table 1. Breakdown of spectra which were used to train, validate, or test the ML models.

Metal Total spectra 4-fold
coordination

5-fold
coordination

6-fold
coordination

Total coordination/
nearest-neighbor
distance spectra

Bader charge
spectra

Titanium 4793 334 2301 2074 4709 3201

Vanadium 6929 1954 2404 2504 6862 2863

Chromium 2395 436 580 1326 2342 1809

Manganese 7917 302 3873 3635 7810 4031

Iron 6744 1052 3087 2534 6673 3908

Cobalt 3453 538 1047 1851 3436 2075

Nickel 3396 206 972 2183 3361 2224

Copper 3444 468 2257 651 3376 2167

The same spectra were used for the coordination classification as for the mean nearest-neighbor distance regression.

S.B. Torrisi et al.

4

npj Computational Materials (2020)   109 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



Mean nearest-neighbor distance

For the mean nearest-neighbor distance, we see strong model
performance; the mean absolute error (MAE) for both featuriza-
tions is at or below 0.02 Å for all but Cu, which is around 0.05 Å

(See Supplementary Tables III and IV). The pointwise and
polynomial featurizations, respectively result in an R2 value of
0.93/0.93 for V and 0.92/0.91 for Mn, 0.71/0.69 for Cu and
0.84–0.91 for all other elements. The test set performance of
pointwise models are presented in finer detail in Fig. 6, a parity
plot with a different random forest model trained for each
transition metal element. We note that the performance is
strongest for average-case distances, and that most of the errors
arise in underestimation of nearest-neighbor distance for outlier
atoms with further-spaced or nearer-spaced neighbors.
Pointwise features mostly exhibit a sharp increase in impor-

tance as the energy values begin to enter the EXAFS region, but
also attributes some importance closer to the edge energy. The
polynomial fits make it easier to see how to interpret regions of
interest. In contrast to coordination, which was dominated by the
constant absorption (a0 terms) for important post-edge features,
in Fig. 7, the linear terms are among the most important features
for all mean nearest-neighbor distance predictions, except for Ti
and Cu. This lines up with intuition that the direction of increase or
decrease in the post-edge region corresponds to ‘shells’ of
increasing radius about the absorbing atom that produce the first
interference pattern of the pre-EXAFS region, as the location of the
first post-edge oscillation will correlate with the nearest neighbors.
Higher energies correspond to a larger ‘shell’ about the absorbing
atom: sinusoidal oscillation patterns in EXAFS originate in the
spacing of nearby neighbors (see Eq. 2 of ref. 25) and the wave
number k associated with a photoexcitation.

Because the models are trained on thousands of spectra,
heuristics which correlate peak location and nearest-neighbor
distance may be found that are applicable for diverse transition
metal oxide (TMO) structures. Models can hone in on physics-
based spectral trends discernible to the human eye while also

Fig. 5 By absorbing element, the pointwise/polynomial featurized model accuracy, the white line energy (energy of maximum
absorption) distribution and feature rankings for coordination number models. Top: at each energy, the proportion of spectra with the
maximum absorption occurring at that energy (darker means more spectra). Middle: feature importance of absorption at each energy using
pointwise featurization. Bottom: the highest ranked polynomial features, with the most important at the top and 12th most important at the
bottom, and relative importance indicated by bar thickness. Bar width illustrates the energy range of the partition where the polynomial
feature was fit, and coefficient type (constant, linear, quadratic, cubic) is indicated by color. For the white line energy feature, the bar
represents the spread of different energy values at which the maximum absorption occurred.

Fig. 6 Parity plot of mean nearest-neighbor distances. Each point
represents a spectrum-property pair in the test set, and compares
the predicted distance from pointwise featurized random forest
models to the “true” distance computed from OQMD and MP
structures.
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using information from the rest of the spectrum, such as pre-edge
linear and constant trends for Cr being important alongside post-
edge trends. This contrasts with the common human bias of
choosing easily discernible spectral features localized to one part
of the spectrum and applicable to a smaller set of model systems.

Bader charges

Previous work has shown that oxidation number can be predicted
from XANES spectra via ML classification models56. Here, we show

that this principle is extensible to the continuous regression of
Bader charges. We obtain varying degrees of success based on the
element of the absorbing atom, as shown in Fig. 8. For the
polynomial featurization, V and Cr showcase the best perfor-
mance, with R2 near 0.83 and 0.85, respectively, with Fe, Co, and
Mn presenting values around 0.80. The charges of Ti, Ni, and Cu
are not well reproduced by our models, with R2 scores in the
range of 0.49–0.69. This means that the model interpretability for
these metals is possibly less trustworthy; however, the MAE is on
average 0.07, which is a natural bound for the resolving power of
our model due to how the data was collected (see “Methods”
section for more details).
For Bader charges, Fig. 9 shows how including information

about the spectral derivatives alongside magnitude is helpful for
interpretation: coefficients which describe linear or quadratic
curvature share importance with the constant polynomial term.
Previous work has shown that the first derivative of the spectrum
often coincides with the oxidation state of the absorber61. Since
the Bader charge correlates with the oxidation state in solids, our
suggested importance of linear trends lines up with existing
scientific intuition.
Because the number of valence electrons affects the binding

energy of core electrons in an atom62, the rising edge energy is
often used to experimentally detect oxidation state of metal
atoms. For a limited set of compounds, this heuristic can work
well: for example, the shift of the edge energy was successfully
used as a fingerprint for oxidation state of Mn in silicate glasses63.
But other studies, such as those for chromium chloride
compounds64, demonstrate the difficulty of determining oxidation
state of Cr from edge energy alone. The white line energy usually
occurs shortly after the rising edge energy, and, surprisingly, the
white line energy does not occur as one of the top 12 features for
Bader charge in this study. This suggests there is sufficient
information in the rest of the spectrum to make accurate
predictions, and also shows the limitation of relying on peak
energies for determining metal oxidation states.

Fig. 7 By absorbing element, the pointwise/polynomial featurized model accuracy, the white line energy distribution and feature
rankings for mean nearest neighbor distance models. See the caption of Fig. 5 for a detailed description of the plots.

Fig. 8 Parity plot of Bader charges. Each point represents a
spectrum-property pair in the test set, and compares the predicted
charge from pointwise featurized random forest models to the
“true” Bader charge computed from OQMD and MP electron
densities.
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There are factors for certain elements which could explain the
comparatively weaker Bader charge model performance. The
majority of the Ti found in materials are in the oxidation state Ti
(IV), and the rising edge energies are sensitive to coordination
number31. The confluence of these factors could obscure subtle
pre-edge trends which correlate with the oxidation state, and help
explain the poor Bader charge prediction. It has also been shown
that the spin state of Ni and Co atoms can have a great impact on
their host geometries65: Ni may undergo ligand-based redox in
some systems66, which leads to little change on the rising edge
upon redox state changes67 while still affecting the underlying
charge distributions. This could therefore lead to inaccurate
predictions on the Bader charge for Ni. For Cu, the lower
performance is possibly due to varied hybridization between Cu
and O that affect its oxidation state.
For compounds of V, Cr, and Mn, where Bader charges were

most accurately predicted, correlation of the peak position with
oxidation state may assist characterization of materials, as charge
densities (and therefore, charge transfer processes) can influence
e.g., catalytic or battery efficiency and leave detectable signatures
within XAS spectra11,29,68.

DISCUSSION

This work represents an advance in the scope of ML applications
for XANES and the use of feature ranking for generating XANES
insights. Our extension of ML-XANES predictions to mean nearest-
neighbor distance and Bader charges help to expand the space of
inverse problems solvable via data-driven methods. Our study of
the importance of featurization also helps to demonstrate how it
can improve performance and assist human intepretability.
Feature ranking of pointwise descriptor vectors occurs in the

finest possible features for the data set (on the level of individual
‘pixels’ of absorption). However, spectral trends of interest to us,
such as the presence or absence of a small peak, or the local
curvature at a given energy range, are not discernible at that level

of feature ranking. While these trends are possibly captured in the
structure of decision trees, it is not obvious how to extract them
from feature rankings which only highlight the importance of
individual values of an input μ

!ðEÞ vector. In contrast, multiscale
polynomials concisely describe local trends across varying energy
ranges of the spectrum. Many chemical features such as
hybridization and forbidden transitions have information
embedded in the shape of the spectrum. Furthermore, work in
the saliency map literature found that identically performing
models with more easily understandable function were rated by
untrained users as more trustworthy69; this may justify the appeal
of polynomial featurization even when performance is compar-
able to pointwise featurization.
We also anticipate that our work on featurization could come

with other benefits. Experimental XAS data often suffers from
noise and systematic variation in absorption which can vary even
on the same material on the same beamline. Ways to ‘coarsen’
spectra into features are thus desirable to preserve transferability
of model function, and model interpretability, as trends associated
with individual regions can be more precisely described compared
to pointwise featurization. This interpretability could also be of
critical importance in assessing the transferability of a model. If a
model with good performance in predicting a given property was
found to be depending largely on one feature (say, the presence
or lack thereof of a given peak in the spectrum) and that feature
was known to be irrelevant (perhaps due to systematic error in a
calculation or being associated with the substrate of a material),
then it would be unlikely that this model could be reliably
transferred to arbitrary experiments that exhibit no such feature.
Our polynomial featurization framework captures the impor-

tance of coarse, as well as fine region splits simultaneously,
building on previous work by Zheng and Chen et al. that studied
the relative information content of different spectra, but only on a
per-region basis (pre-edge, edge, and post-edge regions), and for
predicting coordination number47. Our work is further made
distinct by our focus on exploring how alternate featurization can

Fig. 9 For each absorbing element, the pointwise/polynomial featurized model accuracy, the white line energy distribution and feature
rankings for Bader charge models. See the caption of Fig. 5 for a detailed description of the plots.
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aid model interpretability. Because ML as applied to the analysis of
XANES spectra is a budding field, the agreements between our
work and theirs is heartening for the reproducibility and
transferability of both of our findings.
We also found, critically, that the normalization can not only

affect model performance but can heavily affect the feature
ranking, introducing an important caveat for future interpretability
studies: Carbone et al.46 and Zheng and Chen et al.47 both
normalized each spectrum to the maximum value of the
spectrum, and we compared their max-normalization to post-
edge normalization, with spectra normalized to the value of
absorption 50 eV after the rising edge value (which FEFF 9
performs by default). While normalization to the peak constrains
the range of the spectrum, there is no clear physical basis for
normalization to that value. For mean nearest-neighbor distance
and Bader charge, the relative importances of a0 and a1, a2 swung
based on the normalization decision, highlighting the importance
of physically relevant normalization.
Future work could focus on improving accuracy by generating a

more class-balanced dataset and by better understanding of the
XAS data itself, perhaps via an active learning loop. Improved
target labels may also help; for example, with a coordination
number of 4, the metal center could possess Td, D4h, D2d, C3v, and
other possible symmetries. Also, as mentioned earlier, continuous
descriptors of coordination70 as a target property appear to
produce more robust structure-property prediction47. Most
importantly, future models could leverage known correlations
between multiple materials properties. For XAS, the intensity,
shape and the energy of both pre-edge and rising edge are
usually codeterminant with many more factors than coordination
number, oxidation state and average bond distance alone. For
example, in silicate glasses, Mn3+ ions are only found in 6-fold
coordinated environments while Mn2+ can be found in 4-fold, 5-
fold, or 6-fold structures63; in this way, understanding the
coordination environment could help conclusively identify the
oxidation number. Other correlations could be exploited: higher
oxidation state atoms tend to have shorter bonds, and certain spin
states favor certain geometry.

By using random forests, we trade a rigorous reconstruction of
the chemical environment for bypassing the iterative process of
computing additional XANES spectra. Evaluation of a random
forest model will in general be orders of magnitude faster than a
full multiple scattering calculation. While coordination, Bader
charge, and nearest-neighbor distances do not always fully
characterize the environment around the absorbing atom, they
provide useful insights into structure-property relationships11,29,68,
and reduce the number of candidates necessary for complete
local structure determination. At their current accuracies and
efficiencies, models developed within this work could be used as a
pre-processing step into these more rigorous workflows—those
involving FEFF, MXAN, or Pyfitit—to narrow down initial guesses
for a chemical structure when no a priori structure knowledge is
available41–45.
FEFF-computed spectra are efficient to generate and are

understood to present qualitative agreement with experiment.
Transfer learning from theoretical to experimental spectra would
require careful consideration of any systematic errors associated
with the calculations, as well as corrections which can be applied
to improve these errors; For instance, the contributions of the real-
space Green’s function approximation and muffin-tin potential
calculation25 corrections could be applied that include a Hubbard-
like U parameter71, vibrational contributions72 or others (see
Supplementary Information for more details). For a dedicated use-
case, a more costly but quantitatively accurate method of
generating reference theoretical XANES spectra based on solving
the Bethe-Salpeter equation, could be used to supplement
experimental data73–77.
For integration with experiments, one could imagine a ‘meta-

decision-tree’ or a Bayesian algorithm in conjunction with an
automated characterization probe in real time, scanning energy
ranges with high expected information value until sufficient
signal is achieved to determine structural properties of interest
with reasonably high accuracy, analogously to an active learning
loop as used in other contexts for ML and materials
science1,12,78,79. The important energy ranges in Figs 5, 7, and 9
could be used to target measurements of different energy
regions when certain properties are desired for structural

Fig. 10 All spectra in the XANES dataset. Spectra are shown separately for each absorbing element, with N indicating the total number of
spectra per element and greater opacity indicating a greater number of spectra overlapped in a given region.
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characterization. Appropriate system-specific and apparatus-
specific calibration of relevant spectra would be necessary for a
careful comparison to experiment. We anticipate that easily
implementable and interpretable models in the vein of the
random forests discussed in this paper, once adapted to
experimental data input will help provide real-time feedback for
experimentalists to maximize the information extracted per
experiment.

METHODS

Dataset: computed structures, properties
Our study focuses on transition metal oxide materials, of which there are
thousands of structures available in the Open Quantum Materials Database
(OQMD)8 and the Materials Project (MP)7, with geometries optimized via
density functional theory (DFT). Our datasets consist of materials’ unit cell
structure (from which we extract coordination number and nearest
neighbor distances), their electron densities (from which we extract Bader
charges), and their XANES spectra (which we either download from the
Materials Project56,80 or compute ourselves).
The chosen structures are comprised of unit cells with at least one

transition metal in the set {Co, Fe, V, Cu, Ni, Cr, Mn, Ti}, and at least one
oxygen atom. For any duplicate structures between MP and OQMD—
identified using the pymatgen structure matcher81, as well as ICSD
numbers associated with each structure—we keep only the MP structure.
Coordination numbers are computed from these unit cells for all materials,
and mean nearest-neighbor distances are computed for all absorbing
atoms that are four, five, and six-fold coordinated.
Spectra for these unit cells are obtained either through querying the MP

API or by computing XANES spectra using FEFF 940 wrapped by Atomate
workflows82 with the same parameters as the MP to ensure transferability
(cataloged in pymatgen at time of writing as MPXANESSet55,56,81). We
ultimately computed over 23,000 new XANES spectra to supplement the
spectra downloaded from the Materials Project database. Duplicate spectra
and those that appear to be from an unconverged calculation (i.e., the
computed spectra appear unphysical, such as those with anomalously high
peaks in the pre-edge region) are left out from our dataset. The unphysical
spectra filtering and de-duplication are similar to the data preparation in
earlier work46, except here the similarity cutoffs for duplicate data are more
restrictive. See SI for the exact removal criteria. In addition, due our focus
on interpreting spectral features, we only keep spectra with maximum
summed errors less than 0.1 (in absorption units) between individual
piecewise polynomial fits and their respective domains in the max-
normalized spectrum (See SI). Special SciPy functions83 and the NumPy
library84, were instrumental to all parts of analysis. All spectra are visualized
in Fig. 10.
We performed our entire analysis twice over, using both the spectrum

normalized to the post-edge absorption value (to 50 eV after the edge
location, as determined by FEFF) and the spectrum normalized to the
maximum value of absorption (as performed by Carbone46 and Zheng and
Chen et al.47). All figures from analysis using the max-normalized spectra
are in Supplementary Figs. 76–139 and Supplementary Tables VI and VII.
The Bader charge of each atom is computed by partitioning a three-

dimensional charge density distribution of a material at its zero-flux
surfaces, and computing the total charge within each partition85. Electron
densities data from the MP and the OQMD, both circa 2017, are used for
our Bader charge dataset. This data is only available for a subset of the
structures used for the XANES, coordination number, and mean nearest
neighbor datasets. For just the Bader charge prediction model, we add
another screening criteria for the dataset, only allowing structures which
had similar Bader charge values (less than 0.07 difference) between atoms
of the same species within the unit cell. See the SI for more preprocessing
details. We also note that the MP and OQMD DFT calculations use slightly
different parameters, such as plane-wave basis set cutoff fidelity,
pseudopotential choice, k-point grid, or convergence criteria. There is a
resulting mean absolute difference of 0.07 charge units for Bader charges
between MP and OQMD structures identified as identical.
For each absorbing element, the total number of XANES spectra and

each target property are presented in Table 1. The same datasets are used
for pointwise and polynomial featurized model training and testing.

Model training and performance
We used random forest classifiers to predict coordination number, and
random forest regressors to predict mean nearest-neighbor distance and
Bader charge, both in the scikit-learn implementation (For this work,
version 0.21.3)86. We quantify classifier performance using the F1 score for
each class. For regressors, performance is quantified using the coefficient
of determination R2 (both defined in SI).
Coordination classification is complicated by the class imbalances

inherent to our data set, since 4-fold coordination is, in general, under-
represented compared to 5-fold and 6-fold coordination in TMOs. In
training our models, we use random over-sampling (over-sampling the
minority class with replacement until parity is reached with the number of
the majority class) to ameliorate the effect of class imbalance, and found
that this improved model performance on the validation set.
In order to prevent overestimation of model accuracy, we performed an

80-10-10 training-validation-test set split for each element, with all sets
randomly chosen. We then studied model performance on a 10%
validation subset of the overall data, and gauged the importance of class
imbalances, pre-processing choices, and other hyperparameters on this
validation set. All performance reported from this paper is from
performance on the test set. All models were trained 10 times on the
same data and different random seeds; all error bars seen in the
manuscript represent ±1 standard deviation.

Featurization and Interpretability
We featurize XANES spectra in two ways in this work. The “pointwise”
featurization is the straightforward use of a vector of all the values of μ!ðEÞ;
interpolated on 100 equally spaced energy values. For the polynomial
featurization, polynomials are fit (see Fig. 2) to four partitions of the energy
range: four-fold, and five-fold partitions capture coarse trends in the
spectrum, and 10-fold and 20-fold splits capture the finer features. We add
a physically meaningful value, the energy value E of the peak μ

!ðEÞ i.e.,
Argmax( μ!ðEÞ), which is commonly known as the white line energy, as an
additional feature to assist with fitting and interpretability. In summary, our
feature map transforms a single spectrum of 100 values of μ

!ðEÞ into 157
multiscale features.
A relative importance score can be computed for each feature vector

component to a random forest model by considering the features which
are associated with the greatest reductions in Gini impurity (for
classification) and MSE (for regression). Because the ranking occurs by
comparing individual values of the input feature vector, careful choice of
feature vectors is necessary to capture physically relevant spectrum-
property features. During our 10 re-train cycles of each RF, as expected,
there was some variability in the feature ranking values due to the
randomness of the fitting procedure. However, trends were generally
consistent across the fits. The variability associated with each feature
vector for each property, featurization, and normalization is plotted in
Supplementary Figs 20–67 for each transition metal we considered,
respectively.

Anion coincidence in structures
Every structure that we considered in this study had at least one oxygen
atom present within the cell. Because the co-existence of other anions can
change the charge distribution behavior, we indicate in Supplementary
Table V the number of spectra which (i.) Have associated Bader charge
values and were used in the study and (ii.) contain a given anion, due to
the fact that different anions can induce different charge transfer
behaviors.

Bader charge vs. oxidation state
In order to demonstrate the correspondence between Bader charges and
oxidation state, we present figures in the Supplementary Information
juxtaposing the Bader charges associated with given structures and the
oxidation states approximately guessed by pymatgen. A correlation
between the Bader charge and predicted oxidation state can be observed,
though the agreement is not strictly quantitative.

DATA AVAILABILITY

The feature vectors (XANES spectra projected onto 100 grid points and polynomial
coefficient vectors), and their associated label values, are shared publicly on TRI’s
data-sharing website, https://data.matr.io.

S.B. Torrisi et al.

9

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2020)   109 

https://data.matr.io/


CODE AVAILABILITY

The code used to train the models and generate the figures in this publication is
publicly available at the TRIXS (Toyota Research Institute X-ray Spectroscopy)
repository at https://github.com/TRI-AMDD/trixs.
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