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Abstract: Power system failures or outages due to short-circuits or “faults” can result in long service
interruptions leading to significant socio-economic consequences. It is critical for electrical utilities to
quickly ascertain fault characteristics, including location, type, and duration, to reduce the service
time of an outage. Existing fault detection mechanisms (relays and digital fault recorders) are slow
to communicate the fault characteristics upstream to the substations and control centers for action
to be taken quickly. Fortunately, due to availability of high-resolution phasor measurement units
(PMUs), more event-driven solutions can be captured in real time. In this paper, we propose a
data-driven approach for determining fault characteristics using samples of fault trajectories. A
random forest regressor (RFR)-based model is used to detect real-time fault location and its duration
simultaneously. This model is based on combining multiple uncorrelated trees with state-of-the-art
boosting and aggregating techniques in order to obtain robust generalizations and greater accuracy
without overfitting or underfitting. Four cases were studied to evaluate the performance of RFR:
1. Detecting fault location (case 1), 2. Predicting fault duration (case 2), 3. Handling missing data
(case 3), and 4. Identifying fault location and length in a real-time streaming environment (case
4). A comparative analysis was conducted between the RFR algorithm and state-of-the-art models,
including deep neural network, Hoeffding tree, neural network, support vector machine, decision
tree, naive Bayesian, and K-nearest neighborhood. Experiments revealed that RFR consistently
outperformed the other models in detection accuracy, prediction error, and processing time.

Keywords: three-phase fault; random forest regressor; missing and streaming data; GridPACK

1. Introduction

Fault identification is critical for seamless power grid operation. Utilities are working
around the clock to reduce outage rates from interruptions such as contact with natural
vegetation, animals, or weather events [1–3]. The unplanned outages can lead to long
service interruptions and significant economic impact to the customers. The cost to various
consumers for a one-hour outage during a summer afternoon was estimated to be ap-
proximately USD 3 for a typical customer, USD 1200 for small and medium organizations,
and USD 82,000 for large organizations [4]. These outage costs increased substantially
depending on the time of year and outage duration, especially when they occur during
winter. Thus, predicting faults in the system along with their duration is the first step
towards reducing the number of unplanned outages and providing a prediction-based
plan to the utility for deploying the appropriate maintenance crews and the sequence of
operations [5,6].

Physical faults in power systems are generally classified as balanced or unbalanced
faults [7,8]. An unbalanced fault, or asymmetrical fault, is a commonly occurring fault that
can be series or shunt type. The voltage and frequency values increase and the current
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level decreases during a fault phase in the series fault type. The current level rises and the
frequency and voltage levels decrease during a fault phase in the shunt fault type. There
are several shunt fault types: single line to ground (SLG), line to line (LL), double line to
ground (DLG), and three-phase to the ground (LLL). An SLG occurs when a transmission
line phase touches a neutral wire or ground. The DLG or LL faults occur when two or more
phases make a connection with the ground, primarily due to natural weather events such
as storms, high winds, or fallen trees. The cause may also be due to equipment failure,
line connecting the remaining phases, or a failing tower. The likelihood of occurrences for
each fault type is 70% for SLG, 15% for LL, 10% for DL, and 5% for LLL [8,9]. An LL fault
occurrence is rare; however, it is categorized as a severe fault that can increase fault current
magnitude, resulting in outages or severe grid asset damage. These damages underscore
the need for a fault detection and location identification model.

Many power system fault detection approaches have been reported in peer-reviewed
literature. The authors in [7] provide a review of conventional and machine-learning-
based techniques for fault location identification. Some conventional approaches include
the traveling wave model, the impedance-based method, and synchronized voltage and
current-based measurements. The traveling wave approach requires high-speed data
acquisition equipment, a Global Positioning System (GPS), sensors, and transient fault
recorders to detect the transient waveform. The location of the fault is computed by “time-
tagging the arrival of the traveling wave at each end of the line and comparing against
the time difference to the total propagation time of the line with the help of GPS” [10].
This approach has several advantages, as it is not impacted by excessive resistance, load
variance, reflection, grounding resistance, traveling wave refraction, or series capacitor
bank [7]; however, the accuracy of the approach relies on capacitance and line inductance.
The impedance-based approaches [8,11] are simple and easy to implement, unlike the time-
wave method, as they only require measurement data that include fault voltages and fault
currents collected from the digital fault recorder or relays. The accuracy of this approach
can be affected in the circumstances such as a grounded fault, where the resistances can
reach higher values.

Machine learning (ML)-based approaches for detecting fault locations have been
reported in peer-reviewed literature. In these approaches, training data was generated
using inputs such as voltage, current, and phase angle, and using fault location as an output.
The authors in [12] proposed a back propagation-based neural network (BPN) to estimate
fault location in distribution networks. The fault current is a critical feature for training the
NN model. A Levenberg–Marquardt algorithm, also known as damped least square, was
applied to BPN for faster convergence. The BNN model was then deployed to run on the
DIgSILENT Power Factory 13.2. A feed-forward NN (FNN) based approach was proposed
in [13], where fault voltages and fault currents were selected as the two features to train the
model. A sigmoid activation function was used to normalize the data. The results indicated
a detection error of less than 3%. Another NN-based approach was proposed in [14], to
estimate fault distances from substations. The selected input features included three-phase
voltage, current, fault conditions, and active power gathered from the substations. This
approach was trained on different fault locations, resistances, and loads, then tested on an
IEEE 34-bus system. This method yielded promising results, even with dynamic changes in
network topology and higher noise tolerance. The authors of [15] proposed a convolutional
neural network (CNN)-based approach using bus voltages. This method was trained and
tested on IEEE 39-bus and IEEE 68-bus systems under uncertain conditions for system
observability and measurement quality. Their results indicated that CNN can localize a
faulted line in low-visibility conditions in 7% of the buses. High accuracy was reported for
NN-based approaches in the studies mentioned above; however, the training time required
for NN was longer and was not suitable for dynamic or real-time environments. In [16],
authors discussed a fault line identification and localization approach using random forest
(RF) and decision tree classifiers. The obtained experiment results show a classification
accuracy of 91%. Another RF-based approach was proposed in [17]. Here, the model
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was trained on three-phase current and voltage data, validated using a IEEE-34 system,
and achieved an accuracy above 90%.

A fault-detecting KNN-based approach in a photovoltaic (PV) system was proposed
in [18]. This approach was trained and tested on data generated from a developed PV
model. The reported results indicated a classification accuracy of 98.70%, with error values
ranging between 0.61% and 6.5%. The authors in [19] proposed a real-time event classi-
fication and fault localization approach for a synchrophasor dataset. Their methodology
relied on three processes: 1. Removing bad data from collected PMU measurements using
the maximum likelihood estimation (MLE) approach; 2. Events were classified using a
combination of density-based spatial clustering and applications with noise (DBSCAN).
Logic rules were generated using a physics-based decision tree (PDT) method that uses
parameters such as active power, reactive power, and fault event types; and 3. Reporting
localized events in real time using graph-theory. Three case studies were analyzed using
metrics such as precision and recall. A score metric was computed using Shannon entropy
and descriptive statistical parameters, such as standard deviation, range, mean difference,
and crest factor. The authors determined that their proposed data cleansing approach
outperformed Chebyshev and K-means methods, with 95% precision. The average classifi-
cation run-time algorithm was approximately 0.09 s for a typical window size of 30 samples
involving PMU sensors.

A hybrid method using wavelet transform and support vector machine (SVM) was
examined in [20] to locate faults in transmission lines, with the methods described in two
stages. Voltage and current values emitted by a transmitter were used to locate the fault
in the first phase. The second phase fed a multi-class SVM model for training based on
selected influential features, with the classification of fault locations completed using a
regression approach. The fault classification error was below 1% for all fault types: 0.26%
for SLG, 0.74% for LLG, 0.20% for LL, and 0.39% for LLLG. This approach was faster and
relatively accurate, even for larger-sized datasets; however, it requires the careful selection
of appropriate kernel type and hyperparameters. The authors of [21] proposed an event
location estimation (ELE) algorithm for the wide-area PMU data monitoring system. Their
approach relied on clustering and wavelet analysis to detect and localize events in real time.
The network was initially divided into several clusters, where each cluster was defined
as an electrical zone (EZ) using K-means. A wavelet-based event approach was used to
detect and localize event occurrences by tracking any significant disturbance levels, such
as event magnitudes. Once the event was detected, its magnitude was defined using a
modified wavelet energy (MWE) value, with locations estimated at each EZ. The authors
implemented the ELE approach in a real-world PMU-setting containing 32 dynamic events
with exceptional localizing accuracy values. They did not consider data quality issues in
the PMU measurements; therefore, some error may have been introduced by irregular
sampling, data rate, bandwidth challenges, and time synchronization errors.

The authors of [22] discussed a wavelet decomposition technique combined with fuzzy
logic to identify fault lines and locations in a multi-terminal high-voltage direct current
(MTHVDC) network. The wavelet coefficients of positive and negative currents were
initially computed and then fed to a fuzzy logic-based voting system to identify the fault
lines. Once the line was identified, a traveling wave-based algorithm was used to determine
the exact fault location using the Daubechies wavelets. A discrete wavelet transform
(DWT) combined with SVM for distribution network fault detection was proposed in [23].
The features were extracted using SVM and decision trees (DT), then optimized using a
genetic algorithm (GA). The author’s model performance was evaluated on two active
distribution networks, IEEE 13-bus and IEEE 34-bus systems. They reported that their
model outperforms the probabilistic neural network (PNN).

Compared with detecting fault location, relatively few works have been carried out to
predict fault duration. However, this is arguably pertinent information from the customer’s
perspective. When a fault or an outage occurs and consumers ask when the power will
be restored, utilities have to provide an accurate estimation of the recovery time. Seattle
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City Light provides a real-time outage map with an estimated restoration time; however,
the difference between the actual outage duration and the estimation time is large, possibly
because of the conventional techniques used [5,24]. There are few approaches in the
literature that have attempted to address this issue. Authors in [5] proposed a real-time
approach for detecting outages in distributed systems. This approach was based on
recurrent neural network (RNN) and was trained on three sources of historical data: outage
report provided by Seattle City Light and 15 years of data, repair logs, and weather
information. Another approach for predicting faults duration in transmission system was
proposed in [6]. This approach was based on naive Bayes classifier (NBC) and support
vector machine (SVM) and it was trained on nontemporary fault-type data including
features such as substation, asset type, fault category, and outage start time. The reported
results indicated an accuracy above 97%.

Table 1 provides a summary of the relevant fault detection approaches along with
their advantages and potential limitations. We propose a random forest regressor (RFR)-
based model to detect fault locations and predict their duration simultaneously. From a
machine learning perspective, fault location detection is usually approached as a multiclass
classification problem where the output would be a class label, fault position; while fault
duration prediction is regarded as a regression problem as the output would be a continuous
value, fault duration. This novel work addresses these two issues using a single approach.
By mapping faults location and duration output values into one single output; these two
problems can be concurrently addressed through a single regression model. The proposed
model is novel due to the following reasons. 1. It detects fault locations and predicts
their duration simultaneously; 2. It is adaptable to other case scenarios and power system
datasets as it includes an ensemble of multiple uncorrelated trees that achieves strong
generalizations; 3. It predicts various fault duration including short, medium, and large
duration; 4. It is convenient for real-time applications as it requires less processing time
compared to the existing approaches. GridPACK framework [25] was used to train the
model by simulating several three-phase fault scenarios on a nine-bus system to generate
appropriate datasets. A collection of four experiments are formulated to evaluate the
performance of the RFR model. The model was evaluated in experiment 1 for fault detection
accuracy, then compared to seven classifiers: neural network (NN), deep neural network
(DNN), support vector machine (SVM), k-nearest neighbors (KNN), naive Bayes (NB),
decision tree (DT), and Hoeffding tree (HT). The RFR model was evaluated in experiment
2 for predicting fault duration, then compared to the regression version of models such
as support vector regressor and decision tree regressor. Mean squared error (MSE) and
mean absolute error (MAE) were used as evaluation metrics. In experiment 3, the RFR
was examined in terms of handling missing data possibly caused by equipment failure,
data storage issues, or unreliable communication. The RFR was tested in a streaming data
environment in experiment 4, where multiple window sizes were considered. The MSE
and processing time for the RFR were then compared to HT and DNN. The HT and DNN
models are commonly suggested for power system streaming data [26–28].

This paper is organized into the following sections: Section 2 focuses on RFR model de-
scription, with details on simulated fault scenarios, feature selections, and training/testing
process; Section 3 discusses the analysis of four experiment scenarios for classifying and
predicting fault location and duration with off-line/streaming conditions; and Section 4
draws conclusions and recommendations for future work.
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Table 1. Existing literature on fault location and duration in power system.

Category Approach Fault Types Advantages Limitations

Conventional

Impedance-based [8,11] Physical Ease of implementation.
The accuracy can be affected in the case of a
grounded fault where the fault resistance is high.
The fault duration was not considered.

Time wave-based [10] Physical
Large resistance, load variance, grounding resistance,
reflection, and refraction of the traveling
wave and series capacitor bank.

The accuracy depends on the correctness of the line
parameters’ estimated values, including capacitance and
line inductance. The fault duration was not considered.

Machine learning

NN + Levenberg–Marquardt [12,13] Physical
The detection error is less than 3%. High tolerance to
the fault resistance, fault type, fault location, and the
embedded remote-end source.

The convergence time for the training process is high.
The fault duration was not considered.

NN-based [14] Physical
Optimal results in terms of estimating the fault distance
from the sub-stations even under network–topological
changes. High tolerance to noise.

Inappropriate for detecting fault location
in a streaming power system network.

CNN-based [15] Physical Optimal localization estimation even
under low visibility (7% of buses).

The fault duration was not considered.

RF + DT [16] Physical Fault location detection accuracy is 91%
with a minimum number of buses (5–7%).

RF [17] Physical Fault location detection accuracy
is 90.96% in distribution systems.

MLE + DBSCAN [19] Physical
The proposed data cleansing approach outperforms Chevyshev and
K means and achieve a precision of 95%. Less than 0.9 s to
classify event for a typical window size of 30 sample data.

KNN [18] Physical Fault location accuracy reaches 98.70%
with an error between 0.61% and 6.5%.

The proposed model was trained/tested on
the PV system only.

HAT + DDM + ADWIN [29,30] Physical
and cyber

Classification accuracy is greater than 94%
for multiclass and greater than 98% for
binary class. Adaptable to the concept of drift events.

The fault location and duration were
not considered.

RNN-based [5], NBC + SVM [6] Physical Predicting fault duration with 97% accuracy.
The RNN-based approach is suitable for a real-time environment. The fault location was not considered.
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Table 1. Cont.

Category Approach Fault Types Advantages Limitations

Hybrid

Wavelet transform + SVM [20] Physical
The fault classification error is below 1% for all fault types.
The overall error is 0.26% for SLG, 0.74% for LLG, 0.20% for LL, and 0.39%
for LLLG.

The fault duration was not considered.
Not suitable for streaming power system data.
The accuracy of the SVM depends on selecting and tuning
the appropriate kernel type and hyper-parameters.

Wavelet analysis + K-means +
ELE [21] Physical Fault location accuracy attained 100%.

The fault duration was not considered.Wavelet analysis + Fuzzy logic [22] Physical The error between the actual fault location
and the predicted one is low than 0.002%.

Discrete wavelet transform
+ SVM [23] Physical Fault location accuracy is 98.27% for IEEE 13-bus and 98.29% for

the IEEE 34-bus test systems.
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2. Methodology
2.1. Random Forest Regressor (RFR) Model

Random forest F is an ensemble approach with several independent and uncorrelated
decision trees F = {t1, t2, . . . , tt}. These uncorrelated trees assist model F in achieving
an accurate generalization by injecting randomness into the decision trees [31]. These
generalizations rely on the application of a bagging technique, which combines the concepts
of bootstrapping and aggregation [31]. Consider a training set S = {Xm, Ym}m

(M=1), where

X ⊂ RD and consists of input feature space with parameters such as voltage (v), phase
angle (φ), current, and frequency ( f ). Y is a multidimensional continuous space Y ⊂ RD′ ,
and includes both the fault location and corresponding fault duration. M is the number
of samples, and bootstrap is a subset St of the entire training set S, where each instance
has been randomly sampled using a uniform distribution with or without replacement.
The resulting bootstrap data includes the same number of instances as the original data set
S; however, approximately 1/3 of these samples are duplicated and approximately 1/3 of
the instances are removed from the bootstrap sample. Multiple passes are performed on
the input data to create bootstraps for each tree. Once the training and testing is completed
on the bootstrap data, the prediction of all the independent trees are averaged as one
aggregated value.

Assuming that output variables follow a multivariate Gaussian distribution with mean
µ and covariance Σ, the regression posterior can be modeled as

P(y | x, Pt) = Nt(y | µt, Σt) (1)

where Pt is a partition built by a random tree tt, Nt is a multivariate Gaussian with mean µt,
and covariance Σt is predicted in the output space Y from the subsets of the training dataset.
The purpose of training the trees is to reduce the uncertainty related to the multivariate
Gaussian model, especially when an appropriate splitting function f must be selected to
split the subset Sl of the training set. These calculations are performed at each arriving
node Nl in the tree tt to reduce any prediction uncertainty caused due to “splitting”.

An example of function f includes information gain and the Gini index. The un-
weighted differential entropy function, which is a continuous version of Shannon’s entropy
(SE), is considered an optimal function for computing information gain in a regression
task [32,33]. The SE function was selected, as it reported satisfactory results in terms of
prediction error, defined as

f (Sl) =
∫
(y∈Y)

n

∑
i=1

P(y|Sl)log(P(y|Sl))dY (2)

where i is a given input instance and y is an output including both fault duration and
location.As we model the posterior using multivariate Gaussian, f can be rewritten as [34]

f (S1) =
1
2

log((π exp)D′ | Σ(Sl) |) (3)

where Σ(Sl) is the covariance matrix estimated from the subset Sl . After splitting the subset
Sl at node Nl into two subsets nodes, Sright

l and Sle f t
l , using function f , the information gain

∆ is calculated using
∆ = f (Sl)− wl f (Sle f t

l )− wr f (Sright
l ) (4)
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where wl =
|Sl |
|Sle f t

l |
and wr =

|Sl |
|Sright

l |
. Once the training phase is completed, the prediction

phase consists of sending the new received instances through the trees of the forest and the
posteriors of all the trees are estimated using the following equation:

P(y | x) =
1
T

T

∑
t=1

P(y | x, Pt) (5)

where T is the number of trees in the forest and Pt is the partition introduced by tt. Given
any new instance, the model can predict its corresponding fault duration and location by
maximizing a posterior:

Ŷ = argmaxy∈YP(y | x) (6)

2.2. Dataset

The simulated fault scenarios were completed using GridPACK software, an open-
source framework designed to support the development and implementation of power
grid applications. Examples of these applications include power flow simulations for the
electric grid, contingency analysis of the power grid, state estimation based on electric
grid measurements, and the dynamic simulation of the power grid. These applications are
capable of running on high-performance computing architecture (HPC) [25]. The dynamic
simulation application package in GridPACK was selected to simulate a three-phase fault
at various bus locations with different fault duration(s) using a nine-bus system. The faults
duration were varied from 0.05 to 0.5 s along with fault strength levels, such as magnitude.
An example of scenario one is depicted in Figures 1 and 2. Three features were selected
to capture both the fault location and duration: the voltage magnitude (Vm) at each bus,
the phase angle (φ) at each bus, and the frequency ( f ) of the generators. The timing of the
fault applied to each bus was ten seconds. The total number of samples for all simulated
scenarios equaled 53,512 samples. A summary of the training and test data is listed in
Table 2. Additionally, Figure 3 illustrates a conceptual diagram of the proposed approach
starting from simulation fault scenarios to evaluating the RFR model’s performances.

Figure 1. Phase angle of the 9 buses after injecting three—phase fault.
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Figure 2. Voltage magnitude of the 9 buses after injecting three—phase fault.

Table 2. Common three-phase fault modeling for nine scenarios with different duration.

Scenario Fault Location Fault Duration Simulation
Time

Number of Generated Sample
for Each Fault Duration

Number of Generated Samples
for Each Scenario

Scenario
1–9

Apply fault at
bus 1–9

0.05 s to 0.5 s
with a step of 0.05 s 10 s 594 samples 5945 samples/scenario.

Total number of samples is 53,512

Scenarios simulation

Simulate 7 other scenarios
while varying the fault location

Dataset  generation Feature selection

Training

Model training Evaluation

Accuracy

Training set
37 458 samples

Testing
Testing set

16 053 samples

Simulated bus system
in GridPack

Scenario 1

Scenario duration: 10s
Fault durations: [0.05s, 0.5s]
Fault location: Bus 1

Scenario 9

Scenario duration: 10s
Fault durations: [0.05s, 0.5s]
Fault locations: Bus 1-9
Change fault strength

Input

Voltage magnitude
Phase angle
Frequency

Output

Fault location
Fault duration

RF Regressor
model

Processing
time

Experiment 1

Fault location detection

Experiment 2

Fault duration prediction: 
Short, Medium, and
Large durations

Experiment 3

Handling missing data

Experiment 4

Handling streaming data

Mean
Absolute

Error

Perform
ance m

etrics

Mean
Squared

Error

Figure 3. Conceptual diagram of the proposed approach.

3. Results and Discussion
3.1. Experiments and Metrics

Four experimental scenarios were considered for the evaluation of the RFR model per-
formance. The proposed model was assessed based on the accuracy metric in experiment 1,
which is the ratio of the correctly classified fault location cases over the total number of
cases. The accuracy metric can be expressed as

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(7)

where TP is the true positive, TN is the true negative, FP is the false positive, and FN is
the false negative. These values were obtained from the confusion matrix. The second set
of experiments evaluated the model’s performance when predicting the fault duration. As
this feature is a continuous value, the accuracy metrics cannot be used; therefore, other
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performance metrics, such as MAE and MSE, were selected. The MAE is the average of
the absolute differences between the actual and predicted fault duration, and it is given by

MAE =
1
n

n

∑
i=1
| (ŷ− y) | (8)

where ŷ is the predicted fault duration, y is the actual fault duration, and n is the number
of instances or cases. Unlike MAE, MSE has the benefit of penalizing for significant errors
because it averages the squared differences between the actual fault duration and the
predicted one, expressed as

MSE =
1
n

n

∑
i=1

(ŷ− y)2 (9)

The MSE and MAE of the proposed model were compared to the regression version
of the other seven models listed above. The fault duration and location were evaluated in a
streaming window environment during experiment 3.

3.2. Models Hyperparameters Tuning

To conduct a fair comparison between RFR and the other models, a hyperparame-
ter study was conducted to determine the optimal parameters. Two approaches can be
investigated to select the best hyperparameters: GridSearch and RandomizedSearch [35].
The former is convenient for an exhaustive search for the best-performing hyperparameters
given advanced computing resources, whereas the latter defines a grid of hyperparameters
and randomly selects the optimal one [35]. GridSearch was employed to examine, in depth,
the relevant parameters for each model and their optimal values using a subset of the data.
For KNN, two weighting functions were chosen with varying numbers of neighbors: uni-
form and distance. In uniform weighting, all points within the neighborhood are weighted
equally, while in distance weighting, closer neighbors are given more weight [36]. In the
RFR method, two maximum features methods were selected, sqrt and log2, to determine
the number of features to consider when looking for the best split. For SVM, two kernel
types were chosen, polynomial and radial basis function (RBF). A range of regularization
parameters (C) was also considered. For NN, two activation functions were selected in
conjunction with a variety of hidden nodes. In DT, the minimum number of samples
needed to split a node internally was determined; additionally, various values were in-
vestigated to control randomness within the tree. Alpha and lambda were selected as the
shape parameters for NB; alpha is the shape parameter for the Gamma distribution prior to
alpha, and lambda is the shape parameter for the Gamma distribution prior to lambda [36].
For DNN, two numbers of hidden layers were chosen, each of which has multiple hidden
neuron nodes. Finally, two split functions were investigated for HT with varying split
confidence values.

Table 3 provides the GridSearch methods results for the various models. The optimal
parameters for each model are highlighted. KNN reported the lowest MSE values, 6.7 and
0.16 standard deviation, with the distance weight function and 100 neighbors. According
to these results, KNN fits data more smoothly with increasing number of neighbors; this is
due to the fact that more neighbors reduces the edginess by taking into account more data,
thus lowering the overall error of the model. SVM reaches low error, 5.9, when using RBF
kernel and a regularization parameter (C) set to 10. These results reflect that increasing
the C value can contribute to low error rates, possibly because there are more potential
data points within the margin or that were incorrectly classified, which can be corrected by
using a high C value. DT performs better with a leaf size of six and a random state of one.
Based upon these results, it appears that increasing the minimum leaf size will increase the
model’s ability to determine the appropriate pruning strategy, and, as a result, improve
its performance.
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Table 3. Hypertuning parameters for KNN, RF, DNN, DT, NB, HT, NN, and SVM.

Model Hyperparameters Mean Squared
Error

Standard
Deviation Model Hyperparameters Mean Squared

Error
Standard
Deviation

KNN
Weight

function

Uniform

1 11.21 2.6

RFR

Max feature:
sqrt

Number of
trees

1 10.31 2.68

10 7.25 0.45 10 6.45 0.53

100 6.71 0.17 100 6.2 0.67

Distance

1 11.21 2.6
Max feature:

log2
Number of

trees

1 10.52 2.68

10 7.24 0.43 10 6.75 1.26

100 6.7 0.16 100 6.15 0.63

SVM

Polynomial
kernel

C=1 6.013 0.11

NN

Relu
function

Number of
hidden nodes

150 4.37 0.18

C=5 6.13 0.14 300 4.64 0.23

C=10 6.16 0.08 450 4.62 0.12

Radial
basis function
(RBF) kernel

C=1 6.09 0.14
Identity
function

Number of
hidden nodes

150 6.15 0.08

C=5 6.17 0.08 300 6.15 0.06

C=10 5.9 0.1 450 6.16 0.08

DT

Minimum leaf
size = 1 Random state

0 10.51 3.56

NB

Alpha = 1 × 10−6 Lambda

1 × 10−6 1.26 × 10−3 1.42 × 10−4

1 10.39 3.65 1 × 10−4 1.17 × 10−3 1.56 × 10−4

2 10.58 3.57 1 × 10−2 1.07 × 10−3 1.66 × 10−4

Minimum leaf
size = 6 Random state

0 9.32 3.15

Alpha = 1 × 10−4 Lambda

1 × 10−6 1.14 × 10−3 1.98 × 10−4

1 9.29 3.12 1 × 10−4 1.19 × 10−3 1.51 × 10−4

2 9.31 3.15 1 × 10−2 1.15 × 10−3 2.37 × 10−4
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Table 3. Cont.

Model Hyperparameters Mean Squared
Error

Standard
Deviation Model Hyperparameters Mean Squared

Error
Standard
Deviation

DNN Relu function

5 hidden layers

50 hidden
nodes 1.20 × 10−2 2.40 × 10−3

HT

Split function:
Gini Index

Split
confidence

1 × 10−5 12.41 4.88

100 hidden
nodes 1.12 × 10−2 1.39 × 10−3 1 × 10−4 14.53 6.13

150 hidden
nodes 1.14 × 10−2 1.39 × 10−3 1 × 10−3 14.91 6.24

10 hidden
layers

50 hidden
nodes 1.12 × 10−2 3.51 × 10−3

Split function:
Information gain

Split
confidence

1 × 10−5 10.88 2.89

100 hidden
nodes 1.14 × 10−2 1.39 × 10−3 1 × 10−4 11.24 8.13

100 hidden
nodes 1.20 × 10−2 2.40 × 10−3 1 × 10−3 17.64 7.22
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The optimal DNN configuration entails five hidden layers, each of which contains
100 hidden nodes with relu function. These results suggest that the number of hidden layers
and hidden neuron nodes did not dominate the model’s performance; that is, the model
obtained the best results without overfitting by using five hidden layers, each containing
100 neuron nodes. The RFR showed optimal results using log2 as a maximum feature and
100 trees. When splitting a node with log2 as a maximum feature, RFR is better able to find
the optimal size of the random subset of features. An optimal configuration of NN includes
a relu function and 150 hidden nodes. NN results indicate that an increased number of trees
does not improve the model’s performance, but rather the choice of an activation function;
Relu has demonstrated a lower error rate than identity. The optimal alpha and lambda
settings for NB were set to 1 × 10−6 and 1 × 10−2, respectively. NB’s results indicated that
changes to alpha or lambda values do not have a significant impact on model performance.
HT’s optimal parameters are information gain, as a split function, and a split confidence
set to 1 × 10−5. HT’s results indicated that selecting a lower confidence level while using
information gain reduced error rates and their standard deviations significantly.

3.3. Experiment Result #1: Fault Location Detection

The results of experiment 1 are depicted in Figure 4. This figure explores the com-
parison between the proposed model (RFR) and the other seven models in terms of fault
location detection accuracy at nine different fault locations. At fault location 1, the RFR
approach detects approximately 92% of the faults, followed by DNN with 80% accuracy.
NB reports the poorest performance with an accuracy rate below 2%. At the second location,
DNN and RF report similar results, 71%, followed by KNN, NN, and SVM. At the third
fault location, RFR reports the highest accuracy rate, 94%, followed by DNN with 78%, then
KNN with 46%. RFR detects 76% of the faults at fault location 4, compared to DNN at 60%.
Table 4 provides the processing time along with accuracy for the training and testing of
these models. Although the testing time for the NN, NB, and DT models are relatively low,
the accuracy was under 20%. Alternatively, RFR and DNN reported respective accuracy of
84% and 72% with a short test time below 0.046 s.

Figure 4. Comparison between the proposed model (RFR) and NN, DNN, SVM, NB, DT, and HT in
terms of fault location detection accuracy at various location.

3.4. Experiment Results #2: Fault Duration Prediction

The fault duration prediction results are illustrated in Figure 5. The lowest reported
MAE values were from the RFR, HT, and DNN models. The highest MAE value was from
DT, at 2.4 s. These results suggest that DNN, HT, and RFR are the optimal models for
predicting fault duration as the difference between the actual and predicted duration for
the entire testing dataset was less than 0.6 s. Figure 6 also depicts the MSE of RFR compared
to the other models. The RFR and HT models reported the lowest MSE value, close to
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1 s; however, the prediction error for DNN was more than 1.5 s. The RFR, HT, and DNN
models yield optimal results for MAE and MSE; therefore, these models were selected for
the next experiment.

Figure 5. The MAE and MSE of RFR, NN, DNN, SVM, NB, DT, and HT in terms of fault
duration prediction.

Figure 6 illustrates fault location detection by comparing the three optimal performing
models, DNN, RF, and HT, tested with three different fault durations: a short fault duration
ranging between 0.05 and 0.15 s, a medium fault duration ranging between 0.2 and 0.35 s,
and a long fault duration ranging between 0.4 and 0.5 s. The RFR model outperforms DNN
and HT when detecting faults with short, medium, and long durations. The RFR model
reports a 65% accuracy when detecting the short fault duration, followed by DNN with
12%, then HT with 10%. The accuracy of the RFR model increases to 91% detection for
the medium duration, followed by HT with 22%, then DNN with 16%. The RFR model
reports a 91% fault detection accuracy for the long duration, followed by HT with 24%, then
DNN 16%. These results suggest that the RFR model is an appropriate model for detecting
short, medium, and long fault durations. DNN requires a larger dataset to achieve optimal
performance, which may explain its poor performance. We split the dataset into three parts
with specific fault durations: 1. A short fault duration with 16,211 instances; 2. Medium
fault duration with 21,500 instances; and 3. Long fault duration with 15,800 instances.
Training and testing DNN on each sub-dataset was not sufficient for it to achieve optimal
detection accuracy, suggesting that RFR can achieve its highest accuracy with a relatively
small number of instances compared to the DNN model.

3.5. Experiment Results #3: Handling Missing Data

Figure 7 illustrates MSE and MAE as a function of the percentage of missing data
for the three selected models: DNN, RFR, and HT. The purpose of this experiment was to
evaluate the model’s robustness when handling missing data. The collected measurements
within a real power system network, including voltage, magnitude, and frequency, can be
incomplete due to equipment failure, data storage issues, or unreliable communication [31];
therefore, it is crucial to evaluate the model’s capacity for accurately predicting the fault
duration. The MSE of the three models increases as the percentage of missing data increases
(Figure 7). RFR’s MSE values of 1.8 and 7.8 correlate to missing data percentages of 10% and
90%, respectively. DNN reports an MSE value of 2.5 with 10% of the data missing, while
HT reports an MSE value of 6 for the same percentage of data missing. The MSE values of
DNN and HT increase as the percentage of missing data increases, reaching the highest
value of 10. Figure 7 also illustrates the MAE as a function of the percentage of missing
data. The evolution of the MAE value for the three models indicates similar behavior to the
previous one. RFR has an MAE value of 0.85, followed by DNN with 1.29, then HT with
2.1, with 10% of the data missing. The MAE values of the three models increase as the
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percentage of missing data increases to reach their highest values, which are 2.25 for RFR,
2.58 for HT, and DNN, with 90% of the data missing. These results suggest that the RFR
model is more resilient and tolerant to missing data; therefore, it is the optimal model for
fault duration prediction even with incomplete data.

Figure 6. Accuracy of RF, DNN, and HT in terms of detecting fault location with various duration.

Figure 7. MSE and MAE as a function of the percentage of missing data for the three models: DNN,
HT, and RFR.

3.6. Experiment Results #4: Handling Streaming Data

The RFR, DNN, and HT models selected from the previous experiments were evalu-
ated with streaming data. The models were trained incrementally: they were not trained
and tested on the entire dataset, they were incrementally trained with one sample at a time.
The MSE and the processing time of each model were then evaluated (Figure 8). The MSE
of the RFR values were consistently below 0.1 s as the number of samples increased. For HT,
the MSE dropped sharply from 28 s to 0.5 s; for samples between 0 and 10,702, it stagnated
at 0.5 s, and then dropped to 0.1 s. The DNN’s MSE values decreased from 30 s to 2 s as the
number of samples increased to 32,107, then decreased slowly to reach the lowest value
of 0.1 s before stabilizing. RFR reported the lowest value for processing time per sample:
0.0028 ms, followed by DNN with 0.0032 ms, then HT with 0.7 ms. The results obtained
in this experiment set suggest that RFR is a potential model for detecting fault locations
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within a near-real-time streaming environment. A summary of the obtained results for the
four experiments is provided in Table 4. The overall accuracy, MAE, MSE, processing time,
and overall rankings are high for RFR, medium for DNN, and low for the other models.

Figure 8. Comparison between DNN, HT, and RFR in terms of MSE.

Table 4. Summary of the RFR’s performances compared to those of DNN, HT, NN, SVM, DT, NB,
and KNN, obtained in the four experiments.

Experiment Performance Metrics RFR DNN HT NN SVM DT NB KNN

1. Detecting fault location Overall accuracy for four fault locations 84% 72.5% 27% 18.75% 14% 2% 8.25% 41%

2. Predicting fault duration
MSE 1.1 s 1.2 s 1.1 s 5.6 s 6.5 s 6.6 s 6.2 s 5.1 s

MAE 0.6 s 0.6 s 0.6 s 1.9 s 2.2 s 2.5 s 2.2 s 1.8 s

3. Handling missing data
MSE 4.6 s 8.4 s 8.7 s - - - - -

MAE 1.5 s 2.09 s 2.14 s - - - - -

4. Detecting fault in
streaming data Processing time per sample 0.0028 ms 0.0032 ms 0.7 ms - - - - -

Overall ranking High Medium Low Low Low Low Low Low

4. Discussion

Experimental results show that the performance of the ensemble method used in this
paper, i.e., RFR, consistently outperforms the other models in simultaneously detecting
the location and duration of faults on a multi-bus system. With an overall accuracy over
84%, the RFR model performed optimally and consistently at various fault locations as
well as with various fault duration (short, medium, and long), suggesting that RFR is the
appropriate model for this dual-purpose task. For the same task, DNN also demonstrated
consistent overall performance, albeit at the expense of a long processing time that makes
it unsuitable for real-time applications.

While machine learning models can perform fairly well in an ideal and deterministic
environment that is free from anomalies, it was pragmatic and necessary to evaluate the
performances of these models in scenarios where data might be missing due to equipment
failure, data storage issues, or unreliable communication. Based on the results in this
paper, all three models, i.e., HT, DNN, and RFR, show MSE and MAE values of under
11 and 2.6, respectively, when the percentage of missing data is progressively increased
from 10% to 90%. Depending on the severity of the said factors, RFR was proven to be
the optimal candidate, followed by HT and DNN, in extrapolating system status during
non-steady-state operations.

Another critical component of a model’s capability, when deployed in a real-world
environment, is its ability to evolve and adapt to unexpected data distribution changes
and concept drifts. From the experimental results, RFR achieved an MSE 0.0028 ms when
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trained and tested incrementally on streaming data, which makes it suitable for detecting
faults in near-real time. Overall, the RFR model performed optimally and consistently
under four different scenarios, indicating that the model can generalize and adapt to new,
previously unseen, data without the risk of overfitting or underfitting

5. Conclusions

A random forest regression (RFR)-based model was successfully implemented to
identify the location and duration of faults. Various fault scenarios were modeled using
PNNL’s GridPACK software for the generation of the training dataset. A total of nine fault
scenarios was simulated by injecting faults on specific buses over a specified period of
time. The RFR models were trained and evaluated within the context of four study cases:
detecting fault location, predicting fault duration, handling missing data, and streaming
data. A comparison was also conducted between the RFR model and several state-of-the-art
models using multiple performance metrics, including accuracy, MSE, and processing time.
Results indicate that both RFR and DNN models are capable of detecting the location and
duration of a fault with an accuracy of 84% and 72%, respectively. The RFR, DNN, and HT
models yielded better results when predicting faults in streaming networks. Overall,
the RFR model consistently outperformed the other models, making it appropriate for real-
time situational awareness deployments to determine both the location and duration of the
faults while handling missing data. Further work will be devoted to assessing the model’s
scalability with respect to large bus systems as well as further improving its accuracy.
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Abbreviations
The following abbreviations are used in this manuscript:

AM Active management
BPN Back-propagation neural network
CNN Convolutional neural network
DBSCAN Density-based spatial clustering and application with noise
DLG Double line to ground
DNN Deep neural network
DT Decision tree
DWT Discrete wavelet transform
ELE Event location estimation
EZ Electrical zone
FNN Feedforward neural network
GA Genetic algorithm
GPS Global Positioning System
HPC High-performance computing
HT Hoeffding tree
KNN k-nearest neighbors
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LL Line to line
LLL Three phase to ground
MAE Mean absolute error
ML Machine learning
MLE Maximum likelihood estimation
MSE Mean squared error
MTHVDC Multi-terminal high-voltage direct current
MWE Modified wavelet energy
NB Naive Bayes
NBC Naive Bayes classifier
PDT Physics-based decision tree
PMU Phasor measurement unit
PNN Probabilistic neural network
PV Photovolatic
RF Random forest
RFR Random forest regressor
RNN Recurrent neural network
SE Shannon’s entropy
SLG Single line to ground
SVM Support vector machine
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