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Abstract

Background and goal: The Random Forest (RF) algorithm for regression and classification has considerably gained

popularity since its introduction in 2001. Meanwhile, it has grown to a standard classification approach competing

with logistic regression in many innovation-friendly scientific fields.

Results: In this context, we present a large scale benchmarking experiment based on 243 real datasets comparing

the prediction performance of the original version of RF with default parameters and LR as binary classification tools.

Most importantly, the design of our benchmark experiment is inspired from clinical trial methodology, thus avoiding

common pitfalls and major sources of biases.

Conclusion: RF performed better than LR according to the considered accuracy measured in approximately 69% of

the datasets. The mean difference between RF and LR was 0.029 (95%-CI=[ 0.022, 0.038]) for the accuracy, 0.041

(95%-CI=[ 0.031, 0.053]) for the Area Under the Curve, and − 0.027 (95%-CI=[−0.034,−0.021]) for the Brier score, all

measures thus suggesting a significantly better performance of RF. As a side-result of our benchmarking experiment,

we observed that the results were noticeably dependent on the inclusion criteria used to select the example datasets,

thus emphasizing the importance of clear statements regarding this dataset selection process. We also stress that

neutral studies similar to ours, based on a high number of datasets and carefully designed, will be necessary in the

future to evaluate further variants, implementations or parameters of random forests which may yield improved

accuracy compared to the original version with default values.
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Introduction
In the context of low-dimensional data (i.e. when the num-

ber of covariates is small compared to the sample size),

logistic regression is considered a standard approach for

binary classification. This is especially true in scientific

fields such as medicine or psycho-social sciences where

the focus is not only on prediction but also on explana-

tion; see Shmueli [1] for a discussion of this distinction.

Since its invention 17 years ago, the random forest (RF)

prediction algorithm [2], which focuses on prediction

rather than explanation, has strongly gained popularity

and is increasingly becoming a common “standard tool”

also used by scientists without any strong background in

statistics or machine learning. Our experience as authors,

reviewers and readers is that random forest can now be
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used routinely in many scientific fields without particular

justification and without the audience strongly question-

ing this choice. While its use was in the early years limited

to innovation-friendly scientists interested (or experts) in

machine learning, random forests are nowmore andmore

well-known in various non-computational communities.

In this context, we believe that the performance of

RF should be systematically investigated in a large-scale

benchmarking experiment and compared to the cur-

rent standard: logistic regression (LR). We make the—

admittedly somewhat controversial—choice to consider

the standard version of RF only with default parame-

ters — as implemented in the widely used R package

randomForest [3] version 4.6-12 — and logistic regres-

sion only as the standard approach which is very often

used for low dimensional binary classification.

The rationale behind this simplifying choice is that,

to become a “standard method” that users with differ-

ent (possibly non-computational) backgrounds select by
© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2264-5&domain=pdf
mailto: raphael.couronne@gmail.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Couronné et al. BMC Bioinformatics  (2018) 19:270 Page 2 of 14

default, a method should be simple to use and not require

any complex human intervention (such as parameter tun-

ing) demanding particular expertise. Our experience from

statistical consulting is that applied research practitioners

tend to apply methods in their simplest form for differ-

ent reasons including lack of time, lack of expertise and

the (critical) requirement of many applied journals to keep

data analysis as simple as possible. Currently, the simplest

approach consists of running RF with default parameter

values, since no unified and easy-to-use tuning approach

has yet established itself. It is not the goal of this paper

to discuss how to improve RF’s performance by appro-

priate tuning strategies and which level of expertise is

ideally required to use RF. We simply acknowledge that

the standard variant with default values is widely used

and conjecture that things will probably not dramatically

change in the short term. That is why we made the choice

to consider RF with default values as implemented in the

very widely used package randomForest—while admit-

ting that, if time and competence are available, more

sophisticated strategies may often be preferable. As an

outlook, we also consider RF with parameters tuned using

the recent package tuneRanger [4] in a small additional

study.

Comparison studies published in literature often

include a large number of methods but a relatively small

number of datasets [5], yielding an ill-posed problem as

far as statistical interpretation of benchmarking results

are concerned. In the present paper we take an oppo-

site approach: we focus on only two methods for the

reasons outlined above but design our benchmarking

experiments in such a way that it yields solid evidence.

A particular strength of our study is that we as authors

are equally familiar with both methods. Moreover, we

are “neutral” in the sense that we have no personal pri-

ori preference for one of the methods: ALB published a

number of papers on RF, but also papers on regression-

based approaches [6, 7] and papers pointing to critical

problems of RF [8–10]. Neutrality and equal expertise

would be much more difficult if not impossible to ensure

if several variants of RF (including tuning strategies) and

logistic regression were included in the study. Further dis-

cussions of the concept of authors’ neutrality can be found

elsewhere [5, 11].

Most importantly, the design of our benchmark exper-

iment is inspired by the methodology of clinical trials

that has been developed with huge efforts for several

decades. We follow the line taken in our recent paper

[11] and carefully define the design of our benchmark

experiments including, beyond issues related to neutrality

outlined above, considerations on sample size (i.e. number

of datasets included in the experiment) and inclusion cri-

teria for datasets. Moreover, as an analogue to subgroup

analyses and the search for biomarkers of treatment effect

in clinical trials, we also investigate the dependence of our

conclusions on datasets’ characteristics.

As an important by-product of our study, we provide

empirical insights into the importance of inclusion crite-

ria for datasets in benchmarking experiments and general

critical discussions on design issues and scientific prac-

tice in this context. The goal of our paper is thus two-fold.

Firstly we aim to present solid evidence on the perfor-

mance of standard logistic regression and random forests

with default values. Secondly, we demonstrate the design

of a benchmark experiment inspired from clinical trial

methodology.

The rest of this paper is structured as follows. After a

short overview of LR and RF, the associated VIM, par-

tial dependence plots [12], the cross-validation procedure

and performance measures used to evaluate the meth-

ods (“Background” section), we present our benchmark-

ing approach in “Methods” section, including the criteria

for dataset selection. Results are presented in “Results”

section.

Background
This section gives a short overview of the (existing) meth-

ods involved in our benchmarking experiments: logistic

regression (LR), random forest (RF) including variable

importance measures, partial dependence plots, and per-

formance evaluation by cross-validation using different

performance measures.

Logistic regression (LR)

Let Y denote the binary response variable of interest and

X1, . . . ,Xp the random variables considered as explain-

ing variables, termed features in this paper. The logistic

regression model links the conditional probability P(Y =
1|X1, ...,Xp) to X1, . . . ,Xp through

P(Y = 1|X1, ...,Xp) =
exp

(

β0 + β1X1 + · · · + βpXp

)

1 + exp
(

β0 + β1X1 + · · · + βpXp

) ,

(1)

where β0,β1, . . . ,βp are regression coefficients, which are

estimated by maximum-likelihood from the considered

dataset. The probability that Y = 1 for a new instance

is then estimated by replacing the β ’s by their estimated

counterparts and the X’s by their realizations for the con-

sidered new instance in Eq. (1). The new instance is then

assigned to class Y = 1 if P(Y = 1) > c, where c is a fixed

threshold, and to class Y = 0 otherwise. The commonly

used threshold c = 0.5, which is also used in our study,

yields a so-called Bayes classifier. As for all model-based

methods, the prediction performance of LR depends on

whether the data follow the assumed model. In contrast,

the RF method presented in the next section does not rely

on any model.
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Random forest (RF)

Brief overview

The random forest (RF) is an “ensemble learning” tech-

nique consisting of the aggregation of a large number

of decision trees, resulting in a reduction of variance

compared to the single decision trees. In this paper we

consider Leo Breiman’s original version of RF [2], while

acknowledging that other variants exist, for example RF

based on conditional inference trees [13] which address

the problem of variable selection bias [14] and perform

better in some cases, or extremely randomized trees [15].

In the original version of RF [2], each tree of the RF

is built based on a bootstrap sample drawn randomly

from the original dataset using the CARTmethod and the

Decrease Gini Impuritiy (DGI) as the splitting criterion

[2]. When building each tree, at each split, only a given

number mtry of randomly selected features are consid-

ered as candidates for splitting. RF is usually considered

a black-box algorithm, as gaining insight on a RF predic-

tion rule is hard due to the large number of trees. One

of the most common approaches to extract from the ran-

dom forest interpretable information on the contribution

of different variables consists in the computation of the so-

called variable importance measures outlined in “Variable

importance measures” section. In this study we use the

package randomForest [3] (version 4.6-12) with default

values, see the next paragraph for more details on tuning

parameters.

Hyperparameters

This section presents the most important parameters for

RF and their common default values as implemented in

the R package randomForest [3] and considered in our

study. Note, however, that alternative choices may yield

better performance [16, 17] and that parameter tuning

for RF has to be further addressed in future research.

The parameter ntree denotes the number of trees in the

forest. Strictly speaking, ntree is not a tuning parame-

ter (see [18] for more insight into this issue) and should

be in principle as large as possible so that each candi-

date feature has enough opportunities to be selected. In

practice, however, performance reaches a plateau with a

few hundreds of trees for most datasets [18]. The default

value is ntree=500 in the package randomForest.

The parameter mtry denotes the number of features ran-

domly selected as candidate features at each split. A low

value increases the chance of selection of features with

small effects, which may contribute to improved predic-

tion performance in cases where they would otherwise

be masked by features with large effects. A high value

of mtry reduces the risk of having only non-informative

candidate features. In the package randomForest, the

default value is
√
p for classification with p the num-

ber of features of the dataset. The parameter nodesize

represents the minimum size of terminal nodes. Setting

this number larger yields smaller trees. The default value

is 1 for classification. The parameter replace refers to

the resampling scheme used to randomly draw from the

original dataset different samples on which the trees are

grown. The default is replace=TRUE, yielding boot-

strap samples, as opposed to replace=FALSE yielding

subsamples— whose size is determined by the parameter

sampsize.

The performance of RF is known to be relatively robust

against parameter specifications: performance generally

depends less on parameter values than for other machine

learning algorithms [19]. However, noticeable improve-

ments may be achieved in some cases [20]. The recent

R package tuneRanger [4] allows to automatically tune

RF’s parameters simultaneously using an efficient model-

based optimization procedure. In additional analyses pre-

sented in “Additional analysis: tuned RF” section, we

compare the performance of RF and LR with the perfor-

mance of RF tuned with this procedure (denoted as TRF).

Variable importancemeasures

As a byproduct of random forests, the built-in vari-

able importance measures (VIM) rank the variables (i.e.

the features) with respect to their relevance for pre-

diction [2]. The so-called Gini VIM has shown to be

strongly biased [14]. The second common VIM, called

permutation-based VIM, is directly based on the accu-

racy of RF: it is computed as the mean difference (over

the ntree trees) between the OOB errors before and

after randomly permuting the values of the consid-

ered variable. The underlying idea is that the permu-

tation of an important feature is expected to decrease

accuracy more strongly than the permutation of an

unimportant variable.

VIMs are not sufficient in capturing the patterns of

dependency between features and response. They only

reflect—in the form of a single number—the strength of

this dependency. Partial dependence plots can be used to

address this shortcoming. They can essentially be applied

to any prediction method but are particularly useful for

black-box methods which (in contrast to, say, generalized

linear models) yield less interpretable results.

Partial dependence plots

Partial dependence plots (PDPs) offer insight of any black

box machine learning model, visualizing how each feature

influences the prediction while averaging with respect to

all the other features. The PDP method was first devel-

oped for gradient boosting [12]. Let F denote the function

associated with the classification rule: for classification,

F
(

X1, . . . ,Xp

)

∈ [0, 1] is the predicted probability of the

observation belonging to class 1. Let j be the index of

the chosen feature Xj and Xj its complement, such that
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Xj =
{

X1, ...,Xj−1,Xj+1, ...,Xp

}

. The partial dependence of

F on feature Xj is the expectation

FXj = EXj
F

(

Xj,Xj

)

(2)

which can be estimated from the data using the empirical

distribution

p̂Xj(x) = 1

N

N
∑

i=1

F
(

xi,1, ...xi,j−1, x, xi,j+1, ..., xi,p
)

, (3)

where xi,1, . . . , xi,p stand for the observed values of

X1, . . . ,Xp for the ith observation. As an illustration, we

display in Fig. 1 the partial dependence plots obtained

by logistic regression and random forest for three simu-

lated datasets representing classification problems, each

including n = 1000 independent observations. For each

dataset the variable Y is simulated according to the for-

mula log(P(Y = 1)/P(Y = 0)) = β0 + β1X1 + β2X2 +
β3X1X2 + β4X

2
1 . The first dataset (top) represents the lin-

ear scenario (β1 �= 0, β2 �= 0, β3 = β4 = 0), the second

dataset (middle) an interaction (β1 �= 0, β2 �= 0, β3 �= 0,

β4 = 0) and the third (bottom) a case of non-linearity

(β1 = β2 = β3 = 0, β4 �= 0). For all three datasets the ran-

dom vector (X1,X2)
⊤ follows distribution N2(0, I), with I

representing the identity matrix. The data points are rep-

resented in the left column, while the PDPs are displayed

Fig. 1 Example of partial dependence plots. Plot of the PDP for the

three simulated datasets. Each line is related to a dataset. On the left,

visualization of the dataset. On the right, the partial dependence for

the variable X1 . First dataset: β0 = 1,β1 = 5,β2 = −2 (linear), second

dataset: β0 = 1,β1 = 1,β2 = −1,β3 = 3 (interaction), third dataset

β0 = −2,β4 = 5 (non-linear)

in the right column for RF, logistic regression as well as the

true logistic regressionmodel (i.e. with the true coefficient

values instead of fitted values). We see that RF captures

the dependence and non-linearity structures in cases 2

and 3, while logistic regression, as expected, is not able to.

Performance assessment

Cross-validation

In a k-fold cross-validation (CV), the original dataset

is randomly partitioned into k subsets of approximately

equal sizes. At each of the k CV iterations, one of the

folds is chosen as the test set, while the k − 1 others are

used for training. The considered performance measure

is computed based on the test set. After the k iterations,

the performances are finally averaged over the iterations.

In our study, we perform 10 repetitions of stratified 5-fold

CV, as commonly recommended [21]. In the stratified ver-

sion of the CV, the folds are chosen such that the class

frequencies are approximately the same in all folds. The

stratified version is chosen mainly to avoid problems with

strongly imbalanced datasets occurring when all obser-

vations of a rare class are included in the same fold. By

“10 repetitions”, we mean that the whole CV procedure is

repeated for 10 randompartitions into k folds with the aim

to provide more stable estimates.

In our study, this procedure is applied to different per-

formancemeasures outlined in the next subsection, for LR

and RF successively and for M real datasets successively.

For each performance measure, the results are stored in

form of anM × 2 matrix.

Performancemeasures

Given a classifier and a test dataset of size ntest , let p̂i,

i = 1, . . . , n denote the estimated probability of the ith

observation (i = 1, . . . , ntest) to belong to class Y = 1,

while the true class membership of observation i is simply

denoted as yi. Following the Bayes rule implicitly adopted

in LR and RF, the predicted class ŷi is simply defined as

ŷi = 1 if p̂i > 0.5 and 0 otherwise.

The accuracy, or proportion of correct predictions is

estimated as

acc = 1

ntest

ntest
∑

i=1

I
(

yi = ŷi
)

,

where I(.) denotes the indicator function (I(A) = 1 if A

holds, I(A) = 0 otherwise). TheArea Under Curve (AUC),

or probability that the classifier ranks a randomly chosen

observation with Y = 1 higher than a randomly chosen

observation with Y = 0 is estimated as

auc = 1

n0,testn1,test

∑

i:yi=1

∑

j:yj=0

I
(

p̂i > p̂j
)

,

where n0,test and n1,test are the numbers of observations

in the test set with yi = 0 and yi = 1, respectively.
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The Brier score is a commonly and increasingly used

performance measure [22, 23]. It measures the devia-

tion between true class and predicted probability and is

estimated as

brier = 1

ntest

ntest
∑

i=1

(

p̂i − yi
)2

.

Methods

The OpenML database

So far we have stated that the benchmarking experi-

ment uses a collection of M real datasets without further

specifications. In practice, one often uses already for-

matted datasets from public databases. Some of these

databases offer a user-friendly interface and good doc-

umentation which facilitate to some extent the prelimi-

nary steps of the benchmarking experiment (search for

datasets, data download, preprocessing). One of the most

well-known database is the UCI repository [24]. Specific

scientific areas may have their own databases, such as

ArrayExpress for molecular data from high-throughput

experiments [25]. More recently, the OpenML database

[26] has been initiated as an exchange platform allow-

ing machine learning scientists to share their data and

results. This database included as many as 19660 datasets

in October 2016 when we selected datasets to initiate

our study, a non-negligible proportion of which are rele-

vant as example datasets for benchmarking classification

methods.

Inclusion criteria and subgroup analyses

When using a huge database of datasets, it becomes obvi-

ous that one has to define criteria for inclusion in the

benchmarking experiment. Inclusion criteria in this con-

text do not have any long tradition in computational

science. The criteria used by researchers—including our-

selves before the present study—to select datasets are

most often completely non-transparent. It is often the fact

that they select a number of datasets which were found

to somehow fit the scope of the investigated methods, but

without clear definition of this scope.

We conjecture that, from published studies, datasets

are occasionally removed from the experiment a pos-

teriori because the results do not meet the expecta-

tions/hopes of the researchers. While the vast majority of

researchers certainly do not cheat consciously, such prac-

tices may substantially introduce bias to the conclusion of

a benchmarking experiment; see previous literature [27]

for theoretical and empirical investigation of this prob-

lem. Therefore, “fishing for datasets” after completion of

the benchmark experiment should be prohibited, see Rule

4 of the “ten simple rules for reducing over-optimistic

reporting” [28].

Independent of the problem of fishing for significance,

it is important that the criteria for inclusion in the bench-

marking experiment are clearly stated as recently dis-

cussed [11]. In our study, we consider simple datasets’

characteristics, also termed “meta-features”. They are pre-

sented in Table 1. Based on these datasets’ characteristics,

we define subgroups and repeat the benchmark study

within these subgroups, following the principle of sub-

group analyses in clinical research. For example, one could

analyse the results for “large” datasets (n > 1000) and

“small datasets” (n ≤ 1000) separately. Moreover, we

also examine the subgroup of datasets related to bio-

sciences/medicine.

Meta-learning

Taking another perspective on the problem of benchmark-

ing results being dependent on dataset’s meta-features, we

also consider modelling the difference between the meth-

ods’ performances (considered as response variable) based

on the datasets’ meta-features (considered as features).

Such a modelling approach can be seen as a simple form

ofmeta-learning—a well-known task in machine learning

[29]. A similar approach using linear mixed models has

been recently applied to the selection of an appropriate

classification method in the context of high-dimensional

gene expression data analysis [30]. Considering the poten-

tially complex dependency patterns between response and

features, we use RF as a prediction tool for this purpose.

Power calculation

Considering theM×2 matrix, collecting the performance

measures for the two investigated methods (LR and RF)

on the M considered datasets, one can perform a test for

paired samples to compare the performances of the two

methods [31]. We refer to the previously published statis-

tical framework [31] for a precise mathematical definition

of the tested null-hypothesis in the case of the t-test for

paired samples. In this framework, the datasets play the

Table 1 Considered meta-features

Meta-feature Description

n Number of observations

p Number of features

p
n

Dimensionality

d Number of features of the associated design matrix for LR

d
n

Dimensionality of the design matrix

pnumeric Number of numeric features

pcategorical Number of categorical features

pnumeric,rate Proportion of numeric features

Cmax Percentage of observation of the majority class

time Duration for the run a 5-fold CVwith a default Random Forest
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role of the i.i.d. observations used for the t-test. Sample

size calculations for the t-test for paired samples can give

an indication of the rough number of datasets required to

detect a given difference δ in performances considered as

relevant for a given significance level (e.g., α = 0.05) and

a given power (e.g., 1 − β = 0.8). For large numbers and

a two-sided test, the required number of datasets can be

approximated as

Mreq ≈
(

z1−α/2 + z1−β

)2
σ 2

δ2
(4)

where zq is the q-quantile of the normal distribution

and σ 2 is the variance of the difference between the

two methods’ performances over the datasets, which may

be roughly estimated through a pilot study or previous

literature.

For example, the required number of datasets to detect

a difference in performances of δ = 0.05 with α = 0.05

and 1 − β = 0.8 is Mreq = 32 if we assume a variance of

σ 2 = 0.01 and Mreq = 8 for σ 2 = 0.0025. It increases to

Mreq = 197 andMreq = 50, respectively, for differences of

δ = 0.02.

Availability of data andmaterials

Several R packages are used to implement the bench-

marking study: mlr (version 2.10) for higher abstraction

and a simpler way to conduct benchmark studies [32],

OpenML (version 1.2) for loading the datasets [33], and

batchtools (version 0.9.2) for parallel computing [34].

Note that the LR and RF learners called via mlr are

wrappers on the functions glm and randomForest,

respectively.

The datasets supporting the conclusions of this arti-

cle are freely available in OpenML as described in

“The OpenML database” section.

Emphasis is placed on the reproducibility of our results.

Firstly, the code implementing all our analyses is fully

available from GitHub [35]. For visualization-only pur-

poses, the benchmarking results are available from this

link, so that our graphics can be quickly generated by

mouse-click. However, the code to re-compute these

results, i.e. to conduct the benchmarking study, is also

available from GitHub. Secondly, since we use specific

versions of R and add-on packages and our results may

thus be difficult to reproduce in the future due to soft-

ware updates, we also provide a docker image [36]. Docker

automates the deployment of applications inside a so

called “Docker container” [37]. We use it to create an R

environment with all the packages we need in their cor-

rect version. Note that docker is not necessary here (since

all our codes are available fromGitHub), but very practical

for a reproducible environment and thus for reproducible

research in the long term.

Results
In our study we consider a set ofM datasets (see “Included

datasets” section for more details) and compute for each

of them the performance of random forest and logistic

regression according to the three performance measures

outlined in “Performance assessment” section.

Included datasets

From approximately 20000 datasets currently available

from OpenML [26], we select those featuring binary clas-

sification problems. Further, we remove the datasets that

include missing values, the obviously simulated datasets

as well as duplicated datasets. We also remove datasets

with more features than observations (p > n), and

datasets with loading errors. This leaves us with a total of

273 datasets. See Fig. 2 for an overview.

Fig. 2 Selection of datasets. Flowchart representing the criteria for selection of the datasets



Couronné et al. BMC Bioinformatics  (2018) 19:270 Page 7 of 14

Missing values due to errors

Out of the 273 selected datasets, 8 require too much com-

puting time when parallelized using the package batch-

tools and expired or failed. These—extremely large—

datasets are discarded in the rest of the study, leaving us

with 265 datasets.

Both LR and RF fail in the presence of categorical fea-

tures with too many categories. More precisely, RF fails

when more than 53 categories are detected in at least one

of the features, while LR fails when levels undetected dur-

ing the training phase occur in the test data. We could

admittedly have prevented these errors through basic pre-

processing of the data such as the removal or recoding

of the features that induce errors. However, we decide to

just remove the datasets resulting in NAs because we do

not want to address preprocessing steps, which would be

a topic on their own and cannot be adequately treated

along the way for such a high number of datasets. Since 22

datasets yield NAs, our study finally includes 265-22=243

datasets.

Main results

Overall performances are presented in a synthesized form

in Table 2 for all three measures in form of average

performances along with standard deviations and confi-

dence intervals computed using the adjusted bootstrap

percentile (BCa) method [38]. The boxplots of perfor-

mances of Random Forest (RF) and Logistic Regression

(LR) for the three considered performance measures are

depicted in Fig. 3, which also includes the boxplot of the

difference in performances (bottom row). It can be seen

from Fig. 3 that RF performs better for the majority of

datasets (69.0% of the datasets for acc, 72.3% for auc and

Table 2 Performances of LR and RF (top: accuracy, middle: AUC,

bottom: Brier score): (top: accuracy, middle: AUC, bottom: Brier

score): mean performance μ, standard deviation σ and

confidence interval for the mean (estimated via the bootstrap

BCa method [38]) on the 243 datasets

Acc μ σ BCa confidence interval

Logistic regression 0.826 0.135 [0.808, 0.842]

Random forest 0.854 0.134 [0.837, 0.870]

Difference 0.029 0.067 [0.021, 0.038]

Auc

Logistic regression 0.826 0.149 [0.807, 0.844]

Random forest 0.867 0.147 [0.847, 0.884]

Difference 0.041 0.088 [0.031, 0.054]

Brier

Logistic regression 0.129 0.091 [0.117, 0.140]

Random forest 0.102 0.080 [0.092, 0.112]

Difference -0.0269 0.054 [-0.034, -0.021]

71.5% for brier). Furthermore, when LR outperforms RF

the difference is small. It can also be noted that the differ-

ences in performance tend to be larger for auc than for acc

and brier.

Explaining differences: datasets’ meta-features

In this section, we now perform different types of

additional analyses with the aim to investigate the

relation between the datasets’ meta-features and

the performance difference between LR and RF. In

“Preliminary analysis” section, we first consider an exam-

ple dataset in detail to examine whether changing the

sample size n and the number p of features for this given

dataset changes the difference between performances of

LR and RF (focusing on a specific dataset, we are sure

that confounding is not an issue). In “Subgroup analy-

ses: meta-features” to “Meta-learning” sections, we then

assess the association between dataset’s meta-features

and performance difference over all datasets included

in our study.

Preliminary analysis

While it is obvious to any computational scientist that the

performance of methods may depend on meta-features,

this issue is not easy to investigate in real data settings

because i) it requires a large number of datasets—a condi-

tion that is often not fulfilled in practice; ii) this problem

is enhanced by the correlations between meta-features. In

our benchmarking experiment, however, we consider such

a huge number of datasets that an investigation of the rela-

tionship between methods’ performances and datasets’

characteristic becomes possible to some extent.

As a preliminary, let us illustrate this idea using only

one (large) biomedical dataset, the OpenML dataset with

ID = 310 including n0 = 11183 observations and p0 = 7

features. A total of N = 50 sub-datasets are extracted

from this dataset by randomly picking a number n′ < n0
of observations or a number p′ < p0 of features. Thereby

we successively set n′ to n′ = 5.102, 103, 5.103, 104 and

p′ to p′ = 1, 2, 3, 4, 5, 6. Figure 4 displays the boxplots of

the accuracy of RF (white) and LR (dark) for varying n′

(top-left) and varying p′ (top-right). Each boxplot repre-

sents N = 50 data points. It can be seen from Fig. 4 that

the accuracy increases with p′ for both LR and RF. This

reflects the fact that relevant features may bemissing from

the considered random subsets of p′ features. Interest-
ingly, it can also be seen that the increase of accuracy with

p′ is more pronounced for RF than for LR. This supports

the commonly formulated assumption that RF copes bet-

ter with large numbers of features. As a consequence, the

difference between RF and LR (bottom-right) increases

with p′ from negative values (LR better than RF) to posi-

tive values (RF better than LR). In contrast, as n increases

the performances of RF and LR increase slightly but quite
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Fig. 3Main results of the benchmark experiment. Boxplots of the performance for the three considered measures on the 243 considered datasets.

Top: boxplot of the performance of LR (dark) and RF (white) for each performance measure. Bottom: boxplot of the difference of performances

�perf = perfRF − perfLR

Fig. 4 Influence of n and p: subsampling experiment based on dataset ID=310. Top: Boxplot of the performance (acc) of RF (dark) and LR (white) for

N = 50 sub-datasets extracted from the OpenML dataset with ID=310 by randomly picking n′ ≤ n observations and p′ < p features. Bottom:

Boxplot of the differences in performances �acc = AccRF − AccLR between RF and LR. p′ ∈ {1, 2, 3, 4, 5, 6}. n′ ∈ {5e2, 1e3, 5e3, 1e4}. Performance is

evaluated through 5-fold-cross-validation repeated 2 times
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similarly (yielding a relatively stable difference), while—

as expected—their variances decrease; see the left column

of Fig. 4.

Subgroup analyses: meta-features

To further explore this issue over all 243 investigated

datasets, we compute Spearman’s correlation coefficient

between the difference in accuracy between random for-

est and logistic regression (�acc) and various datasets’

meta-features. The results of Spearman’s correlation test

are shown in Table 3. These analyses again point to the

importance of the number p of features (and related

meta-features), while the dataset size n is not signif-

icantly correlated with �acc. The percentage Cmax of

observations in the majority class, which was identified

as influencing the relative performance of RF and LR in

a previous study [39] conducted on a dataset from the

field of political science is also not significantly correlated

with �acc in our study. Note that our results are aver-

aged over a large number of different datasets: they are

not incompatible with the existence of an effect in some

cases.

To investigate these dependencies more deeply, we

examine the performances of RF and LR within subgroups

of datasets defined based on datasets’ meta-features

(called meta-features from now on), following the princi-

ple of subgroup analyses well-known in clinical research.

As some of the meta-features displayed in Table 3 are

mutually (highly) correlated, we cluster them using a hier-

archical clustering algorithm (data not shown). From the

resulting dendogramwe decide to select themeta-features

p, n,
p
n , Cmax, while other meta-features are considered

redundant and ignored in further analyses.

Figure 5 displays the boxplots of the differences in accu-

racy for different subgroups based on the four selected

meta-features p, n,
p
n and Cmax. For each of the four meta-

features, subgroups are defined based on different cut-off

values, denoted as t, successively. The histograms of the

four meta-features for the 243 datasets are depicted in the

Table 3 Correlation between �acc and dataset’s features

Spearman’s ρ Spearman’s ρ p-value

n -0.0338 6.00 · 10−1

p 0.331 1.32 · 10−7

p
n

0.254 6.39 · 10−5

d 0.258 4.55 · 10−5

d
n

0.246 1.04 · 10−4

pnumeric 0.254 6.09 · 10−5

pcategorical -0.076 2.37 · 10−1

pnumeric,rate 0.240 1.54 · 10−4

Cmax 0.00735 9.10 · 10−1

bottom row of the figure, where the considered cutoff val-

ues are materialized as vertical lines. Similar pictures are

obtained for the two alternative performance measures

auc and brier; See Additional file 1.

It can be observed from Fig. 5 that RF tends to yield

better results than LR for a low n, and that the differ-

ence decreases with increasing n. In contrast, RF performs

comparatively poorly for datasets with p < 5, but better

than LR for datasets with p ≥ 5. This is due to low per-

formances of RF on a high proportion of the datasets with

p < 5. For
p
n , the difference between RF and LR is negli-

gible in low dimension
( p
n < 0.01

)

, but increases with the

dimension. The contrast is particularly striking between

the subgroups
p
n < 0.1 (yielding a small�acc) and

p
n ≥ 0.1

(yielding a high �acc), again confirming the hypothesis

that the superiority of RF over LR is more pronounced for

larger dimensions.

Note, however, that all these results should be inter-

preted with caution, since confounding may be an issue.

Subgroup analyses: substantive context

Furthermore, we conduct additional subgroup analyses

focusing on the subgroup of datasets from the field of

biosciences/medicine. Out of the 243 datasets consid-

ered so far, 67 are related to this field. The modified

versions of Figs. 3 and 5 and Table 2 (as well as Fig. 6 dis-

cussed in “Meta-learning” section) obtained based on the

subgroup formed by datasets from biosciences/medicine

are displayed in Additional file 2. The outperformance

of RF over LR is only slightly lower for datasets from

biosciences/medicine than for the other datasets: the

difference between datasets from biosciences/medicine

and datasets from other fields is not significantly dif-

ferent from 0. Note that one may expect bigger differ-

ences between specific subfields of biosciences/medicine

(depending on the considered prediction task). Such

investigations, however, would require subject matter

knowledge on each of these tasks. They could be con-

ducted in future studies by experts of the respective tasks;

see also the “Discussion” section.

Meta-learning

The previous section showed that benchmarking results

in subgroups may be considerably different from that of

the entire datasets collection. Going one step further, one

can extend the analysis of meta-features towards meta-

learning to gain insight on their influence. More precisely,

taking the datasets as observations we build a regression

RF that predicts the difference in performance between

RF and LR based on the four meta-features considered

in the previous subsection
(

p, n,
p
n and Cmax

)

. Figure 6

depicts partial dependence plots for visualization of the

influence of each meta-feature. Again, we notice a depen-

dency on p and
p
n as outlined in “Subgroup analyses:
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Fig. 5 Subgroup analyses. Top: for each of the four selected meta-features n, p, p/n and Cmax , boxplots of �acc for different thresholds as criteria for

dataset selection. Bottom: distribution of the four meta-features (log scale), where the chosen thresholds are displayed as vertical lines. Note that

outliers are not shown here for a more convenient visualization. For a corresponding figure including the outliers as well as the results for auc and

brier, see Additional file 1

meta-features” section and the comparatively bad results

of RF when compared to LR for datasets with small p. The

importance of Cmax and n is less noticeable.

Although these results should be considered with cau-

tion, since they are possibly highly dependent on the

particular distribution of the meta-features over the 243

datasets and confounding may be an issue, we conclude

from “Explaining differences: datasets’ meta-features”

section that meta-features substantially affect �acc. This

points out the importance of the definition of clear inclu-

sion criteria for datasets in a benchmark experiment and

of the consideration of the meta-features’ distributions.

Explaining differences: partial dependence plots

In the previous section we investigated the impact of

datasets’ meta-features on the results of benchmarking

and modeled the difference between methods’ perfor-

mance based on these meta-features. In this section, we

Fig. 6 Plot of the partial dependence for the 4 considered meta-features : log(n), log(p), log
( p
n

)

, Cmax . The log scale was chosen for 3 of the 4

features to obtain more uniform distribution (see Fig. 5 where the distribution is plotted in log scale). For each plot, the black line denotes the

median of the individual partial dependences, and the lower and upper curves of the grey regions represent respectively the 25%- und

75%-quantiles. Estimated mse is 0.00382 via a 5-CV repeated 4 times
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take a different approach for the explanation of differ-

ences. We use partial dependence plots as a technique to

assess the dependency pattern between response and fea-

tures underlying the prediction rule. More precisely, the

aim of these additional analyses is to assess whether dif-

ferences in performances (between LR and RF) are related

to differences in partial dependence plots. After getting

a global picture for all datasets included in our study,

we inspect three interesting “extreme cases” more closely.

In a nutshell, we observe no strong correlation between

the difference in performances and the difference in par-

tial dependences over the 243 considered datasets. More

details are given in Additional file 3: in particular, we see

in the third example dataset that, as expected from the

theory, RF performs better than LR in the presence of

a non-linear dependence pattern between features and

response.

Additional analysis: tuned RF

As an outlook, a third method is compared to RF and

LR: RF tuned using the package tuneRanger [4] with

all arguments set to the defaults (in particular, tuning

is performed by optimizing the Brier score by using the

out-of-bag observations). To keep computational time

reasonable, in this additional study CV is performed

only once (and not repeated 10 times as in the main

study), and we focus on the 67 datasets from bio-

sciences/medicine. The results are displayed in Additional

file 4 in the same format as the previously described

figures.

Tuned RF (TRF) has a slightly better performance than

RF: both acc and auc are on average by 0.01 better for

TRF than for RF. Apart from this slight average differ-

ence, the performances of RF and TRF appear to be similar

with respect to subgroup analyses and partial dependence

plots. The most noticeable, but not very surprising result

is that improvement through tuning tends to be more pro-

nounced in cases where RF performs poorly (compared

to LR).

Application to C-to-U conversion data

As an illustration, we apply LR, RF and TRF to the C-to-U

conversion data previously investigated in relation to

random forest in the bioinformatics literature [14, 40].

In summary, RNA editing is the process whereby RNA is

modified from the sequence of the corresponding DNA

template [40]. For instance, cytidine-to-uridine conver-

sion (abbreviated C-to-U conversion) is common in plant

mitochondria. Cummings and Myers [40] suggest to use

information from neighboring sequence regions flanking

the sites of interest to predict editing status, among

others in Arabidopsis thaliana. For each of the 876 com-

plete observations included in the dataset (available at

https://static-content.springer.com/esm/art%3A10.1186

%2F1471-2105-5-132/MediaObjects/12859_2004_248_

MOESM1_ESM.txt), the following features are available:

• the binary response at the site of interest (edited

versus not edited)
• the 40 nucleotides at positions -20 to 20, relative to

the edited site (4 categories: A, C, T, G), whereby we

consider only the nucleotides at positions -5 to 5 as

candidates in the present study,
• the codon position cp (4 categories: P0, P1, P2, PX),
• the (continuous) estimated folding energy (fe)
• the (continuous) difference dfe in estimated folding

energy between pre-edited and edited sequences.

When evaluating LR and RF on this dataset using the

same evaluation procedure as for the OpenML datasets,

we see that LR and RF perform very similarly for all three

considered measures: 0.722 for LR versus 0.729 for RF for

the accuracy (acc), 0.792 for LR versus 0.785 for RF for

the Area Under the Curve (auc) and 0.185 for LR versus

0.187 for RF for the Brier score. When looking at permu-

tation variable importances (for RF) and p-values of the

Wald test (for LR), we see that the 13 candidate features

are assessed similarly by both methods. In particular, the

two closest neighbor nucleotides are by far the strongest

predictors for both methods.

Using the package ’tuneRanger’ (corresponding to

method TRF in our benchmark), the results are extremely

similar for all three measures (acc: 0.722, auc: 0.7989,

brier: 0.184), indicating that, for this dataset, the default

values are adequate. Using the package ’glmnet’ to fit a

ridge logistic regression model (with the penalty parame-

ter chosen by internal cross-validation, as done by default

in ’glmnet’), the results are also similar: 0.728 for acc, 0.795

for auc and 0.189 for brier.

To gain further insight into the impact of specific tun-

ing parameters, we proceed by running RF with its default

parameters except for one parameter, which is set to sev-

eral candidate values successively. The parameters mtry,

nodesize and sampsize are considered successively

as varying parameter (while the other two are fixed to

the default values). More precisely, mtry is set 1, 3, 5,

10 and 13 successively; nodesize is set to 2, 5, 10,

20 successively; and sampsize is set to 0.5n and 0.75n

successively. The result is that all three performance mea-

sures are remarkably robust to changes of the parameters:

all accuracy values are between 0.713 and 0.729, all AUC

values are between 0.779 and 0.792, and all Brier score

values are between 0.183 and 0.197. Large nodesize val-

ues seem to perform slightly better (this is in line with the

output of tuneRanger, which selects 17 as the optimal

nodesize value), while there is no noticeable trend for

mtry and sampsize. In conclusion, the analysis of the

C-to-U conversion dataset illustrates that one should not

https://static-content.springer.com/esm/art%3A10.1186%2F1471-2105-5-132/MediaObjects/12859_2004_248_MOESM1_ESM.txt
https://static-content.springer.com/esm/art%3A10.1186%2F1471-2105-5-132/MediaObjects/12859_2004_248_MOESM1_ESM.txt
https://static-content.springer.com/esm/art%3A10.1186%2F1471-2105-5-132/MediaObjects/12859_2004_248_MOESM1_ESM.txt
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expect too much from tuning RF in general (note, how-

ever, that tuning may improve performance in other cases,

as indicated by our large-scale benchmark study).

Discussion

Summary

We presented a large-scale benchmark experiment for

comparing the performance of logistic regression and ran-

dom forest in binary classification settings. The overall

results on our collection of 243 datasets showed better

accuracy for random forest than for logistic regression for

69.0% of the datasets. On the whole, our results support

the increasing use of RF with default parameter values as

a standard method—which of course neither means that

it performs better on all datasets nor that other parameter

values/variants than the default are useless!

We devoted particular attention to the inclusion criteria

applied when selecting datasets for our study. We investi-

gated how the conclusions of our benchmark experiment

change in different subgroups of datasets. Our analyses

reveal a noticeable influence of the number of features

p and the ratio
p
n . The superiority of RF tends to be

more pronounced for increasing p and
p
n . More gener-

ally, our study outlines the importance of inclusion criteria

and the necessity to include a large number of datasets

in benchmark studies as outlined in previous literature

[11, 28, 31].

Limitations

Firstly, as previously discussed [11], results of benchmark-

ing experiments should be considered as conditional on

the set of included datasets. As demonstrated by our anal-

yses on the influence of inclusion criteria for datasets,

different sets of datasets yield different results. While the

set of datasets considered in our study has the major

advantages of being large and including datasets from

various scientific fields, it is not strictly speaking repre-

sentative of a “population of datasets”, hence essentially

yielding conditional conclusions.

Secondly, as all real data studies, our study considers

datasets following different unknown distributions. It is

not possible to control the various datasets’ characteris-

tics that may be relevant with respect to the performance

of RF and LR. Simulations fill this gap and often yield

some valuable insights into the performance of methods

in various settings that a real data study cannot give.

Thirdly, other aspects of classification methods are

important but have not been considered in our study, for

example issues related to the transportability of the con-

structed prediction rules. By transportability, wemean the

possibility for interested researchers to apply a prediction

rule presented in the literature to their own data [9, 10].

With respect to transportability, LR is clearly superior to

RF, since it is sufficient to know the fitted values of the

regression coefficient to apply a LR-based prediction rule.

LR also has themajor advantage that it yields interpretable

prediction rules: it does not only aim at predicting but also

at explaining, an important distinction that is extensively

discussed elsewhere [1] and related to the “two cultures”

of statistical modelling described by Leo Breiman [41].

These important aspects are not taken into account in our

study, which deliberately focuses on prediction accuracy.

Fourthly, our main study was intentionally restricted to

RF with default values. The superiority of RF may be more

pronounced if used together with an appropriate tuning

strategy, as suggested by our additional analyses with TRF.

Moreover, the version of RF considered in our study has

been shown to be (sometimes strongly) biased in variable

selection [14]. More precisely, variables of certain types

(e.g., categorical variables with a large number of cate-

gories) are systematically preferred by the algorithm for

inclusion in the trees irrespectively of their relevance for

prediction. Variants of RF addressing this issue [13] may

perform better, at least in some cases.

Outlook

In this paper, we mainly focus on RF with default

parameters as implemented in the widely used pack-

age randomForest and only briefly consider parameter

tuning using a tuning procedure implemented in the pack-

age tuneRanger as an outlook. The rationale for this

choice was to provide evidence for default values and

thereby the analysis strategy most researchers currently

apply in practice. The development of reliable and prac-

tical parameter tuning strategies, however, is crucial and

more attention should be devoted in the future. Tuning

strategies should be themselves compared in benchmark

studies. Beyond the special case of RF, particular atten-

tion should be given to the development of user-friendly

tools such as tuneRanger [4], considering that one of

the main reasons for using default values is probably the

ease-of-use—an important aspect in the hectic academic

context. By presenting the results on the average superi-

ority with default values over LR, we by no means want

to definitively establish these default values. Instead, our

study is intended as a fundamental first step towards well-

designed studies providing solid well-delimited evidence

on the performance.

Before further studies are performed on tuning strate-

gies, we insist that, whenever performed in applications

of RF, parameter tuning should ideally always be reported

clearly including all technical details either in the main or

in its supplementary materials. Furthermore, the uncer-

tainty regarding the “best tuning strategy” should in no

circumstances be exploited for conscious or subconscious

“fishing for significance”.

Moreover, our study could also be extended to yield

differentiated results for specific prediction tasks, e.g.,
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prediction of disease outcome based on different types of

omics data, or prediction of protein structure and func-

tion. In the present study, we intentionally considered a

broad spectrum of data types to achieve a high number

of datasets. Obviously, performance may depend on the

particular prediction task, which should be addressed in

more focused benchmark studies conducted by experts of

the corresponding prediction task with good knowledge

of the considered substantive context. However, the more

specific the considered prediction task and data type, the

more difficult it will be to collect the needed number of

datasets to achieve the desired power. In real data stud-

ies, there is a trade-off between the homogeneity and the

number of available datasets.

Conclusion
Our systematic large-scale comparison study performed

using 243 real datasets on different prediction tasks shows

the good average prediction performance of random for-

est (compared to logistic regression) even with the stan-

dard implementation and default parameters, which are

in some respects suboptimal. This study should in our

view be seen both as (i) an illustration of the application

of principles borrowed from clinical trial methodology to

benchmarking in computational sciences—an approach

that could be more widely adopted in this field and (ii) a

motivation to pursue research (and comparison studies!)

on random forests, not only on possibly better variants

and parameter choices but also on strategies to improve

their transportability.
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