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ABSTRACT: 

 

The development of lidar system, especially incorporated with high-resolution camera components, has shown great potential for 

urban classification. However, how to automatically select the best features for land-use classification is challenging. Random 

Forests, a newly developed machine learning algorithm, is receiving considerable attention in the field of image classification and 

pattern recognition. Especially, it can provide the measure of variable importance. Thus, in this study the performance of the Random 

Forests-based feature selection for urban areas was explored. First, we extract features from lidar data, including height-based, 

intensity-based GLCM measures; other spectral features can be obtained from imagery, such as Red, Blue and Green three bands, 

and GLCM-based measures. Finally, Random Forests is used to automatically select the optimal and uncorrelated features for land-

use classification. 0.5-meter resolution lidar data and aerial imagery are used to assess the feature selection performance of Random 

Forests in the study area located in Mannheim, Germany. The results clearly demonstrate that the use of Random Forests-based 

feature selection can improve the classification performance by the selected features. 

 

 
1. INTRODUCTION 

Urban land cover classification has always been critical due to 

its ability to link many elements of human and physical 

environments. Timely, accurate, and detailed knowledge of the 

urban land cover information derived from remote sensing data 

is increasingly required among a wide variety of communities. 

This surge of interest has been predominately driven by the 

recent innovations in data, technologies, and theories in urban 

remote sensing. During the past decades, increasing advances in 

lidar technologies provide high-accuracy and point-density 3-

dimensional point clouds for land-use classification in 

combination with imagery. As lidar data is unstructured, 

irregular 3-D points and short of spectral information, 

classification confusion is often generated between man-made 

and natural objects. On the other hand, it is difficult to directly 

obtain land-use information only from remotely sensed data, 

owing to the complexity of landscapes, spectrally identical 

objects, as well as abundance of spatial and spectral information. 

Therefore, integrating lidar point clouds with imagery is being a 

preferred means for land-use classification. 

 

Although a plethora of features that can be extracted from both 

lidar point clouds and optical imagery, there is no rule or model 

for how to automatically and objectively select proper features 

for the desired classification results. Majority of existing 

research works are focusing on the development of 

classification methods, few attentions are paid on the feature 

selection using lidar data and imagery. The subjective selection 

of classification features causes the classification results 

unstable. To this end, Random Forests-based feature selection is 

proposed in this study. 
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Random Forests, one of ensemble classification family that are 

trained and their results combined through a voting process, can 

be considered as an improved version of bagging, a widely used 

ensemble classifier (Breiman, 1996). It is well known that 

Random Forests are characterised by notably computational 

efficiency. In the field of remote sensing, Random Forests has 

been achieved a promising classification accuracy for hyper-

spectral (Wang et al., 2009), multispectral (Stumpf and Kerle, 

2011), and multisource data (Gislason et al., 2006). Due to 

classification complexity of multisource data, commonly used 

parametrical classification methods are impropriate. Random 

Forests, as nonparametric classification algorithm, should be of 

great interest for multisource data by providing an estimate of 

individual variable importance index. Moreover, several studies 

have shown the advantages of Random Forests in land cover 

classification; the results indicate that the selected features agree 

the existing physiological knowledge. However, few is focus on 

urban areas by fusion of lidar data and aerial images. To this end, 

RF is applied to feature selection in this study. 

 

This paper is organized as follows. In section 2, we describe the 

basic principles of Random Forests, the lidar data and calibrated 

imagery used in the paper, features selected from the lidar data 

and imagery, respectively. Section 3 then discusses variable 

importance, one of the Random Forests’ measures, for all 

features, Random Forests-based feature selection and the 

corresponding classification results by Maximum Likelihood 

Classifier (MLC). Finally Section 4 concludes the proposed 

method. 

 

 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B7, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

203



 

2. METHOD 

2.1 Basic principle of Random Forests 

The Random Forests classifier developed by Breiman (2001) is 

a combination of decision trees   
1

,
T

k k=
DT x , where x is an 

input vector, and 
k

 denotes a random vector which is sampled 

independently but with the same distribution as the past 

1 -1
, , 

k
. T bootstrap samples are first drawn from the 

training data, and then an no pruned classification and 

regression tree (CART) is grew from each bootstrap sample β  

where only one of M randomly selected features is chosen for 

the split at each node of CART. The chosen feature is the one 

that minimizes the Gini impurity which can be written as 

(Breiman et al., 1984): 

       Gini β ,β β ,β β i j
f C f C

        
(1) 

where  ,β β
i

f C  is the probability that the randomly selected 

pixel belongs to class 
i

C . Finally, the output of the classifier is 

determined by a majority vote of all individually trained trees. 

 

There are two parameters: the number of variables (M) in the 

random subset at each node and the number of trees (T) in the 

forest. The selection of parameter M has influence on the final 

error rate. If M is increased, both the correlation between the 

trees and the strength (classification accuracy) of individual tree 

in the forest are increased. The error rate is proportional to the 

correlation, but inverse proportional to the strength (Joelsson et 

al., 2008). Usually, M is set to the square root of number of 

features (Gislason et al., 2006). Because Random Forests is fast 

and not overfit, the number of trees T can be as many as 

possible. However, due to the memory limit of the machine, T is 

usually several hundred (Horning, 2010), here is set to 100. The 

Random Forests also provides two additional measures: the 

variable importance and internal structure. Variable importance 

measures the importance of the predictor variables (features). To 

estimate a feature importance, the OOB samples are first run 

through the trees and count the votes for the correct 

classification. Then, the prediction accuracy is repeatedly 

obtained after randomly permuting all the values of this feature 

while all the other features stay the same. The importance score 

is the decrease of the correct class votes after the variable 

permutation, averaged over all the trees. The intuition is that a 

random variable permutation can simulates the absence of that 

variable from the forest (Guo et al., 2011). Thus the higher an 

average accuracy decrease is, the more important that feature is. 

 

Figure 1.  Study area of Mannheim, Germany 

 

2.2 Study Area and Datasets 

Laser scanning data covering Mannheim, Germany, were 

acquired in 2004 by a Falcon II sensor- a Fiber based system 

concept, TopoSys® GmbH. The airplane flew at an average 

height of 1,200 m above the mean sea level, with a camera on 

board for the 0.5m-resolution aerial photographs with RGB 

bands. The average point density and point spacing within the 

test site is about 4 points/m2 and 0.5 m, respectively. The lidar 

dataset records both range (first- and last- returns) and intensity 

information of the laser pulse. In this research Lidar data is 

considered in 2D geometry with optical image data. The 

experimental area is a typical urban region that contains 

variously sized buildings with different orientations, as well as 

trees and grass interspersed among buildings. Meanwhile, the 

study area and its vicinity are relative flat, with elevations 

ranging from approximately 89.83 m to 159.71 m. 

 

2.3 Training sample and reference data 

The training samples are chosen using the photo-interpretation 

method in the commercial software ENVI®. Table 1 lists the 

number of training samples. As a proportion of the full image to 

be analysed the number of training samples would represent less 

than 1% to 5%. For accuracy assessment, an adequate number 

of testing data is required per class of interest. Congalton and 

Green (2009) pointed out that it is necessary to have sufficient 

testing data for building a valid statistically error matrix to 

represent classification accuracy. Thus, the sample size N was 

determined by Equation (2) for the binomial probability theory: 

 2

2

100 -


Z p p
N

E
   (2) 

Where p is the expected percent accuracy, E is the allowable 

error, and Z = 1.96 from the standard normal deviant for the 95% 

two-sided confidence level. An expected accuracy of 95% was 

selected because the land-use classification system specifies that 

each class category should be mapped to at least 85% accuracy, 

and then the allowable error of 5% is chosen. For this study area, 

the sample size (N) of 996 meets the demand of Congalton and 

Green’s (2009) rule-of-thumb of a minimum of 50 samples per 

class. 

 

 

Categories Training samples  Test data 

ROI Pixels ROI Pixels

Buildings 103 927 50 569  

High vegetation 36 524 26 421  

Ground 60 934 44 685  

Grass 12 172 10  98 

Table 1. The training samples and test data. 

 

2.4 Features 

There are several groups of features, including lidar height-

based, lidar intensity-based features, and RGB aerial image-

based features. They are listed as follows. Relevant features are 

shown in Figures 2(a), (b) and (c). 
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Aerial Imagery-based (Figure 2(a)): 

Three bands (R, G, B): To remove noises in the RGB image, 

convolution operation must be operated. In this paper, we use 

median convolution, a technique aiming at reducing image 

noise without removing significant parts of the image content, 

typically edges, lines or other details that are important for the 

interpretation of the image (Perona and Malik, 1990). After 

mean convolution, bands red (R), green (G) and blue (B) are 

used as three individual spectral features. 

 

Grey-level Co-occurrence Matrix (GLCM); GLCM proposed by 

Julesz (1962) can be used to calculate several statistical 

measures, such as contrast (Cont.), dissimilarity (Diss.), 

homogeneity (Homo.), entropy (Ent.), mean (Mean), variance 

(Var.), second-moment(S-M) and correlation (Corr.) for 

representing specific textural characteristics of the processed 

image. 

 

Lidar Data 

 

Although a 2D lidar range image is used in the presented land-

use classification scheme, lidar height-based features are 

calculated by 3D original point clouds in a given spherical 

neighbourhood. Mainly determined by the point density, the 

radius of the given sphere is required to guarantee at least 6 

points to get involved in processing lidar features. As a result, 

height-based features can be computed. 

Height-based features (Figure 2(c)) 

o Height difference (Height-Diff): The distance is between 

the current point and the lowest point in a cyclone with 

radium of about 30m. 

o Normalized height ( nDSM=DSM-DTM): This feature will 

help distinguish elevated objects from the ground or near-

ground objects (Haala and Walter, 1999). 

o Local height variation (Local-Hei-Var, the absolute 

distance between the maximum and minimum height 

values in 3*3 pixels or 3*3 m): This feature will assist in 

discriminating ground and non-ground objects. 

o Height difference between echoes (FL-Diff= First echo - 

last echo): This feature will help distinguish high-rise 

penetrable vegetation. 

o Normalized Difference (FL-NDiff, a lidar-based vegetation 

index): It is calculated by       . Similar to 

NDVI (Normalized Difference Vegetation Index) in 

multispectral image classification, FL-NDiff will highlight 

vegetation (Arefi et al., 2003). 

o Deviation angle of plane normal vector from the vertical 

direction (P-Deviation-Ang): This feature will assist in 

discriminating the ground with small values of deviation 

angles. 

o Distance from the current point to the local estimated plane 

(P-Normalized-Var): This feature reflects the local height 

variation that can be used for the discrimination of the 

ground and non-ground objects.  

o Eigen-based features (Anisotropy, Linearity, Planarity, 

Sphericity): The eigenvalue related features are defined as 

the spatial features of each point by calculating a variance-

covariance matrix of its neighbours. It is another auxiliary 

indicator for distinguishing planes, edges, corners and 

volumes (Chehata et al., 2009). 

Intensity-based features (Figure 2(b)): 

o Intensity image: Analogue to a grey image, GLCM related 

measures are calculated. 

o Lidar-TVI (Transformed vegetation index): It is calculated 

by 
  0.5 based on Red band of aerial 

imagery and intensity values of lidar data. 

 

Median Conv. GLCM-Mean GLCM-Homo GLCM-Vari GLCM-SM 

GLCM-Ent GLCM-Diss GLCM-Corr GLCM-Cont 

 

 

(a) RGB Image-based Features 

GLCM-Con  GLCM-Corr GLCM-Diss GLCM-Ent GLCM-Homo 
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GLCM-Mean GLCM-SM GLCM-Var  Lidar-TVI 

 

 

(b) Lidar Intensity Image-based Features 

Height-Diff nDSM Local-Height-Var FL-Diff P-Normalized-Var 

P-Deviation-Ang Sphericity Anistropy Linearity Planarity 

(c) Lidar Height-based Features 

Figure 2. Overview of features from lidar and orthoimagery 

 

 
 

3. EXPERIMENTS AND DISCUSSION 

To assess the effectiveness of Random Forests in feature 

selection, three experiments are conducted. First one is focusing 

on variable importance by importing all features into Random 

Forests; second, recursive feature selection with Random 

Forests is conducted to searching most important features for 

the satisfied classification results; finally, classification results 

using features selected by Random Forests is performed. 

 

3.1 Variable importance results 

The variable importance for training samples is displayed in 

Figure 3 for each feature when all features are put in the 

Random Forests. The variable importance is demonstrated by 

the mean decrease permutation accuracy. As can be seen in the 

figure, among those 48 features it appears that the most relevant 

features include nDSM, eigenvalue-based anisotropy, intensity 

GLCM measures, etc. For the aerial image-based features 

GLCM measures such as Ent., Corr., and Var. are not important 

for urban classification. 

 

3.2 Feature selection results 

To eliminate less important and more correlated features, 

iterative backward elimination scheme is used (Diaz-Uriarte and 

Alvarez de Andres, 2006). We first compute measures of feature 

importance to obtain an initial variable ranking and then 

proceed with an iterative backward elimination of the least 

important variables. In each iteration the least important 

features (by default, 20%) are eliminated, and a new RF is built 

by training with the remaining features for the assessment of 

OOB errors based on OOB samples. The iterative procedure 

proceeds until the final features with the lowest OOB errors are 

determined for the land-use classification. In this study the 

number of trees (T) is set up 100-200, and the number of split 

variables is 4.  Generally, the default setting of split variables is 

a good choice of OOB rate. Using OOB errors, the original 48 

features are gradually eliminated up to 15 features. Meanwhile, 

as can be seen in Figure 4,the mean decrease accuracy is 

increasing with the decrease of numbers of features. The left 

fifteen features includes Lidar-NDVI, lidar height-based 

measures eigenvalue-Anistropy, nDSM, P-Normalized-Var, 

Height-Diff; Lidar intensity-based GLCM-Var., -Mean, and -SM; 

and aerial image-based GLCM-Homo and -Diss. 

 

Based on these features from 48 to 15, maximum likelihood 

classifiers are used to get the classification results, as can be 

shown in The Figure 5. A classification error matrix (confusion 

matrix) is an effective way to quantitatively assess accuracy in 

that it compares the relationship between known reference data 

and the corresponding results of the classification (Congalton, 

1991). Kappa coefficient measures the accuracy between 

classification result and reference data using the major diagonal 

and the chance agreement (Jensen, 2005). From the Kappa 

coefficients, the classification accuracy is not improved with the 

increase of features. On the contrary, their classification 

accuracies are decreasing. The reason is that much more 

features are correlated than that of features with the significant 

important index. 
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Figure 3. Random Forests-based feature importance 

 

 

 
Figure 4. Iterative feature selection 

4. CONCLUSIONS 

In this study Random Forests is successfully applied to the 

feature selection for land-use classification. There are 48 

features extracted from lidar data and imagery. Making use of 

the Random Forests, an assembling classification tree, that 

provides feature importance index, we iteratively eliminate 

features with less important index until the mean decrease 

accuracy is stable. The extensive experiments are conducted to 

describe the Random Forests’ characteristics and prove its 

performance. Classification results suggest that much more 

feature cannot guarantee the improvement of classification 

accuracy, and confirms that the selected features can obtain the 

satisfied classification results. Overall, the classification results 

indicate that the selected features agree the existing 

physiological knowledge. 
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Figure 5. the Maximum Likelihood classification results based on feature selection of Random Forests 
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