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Paley and Zygmund [10](1) have shown that for almost every random
choice of signs the series

represents a continuous function, provided only that

X fln(lg n)       < 00 .

A little later B. Jessen [5] studied random almost periodic functions. One
of his theorems, stated in the language of probability, is this: Let Xi, X2, • • •
be real and let Yi, Yi, ■ ■ ■ be independent complex random variables, each
Yn being uniformly distributed on the circumference \y\ =1. If

Z2 <r|X„|
ane       < «j

for some <r>0, then almost certainly

£ a„FneiX»< - o(lg i)1'*, t-*<*>.

It is our purpose to show that the ±an or the a„Yn may be replaced by
any independent random variables Xi, X2, • • • subject to £{J„| =0 and
2^£{A^n} < °°- (Here £{-Xj denotes the expectation of X.) We shall define

Z(t) = £ Xne**'

and prove that if

Z£{xl\{k(i + \K\)}1+€<™,
then almost certainly Z(t) is continuous in t; that if

T,£{xl}\K\2a< oo

for some positive a^l, then almost certainly

z(t) = o(\gty'2, *->«,

and moreover Z(t) has modulus of continuity of the form K~ha(lg 1/h)112.
More precise statements will be found in Theorems 2 (§1), 4 (§5), 7 (§8).

The proofs are based on two inequalities which are of interest in them-
selves. They are Lemma 1 (§2) and Lemma 10 (§6). Luckily both can be ex-
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RANDOM FOURIER TRANSFORMS 39

tended to integrals and give us the means of dealing with feix'X{d\). This
integral is defined in §4; its continuity is studied in §4 and §5, its mean be-
havior in §7, and its growth in §8.

In §10 we specialize X{d\) to obtain the Fourier-Wiener transform
(which is apparently the only example of interest). It is interesting to note
that Theorem 12 contains a family of statements, one of which is the usual
law of the iterated logarithm for Brownian motion (/3 = 0; the finer theorems,
say those in Feller [4], escape our analysis). In the same way, Theorem
11 contains the local law of the iterated logarithm, and Theorem 13 the uni-
form Holder condition.

Proofs are given in full only through §4, for the details of later proofs are
much the same.

I have bent the arguments as far as possible into the form given by
Paley-Zygmund and Jessen. Their papers contain a good many results other
than those above which can be generalized by using Lemmas 1 and 10.
Paley and Zygmund, however, have another set of theorems—roughly, that
X±a» exP {i^nt) behaves badly if the an behave badly. Most of these can
be generalized to random variables satisfying

£{|x„|i+*} ^A{E\xn\ }i+<
for some constant A. The results are not of much interest except to provide
counter examples—and these are furnished in abundance by +an.

One has only to glance to Jessen's paper and those of Paley and Zygmund
to see how greatly I am indebted to them. Of quite as much help were many
conversations with S. Bochner.

1. Two theorems on series. We suppose that fi is a set with elements
w; that 33 is a Borel field of sets E contained in £2; that P{E) is a measure
defined on <B; that ßG®; and that P(Q) = 1. A random variable is any
complex-valued function defined on fi and measurable Í3. We write du for
the element of measure in the integral, thus—

f X{o>)do>=  f X{u)P{dE).
J e Je

Until §4 we deal with the series X^»(a,)e'x"i- Here the X„ are real num-
bers, and the random variables Xn{o)) are'subject to three conditions:

(Ai) Xi, X2, • • • are independent;
(A,) faX»ia)da = 0, n = i, 2, • • • ;
(A,) B = X;=i bn = X;=x h I Xn\ 'do < «.

The last condition need hold only for one value of p, l^pú2.
Let us define

(1) Zn{t, «) - ¿ Xk{w)e^<,
4=1
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40 G. A. HUNT [July

(2) Z(t, fa) = lim Zn(t, to).

Kolmogorov's three series theorem implies that the limit exists almost every-
where on the space £lX(t), if on this space the measure is the product of a\o
and ordinary Lebesgue measure dt.

Our goal in the next two sections is to establish the following theorems:

Theorem 1. For almost all wGfi and for every p,

("°     . .       dt
(3) Ap{Z*(t,fa) ——~< oo.

J -» Í   +  t2

Here we have used the notation

(4) Z*(/, w) =   sup    | Zn(t, fa |,

(5) A,{u\    m  eol«l2 -   1.

Theorem 2. Suppose that KXi<X2< • • • and that
m

(6) Z i,(lg \n)l+'   <   *
1

for some e>0. Then, for almost all u>Gß,

Zn(t, fa      Z(t, fa)
(7) ->-1 n —> oo,

1 + t2        1 + t2

uniformly in / G (— °°. œ )• In particular, Z(t,u) is continuous in t for almost all
CO.

The hypothesis that the X„ increase is unnecessary in Theorem 2; the
statement as it stands, however, is just what we need in §4 when we consider
random integrals. We prove in §2 an inequality (Lemma 1), from which
Theorem 1 follows at once. The proof of Theorem 2, which is an adaptation
of one of Paley-Zygmund, is carried out in §3.

2. An inequality.

Lemma 1. Let p be given. Then there is a function ip=ipp(u¡) which is every-
where greater than zero and has the property that

(8) /^o^sup   £ ckXk(fa)   >fafa)dw ̂  1
a      I »   1   i \ j

for every sequence cx, Cj, • • ■ satisfying \ck\ á 1.

The important fact is that \p does not depend on the sequence ck\ it does
depend, of course, on p and on the Xn. The proof is long. We break it up into

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1951] RANDOM FOURIER TRANSFORMS 41

a number of lemmas.
A random variable X is symmetric if PJXGGJ = P{ -J£Gj for every

open set G.

Lemma 2. Let  Ui, • • • , Un be independent and symmetric. Let Sk = Ui
+ • • • +Uk, S*=supk \Sk\. Then

(9) f S"du Ú 2 f IsJ'du.
Ja * Ja

The inequality, a special case of one contained in Marcinkiewicz-Zygmund
[8], can be proved quite simply. Suppose the Uk are real. For any A >0 let
E = EA be the set on which sup* Sk^A and Ek the set on which Si<A, • • • ,
5i_i<^4, Sk^A. The Ek are disjoint and E = [)Ek. Since Uk+i-\- ■•■+£/„
is symmetric and independent of Ek, there is a subset Fk of Ek satisfying
"P{Fk)^P{Ek)/2" and "Uk+i+ ■ ■ ■ +Un^0 if «€F»." The Fk are disjoint
and Sn^A on Fk. Hence

P{sup$* e¿} = T,PiEk) á 2Y,P{Fk) ^ 2P{Sn^A\.t

By symmetry, P{inf* Sk^ -A} ¿2P{Sn^ -A}, so that P{S*^A)
^2P{\Sn\^A\. If the right member of (9) is finite, then P{S*^A}
^2P{ | S„\ }zA} =o{A~p) and the following integrations by parts are justi-
fied:

S»du = -  I    A»dP{S^ ̂  A} =   I    P{S^ à ¿}<Mr

^ 2 r p{ |5„i è A}dAr=2 r i5n|"¿w.

If the Uk are complex, (9) is proved in much the same way.
Since we shall often consider suprema let us write

m

(10) [a]* = sup   X ak
m        fc=l

Also define pq to be the 2gth moment of a Gaussian variable:

(11) pq =- f   u2"e-"2l2du = 1-3-5 -•• {2q - 1).
(2x)1/2J_00

Lemma 3. Suppose that Ui, • ■ ■ , Un are symmetric and independent, that
| Uk\ ¿1, <w¿ íao/ Xi Iö*| 2 = 1. Lei 5= YÂ°<kUk. Then

(12) |S|2«Ao ^ m5./J
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42 G. A. HUNT [July

This is essentially Khintchine's inequality [ó]. When | S\2q is expanded, a
typical term has the form

(13) n akkäkk 1/7 Uk .
i

Since the Uk are symmetric and independent the expectation of this term is
zero unless all ak-\-ßk are even. In any case, the expectation is not greater
than ] [|ak\a*+'3* in absolute value. Let us compare 5 with T= Zla*l -^fr»
where the Yk are independent Gaussian variables. In the expansion of T2q
the term corresponding to (13) is Jj[ | ak \ ak+ßk Y0*+ß*. Its expectation is zero
unless all ak-\-ßk are even. In any case its expectation is as great as that of
(13). Now T is itself a normalized Gaussian variable, for 2ZI a*l2= L Hence
(12) is true.

Combining Lemmas 2 and 3 we have the following lemma.

Lemma 4. If the Uk are independent and symmetric, if I Uk | ^ 1, and if
El

/. [aU]2qdu S 2ygW.

Lemma 5 (Kolmogorov [7]). If Wi,  Wi, ■ ■ ■ are independent, if fWkdw
= 0, and if H= X/| Wk\ 2du, then

P{ [IF]* g KH1'2} ^ 1 - Í/K2.

We are now ready to begin the proof proper of Lemma 1. Until Lemma 8'
we assume that p = 2 in (A3).

Lemma 6. Suppose that the Xk are symmetric, that p = 2, and that M>0.
Define EC® by

00

(14) El **(<«>) I2 <M.
1

Then, for every sequence ck with \ck\ ^1,

(15) f [cX]yu ^ 2yqM", q = 1, 2, • • •  .

The truth of the lemma clearly depends only on the distribution of the
Xk. This being so, we take ß' = (0<w<l) XO and Z„' (fa) =fa(u)Xn(w), with
fa-Xu) the wth Rademacher function. Let E' = (0 <u < 1) XE. The <f>n(u) on E'
satisfy the hypotheses of Lemma 4; so for every uÇzE

L1

[cfau)X(fa]2"du g 2yiW.
0 *
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1951] RANDOM FOURIER TRANSFORMS 43

Integrate over E:

f   [cX'{o)')]2"dw' =  f du f   [c<j>{u)X{u)]2«du ^ 2pqM«.
J E' J E       J 0

Since the X¿  are distributed on fi' as the Xn on Ü, this last inequality
proves the theorem.

We remove the restriction that the Xn be symmetric.

Lemma 7. Suppose that p = 2, that M>áB {see (A3)), and define E again
by (14). Then, for every sequence |c*| ¡gll,

f [cXJy* ^ 4pti9M)<, q = 1, 2,

Let Q', £', P', Xn' {a') be replicas of fl, E, P, !„(«). The variables Yn = Xn
— Xn , considered on the space Í2XÍ2' (which is provided with product meas-
ure) are independent and symmetric. On EXE', XI Yn\2^4M. Thus, ac-
cording to Lemma 6,

(16) f   f   [cY]2«dudu' ̂ 2Mg(41f>.
J E J E'

Let F' be the set in Í2' on which [cX']^^2B112. Then P'{F') à 3/4 by Lemma
5. Also, ilf>45 implies P'(£')^3/4. So P'{ET\F')^\/2. On replacing £'
by £'HF in (16) and [dX-X')]* by | [cX]* - [cX% \, we have

{2pqy^{4Myi2 ït Í f   f  | [cX]* -  [cX']*\2«dudA
{JeJf'oe' J

1/(2«)

1/(2«)

E v F'OE

Minkowski's inequality now yields

(2/ig)1/<2')(4M)1'2 ^  \\     \ [cX]2"dcodu'\
\JeJe'^f' * )

- I f   f        [cX'^dudA

=  {p>{ET\F')f [cXJ^du}

- <P{E) f [cX']2"du'\
{. J E'Hf' * )

I /• }   1/(2«)
è  <P'{ET\F')  I   [cX]2*¿üA - 2B^2{P'{E'r\F'))l'^\

The statement of the lemma follows easily, for M>iB.

1/(2«)

1/(2«)
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Lemma 8. Suppose p = 2. For every p and every e>0 there are a set E and a
number C with the property that

(17)

(18)

P(E) > 1 - €,

f A„{[cX]*}du <C
J E

for all \ck\ g 1.

Choose M so small that

(19) 200pAf < 1,

then N so large that

(20)

The set Ei on which

CO J

Y,    bk <— eM.
k=N+l 2

J2\Xk(fa\2^ M
N+l

has measure at least 1 — e/2. Take E to be the subset of £i on which

N

£ | Xk(fa I < L,i
where L is so large that (17) is true. We must now determine C so that (18) is
true. On E

/ . ckXk
N+l }

Ap{[cX]*\ ^Aip{L) +¿4,{sup
V n>JV

Thus it suffices to prove that

/Aip < sup    £ CkXk  > dw
E \ »>jy    N+l I /

is bounded by a constant independent of the ck. Now

4¿ -^- = 23'2tt-1'2  f   e+^^e-^lHu - 1 = K < «,
ZÍ   4«ff! J-x

and (19-20), together with Lemma 7, yield

■k M,(4p)«(9Jf)«
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This proves the lemma, for C may be taken to be K-\-Aip{L\.

Lemma 8'. Lemma 8 is true for l^p<2.

One defines X'n"(u)=Xn(fa if \X»(a)\gl and X'n"(fa=0 otherwise;
then Xn'=Xn-X'n", Mn=fX'J'dw, Xn'=X'n"-Mn, so that Xn = X¿+X'J
-\-Mn. It turns out that the Xn' satisfy (Ai_3) with £ = 2, that for almost all
co the X'n' are zero for sufficiently large n (depending on co), and that £ | M„\
^B. The proof is then completed as in Lemma 8.

Lemma 1, which is what we started out to prove, is hardly more than a
rewording of Lemma 8'.

3. Proof of Theorems 1 and 2. In Lemma 1 set ck = eiXkt, multiply by
(1+/2)-1, and integrate over t:

dtf    —^—fAp{Z*(t,fa}fafado,^

Hence (3) holds for almost all co, so that Theorem 1 is proved.
Inequality (3) shows incidentally that the approach of Z„ to Z is very

"strong." Indeed, \Z — Zn\ ^2Z* and Zn(t, co)—*Z(t, co) for almost all co and
/; so

I    Ap{Z(t, fa -Zn(t, u)}(l + t*)-1dt-*0, »!-»«>,

for almost all co.
So far we have used no special properties of the exponential function.

What we have said holds for any set of uniformly bounded functions. The
situation is quite different concerning continuity. A good deal can be said
when the eakt are replaced by functions whose moduli of continuity are
known ; the statements, however, are not nearly so precise as that of Theorem
2.

For the rest of this section we consider any co for which (3) is true for all
p, and drop co from the notation.

Lemma 9. If 1 <Xi <X2 < • • • and X„—> oo, then

I Zn(t) I
sup    -L-^l = 0(lg xn)'/2.

-»</<»   1 -\- tl

Let a(r) = (d/dr)Ap(r) and let b(s)=r be the inverse of a(r)=s. Then
(Zygmund [ll])

(21) B(s) =  f   b(u)du ^ s Max {l, p-1/2(lg s)1'2},
•Jo

(22) xy g Ap(x) + B(y), x à 0, y ^ 0.
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46 G. A. HUNT [July

For X>0,  the function eiXw{w-\-i)~2 is represented in the upper half-
plane of w = u-\-iv by its Poisson integral. So, for v>0,

{w
» 1 .   /.» j,

+ i)-2X Xke^-^ - —        Zn{u')-
1 W J-x {u — u

du

)2+v2 («'+ i)2

Noting that z/{ {u — u')2-\-v2}~1^v~1 and keeping (21) and (22) in mind, we
have: For 0<v<e~p,

{w + i)-2 X Ate0*"-***

1   /•"     . ,        du' 1   T"      Í » )        du'
it J-«> |m'-|-i|2       t J^„     \{u' — u)2 + v2)  | w + i

g tt-1^ + ir-y-^Gg l/»)1'2.

Here C„, furnished by Theorem 1, is independent of u, v, and n. For e>0,
first choose p so that p~ll2<e, then î/„ positive, î/p<e-'', Cp<e(lg l/z/p)I/2. Thus
for all « and m

n

{w + i')"2X Aie**"-^"   < e(lg 1/v)1'2, 0 < v < v„.
i

Fix v for the moment. The function
n

(m — w' — iv — ¿)-2X Xk exp {— \kv — t(X„ — X*)m — (X„ — X*)»'}
i

is analytic in u — iv' for v' ^0 and tends uniformly to zero as | w| + | v'\ —> °o ,
y'^0. Hence in v'^0 it attains its maximum somewhere on the line v'= 0;
when v'=v we are sure to get something smaller. So

n

{u - 2iv - i')-2X Xkei*ku
i

{u—2iv—i)~2 exp (îX„M-f-X„î))X -^* exP { — ̂kV— i{K~X*)m— (X„ — \k)v}
i

n

(m— îi>— iv'— î)~2X Xk exp { — XfcZi— ¿(X„ — X*)m
i

-(x„-x*y}

¿ ex"° supremum
v'äO,— oo <M< oo

(23)

gXnf Sup
D<«<00

^   eiX..(lg   l/B)l/2,

{u—iv—i) 2X A* exp {i\ku — \kV)
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1951] RANDOM FOURIER TRANSFORMS 47

If n is large, X„ ' <vp and we may set v=\„ \ Also | u — 2iv — i\2(l-\-u2)~2<2 for
small v. Thus (23) becomes for large n

(1 + w2)-1 E **«**"5e(lg \»)W

This is the statement of the lemma.
Theorem 2 follows at once. Let /3 = (l-f-e)/2. Hypothesis (6) implies that

the random variables (lg \n)ßXn satisfy (Ai_3), so that according to Lemma 9

n

Z«(t) - E **(lg X*)^ix" = o{(l + /2)(Ig X«)1'2}.
1

The theorem is obtained by writing

zn - zm = £ {(ig hd-f - (ig xHo-»j2i
fc=m

- (Ig xm)-^zm_! + (lg xn)-^zn.

4. Continuity of random integrals. We consider a family X(\, co) of
random variables and define the random function X(I, fa) of intervals by

X(I, w) = X(\i, fa - X(\i, fa, I: X, < X ̂  X2.

The place of the bn of §1 is taken by

B(I) =   f | X(I, fa |2¿co.
J !i

Four restrictions are imposed on X(I) :
(Bi) X(I, fa, ■ ■ • , X(In, fa are independent if Ijf~\Ik = 0 when j^k.
(B2) JaX(I, fa)dw = 0 for every I.
(B3) B(I) is bounded.
(B4) X(\, co) is measurable on (X)Xß. For each co the function XÇK, co)

has discontinuities only of the first kind (as function of\). For every co and every
X, X(o3, ~K-\-h)—>X(ù), X) as h decreases to 0.

Doob [3] has shown that if X satisfies (Bi_3) there is an X which agrees
with X up to an ß set of measure zero for each I and almost satisfies (Bi_4).
There may be a fixed enumerable set Xi, X2, • • • at which X(\, co) is not con-
tinuous on the right; the removal of these discontinuities requires only a
trivial modification of X, which we suppose performed. The matter is un-
important, since we introduce (B4) only to define integrals in an elementary
way.

For almost all co, the function X(\, co) is bounded, has only an enumer-
able number of discontinuities, and tends to a limit as X—>+ 00 . Thus XÇK, co)
is Riemann integrable, so that
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/« A2
X(\, w)eatd\

a,

exists as a limit of Riemann sums and represents an integral function of t.
We define

(25)
/• A2

eix'X(d\, fa
A,

to be the limit of Riemann-Stieltjes sums. That (25) is defined, that it is an
integral function of /, and that

/» A2
X(\, faeiXtd\

Ai

are all consequences of the existence of (24). Later on (§§5, 8, 10) we shall
often integrate or differentiate under the integral sign; these operations are
easily justified if one recalls (26).

We use a notation corresponding to that for series:

/i A2
eiXtX(d\, co

(28) Z(t, co) =   lim     f   eiUX(d\, co).

Theorem 3. If for some «>0

(29) f    {\g(l + \2)}i+'B(d\) < «,,

then for almost all co,

Z(t, to, Ai, A2)      Z(t, fa
(30) ->-

1 + t2 1 + t2

uniformly in t as Ai—*— oo, A2^oo. In particular, Z(t, co) is continuous in tfor
almost all w.

Let   Z(t,   03,   A)=Z(t,   co,   1,   A).   Clearly   it   suffices   to   prove   that
(1 +t2)~lZ(t, co, A) tends uniformly in t to a limit as A—» oo.

Let 22em = e<l. Define

/ k      \ k k+ I
Fn(X, co) = X   —, co   , — ^X<-

\ n      / n n

For each co and each integer m,
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/> m+l | Fn(X, u) - X{\, u) | ¿X -* 0, M->oo.

Hence there are integers nm and sets Em(ZQ such that P(Em) > 1 — em and

| F,JX, w) - Z(X, w) | d\ < tm, uEEm.
•J m

Let F(X,co)= Fnm(X,w)form^X<w-|-l and let £ = (!£„,. Clearly P(£)>1-é
and, for co££,

/» OO

I     | F(X, co) - X(X, co) | d\ < 6,

f * e*'X{d\) -  f    eiUY{d\) = {X{A2) - F(A2)}eiA"
J A¡ J Ai

- (Z(A,) - Y{Ai)}e^' + it   f     {Y{\) - X{\)}eA'd\
J At

= P + Q + tR.
Here P, Q, R are uniformly bounded in Ai, A2, t and tend to zero uniformly
in / as Ai and A2 tend to °o, provided only that uÇzE. Also, it is easy to see
that

f   eiUY{d\, u)

can be written as a series X F*(w)eiXii with the Yk satisfying the hypotheses
of Theorem 2. Thus

(1 + t2)-1 f   eiUY{d\)

tends uniformly in / to its limit for almost all w£i2. All in all, for almost every
u in E

(1 + t2)'1 f  ' e*'X{d\, u) = o(l),        Ai -» », A2
Ja,

uniformly in /. As the measure of E can be taken arbitrarily close to 1, we
conclude that the theorem is true.

If we had considered the L2 space over (i)Xß (measure {\-\-t2)~ldtdu)
and defined (25) as a strong limit of Riemann-Stieltjes sums, we should not
have needed (B4). The integral, however, would have been defined only
"almost everywhere" and we should have to pick a suitable function out of
this equivalence class in order to make statements like those in the theorem.
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5. The modulus of continuity. The hypotheses of several later theorems
can be expressed either in terms of B(I) or in terms of the autocorrelation
function

(31) fat) =   f Z(s, fa Z(t + s, fadw =  f   eiAB(d\).
Ja J -«j

First we recall that the existence of the moment of order 2q of B is
equivalent to the existence of the derivative of order 2q of <j> when g is a posi-
tive integer. Next

•/ o

20(0) - fat) - fa-t)
-dt

ti+fi
(32)

= 2r(l - ß) sin (1 - ß) — f    | X \<>B(d\)
2   «/ _oo

if 0<ß<2—the assertion being that if one member is finite the other is finite
also and has the same value. We may assume that B(T) =B( — I) (else replace
B(I) by B(I)+B(-I)). Then

(33) fat) = 2 C   cos t\B(d\).
Jo

Now, a familiar formula reads

/.

1   —   COS \t TV      .       ,
-dt = ^T(i - ß) sin (1 - ß) —   X K 0 < ß < 2.

Since everything is positive, we run into no trouble if we multiply by B(dX)
and integrate. The result is

Cx r ™ 1 - cos \t f°   dt   r°°
B(d\)  I      -■—dt =    I      -        (1 - cos \t)B(d\)

Jo Jo tl+» Jo     l1+ßJo

faO) - fat)  ,If2 Jo

ß-^il - ß) sin (1 - ß) —       \ßB(d\).
2 J o

The symmetry of B(I) and (33) give (32). Incidentally (32) and differentia-
tion permit any absolute moment of positive order of B(I) to be expressed
in terms of its characteristic function.

We say that/(/) belongs to Ha if the following is true: Given any finite
interval (a, b) there are two constants C and D such that
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(34) | /(/ + h) - fit) | è Ch'l lg — j    , a < t < t + h < b.

If all functions of a set satisfy (34) with the same C and D, we say they
belong uniformly to Ha.

Theorem 4. Suppose that 0<a^l and that

/oo \\\2°B{d\)  <   oo.
-00

Then for almost all u the Z{t, u, Ai, A2) and Z{t, u) belong uniformly to Ha.

It suffices to prove that the functions Z{t, u, A)—Z{t, o>, 1, A) belong
uniformly to Ha. In this case we can formulate the statement in a way which
makes the details of the proof a little easier: Suppose that X{I, u) satisfies
(Bi_4)—but not necessarily (35)—and define

'.«it, to, A) = J*
(¿X)«

X{d\ u), 1 < A <  oo ;

then the Za{t, u, A) belong uniformly in A to Ha. It is this second form which
we shall prove.

Let us first settle the case a = 1. Consider any u for which

Ap{Z*{t, u)}dt = K{u, p,T) = K<«>

for every T, p and drop w from the notation. (That (36) holds for almost all
u follows from Theorem 1 and the approximation used in §4. Indeed, one can
prove a statement for integrals similar to Lemma 1.) Now

1 1   rt+h
(37) — [Z\t + h, A) - Z\t, A)} = — Z{u, A)du.

h h J t
Since ^4p(m) is convex, (37) and Jensen's inequality imply that

(Z\t + h) - Z\t)\ (1   r'+h )

^ — A,{Z*{u)\du
h J t

S K/h, -T<t<t+h<T.
A slight rearrangement yields

| Z\t + A, A) - Z\t, A) | ^ p-^h jig (^ + lU ' \
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This proves (34) when a=l and incidentally shows that for small h the C
and D can be chosen small.

When 0<a<l we express Z" as the sum of a well behaved function
and of a fractional derivative of Zx(t, A). From f"eilta~ldt = iaT(a) we see that

V(a)Jo (tX)"   ' X

where FÇK) is bounded and continuous. Thus

(38) - f   »«-***<*-«>«*« - —-+ F(\)-
-:*)Jo (iX)«

/» 1 n A ¿>¿Xí /» A      ¿,ÍXí

— I    ua~xZ(t - u, A)du =   I      -X(d\)+  I      -F(\)X(d\).
{a) Jo Ji     (ih)a Ji     i'X(39)

Since

p  00

<   oo,J    | F(\) \2B(d\)

we conclude from what has already been proved for a = 1 that the second
term on the right in (39) belongs to Hi uniformly in A. So we need consider
only the term on the left.

The function Zl(t) —Zl(t — u) is an indefinite integral of Z(t — u) (as func-
tion of w) and vanishes at w = 0 like w(lg 1/u)112. Hence, integrating by parts,
we have

r 1 c 1 du
u°-lZ(t - u)du = Zl(t) - Z\t - 1) + (1 - a)   I    \Z\t) - Zl(t - u)}-

Jo Jo u2-"

The first two terms on the right again belong to Hi uniformly in A. Writing

/* * du
Y(t, A) = {Z\t, A) - Z\t - u, A)} -T7-,

Jo u2-"

we have

r1 , •.    du
Y(t + h) - Y(t) =   f   {Z\t + h) - Z\t + h- u) - Z\t) + Z\t - u)}

Jo

We must show this to be less than Cha(lg D/h)1'2 for, say, -T<t<t+h<T.
H0<h<l, then

/.*
{ | Z\t + h) - Z\t + h - u) | + | Z\i) - Z\t - u) | \u°-2du

o

g f Ciu(\gCi/uyi2w-2du g c3h»(igCt/hyi\
Jo
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f   { | Z\t + k) - Zl{t) | + | Z\l + h - u) - Zl{t - u) | )u«-Hu
J h

á   f    CiÂ(lg C2/a)1/2m«-2¿m ̂  Cbh"{lg Cü/Á)1'2.
J h

Here the constants Ci and C2, which are furnished by what has been proved
for a=l, are independent of A. If A>1 we have a similar estimate without
the need of breaking up the range of integration. Thus Y{t, A) belongs to
Ha uniformly in A. Tracing the steps backwards we see that Za{t, A) also
belongs to Ha uniformly in A.

6. Another inequality. Our study of Z{t, u) for large / is based on the fol-
lowing inequality.

Lemma 10. Suppose that X\, X2, • • • satisfy (Ai_3). Then for almost all u
and for all p

(40) 1 rT  (       >sup— I    AflZ^t, u)\dt < oo.
T      T  J o

If also p = 2 in (A3) and 1000p5<l, and if Gf,a is the set on which the left
member of (40) is less than a, then

(41) P{GP,a) è 1 -.(2 + 300a~1){pByi\

We shall prove (41) first. Then (40) and a somewhat weaker inequality
for integrals follow without difficulty. The principle steps are given as lemmas.

Lemma 11. Let S be a space of total measure 1, 5—*s' a measure preserving
flow on S, /(s)2:0, and T{s)^0. Then

/.    ¿s    -no i c } 1/2,W)f.  **«{//»*} •
This is a corollary of the maximal ergodic theorem.

Lemma 12. Let 4>k{u) be the Rademacher functions, X* real numbers, T{u)
7*0, XK|2 = A and20Dp<l. Then

r1  du    r™     t.
<43) ^ A,{[a4>iu)e*']*}dt á 20{pDyi2.

Jo   I{u) J 0

The proof is rather long. In Lemma 11 take S = SiXSiX • • • , each Sk
being the interval —1/2 <sk^ 1/2 provided with ordinary Lebesgue measure.
The flow s—»s' defined by

í —i i
Sk — Sk + (2tt)   \kt (mod 1), 1/2 < Sk ^ 1/2,

clearly preserves measure. The functions e2xia* (considered as functions on S)
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are a set of random variables satisfying the hypotheses of Lemma 4; hence

c / 2 V2 r°°
(44) I   A„{[aeui'U}ds è (— )      I     (e'D"2 - l)<ru2/2¿«

=á 4pZ>
if 4pD<l. Thus in Lemma 11 we may set f(s) =A„{ [ae2™]* } to obtain

Js   T(s)Jo

(45) S,{//;il""1-l4"i
= 4JJ^2p{[tó2"']*}áA
á ^(pZ?)1'2, 8pD < 1.

Let now ¿7* be the space consisting of the two elements +1 and —1, to
each of which is attributed measure 1/2, and let U= UiXUiX • • ■ . The
transformation s—>(S, u) defined by (sk, uk) = (2sk, +1) if —1/4 <s*^ 1/4
and by (sk, uk) = (2sk — sgn 5*, — 1) otherwise maps S on SX U with preserva-
tion of measure and carries e2ri,k into ukeTi*k. Under this transformation (45)
becomes

C       C       ds      /• re».«)
(46) du       - A^laue'WJ^dt ^ 12(pDy2,       8PD < 1.

J u     J s  T(s, u) J o

Now, -4p{x} is an increasing convex function of |x| and

I   [aueiKteri,!}ifds ^    aueM I  erisds      = — [aueiU]*.

Keeping these facts in mind, we apply Jensen's inequality to (46), first spe-
cializing T(s, u) to T(u):

r    du   rT^      r
U(pD)1'2^  I    •- j dt I dsAÄlaue^e*'}*)

J u T(u) Jo J s
du

T(u),
(47) ^   f  —— f        A„i f [aue'W^dsi dt

Ju T(u) Jo \Js J

C    du   c ™       ( 2  r i)è   I    - I Ap{—[aueiU]Sdt, 8pD < 1.
Ju T(u) Jo \ if )T(u)

Since 22/7T2>4/10, and since there is a measure preserving transformation
of U on (0, 1) which carries uk into fa, (47) implies the lemma.
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Lemma 13. Suppose that Xi, X2, • • • are symmetric and satisfy (Ai_ä)
with p = 2, that T{u) j¿0, and that D>0. Let E be the set on which XI Xk|2úD.
Then

c   du  r™    ,
—- A9{Z*{t, u))dt ^ 20{PDy2, 20PD < 1.

J E   Í {u) J 0

The proof is like that of Lemma 6.

Lemma 14. Suppose that Xu X2, ■ ■ ■ satisfy (Ai_3) with p = 2, that D>4B,
that T{u) ¿¿0, and that 160Dp<l. Define E as in Lemma 13. Then

r   du  r™
(48) —-        A,{z¿t,u)}dt<mipDyi*.

J g  1 (co) J o

We take replicas Q', XI («'), E' of Q, Xk{u), E. Since X|^*-^*' 12<4£>
on£X£',

^ f  ^T\f   dœ' f    " Ä2>{ ÜX - X')e^Udt < 60{pDy2.
J E   1 (CO) J g' Jo

Let Fi be the set in fl' on which  [X'^e^']* <2B1'2. Then P'(Pt')è3/4;
and also P'{F',r\E') ^ 1/2, for P'{E') =P{E) £3/4. If w'GP/

[(Z(co) - X'{u'))e*% è y [X{u)e*% - 4B,

so that

A2ß{[{X{a>) - X'{u'))e*>]J ^ exp {p{[X{u)e*<]l - 8B)\ - 1
^ e-8'^p{[X«*¡]J - 2ipBe~s"B.

(Note that 8p£ < 1 and e*< 1 +3x for 0 <x < 1.) This being so, replace E' by
E'nP/in (49):

60(pP)"2 >(*-—(*    " «ft f <&',!„{ [(Z(co) - *(«'))*»'],}
./.E   1 {(¡J) J 0 J E'f\F't

/•   du   r ™ r—— dtA„{[Xia)eAt]^}   l du' - 24PBe-s"B
E   T{w) J o J E'ClFi

1 r    dw    r r<">      ..
=  T e_8pS        ^TT ^ [JT(«)«ft4]*} A - 245e-

2 J E J-{u) J o
SpB

Inequality (48) is nothing but a restatement of (50), account being taken
thatX»>4S,pD<(pD)1'2, e8"B<3.

It follows from (48) that
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,c*s   P\^7~,  f    " AÀZ*(l, «)}* < A ^ P(E) - 400(pZ?)i'2a-i(51) U(co)J0

^ 1 - BD-1 - 400(pD)1/aa-1.

Since r(co) may be chosen at will the left member may be replaced by
P{Gp,cl\, whereG„,a is the set defined in Lemma 10. When 1000pß<l we may
set D = 2-1Bwp~Ui and still satisfy the condition D>4B and 160Dp<l of
Lemma 14. Then (51) becomes (41); so the last part of Lemma 10 is proved.
In order to prove the first part one proceeds just as in the proof of Lemmas 8
and 8'. There is so little change that we omit the argument.

Lemma 15. If X(\, fa satisfies (Bi_4) and 1000p5<l, then (41) is true.
In particular, for almost every co and for some p =p(co) > 0 the inequality (40) is
true.

We shall see later that when Z(t, fa) is an integral, (40) may not be true
for all p>0.

In order to prove (41) for integrals it suffices to prove

/     l pT(w) r    /.A(ü>,í) -i -j

(52) Ir(co) V 0
£ 1 - (2 + 300a"1)(pi*)1'3

for arbitrary T(fa) and A(co, /). The method of approximation by series used
in §4, together with (41) and Fatou's theorem, yields (52) without trouble,
though the details are rather tedious. It is at this point that it becomes im-
portant to have a supremum and not a limit in (41).

7. The mean behavior of Z(t, fa). Let 9ft„ be the class of functions f(t)
for which

sup— I    Ap{f(t)}dl < oo.
7>0  T Jo7V0

In Mp define a "distance" (/, g)„ by

(1 1   CT      íi i )   1 "2
(/> g), = <— lg sup —- I   exp \p\f- g\2\dt\     .

\P T      Í    Jo 1

The triangle inequality is not satisfied, but for any elements /, g, h of *MP

(/, g)„ Ú (/, h)ip + (h, g)ip.

The article [5] by Jessen may be consulted for further information about 9áp.

Theorem 5. If Xu X2, ■ ■ ■ satisfy (Ai_3), then for almost allu the functions
Z„(t, w) and Z(t, co) belong to Mp and (Zn(co, t), Z(t, fa)p—>0for every p. In par-
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ticular Z{t, u) is (for almost allu) an almost periodic function belonging to every
5".

The second statement is a corollary to the first, for convergence in UïCp
implies convergence in Bp, and Zn(t, a) is a trigonometric polynomial. In
order to prove the first statement, note that for n>N

Z(t, u) - Zn(t, u)\ ^ 2 sup
¡ë.v

X Xk(u)e^'

Setting

5A X bn,

we have, according to Lemma 10,

/
pjsup — f   .44p{sup    X Xk{o>)e*k< \dtuX

£ 1 - (2 + 300€-1)(4p£JV)1'3

which is close to 1 for large N. Thus

P-jsup — f   A„{Z(t, u) - Zn(t, u)\dt ^ el   ^ 1 - e

for large N and all n>N.
The proof of the following theorem is similar.

Theorem 6. // XÇK, u) satisfies (Bi_4), then for almost all « there is a
p=p(w)>0 such that (Z(t, u), Z{t, <o, Ai, A2))p—>0 as Ai—>• — oo, A2—><». In
particular, if XÇK, w) (for almost every u) changes only by jumps and has only
a finite number of jumps in every finite interval, then Z(t, u) is almost periodic.

It would be interesting to find out whether Z{t, u) has a spectrum, in the
sense of Wiener, for almost every o>. It would then follow that the limit

lim X|*(/", «)]*

always exists if  (/*),  k = l,  2, ■ ■ ■ , kn,  are  partitions of  the X-axis,  the
(w-f-l)st one refining the wth.

8. The growth of Z(t, a>).

Theorem 7. Let Xu X2,
all u

(53)

• satisfy (Ai_3) and let d>0. Then for almost

Zimina, co) = o(lg n)112, n —» oo.
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If moreover

(54) E*»|x„h < «
for some a>0, then

(55) Z*(/, «) = o(lg ty>2, /->».

It is possible to replace (54) by E^«0g |X„| )1+e< », but the proof be-
comes much more involved.

In order to prove (53) we note that for almost all co and for all p

1    "
(56) sup— E-<4p{£*(^, co)}  < ».

n     n     i

(The proof is similar to that of (41).) Hence

Ap{Z*(n8, fa} < Cn — 1 = C(co, p)n — 1,

or

( i 1exp }pZ2(»5, co)f < Cn, Z2(nS, co) < — (lg n + lg C).* * p

Since p may be chosen at will, (53) is true.
When a = 1 the proof of (55) is quite easy. Let us drop co from the nota-

tion, as what we say will be true for almost every co, and define

dZk(t) *
Yk(t) =- - i E X,-AVM.

dt ,=i

Then

(57)
Zk(l) = Zk(n) + f   Yk(t)dt,

J n

Z*(0 ^ Z*(«) + Y*(t)dt,
J n

n ;á t < n + 1,

»•$'<»+!■

The first term on the right in (57) is o(lg t)112. As for the second term, Lemma
10 applied to the random variables \)X¡, which satisfy (Ai_3) if a = l, yields

f  A„{Y*(t)}dt < Cn - 1 - C(co, p)n - 1,
J 0

or

(58) I        exp {pYl(t)}dl <Cn.
J n

Since exp (px2) is convex,
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/     /     /»n+l \2\ /»n+l

exp jp (J        Y*it)dt) J-  ^ J        exp {pY^t) ) dt
úCn,

. n+l \ 2a n+i y      iYdQdt) =g — (lg n + lg C),

and the second term on the right in (57) is o(lg t)112.
According to what has just been proved, it suffices to consider only series

with Xt>l when 0<a<l. As in §5 it is convenient to change our point of
view and prove the following statement, which (together with what has al-
ready been shown) is equivalent to Theorem 7 : Let Xx, X2, • ■ ■ satisfy (Ai_3)
and let \k > 1. Then

k JÇ-.
ZHt) = sup X jr— «*"   = o(\gtyi

,-=i (tX,)«

Just as in (39),
*

Z'kit) =   X (i'Xy)-«AVx '

1 /»5 k
= - I    W-Vkit - u)du + X (¿Xí)-1Pí(X,-)Zíe»í')

T(a) Jo i
1     rs

- I    w
T(a)J0

Za(t) ¿ - |     ua-xZ*{t — u)du + sup X (tX,)-V|(X,).X>«#'

where Pa(X) is bounded in X^ 1 for any choice of 5>0. The second term on
the right is o(lg t)112 since the random variables {íXj)~1Fí(\j)Xj satisfy the
hypotheses of Theorem 7 with a= 1. We need a lemma to deal with the first
term.

Lemma 16. If g(x) ^0 then
Ui \ Up /       c i \i/2

g'dxj      £KP + (lg J    exp g2dx\    .

The function exp u2lp is convex for M2/p>Max (0, p/2 — í). When g2^p/2
— 1 throughout 0<x<l, we replace u by gp and use Jensen's inequality:

(60) exp (   J  gpdx j      g   I  exp g2dx,

which amounts to (59) with Kp = 0. If g2 is sometimes less than p/2 — 1, re-
place g2 by Max (g2, p/2-1) in (60). The result is (59). Clearly (59) is true
if fo is replaced by 5_1/o-
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We use  Holder's inequality with exponents  2/a and  2/(2—a),  then
Lemma 16:

j   w
Jo

~lZ*(t — u)du

i rs
= op-1'2— I    tta-y/2Z*(/ - u)du

b Jo
(61)

<áp-"2^— I    u<-2a-vn2-*Uu\ ^— I    (Pll2Z*(t - u)yiaduV

(   i rs )1/2
g í-/y-««L. + bP~v2LA\g— I    exp (PZ2(¿ - «))¿«f     .

Here !,„ can be majorized (for §<1) by

La < |l +  f   «<2«-2"(2-«'¿m1 (JCw. + 1).

Also

exp (pZ2(/ — m))¿w íS   I    exp (pZ2(/ — u))du ?S C(p, co
Jo * Jo *

)\tX

by an argument like that leading to (58). Hence (61) implies that if ?7>0, then
S can be chosen so small that

I    wa_1Z*(/ — u)du < 7?(lg
J o

ty

Thus Z%(t) =o(lg t)1'2 and the theorem is proved.

Theorem 8. Let X(I, co) satisfy (Bi_4) and let ô>0. Then for almost all co
there is a C= C(fa) such that

Z*(n8,fa <C(lgw)1'2, »-»oo.

If also

\\\2«B(d\) < »,
-CO

then there is a C = C(u) such that

z*(t, fa ̂  C(ig ty\ *-♦•.
The proof is like that of Theorem 7 except that we may not take p arbi-

trarily large.
9. An example. A stochastic process Z(t, fa) is called strictly stationary if
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for every collection E\, •••,£, of open sets of complex numbers and every
set t\, • • • , tn the probability

P{Z{ti + s)GEi,j = 1, ■•• ,«}

is independent of s. According to Blanc-Lapierre and Fortet [l], when the
spectrum of Z(t) is a discrete set (X*) and the X* are linearly independent over
the field of rationals, one can write

z(t,w) = 2 x*(«) #*(«)«?***«,
where the Xk are independent among themselves and the Xk are independent
of the Uj. Moreover each Xk is uniformly distributed on the unit circle \x\
= 1. These facts are easy to prove.

It can also be shown that XI Uk(u)\ 2< oo for almost all u. It is not
hard to see that all our theorems about series apply to Z(t). One has only to
fix the values of the Uk and consider the conditional distribution of the Xk.
The condition X^"|Xn|e<o° is to be replaced by XI U„(u)\ 2|A„| e< oo for
almost all u.

10. Fourier-Wiener transforms. A random additive function of intervals
Y{I, u) is a Wiener process if it has independent increments and can be
written Y{I) = Yi{I)-\-iY2{I), with Y\ and F2 real processes, independent the
one of the other, and

P{Yk{I) < y\ = (tt j l\ )-!/2 f       e-^i^du, ¿=1,2.
«/_00

Here | /| is the length of I.
We take Í2 to be the set of all additive functions of intervals which de-

pend continuously on the end points of the interval, so that Y{I, u>) =u{I).
When/(X) belongs to -£._». », the integral

£
f(\)Y(d\)

can be defined as a strong limit in L%. It is a random variable whose real and
imaginary parts are independent normal variables with mean zero and vari
anee

yII/II2 = y/J/wI2^.
The Fourier-Wiener transform of such an / is

(62) Z{t) = Z{t, w) -  f   eilXf{\)Y{d\, w).

If g{t) is the Fourier transform of/(X). then Z(t) may also be written
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(63) Z(t, fa) =   f   g(t-s)Y(ds,fa
J-co

where Y(I, (fa) is again a Wiener process.
The auto-correlation function of Z(t) is

fas) =  f Z(t)Z(t + s)du
J a

/CO

|/(X)|V«*dX
-CO

)

g(t)g(t + s)dt.L
We shall use the facts above, and also the correspondence between uni-

tary transformations of Li«, » and measure preserving transformations of fi
without special mention. (See Paley-Wiener [9] and Bochner [2].)

It should be clear that our theorems hold for Fourier-Wiener transforms.
The only difficulty is that the Z(t) in (62) is defined only almost everywhere
in QX(t). We may avoid this difficulty by defining

X(l, fa = f f(h)Y(d\,0

for intervals / with rational end points as a strong limit in L2, then extending
the definition of X to all intervals. The resulting function satisfies (Bt_4) if a
null set of ß is ignored. Moreover, the Z(t, co) of (62) is the limit (for almost
all co and t) of

(65) I    eiuX(d\, fa
J -A

as A—>». The last integral is to be taken in the sense of §4. Our statements
in this section really concern the limit of (65).

Theorem 9. If fGL2 and if

J*°°{ig(i + x2)}H/wNx< »,
then (for almost all fa Z(t, co) is continuous in t. If fÇ^L2 and if

(66) j     |x|2a|/(X)|2dX < », 0<n¿l,
*/ —on

or, what is the same as (66) for 0 <a < 1, if
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20(0) - fas) -fa-s)(67) f
J o

ds < »,

¿Aew Z(¿, co) G-ff« /or almost all co.

Theorem 10. 7//G-Í-2 and i/ (66) or (67) is ¿r«e, then for almost all co,

(68) lim sup1    \        =11/11.
t^«,      (lg t)1'2

Only Theorem 10, which sharpens Theorem 8, needs an indication of the
proof. We assume ||/|| =1 and prove first that (68) is true with g for =.

Clearly, for p<l,

(69)

/exp {p|Z(¿) ¡2}<üco =   I exp {pZi + pZ2}dco
a Ja

1 y»  CO       /%  CO

= — I e^+^e-^-^dudv < ».
V   J _» J _oo

(Zi is the real part of Z, and Z2 is the imaginary.) Since the transformations
Z(t)—>Z(t-\-s) can be regarded as the result of a measure preserving flow of
Ü into itself, the maximal ergodic theorem and (69) imply

1    "
(70) sup — £ A„{Z(kô, fa} < »,

«    i
1   rT

(71) sup— I    Ap{Z(t, fa)}dt < »
T J o

for every p<l, every 5>0, and almost every co. From (70) and (71) we con-
clude, as in the proof of Theorem 7, that

(72) | Z(nb, fa | < {p-1'2 + o(l)} (lg no)1'2,
I      /. (n+l)5

(73) - | Z(t, fa\dt< {p-1'2 + o(i)} (lg nby2.
b   J nS

This much is accomplished without using (66). When a = l, Z(t) is dif-
ferentiate and we write

= Z(nb) +  f  Z'(u)du, nb ^ t < (n+
J ni

(74) Z(t) = Z(nb) +  I    Z'(u)du, nb ^ t < (n + 1)5.
J ni

Since Z'(t) is the Fourier-Wiener transform of iXfÇk), (73) holds with Z re-
placed by Z' and p replaced by any number less than ||X/(X)||, say by A
= ||X/(X)||/2. Thus (72) and (73) imply

| Z(t) | < {p-l>2 + A-"2b + o(l)} (lg no)1'2,
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and this is equivalent to (68) with ^ for =, since p and S are restricted only
byp<l and 5>0.

When 0<a<l we write

Z{t) =   f   e*'f{\)Y{d\) +  f       eiX'f{\)Y{d\)
J-L J \M>L

= Z»it) + Zi(t).

By what has already been proved, (68) is true with Z3 for Z and ^ for =.
As for Z4, if r¡ > 0 we choose L so large that

/
|/(X)|2| \\2ad\ < r,.

|X|>£

The argument concluding the proof of Theorem 7 then shows that

|z4(o| < idw + oiDliigty*
with C independent of r¡. So (68) is true with  = for =.

In order to show that (68) is true when = is replaced by =, we use the
representation (63), in which g(t) is the Fourier transform of/(X). A few pre-
liminary remarks are needed.

It is well known that if h(K)^L2 and p(K)GL, then fh{\—p)p{p)dp be-
longs to L2.

Suppose that/(X) and | X| a/(X) belong to L2, that g{t) is the Fourier trans-
form of /(X), and that q{t) is an infinitely differentiable function which
vanishes outside some bounded interval. The inverse Fourier transform of
q(t)g(t) is

(27T)1'2  f   /(X - p)p{p)dp,
J — oo

where p{X) is the inverse Fourier transform of q{t). It is clear that £(A)
vanishes at infinity faster than any power of X, so that p{\) and |X|a£(X)
both belong to L. Noting that |X|ag |X— p\a+ \p\ a for 0<a^l, we have

I        /»  00 (%  GO

lxHI     ii*-Up{ß)du   =   I      \\- p\»\f(\-p)\\p(p)\dp
I J —oo I J — eo

|/(x- p)\\p\°'\p{p)\dp,

and by the first remark, both terms on the right belong to L2. Hence q{t)g{t)
is the Fourier transform of a function satisfying (66). The same is true of
(l-q(t))g{t).

We take for q{t) a function which vanishes outside ( — L, L), equals 1 in
(1 — L, L — l), and elsewhere assumes only values between 0 and 1. Then
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Z(t) =   f   q(s)g(s)Y(t -ds)+   f    (1 - q(s))g(s)Y(l - ds)
J —M J —CO

= Zb(t)+Zo(t).

If L is so large that ||(1—fl;)g|| <y then

I Z,(t) |
(75) lim sup- £« r¡.

^ p (ig ty2 -

On the other hand, the random variables Z6(0), Z6(2L), Z5(4i,), • • • are in-
dependent and for large z

P{ \Zh(2nL) | > z} =â Pfreal part of Zh(2nL) > z]

ffvMJ,
2,2,e~u '" du

0-7T1

a>-r'/.'.
3z*1'2

Here cr = |lgg||. Thus the series

(76) £ P{ I Z6(2»Z) I > <r(lg 2WL)1'2}
n-l

diverges. Accordingly, for almost all co

(77) \Zb(2nL)\ > c(\g2nLy<2

for infinitely many n. Since rj can be chosen small and a can be chosen close
to 1, it follows from (75) and (77) that (68) is true with ^ for =. This com-
pletes the proof of Theorem 10.

The limit in (68) remains the same if Z(t) is restricted to a sector or if
the argument of Z(t) is restricted by

-(lg/)-1/2<argZ(0 <(lg/)-1/2,

for the series corresponding to (76) diverges.
It is easy to see that (66) may be dispensed with if / is restricted to an

arithmetical progression:

Theorem 10'. If fÇ_L2, then for amost every co
' ZM I     11,11

lim sup ■
lgl/2 „

A finer study of the properties of Z(t) requires more knowledge of /(X)
than (66) furnishes. We give one example, which by no means exhausts the
subject.
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If /= {a, b) we write ci for {ca, cb) and interpret Y(cd\) as the differential
of Y(cl). Let us define

r°° 1 1
(78) W{u) =   I     (eiX - l)\i¡~1e'íi2Y(e-"d\),-< ß < —

J o 2 2

By making use of the correspondence between unitary transformations of L2
and measure preserving transformations of Í2, it is not difficult to show that
W is a Fourier-Wiener transform, though of course not a transform of the Y
appearing in (78).

In order to apply Theorem 10, we verify that condition (67) is satisfied.
The auto-correlation function is

/»  00

(<riX - l)(eiXe" - 1)X2^-VX.
o

We have
/» 00

0(0) =1     I eiX - 1 |2X^-2dX =
T(2 - 2ß) sin 2/3tt

r, , 2ir sin ßir
<p{0) =   I     | eft - 1 \2\2^2d\ = r^r- = Kß

Jo

and

I      I (e — 1)X      — (e    — 1)X     | <zX = A^
J o

Hence, by the inequality of Cauchy-Schwarz,

0(0) - <p(v) = (1 - «"»-»'^»MO) + e^-1'2)" f   (e-» - l)(e» - e»e»)X*-*dX
•/o

= O(z)1'2-^).

This is enough to show that (67) holds for some a>0, for 1/2— ß>0. Thus,
for almost all u,

I W{u) |
(79) lim sup —-:—r— - Kß.

|«|-..   (lg | «| )1/2

In order to use (79) we need a lemma, whose proof is left to the reader.

Lemma 17. Suppose that |/(X) | = | g(\) |, that

U(t, u) =   f h(K, t)f{\)Y{d\, w),

Vit, u) - j h(\ t)g(\)Y(d\, co),
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and that

lim sup | V(t, co) | ^ 1

for almost all co. Then also

lim sup | U(t, co) | è 1

for almost all co.

Note that for />0,

V(t) m  f   (e*< - l)\ß-W(d\)
(80) Jo

so that

I V(t) |
lim sup-¡-¡-= Kg

r fi'2-ß(\g \\gt\yi2

as t—»oo or ¿—»0, for almost all co. This together with the lemma yields the
following statement: If

1 1
(81) dX«"1 ^ /(X) g CX"-1, -< ß < —,

and

Z(t)=   f°V'-l)/(\)F(áX),
J 0

¿Aew /or almost all co

I £(0 I(82) CiKß Ú lim sup-—¡—i—¡- g C2Ä^,   í -* oo   or I -» 0.
<I/ÎH,(lg |lg¿|)1/2

An / satisfying the above inequalities cannot possibly belong to L2. We shall
see that (82) really corresponds to two theorems concerning Fourier-Wiener
transforms—one dealing with local behavior and one with averages.

Theorem 11. 7//G-Í-2, if (81) is true for large X, and if

(83) Z(t) =   f   f(\)e*<Y(d\),
Jo

then for every t and almost all co,

| Z(l + h) - Z(t) |(84) CiKß ^   lim -¡—i-Ail-g CK
l*l-o    h 1/2"~"(lglg 1/   *   )WI
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Theorem 12. IffGL*, if GX" ¡S/(X) g C2V>for small X with -1/2 </3 < 1/2,
and if Z(t) is again defined by (83), then

I J o

r
Z{t)dt

(85) d^fl á hm sup—- < C2Kß
r^»F pi/2-0(ig ig r) -

for almost all u.

To prove Theorem 11 we make the following observations: Z(t) is sta-
tionary, so it suffices to consider Z{t) —Z{0) as /\ 0. Now, the local behavior
of Z{t) depends, as we know, only on the part /¿, for /£ is an analytic func-
tion for every u. Since the same is true of V(t) as defined by (80), we compare

I (eiu _ i)\ß-iY{d\)
L

ith

(«»' - l)/(X)F(dX)/;

and use Lemma 17 to prove the theorem.
The proof of Theorem 12 is similar. We have

f Z(t)dt = - i f   (eixr - 1)/(X)X-1F(¿X) - i f   {e*T - 1)/(X)X"1F(¿X).
Jo Jo J L

The second integral is 0(lg P)1/2 by Theorem 10, and we compare the first
integral with

, L

{e*T - l^-WidX).
J o0

If one makes assumptions only about the behavior of

/

\t ,
X"2 sin2 — |/(X)|2dX,

results less precise than (84) and (85) can be proved.
Theorems  11  and  12  contain  the laws of the  iterated  logarithm  for

Brownian motion. One has only to consider (80) written for/3 = 0,

Vit)
/% oo    pxKt   _   1

—-Y{d\).
Jo X

This is the complex (two-dimensional) Brownian motion which starts from
the origin at t = 0. For t—>°o  the limit following (80) gives the law of the
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iterated logarithm at » ; for /—»0, the local law of the iterated logarithm. The
more refined theorems concerning upper and lower sequences escape our
methods.

Theorem 4 applied to Brownian motion yields only a uniform Lipschitz
condition of order a for every a<l/2, which is somewhat weaker than what
can be proved by a direct probability argument. Actually the following
theorem is true for Fourier-Wiener transforms.

Theorem 13. Under the hypotheses of Theorem 11, Z belongs to Hm-ß but
not to Hafor any a> 1/2— ß. (It is assumed that Ci>0 in (81).)
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