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Abstract. In this paper a string is a sequence of positive non-increasing real

numbers which sums to one. For our purposes a fractal string is a string formed

from the lengths of removed sub-intervals created by a recursive decomposition
of the unit interval. By using the so called complex dimensions of the string,

the poles of an associated zeta function, it is possible to obtain detailed in-

formation about the behaviour of the asymptotic properties of the string. We
consider random versions of fractal strings. We show that using a random re-

cursive self-similar construction it is possible to obtain similar results to those

for deterministic self-similar strings. In the case of strings generated by the ex-
cursions of stable subordinators, we show that the complex dimensions can only

lie on the real line. The results allow us to discuss the geometric and spectral
asymptotics of one-dimensional domains with random fractal boundary.

1. Introduction

In [14] there is an extensive analysis of fractal strings. These are sequences
extracted from the construction of fractal subsets of R and are used as models for
other infinite series such as the primes. The focus of [14] Chapter 2 was on some
simple strings arising from iterated function systems on the real line and, in that
setting, by considering an associated zeta function, it is possible to give explicit
formulas for various quantities associated with the resulting self-similar string. The
explicit formulas are determined by the complex dimensions of the string, defined
as the poles of the zeta function.

In this work we will see how some aspects of this theory carry over to the setting
of random fractal strings. There are many natural random fractals which generate
strings and we will discuss three. Firstly a natural generalization of the iterated
function system is the random recursive fractal and it generates a corresponding
random string. Secondly, the zero set of Brownian motion provides a fractal set of
dimension 1/2 and it too can be used to generate a string. We extend this to strings
arising from stable subordinators. We also consider some strings that have larger
random fluctuations, which shows that there is little that can be said in such cases
using the techniques developed here.

One reason for the development of the study of fractal strings was that they
provide a sufficiently simple set for the study of the second order term in the asymp-
totics of the eigenvalue counting function of the Laplace operator on a bounded
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domain. This problem, of hearing the shape of a fractal drum, was considered in
a number of papers. See for example [2], [4], [11], [5], [12], [13]. In the case of
two-dimensional domains with an irregular boundary there is a range of possible
behaviour for the second order term in the asymptotics of the eigenvalue counting
function. The problem is made simpler if we reduce to one dimension and consider
a fractal string as a set with fractal boundary. The explicit formulas that follow
from our results on the complex dimensions allow us to obtain precise results on
the eigenvalue asymptotics for our random fractal strings.

For example, if we consider the fractal string generated as the complement of
the zero set of Brownian motion, then the fractal boundary problem associated to
the string has the following property. If we let N(λ) denote the eigenvalue counting
function (the number of eigenvalues of the Dirichlet Laplace operator on the string
whose value is less than λ), then we have the following asymptotic formula; for any
ε > 0, almost surely we have

N(λ) = λ+ Lζr(1/2)λ1/2 + o(λ1/4+ε),

where L is the local time at 0 of Brownian motion run for time 1 and ζr is the
Riemann zeta function. The error term could be reduced if we could establish
meromorphic continuation of the associated zeta function to the left of the region
{z ∈ C : Re(z) > 1/4}.

An outline of the paper is as follows. We begin by stating some of the results
concerning the behaviour of self-similar strings. This is followed by a discussion
of the general branching process, a random process which describes the underlying
tree structure in a random recursive fractal. We will establish a rate of convergence
theorem for such processes; this is required to prove meromorphic continuation
of the zeta function of our random recursive strings. In Section 4 we discuss the
random recursive strings. In particular, we show that the poles (of the meromorphic
continuation) of their zeta functions are almost surely the complex solutions of a
natural ‘Moran–type’ expectation equation. In Section 5 we consider the stable
strings and show that their zeta functions can be meromorphically continued and
will not have any complex dimensions with non-zero imaginary part. We conclude
the discussion of meromorphic continuation by exhibiting in Section 6 a particular
type of scale irregular random Cantor set which has large fluctuations and our
techniques do not allow us to prove meromorphic continuation. Finally in Section 7
we discuss some properties of the string that can be deduced from the complex
dimensions. These include the asymptotic behaviour of tubular neighbourhoods of
the boundary and the asymptotics of the eigenvalue counting function.

2. Self-similar fractal strings and their zeta functions

Fractal strings were introduced in [12] and in [14] a theory of complex di-
mensions of fractal strings was developed and its connections with number theory
explored. We introduce the terminology and several results. Our aim will be to
consider the zeta functions of our strings to determine their complex dimensions
and the behaviour of the zeta function at its poles.

In short, a fractal string is a bounded open subset of the real line, U ⊂ R,
with boundary F = ∂U , a totally disconnected (compact) subset of R with measure
0. Frequently, a fractal string U is identified with the sequence L = {Li}∞i=1 of
lengths of the connected components (largest open sub-intervals) of U , written in
non-increasing order according to multiplicity. To avoid trivial situations it is always
assumed that the sequence is infinite and Li → 0. Without loss of generality it can
be assumed that U ⊂ [0, 1] and that L has total length one: |U | =

∑∞
i=1 Li = 1.

We now focus on self-similar strings; we first recall their construction before
discussing some of the results of [14] concerning their complex dimensions. We
start with the interval [0,1]. A self-similar set can be constructed from a family of
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similitudes {ψi : i = 1, . . . , N} where ψi : [0, 1] → [0, 1] and we write ri (0 < ri < 1)
for the Lipschitz constant of ψi. We assume that our maps satisfy the open set
condition (OSC) in that there is an open set O ⊂ [0, 1] such that ψi(O)∩ψj(O) = ∅
and O ⊂ ∪N

i=1ψi(O). The self-similar set F is the unique fixed point in the set of
subsets of [0,1] such that

F =
N⋃

i=1

ψi(F ).

It is also obtained as the limit of repeated application of the maps. If we let I1 =
{1, . . . , N} and set In = In

1 for the sequences of length n we can use this to index
the subsets of the fractal. That is if i = (i1, . . . , in) we write ψi = ψi1 ◦ψi2 ◦ · · · ◦ψin

and

F =
∞⋂

n=1

⋃
i∈In

ψi([0, 1]).

Note that the subsets of the fractal are indexed by an N -ary tree.
The set F is a subset of [0,1], and we note that there are subintervals Gj ⊂

[0, 1], j = 1, . . . ,M such that Gj ∩Gj′ = ∅ for j 6= j′ ∈ {1, . . . ,M} and

[0, 1] =
M⋃

j=1

Gj ∪
N⋃

i=1

ψi([0, 1]).

The maps which form these intervals are written ϕi, so that ϕj([0, 1]) = Gj . The
lengths of the removed intervals Gj are denoted by lj . It is these removed intervals
that we use to form our string. From our recursive construction we see that at each
iteration of the maps a new collection of subsets Gij = ψi ◦ϕj([0, 1]) is formed with
length L̃ij =

∏n
k=1 rik

lj . We now place the collection of all lengths in non-increasing
order to form our string,

L = (L1, L2, . . . ), Li ≥ Li+1,
∞∑

i=1

Li = 1.

A simple example is the middle third Cantor string in which M = 1, N = 2, l =
1/3, r1 = r2 = 1/3.

The geometric zeta function of the string is given by

ζ(s) =
∞∑

i=1

Ls
i , s ∈ C.

The complex dimensions of the string are defined to be the poles of the meromorphic
continuation of the geometric zeta function. A result in [14] is to prove that the
geometric zeta functions can be analytically continued to the left of the rightmost
pole, which occurs at the dimension of the string and to calculate the residues of the
complex dimensions of the string. These give rise to so called explicit formulas giving
more detailed information about this object. In particular, these explicit formulas
are expressed in terms of the (visible) complex dimensions and provide a precise
description of the oscillatory behaviour in the underlying geometry, dynamics or
spectrum.

We will find it convenient to think (as in [14]) of the string as a measure. The
sequence (Li)∞i=1, of ordered lengths defines a measure on [1,∞) as

η(dx) =
∞∑

i=1

δL−1
i

(dx),
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where δx denotes the Dirac measure concentrated at x. We will write the counting
function as

(2.1) η(x) =
∫ x

0

η(dy) =
∞∑

i=1

I{L−1
i ≤x},

where IA denotes the indicator function of the set A. Using the expression for the
string as a measure we can write the zeta function as a Mellin transform of the
measure

ζ(s) =
∫ ∞

0

x−sη(dx).

We conclude with a summary of results.

Theorem 2.1. For a self-similar string, the zeta function is given by

ζ(s) =

∑M
j=1 l

s
j

1−
∑N

i=1 r
s
i

.

The set of complex dimensions is contained in

C = {s ∈ C :
N∑

i=1

rs
i = 1}.

The zeta function can be meromorphically continued to the left of the rightmost pole
(in fact to all of C).

Remark 2.2. (1) The only complex dimension located on the real axis is equal
to df , the fractal dimension (Minkowski, upper box dimension) of F . It is equal
to the similarity dimension of F , that is the unique real solution to the ‘Moran
equation’

∑N
i=1 r

s
i = 1 and also coincides with the abscissa of convergence of the

Dirichlet series defining ζ(s). Moreover, df ∈ (0, 1) and is a simple pole of ζ(s).
(2) In general the complex dimensions are contained in C as there may be cancel-
lations between the zeros of the numerator and those of the denominator of ζ(s),
as shown in [15]. Of course, in the case of a single gap, M = 1, then the set of
complex dimensions precisely coincides with C. (An analogous statement holds for
the lattice case of Theorem 2.3 below)

There is a dichotomy in the structure of the complex dimensions. A self-similar
string is non-lattice if the numbers log ri, i = 1, . . . , N are rationally independent,
and lattice otherwise. In the lattice case, there exists r ∈ (0, 1), called the ‘mul-
tiplicative generator’ of the string, and positive integers without common divisors,
ki, i = 1, . . . , N such that ri = rki . We will write T = − log r. In the lattice case
the string has a line of complex dimensions at each zero of the denominator of the
zeta function. In the non-lattice case the real parts of the complex dimensions are
dense to the left of the rightmost pole of the zeta function. The non-lattice case
can be approximated by a sequence of lattice strings whose periods diverge.

Theorem 2.3 ([14] Theorem 2.13). In the lattice case ζ(s) is a rational function
of rs = e−Ts. There are finitely many poles ω0 := df , ω1, . . . , ωq of the zeta function
(obtained as roots of the polynomial equation

∑N
i=1 z

ki = 1, with z = rs) and there is
an oscillatory period p = 2π/T , such that the set of complex dimensions is contained
in

C = {ωu +
√
−1np : n ∈ Z, u = 0, . . . , q}.

In the non-lattice case, df is the unique pole of ζ(s) on the line Re(s) = df . The
complex dimensions of the string can be approximated by the complex dimensions of
a sequence of lattice strings with larger and larger oscillatory period. In particular,
there are countably many complex dimensions (a subsequence of which tends to,
but does not touch, the line Re(s) = df ) and they are all located in a horizontally
bounded strip.
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One sees that in the lattice case, the complex dimensions are periodically dis-
tributed on finitely many lines, whereas in the non-lattice case, they exhibit a
‘quasi-periodic behaviour’; the latter is studied in more detail in [14] (see also
[15]).

In the final section we will discuss the application of these results to the geom-
etry and spectral properties of the string. By essentially inverting the zeta function
we can recover asymptotic properties of various counting functions associated with
the string.

3. The general branching process

We will see that random fractal strings display a wider variety of behaviour
than their deterministic counterpart. In order to obtain theorems on the complex
dimensions analogous to the deterministic case we will need some results from the
theory of general or Crump-Mode-Jagers (CMJ) branching processes.

The self-similar set F can be described by the sequence space I = ∪∞n=0In,
which we can think of as a tree. In a similar way (to be described below) we think
of random recursive fractals as indexed by random trees, see [9]. The sample paths
of classical Galton–Watson branching processes therefore provide a description of a
random recursive fractal. For a tree which contains more structure we can consider
the sample paths of the general branching process or branching random walk.

Let In = ∪n
k=0Nk and I = ∪kIk, where I0 is the empty set. The concatenation

of sequences i and j ∈ I will be written ij. For an infinite sequence i ∈ I\In, denote
by i|n the sequence truncated to length n and by i[n] the n-th element of i. We
write j ≤ i if i = jk for some k, and denote by |i| the length of the sequence i.

The general branching process will have a sample space defined by a random
subset T of I. An element i ∈ Nn represents an n-th generation individual in the
branching process. If i has j children, then these are i1, i2, . . . , ij. A tree T is a
subset of the space I such that:

i) ∅ ∈ T is the root of the tree;
ii) i ∈ T implies i|k ∈ T for all k < |i|;
iii) if ij ∈ T for some j ∈ N, then i1, i2, . . . , i(j − 1) ∈ T .

Level n of the tree will be denoted Tn = T ∩ Nn. We have a one-one correspon-
dence between trees and feasible realisations of the set of individuals in a branching
process.

For the individual indexed by i we have a description Ui = (ξi, λi, φi). The Ui

are independent and identically distributed and consist of three components. The
reproduction process ξ : R+ → Z+ (where R+ = [0,∞),Z+ = 0 ∪ N) is a point
process describing the offspring produced at each time; λ ∈ R+ is the life span, and
φ is a random characteristic, a product-measurable non-negative random process
that assigns a score to an individual. Note that we make no assumption about the
joint distribution of the components of U .

For t ≤ λi, ξi(t) is the number of children born to i in time t. We write
Ni = ξi(λi) for the total number of children born to i. Let T ⊂ I be the individuals
in a CMJ process. We take ∅ as the initial ancestor, and then for each individual
i ∈ T include its children i1, i2, . . . , iNi ∈ T . Clearly T is a random tree. Let the
birth time of ∅ be σ∅ = 0, and let the birth time for ij be σij = σi + ti(j), where
ti(j) = inf{t : ξi(t) ≥ j}. Any distribution for U∅ induces a probability space
(Ω,B,P), where Ω is the space of all trees T and their associated {Ui : i ∈ T}.

Let Z(t) be the population alive at time t, given Z(0) = 1. By considering the
offspring of the initial individual ∅, we have a decomposition of the process as

(3.1) Z(t) = I{λ∅>t} +
ξ∅(t)∑
i=1

Zi(t− σi),
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where each Zi is an independent copy of the branching process with initial ancestor
the individual with address i. The process counted with random characteristic φ is
then

Zφ(t) =
∑
i∈T

φi(t− σi),

where the φi are i.i.d., and may depend upon the whole process started from i.
We note that Zφ(t) = Z(t) if we use the random characteristic φi(t) = I{0≤t<λi}.
Let Is denote the set of sequences corresponding to individuals to be born after
time s whose mothers were born before s. We can decompose the process with
characteristic, at any time s < t, as

(3.2) Zφ(t) =
∑
i∈Is

φi(t− σi) +
∑
i∈Is

Zφ
i (t− σi).

We make the following assumptions (writing E for the expectation under P).

Assumption 3.1. (A1) Eξ∅(0) = 0, and there exists a unique Malthusian pa-
rameter α ∈ (0,∞) such that

E
N∅∑
i=1

e−ασi = 1 and E
N∅∑
i=1

σie
−ασi <∞.

(A2) For Xα =
∑N∅

i=1 e
−ασi ,

EXα log+Xα <∞.

(A3) There exists on [0,∞) a non-increasing, positive integrable function g such
that E(supt g(t)−1

∫∞
t
e−αuξ(du)) <∞.

We will assume that our characteristics are bounded.
We note that if mφ

t = Ee−αtZφ
t , then it satisfies a renewal equation

mφ
t = Ee−αtφ(t) +

∫ t

0

mt−sµα(ds),

where µα(t) = E
∫ t

0
e−αsξ(ds). This is the distribution function of a probability

measure by our choice of α. We will refer to a measure as lattice if its support lies
on a lattice with period T . If the measure is not lattice we call it non-lattice. By
the renewal theorem we have that as t→∞, if the measure µα is non-lattice

mφ
t → mφ

∞ =

∫∞
0

E(φ(t))e−αtdt∫∞
0
te−αtµ(dt)

.

In the lattice case we obtain limits down an appropriate subsequence,

mφ
nT →

∑∞
j=0 E(φ(jT ))e−αjT∫∞

0
te−αtµ(dt)

, as n→∞.

In either case we will write the limit as mφ
∞.

Let
Wt =

∑
i∈It

e−ασi .

It is shown in [18] that this process is a martingale and, as it is positive, converges
to a limit W . We observe that this can be decomposed as

(3.3) W =
∑
i∈Is

e−ασiWi,

whereWi denotes the limit random variable started from the individual with address
i (and we write W = W∅).

Under Assumption 3.1 we have the following.
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Theorem 3.2. ([18, 7]) Under A1, A3, for any characteristic φ there is a
random variable W such that:
(1) If µα is non-lattice, then e−αtZφ(t) → mφ

∞W almost surely as t→∞.
(2) If µα is lattice, then e−αnTZφ(nT ) → mφ

∞W almost surely as n→∞.
Moreover, EW > 0 if and only if A2 holds.

Note that in the lattice case we have a finite constant c1 such that

lim sup
t→∞

e−αtZt ≤ c1W.

We will now give two assumptions which each provide a restriction on the
branching process.

Assumption 3.3. The probability space Ω is finite. There are only a finite
number of possible life histories U .

Assumption 3.4. The reproduction process is bounded in that there exist finite
constants c2 and Λ1,Λ2 such that ξi(λi) ≤ c2 and Λ1 ≤ λi ≤ Λ2 for all i ∈ T .

Clearly Assumption 3.3 will imply Assumption 3.4 and we will therefore make
the second assumption unless we require a stronger statement. Both these assump-
tions imply that the random variable W has moments of all orders (see [3]).

We state here a rate of convergence theorem for the renewal theorem. This
will enable us to prove a rate of convergence theorem for the general branching
process which will be required to prove the meromorphic continuation of our random
recursive strings.

We state the result in a more general form. Let f, g be functions satisfying the
renewal equation for a probability measure ν,

(3.4) f(t) = g(t) +
∫ t

0

f(t− s)ν(ds).

We will write the first moment as ν̄ =
∫∞
0
sν(ds).

Statements of the rate of convergence in the renewal theorem have been given
in a few places. In order to find this theorem we refer the reader to [20]; other
approaches in the lattice and non-lattice cases can be found in [16], [10]. We call
a measure ν strongly non-lattice if

lim inf
|θ|→∞

|1−
∫ ∞

−∞
eiθxν(dx)| > 0.

Lemma 3.5. Let f satisfy the renewal equation (3.4) with g a directly Riemann
integrable function and ν a probability measure which has exponential moments, in
that

∫∞
0
eδsν(ds) <∞ for some δ > 0. Then there exists a constant ρ > 0 such that

(1) In the strongly non-lattice case

lim
t→∞

eρt|f(t)− 1
ν̄

∫ t

0

g(s)ds| = 0.

(2) In the lattice case, where ν lies on a lattice with period T

lim
t→∞

eρt|f(t)−G(t)| = 0,

where G is the T -periodic function given by

G(t) =
T

ν̄

∞∑
j=−∞

g(t+ jT ).

Corollary 3.6. Let g be such that g(t) ≤ e−δt and let ν be a lattice or strongly
non-lattice sub-probability measure in that ν is a measure such that

∫∞
0
ν(ds) < 1,
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then there exists a constant ρ > 0 such that
∫∞
0
eρsν(ds) = 1 and there exists a

constant c3 such that
f(t) ≤ c3e

−ρ′t,

for any ρ′ < min(δ, ρ).

Remark 3.7. (1) We do not have an analogous result for the general non-lattice
case.
(2) There are other conditions under which such results can be obtained. In the
case of a finite measure (where the strong non-lattice case is the non-lattice case)
we refer to [10] where the precise value of ρ is given.

Assumption 3.8. The general branching process mean measure is either lattice
or strongly non-lattice.

Under this assumption, we will let ρ be the rate of convergence in the renewal
theorem for the mean of the general branching process,

ρ := sup{β : lim
t→∞

eβt|mφ
t −mφ

∞| = 0}.

This constant could depend upon φ but as we will only use one particular φ in what
follows, we omit the dependence.

Theorem 3.9. Under Assumptions 3.1, 3.4 and 3.8, for any 0 < κ < min(α, ρ)/2,
then

lim
t→∞

e−(α−κ)t|Zφ
t −WEZφ

t | = 0, P− a.s.

The proof will follow from a series of lemmas. We begin with the following
renewal-type theorem.

Lemma 3.10. Under the assumptions of Theorem 3.9, if a(t) is bounded over
finite intervals and satisfies the equation

a(t) = E
N∅∑
i=1

e−2ασia(t− σi) + b(t), ∀t > Λ2,

with 0 < |a(0)| <∞, where |b(t)| ≤ c1e
−γt for all t ≥ 0 for some constant c1, then

there exists a constant c2 such that for all γ′ < min(α, γ),

|a(t)| ≤ c2e
−γ′t, ∀t ≥ 0.

Proof. Fix a γ′ < min(α, γ). As a(t) is finite initially and is bounded over
finite intervals we can set c2 = supt∈[0,t0] e

γ′t|a(t)| < ∞, where t0 will be chosen
later. Then for t ∈ [t0, t0 + Λ1] we have

|a(t)| ≤ E
N∅∑
i=1

e−2ασic2e
−γ′(t−σi) + |b(t)|,

≤ c2e
−γ′t

(
E

N∅∑
i=1

e−(2α−γ′)σi + c1e
−(γ−γ′)t

)
.

Hence, for γ′ < α, we know that C = E
∑N∅

i=1 e
−(2α−γ′)σi < 1 and hence for γ′ < γ

we can choose t0 such that C + c1e
−(γ−γ′)t0 ≤ 1. Thus

|a(t)| ≤ c2e
−γ′t, t ∈ [0, t0 + Λ1].

Proceeding in the same way we can extend the estimate to [t0 +nΛ1, t0 +(n+1)Λ1]
for all integers n, giving the result. �

Remark 3.11. Even though the equation satisfied by a(t) is a renewal equation,
we have chosen to prove this result directly, as it is all we require for the proof of
our main Theorem.
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Now we turn to a variance calculation that will establish Theorem 3.9. Let
βφ
i (t) = e−αtZφ

i (t), so that mφ
t = Eβφ

t , and note that Xi(t) = βφ
i (t) −mφ

t Wi has
mean 0. Let V (t) = E(X2(t)) = E(βφ(t)−mφ

t W )2. This quantity is bounded over
finite time intervals as, under Assumption 3.4, all the moments of W and βφ exist.

Lemma 3.12. Under Assumptions 3.1, 3.4 and 3.8 for any γ < min(α, ρ), there
exists a constant c3 such that

V (t) ≤ c3e
−2γt, t > 0.

Proof. We will consider s = 0+ in (3.3), so that we are just splitting the
population based on the first individual and then i = i for i = 1, . . . , N∅. Thus, for
t > Λ2,

Xt =
N∅∑
i=1

e−ασiβφ
t−σi

−
N∅∑
i=1

e−ασimφ
t Wi

=
N∅∑
i=1

e−ασiXt−σi
+

N∅∑
i=1

e−ασi(mφ
t−σi

−mφ
t )Wi

and we have, by conditioning on the first event, using independence between branches
and the fact that EXt = 0, that

V (t) = EX2
t

= E(
N∅∑
i=1

e−ασiXt−σi
)2 + 2E

N∅∑
i=1

e−ασiXt−σi

N∅∑
i=1

e−ασi(mφ
t−σi

−mφ
t )Wi

+E(
N∅∑
i=1

e−ασi(mφ
t−σi

−mφ
t )Wi)2

= E
N∅∑
i=1

e−2ασiV (t− σi) + g(t),

where

(3.5) g(t) = E
N∅∑
i=1

e−2ασi(mφ
t−σi

−mφ
t )E(Xt−σi

Wi)+E(
N∅∑
i=1

e−ασi(mφ
t−σi

−mφ
t )Wi)2.

We need to control g(t) and for this we need to compute f(t) = E(WX(t)) using
Lemma 3.10. By splitting at the first individual, for t > Λ2,

f(t) = EW
N∅∑
i=1

e−2ασiX(t− σi) + EW
N∅∑
i=1

(mφ
t −mφ

t−σi
)e−ασiWi.

This expression can be written using conditioning as

f(t) = E
N∅∑
i=1

e−ασiWi

N∅∑
i=1

e−2ασi(X(t− σi)− (mφ
t −mφ

t−σi
)Wi)

= E
N∅∑
i=1

e−2ασif(t− σi) + h(t)(3.6)

where

h(t) = E
N∅∑
i=1

N∅∑
j=1

(mφ
t−σi

−mφ
t )EWiWj .

By Lemma 3.5 we have constants C1, C2 such that

|mφ
t −mφ

t−σi
| ≤ |mφ

t −mφ
∞|+ |mφ

∞ −mφ
t−σi

| ≤ C1e
−ρt + C2e

−ρ(t−σi).
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Observing that σi ≤ Λ2 we have

(3.7) |mφ
t −mφ

t−σi
| ≤ C3e

−ρt.

Now, using (3.7), we have

|h(t)| ≤ E
N∅∑
i=1

N∅∑
j=1

|mφ
t−σi

−mφ
t |EWiWj

≤ C3e
−ρt(EN∅(N∅ − 1) + EN∅EW 2)

≤ C4e
−ρt.

As f is bounded over finite intervals, we can now apply Lemma 3.10 to (3.6) to
obtain the bound that |f(t)| ≤ C5e

−ρ′t for any ρ′ < min(α, ρ). Putting this into
the expression for g(t) we have

|g(t)| ≤ E
N∅∑
i=1

e−2ασi |mφ
t−σi

−mφ
t ||f(t− σi)|+ E(

N∅∑
i=1

e−ασi |mφ
t−σi

−mφ
t |Wi)2

≤ C3e
−ρtC5e

−ρ′t + C3e
−2ρtE(W 2)

≤ C6e
−(ρ+ρ′)t.

Thus, as V is bounded over finite intervals, we can apply Lemma 3.10 once again
to obtain the existence of the constant c3 such that

V (t) ≤ c3e
−2ρ′t,

for any ρ′ < min(α, ρ) as required. �

Proof of theorem 3.9. The almost sure control on Xt is then accomplished
via Chebychev’s inequality and our variance calculation as, for any γ < min(α, ρ),

P (Xt > θ) ≤ 1
θ2
V (t) ≤ c6θ

−2e−γt.

Hence, for ε > 0, we can set θ = e−(γ−ε)t/2, to obtain by Borel–Cantelli, that there
is a constant C such that

Xt ≤ Ce−(γ−ε)t/2, P− a.s.

As this holds for arbitrary ε, we have the desired result. �

4. Random recursive strings

We now turn to our examples of random fractal strings. The first class is
generated by random recursive fractals in one dimension.

Let A be a finite set. For each a ∈ A we have a set of Na similitudes ψa =
{ψa

i : i = 1, . . . , Na}, where ψa
i : [0, 1] → [0, 1] is a map with contraction factor ra

i

and ψa satisfies the open set condition (with the same open set) for each a ∈ A.
The fractal Fa is the unique compact set satisfying

Fa =
Na⋃
i=1

ψa
i (Fa).

The string is formed from the sequence of removed subintervals, and for each a we
can write

[0, 1] =
Ma⋃
j=1

ϕa
j ([0, 1]) ∪

Na⋃
i=1

ψa
i ([0, 1]).

where the maps ϕa = {ϕa
j : j = 1, . . . ,Ma} are similitudes and ϕa

j has contraction
factor laj .

We now wish to combine these into a random recursive fractal string using a
probability measure on the set A. The informal description is that we start with the
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unit interval and choose a set of similitudes (ψa, ϕa) according to this probability
measure and apply it to the unit interval. We retain the removed lengths as part of
the string and then repeat this procedure independently for each copy of the unit
interval given by the ψa

i . The collection of removed lengths, in non-increasing order,
is the random fractal string.

More formally we proceed as follows. In order to construct a random recursive
string we need an address space. We use the same address space we used to label
the individuals in the general branching process, the set of integer sequences I. Let

Ui = (Ni,Mi, r1(i), . . . , rN (i), l1(i), . . . , lM (i)), i ∈ I,

be independent and identically distributed (N,N, (0, 1)N)-valued random variables.
We define a probability measure Φn on (0, 1)n and take {pn,m}n,m∈N to be a prob-
ability distribution on N× N, then the probability measure for U is given by

P(U ∈ (n,m, Sn)) = pn,mΦn+m(Sn+m), Sn+m ⊂ (0, 1)n+m, n ∈ N.

A random tree T is a subset of I such that
(i) ∅ ∈ T is the root of the tree;
(ii) i ∈ T implies i|k ∈ T for all k < |i|;
(iii) i ∈ T implies i1, i2, . . . , iN(i) ∈ T , and i(N(i) + 1), i(N(i) + 2), . . . 6∈ T .

We will write (Ω,B,P) for the natural probability space associated with these trees.
That is, a sample point ω ∈ Ω will denote a random tree T and the associated
{Ui : i ∈ T}. The σ-algebras are defined as

Bn = σ(Ui; i ∈ Tn−1), B =
∞⋃

n=1

Bn,

and the probability measure, P, is as defined previously. If we project this mea-
sure onto its first coordinate it is the offspring distribution for a Galton–Watson
branching process.

We now regard our random variables Ui with probability measure P, as taking
values in the set A of possible families of maps by taking Na as the number of maps
in the family ψa and Ma as the number of removed intervals needed for the string.
The {ra

i , i = 1, . . . , N} and {laj , j = 1, . . . ,M} are the Lipschitz constants of the
respective maps. We note that we must have 1 ≤ Ma ≤ Na + 1. From now on we
drop the sub or superscript a and regard the N,M, ri, lj as random variables.

The address of each branch in the tree is now used to specify our random Cantor
set. Let

Ci = ψi([0, 1]) := ψ
Ui|1
i|1 (· · · (ψUi|n

i|n ([0, 1]))).

A random recursive fractal can then be defined by

Fω =
∞⋂

n=1

⋃
i∈Tn(ω)

Ci.

We now define a specific general branching process Z with the property that at
time t the individuals alive in the population each correspond to a set in the fractal
of roughly size e−t. Let the reproduction process and life span be given by

(ξ, λ) =

(
N∑

i=1

δ− log ri , max
1≤i≤N

− log ri

)
,

where U ′ = (N, r1, . . . , rN ) is chosen according to the appropriate marginal distri-
bution of P. The birth time σi of an individual with address (ancestry) i can be
written as

σi = − log ri, where ri =
|i|∏

k=1

ri[k](i|k−1).
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Let (Ω∅,B∅,P) be the probability space generated by U∅. The branching process
assumptions of Section 3 can be reexpressed for the fractals as

Assumption 4.1. (A1) P(r1(∅) = 1) = 0, and there exists a unique α ∈ (0,∞)
such that

E
N(∅)∑
i=1

ri(∅)α = 1 and E
N(∅)∑
i=1

| log ri(∅)|ri(∅)α <∞.

(A2) Ω∅ is finite.
(A3) The ri are bounded away from 0.
(A4) The measure µ, with distribution function µ(x) = E

∫ x

0

∑N(∅)
i=1 y−αδ− log ri(∅)dy,

is either lattice or strongly non-lattice.

Remark 4.2. (1) Under Assumption 4.1(A2), Φn is a finite atomic measure on
(0, 1)n.
(2) Under both Assumption 4.1 (A2) and (A3) there exist r∗, r∗ such that 0 < r∗ ≤
ri(∅, ω) ≤ r∗ < 1 for all i = 1, . . . , N(∅, ω), ω ∈ Ω∅ and N(∅, ω) ≤ N̄ < ∞ a.s., for
some scalar N̄ .
(3) The Assumption 4.1(A4) gives the lattice/non-lattice dichotomy for our strings,
that is it is lattice if log ra

i are rationally related for all i = 1, . . . , Na, a ∈ A. In
particular we see that if the probability measure has a density on A, we cannot have
a lattice case.

The Hausdorff dimension of the set Fω can be found by applying the results of
[6], [17] and, as we have assumed the OSC, it is given by the Malthusian parameter
of the CMJ process,

(4.1) df (Fω) = inf
{
α ≥ 0 : E

(∑N(∅)
i=1 rα

i (∅)
)

= 1
}
, for P-a.e. ω ∈ Ω.

Note that for these fractals the other natural notions of dimension, Minkowski,
upper box, etc. all coincide with the Hausdorff dimension.

Now we describe the construction of the random fractal string. To begin we
construct the sample path of this process as our random tree. Associate with each
vertex of the tree the set of removed lengths (lj : j = 1, . . . ,M) of the type of
offspring generated from that vertex. The lengths that compose the random fractal
string are then given by L′ij =

∏n−1
j=1 rij

lj at vertex i = (i1, . . . , in). We then write
them in length order to obtain the string L = (Li)∞i=1.

As in Section 2 we think of the string as a measure, and for the random string
it will be a random measure. Our general branching process can be used to encode
this random measure η by use of a suitable characteristic. We set

φi(t) =
Mi∑
j=1

I{− log lj≤t}.

That is the lengths of the removed pieces of string are a function of the individual
representing that application of the similitude. We also only count the removed part
if it is sufficiently large. We can check that with this choice our general branching
process has encoded the random measure η.
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By the definition of the general branching process and the counting function η
in (2.1), we have

zφ
t =

∑
i∈I∞

φ(t− σi)

=
∑

i∈I∞

Mi∑
j=1

I{− log lj≤t−σi}

=
∑

i∈I∞

Mi∑
j=1

I{L−1
ij ≤et}

=
∞∑

i=1

I{L−1
i ≤et} = η(et).

We note that, as all lengths are less than one, the branching process begins at
t = 0 when Z(0) = 1 and zφ

0 = 0.
We can then use our theorem 3.2, concerning random characteristics, to deter-

mine the growth rate of the string.

Corollary 4.3. Under Assumption 4.1 there is a mean one random variable
W such that in the non-lattice case

lim
t→∞

e−αtη(et) = mη
α(∞)W, P− a.s.

and in the lattice case

lim
n→∞

e−αnT η(enT ) = mη
α(∞)W, P− a.s.

By using the fact that the quantity mη
α(∞) is the mean growth rate we can

write, in the non-lattice case,

lim
t→∞

η(et)
Eη(et)

= W, P− a.s.

We have a similar expression in the lattice case down a subsequence. The random
measure η will satisfy a distributional equality in that it can be expressed as a sum
of scaled copies of itself,

η(dx) =
M∑

j=1

δl−1
j

+
N∑

i=1

η(ridx).

The zeta function of the random string is a random function defined as the
Mellin transform of the measure η,

ζ(s) =
∫ ∞

0

x−sη(dx).

The complex dimensions of the random fractal string are the poles of this function.
In order to compute them we consider the mean zeta function which is given by

Eζ(s) =
∫ ∞

0

x−sEη(dx).

Lemma 4.4. The mean geometric zeta function can be expressed as

Eζ(s) =
E
∑M

j=1 l
s
j

1− E(
∑N

i=1 r
s
i )
.

If Assumption 4.1(A2) holds, the family size is finite, then the mean zeta function
can be meromorphically continued to C. If Assumption 4.1(A3) holds, then the
mean zeta function can be meromorphically continued up to the line Re(s) = 0. In
either case, Eζ(s) is given by the above expression for s in the indicated region.
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Proof. We can use the branching structure of the random set to find a closed
form expression for this mean zeta function. Observe that by construction we have
the following equality in distribution

(4.2) ζ(s) =
M∑

j=1

lsj +
N∑

i=1

rs
i ζi(s),

where the ζi are i.i.d. copies of the original zeta function and the random variables
lj , ri are determined by the particular choice of a ∈ A corresponding to the first
individual.

If we take expectations in (4.2) and condition on the first map,

Eζ(s) = E
M∑

j=1

lsj + E(
N∑

i=1

rs
i Eζi(s)).

As the ζi are just copies of ζ we can rearrange to get

(4.3) Eζ(s) =
E
∑M

j=1 l
s
j

1− E(
∑N

i=1 r
s
i )
.

The poles of this function lie in the set of s ∈ C such that E(
∑N

i=1 r
s
i ) = 1.

Under Assumption 4.1(A2) the probability space is finite and we have the fol-
lowing explicit formula for the mean zeta function as written in (4.3),

Eζ(s) =

∑
a∈A

∑Ma

j=1 l
a
j

1−
∑

a∈A

∑Na

i=1(r
a
i )spa

.

As the sums are finite Eζ(s) can be meromorphically continued to the whole of the
complex plane.

Under Assumption 4.1(A3) the expectations in (4.3) can be computed for
Re(s) > 0 and hence Eζ(s) can be continued to this region. �

The expression for the poles is exactly the expression for the dimension of
the boundary of the fractal string and hence we see that the zeta function is well
defined for Re(s) > df . We now wish to show that the random zeta function can
be meromorphically continued to the left of this line.

The approach we take is based on the Euler–Maclaurin series approach to prov-
ing meromorphic continuation for the usual Riemann zeta function. From the dis-
cussion prior to Lemma 4.4 we can write

(4.4) ζ(s) = WEζ(s) +
∫ ∞

0

x−sV (dx), P− a.s.

where W is the limiting random variable for the normed limit of the distribution
function for the measure η and V (dx) = (η − WE(η))(dx) is a random signed
measure. In order to extend our zeta function we need to be able to compute the
second term for suitable s ∈ C and for this purpose we look at the behaviour of

V (x) =
∫ x

0

V (dy) = η(x)−WE(η(x)).

The fluctuations in this function follow from those of the corresponding general
branching process derived in Section 3.

We can now use this result to establish our main theorem.

Theorem 4.5. Under Assumptions 4.1 (A1), (A3), (A4), there is a number τ
with 0 < τ < min(α, ρ)/2 such that the random zeta function ζ(s) can be meromor-
phically extended to the right half-plane D := {s : Re(s) > α− τ}, where α is given
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in Assumption 4.1 (A1) above. The poles of the random zeta function lie in the set
of complex solutions z ∈ D to the equation

E(
N∑

i=1

rz
i ) = 1.

The residues at the poles z (when the latter are simple) are given by WRes(E(ζ(s)); s =
z), where Eζ(s) is the mean zeta function given in Lemma 4.4.

Proof. With our Theorem 3.9 we immediately deduce the meromorphic ex-
tension from (4.4). This follows if we can prove the existence of the integral∫∞
0
x−sV (dx). By construction it is a question of determining the behaviour of V

at ∞ and, by Theorem 3.9, there is a random constant C and a 0 < τ < min(α, ρ)/2
(where ρ is the rate of convergence in the renewal theorem for the branching process
mean) such that V (y) ≤ Cyα−τ for large y. Hence

∫∞
0
x−sV (dx) is well defined for

Re(s) > α− τ .
We immediately see that

ζ(s) = W
E
∑M

j=1 l
s
j

1− E(
∑N

i=1 r
s
i )

+
∫ ∞

0

x−sV (dx),

so that the poles of ζ(s) in D occur at the same place as those of E(ζ). To compute
the residues we again use the formula (4.4).

Res(ζ(s); s = z) = lim
s→z

(s− z)ζ(s)

= WRes(E(ζ(s)); s = z) + lim
s→z

(s− z)
∫ ∞

0

x−sV (dx)

= WRes(E(ζ(s)); s = z),

as desired. �

Remark 4.6. (1) Note that in general there may be cancellations between the
zeros of the numerator E(

∑M
j=1 l

s
j) and those of the denominator 1 − E(

∑N
i=1 r

s
i )

of the mean zeta function. In the deterministic case examples of such cancellations
can be found in [15]. However if M = 1, the poles of the random zeta function
ζ(s) are precisely located at the complex solutions of E(

∑N
i=1 r

z
i ) = 1 (such that

Re(s) > α− τ).
(2) In the deterministic case, the poles may have multiplicity greater than one
[14] Section 2.2.3; the corresponding Laurent series of the zeta function can, how-
ever, be used instead. In the random case, the above proof shows that the Laurent
series of ζ(s) at a pole z can be expressed in terms of that of Eζ(s) at z.

5. Stable strings

In this section we will discuss the case where the string is generated by the
excursions of a stable subordinator. The main example to bear in mind is the
Brownian string. One-dimensional Brownian motion run for a unit time can be
decomposed into a countable family of excursions away from the origin. The local
time of Brownian motion at 0 can be defined as the density of the occupation mea-
sure of the process at 0. We can then regard the Brownian path as a Poisson process
of excursions indexed by the local time process. Our string will be constructed as
the series of ranked excursion lengths, and as the time at the origin has 0 Lebesgue
measure, it will have the property of total unit length. Our aim will be to consider
stable strings, establish the asymptotic behaviour of the string, show that its zeta
function can be meromorphically continued to the left of its rightmost pole and
obtain an expression for the zeta function at the poles. Our main conclusion is that
for such strings the complex dimensions are purely real.
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5.1. Stable subordinators. The ranked lengths of the excursions of stable
subordinators are known to have a Poisson–Dirichlet, PD(α, 0) distribution for 0 <
α < 1. This type of distribution initially arose when defining the relative frequencies
of various species in a large population. There are a number of ways of defining
such distributions and we refer to [19] for an extensive survey. For our purposes we
recall the definition through subordination and a construction through a family of
independent identically distributed random variables.

Let τs be a stable subordinator. This is an increasing process with stationary
independent increments which can be characterised via its Laplace transform

E[exp(−λτs)] = exp(−sCΓ(1− α)λα),

where C is a constant and Γ is the Gamma function. Let V1(T ) ≥ V2(T ) ≥ . . .
denote the ranked lengths of components of the set [0, T ]\Z, where Z is the closure
of the range of {τs; s ≥ 0}. A basic proposition is that for every s > 0,(

V1(τs)
τs

,
V2(τs)
τs

, . . .

)
has the PD(α, 0) distribution, and also for fixed times t > 0,(

V1(t)
t

,
V2(t)
t

, . . .

)
,

has the PD(α, 0) distribution.
From now on we consider the case t = 1 and write (V1, V2, . . . ), where

∑∞
i=1 Vi =

1, for a random sequence with the PD(α, 0) distribution. An observation which can
be found in [19] is that the random variables Rn = Vn+1/Vn have beta distribution
β(nα, 1) and are mutually independent. For completeness we recall that the β(u, v)
distribution has density function

fu,v(x) =
Γ(u+ v)
Γ(u)Γ(v)

xu−1(1− x)v−1, x ∈ [0, 1].

Thus, given V1 we can recursively construct the relative values of the lengths in the
string and then determine V1 by normalization.

We also note here a first limit result and an important representation.

Lemma 5.1 ([19] Proposition 10). If (Vn) has the PD(α, 0) distribution, then
(1) The limit L = limn→∞ nV α

n exists almost surely.
(2) Let Xn = LV −α

n , then the points (Xn) are the points of a Poisson random
measure with Lebesgue measure as its intensity.

We note that the second part of the lemma means that we can write Xn =∑n
i=1 ξi, where the ξi are independent random variables with the exponential dis-

tribution with mean 1.
Once we have defined the ranked excursions we wish to consider the associated

zeta function

ζα(s) =
∞∑

n=1

V s
n .

The key tool will again be the random measure η on [1,∞) determined from the
string by

η(dx) =
∞∑

n=1

δV −1
n

(dx).
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5.2. The mean zeta function. The first step in our analysis is to consider
the mean behaviour of the zeta function. We write Pα,θ for the general PD(α, θ)
distribution and Eα,θ for the expectation with respect to this distribution. When
θ = 0 we will write Pα and Eα for the distribution and its expectation respectively.

We begin with a useful formula from [19] derived from size biased sampling
from the distribution.

Lemma 5.2 ([19] Corollary 3). For the general PD(α, θ) distribution we have

(5.1) Eα,θ

∞∑
n=1

f(Vn) =
Γ(θ + 1)

Γ(θ + α)Γ(1− α)

∫ 1

0

(1− u)α+θ−1u−α−1f(u)du.

From this we can easily compute the expected value of the zeta function directly,

Eαζα(s) = Eα,0

∞∑
n=1

V s
n .

Setting f(x) = xs in (5.1) and integrating we obtain

(5.2) Eαζα(s) =
Γ(s− α)

Γ(1− α)Γ(s)
.

The Gamma function can be analytically continued to the whole complex plane. It
has no zeros and has simple poles that lie on the real axis at 0,−1,−2, . . . . As the
mean zeta function is a ratio of Gamma functions, we know that the poles lie on
the real line at the values α, α− 1, α− 2, . . . and we have the following lemma.

Lemma 5.3. The mean zeta function can be meromorphically continued to the
whole complex plane and is given there by (5.2).

We will also be interested in the mean growth of our measure η. This can be
computed from (5.1),

Eαη(x) = Eα

∫ x

1

η(dy)

= Eα

∞∑
n=1

I{Vn≥1/x}

=
(x− 1)α

Γ(α+ 1)Γ(1− α)

=
sinπα
πα

(x− 1)α,(5.3)

where the last result follows from the fundamental identities for the gamma function.

5.3. The zeta function for the string. Finally we consider the actual zeta
function associated with the string. The first stage is to prove that it can be
meromorphically continued to the left of the line Re(s) = α and to do this we will
use the following.

Theorem 5.4. For all 0 < α < 1 we have

lim
x→∞

η(x)
Eα(η(x))

=
πα

sinπα
L, Pα − a.s.

Proof. The key to the result, and to some of the later ones is that we can
obtain limit information about η from the asymptotics of Vn.

We can write

η(x) =
∞∑

n=1

I{V −1
n ≤x}

=
{

0 x < V −1
1

m V −1
m ≤ x < V −1

m+1.
(5.4)
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Thus

x−αη(x) =
∞∑

n=1

x−αnI{V −1
n ≤x<V −1

n+1}
,

and
∞∑

n=1

nV α
n+1I{V −1

n ≤x<V −1
n+1}

< x−αη(x) ≤
∞∑

n=1

nV α
n I{V −1

n ≤x<V −1
n+1}

.

Now, as V −1
n →∞ as n→∞, we see that taking limits as x→∞ is equivalent to

taking limits as n→∞ and gives, by Lemma 5.1,

lim
x→∞

∞∑
n=1

nV α
n I{V −1

n ≤x<V −1
n+1}

= lim
n→∞

nV α
n = L, Pα − a.s.

For the left-hand side the change to Vn+1 does not alter the limit and hence,
as upper and lower bounds have the same limit, we have that Pα-almost surely
limx→∞ x−αη(x) = L. We now obtain the stated result by substituting in the
function Eαη(x) from (5.3). �

In order to establish the meromorphic continuation we require a rate of con-
vergence in the above limit theorem. In order to do this we will use the second
part of Lemma 5.1. As we can write LV −α

n as a sum of independent and identically
distributed random variables, we can use the independence to control the growth
rate of LV −α

n − n. We need two preliminary results.

Lemma 5.5. For ε > 0

lim
n→∞

n−(1+ε)/2
∣∣LV −α

n − n
∣∣ = 0, Pα − a.s.

Proof. We begin by observing that

LV −α
n − n =

n∑
i=1

(ξi − 1),

where the ξi are independent exponential random variables with mean 1. We use a
standard large deviation approach

Pα(
n∑

i=1

(ξi − 1) > x) ≤ Pα(exp(θ
n∑

i=1

ξi) > eθ(x+n))

≤ e−θ(x+n)Eα(eθX)n

= e−θ(x+n)(1− θ)−n.

As this holds for all θ < 1 we can optimize the bound by setting θ = x/(x+ n) to
get

(5.5) Pα(
n∑

i=1

(ξi − 1) > x) ≤ e−x(1 +
x

n
)n ≤ e−

1
2

x2
n (1− 2

3
x
n ).

We can follow the same line of argument to show that

(5.6) Pα(
n∑

i=1

(1− ξi) > x) ≤ e−
1
2

x2
n .

Hence, if x < 1
2n, then in (5.5) we have 1− 2

3
x
n ≥

2
3 and combining this with (5.6),

we arrive at

Pα(|
n∑

i=1

(1− ξi)| > x) ≤ 2e−
1
3

x2
n .
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Thus for x = δn(1+ε)/2, we have summability of the probabilities and hence the first
Borel–Cantelli lemma shows that

lim sup
n→∞

|LV −α
n − n|
n

1
2 (1+ε)

≤ δ, Pα − a.s.

As this holds for every δ > 0, the limit exists as required. �

We are now ready to state our convergence rate result. For convenience we
write L̃ = (πα/ sinπα)L.

Theorem 5.6. For any ε > 0,

lim
x→∞

xα(1−ε)/2

∣∣∣∣ η(x)
Eαη(x)

− L̃

∣∣∣∣ = 0, Pα − a.s.

Proof. The proof is an application of Lemma 5.5. It is enough to show that,
for any δ > 0,

lim sup
x→∞

xα(1−ε)/2
∣∣x−αη(x)− L

∣∣ ≤ δ.

As in the proof of the almost sure convergence in Theorem 5.4 we can write

xα(1−ε)/2
∣∣x−αη(x)− L

∣∣ = x−α(1+ε)/2 |η(x)− Lxα|
= x−α(1+ε)/2 |n− Lxα| I{V −1

n ≤x<V −1
n+1}

≤ V
α(1+ε)/2
n+1 max(|n− LV −α

n |, |n− LV α
n+1|)I{V −1

n ≤x<V −1
n+1}

.

To use Lemma 5.5 we note that

lim sup
n→∞

|LV −α
n − n|

V
−α(1+ε)/2
n+1

= lim sup
n→∞

|LV −α
n − n|

n(1+ε)/2
lim

n→∞
(nV α

n+1)
(1+ε)/2.

Thus, applying the result we established in Lemma 5.5, and using the almost sure
convergence of nV α

n → L as n→∞, we have the result. �

Therefore we have shown that for any ε > 0, Pα-almost surely, for any constant
C > 0 we have

V (x) = η(x)− L̃Eα(η(x)) ≤ Cxα(1+ε)/2.

Hence we can use the Euler–Maclaurin approach, as outlined in the proof of Theo-
rem 4.5 in the random recursive fractal case, to show that the zeta function can be
meromorphically continued beyond the line Re(s) = α to the set {s : Re(s) > α/2}.
From the properties of the Gamma function we see that the complex dimensions
for these strings are purely real and we can state our final theorem. (Note that the
Brownian string corresponds to the case α = 1/2.)

Theorem 5.7. The geometric zeta function for the stable string is defined mero-
morphically for all s : Re(s) > α/2 and has a simple pole at the value s = α and
no other visible poles. The value of the residue at the pole is αL.

Remark 5.8. The stable bridge is a stable process with the property that it
is conditioned to return to 0 at time 1. It is known [19] that such a process has
law PD(α, α) and hence its mean zeta function can be calculated using (5.1) and
has a meromorphic continuation to the whole complex plane. It also has a random
recursive structure as indicated in [7], as we can decompose the Cantor set formed
by the visits to zero at the first and last zeros either side of 1/2. Thus we can
also regard this string as a random recursive string but from an uncountable family
which does not have scaling ratios bounded away from 0 (as the law of the first
return time before 1/2 has support on the interval [0,1/2]). As yet we have no
theorem that enables us to prove meromorphic continuation. If this can be done,
we can obtain the same results as for the stable string. The poles of the zeta function
occur at α, α−1, . . . and hence there are no non-real complex dimensions. The only
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change is that the residue at s = α is different. This demonstrates that the class of
random recursive strings includes strings that are quite different from deterministic
self-similar strings.

6. A homogeneous random string

We discuss a spatially homogeneous string arising from a random Cantor set.
This shows that there are random strings for which the techniques we have employed
here to prove meromorphic continuation break down. This example is a simplifi-
cation of the construction of the random recursive fractals. In this case we do not
choose a new family of similitudes for each interval, instead we choose the same
family for all sets of a given size. Random fractals of this type have been discussed
in [1]. This has the effect of introducing much larger fluctuations in the string and
for this reason we are not able to control the extra term in the Euler–Maclaurin
approach.

We begin by defining a scale irregular random Cantor set. We let ψa = {ψa
1 , ψ

a
2}

denote the family of two similitudes given for any 0 < a < 1/2 by

ψ1(x) = ax, ψ2(x) = 1− a(1− x).

Thus the effect of applying the map ψa to the unit interval is to produce two
intervals of length a with a gap of length 1−2a between them. For a given sequence
a = {ai}∞i=1, where 0 < ai < 1/2 for all i we can define a scale irregular Cantor set
as

Ca =
∞⋂

n=1

⋃
i∈{1,2}n

ψa1
i1
◦ · · · ◦ ψan

in
([0, 1]).

Note that if we write σ(a) = (a2, a3 . . . ) for the shift map on one-sided sequences,
then

Ca = ψa1(Cσ(a)).

At this stage we make no assumption about the sequence. We can define homoge-
neous random Cantor sets by generating the sequence a using a probability measure.

Theorem 6.1. The Hausdorff dimension and lower box counting dimension of
the scale irregular Cantor set Ca are given by

dlb = dimH = lim inf
n→∞

log
∏n

i=1 ai

n log 2
.

The packing dimension and upper box counting (Minkowski) dimensions are

dub = dimP = lim sup
n→∞

log
∏n

i=1 ai

n log 2
.

Proof. This is the same as the case of scale irregular Sierpinski gaskets as
given in [1]. �

Our next step is to describe the scale irregular string that is determined by
this scale irregular Cantor set. From this point we assume for convenience that
an < 1/3 for all n. This assumption ensures that the set of lengths Ln = 1− 2an is
strictly decreasing with n. By construction the string is the set of lengths Ln, with
multiplicity 2n, given by,

L1 = 1− 2a1, Ln =
n−1∏
i=1

ai(1− 2an).
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By construction of the zeta function,

ζa(s) =
∞∑

n=1

2nLs
n

=
∞∑

n=1

2n
n−1∏
i=1

as
i (1− 2an)s

=
∞∑

n=1

exp

(
n log 2 + s

(
n−1∑
i=1

log ai + log (1− 2an)

))
,

which will be finite provided the real number s is such that

n log 2 + s

(
n−1∑
i=1

log ai + log (1− 2an)

)
< 0.

Thus we have

ζa(s) <∞, for s > lim sup
n→∞

log
∏n

i=1 ai

n log 2
= dub.

The question we address now is the meromorphic continuation. Let us make
some more assumptions about our model. Assume that there is a probability dis-
tribution P on (0,1/3) and that {Ai} is a sequence of independent and identically
distributed random variables with law P. In this case we see that

df = dimH(Ca) = dlb = dub = dimP (Ca) =
−E(logA1)

log 2
, P− a.s.

We consider η(x), the number of intervals with length greater than 1/x. By the
structure of our sequence we have the identity

ηa(x) = I{L1≥1/x} + 2ησ(a)(A1x).

As the sequence is i.i.d. we have

Eηa(x) = P(L1 ≥ 1/x) + 2Eηa(A1x).

This can be written as a renewal equation if we set m(x) = e−γxEηa(ex), g(x) =
e−γxP(L1 ≥ e−x) and choose γ such that P̃(dx) = 2e−γxP(− logA1 ∈ dx) is a
probability measure,

m(x) = g(x) +
∫ ∞

0

m(x− y)P̃(dy).

As g(x) is directly Riemann integrable, we can apply the renewal theorem to obtain
m(x) →

∫∞
0
g(x)dx/

∫∞
0

2xe−γxP(logA1 ∈ dx) as x → ∞, giving the growth rate
of the counting function. Thus we have γ defined to be the solution to 2EAγ

1 = 1
and as x→∞,

Eηa(x) ∼ cxγ .

Our next task is to show that η(x) does not grow like its mean and hence we
cannot hope to control the zeta function with the mean zeta function as we have
done before. We note that the mean zeta function is straightforward to compute as

ζa(s) = Ls
1 + 2As

1ζσ(a)(s),

and hence

Eζa(s) =
E((1− 2A1)s)
1− E(2As

1)
.

Thus the poles of the zeta function occur at a subset of the complex solutions to
2EAs

1 = 1, whose maximal real solution is not df . We now apply our previous
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technique and attempt to control the zeta function by using a random variable W
and signed measure V = η −WEη, such that

ζa(s) = WEζa(s) +
∫ ∞

0

x−sV (dz).

By construction of the string we have

η(x) = 2n − 1 if {
n∏

i=1

Ai(1− 2An+1) < 1/x ≤
n−1∏
i=1

Ai(1− 2An)}.

Taking the subsequence xn = (
∏n−1

i=1 Ai(1 − 2An))−1 we have η(xn) = 2n − 1 and
by the ergodic theorem

x1/n
n = exp(

1
n

n−1∑
i=1

− logAi +
1
n

log(1− 2An)) → exp(−E(logA1)),

as n→∞. Now

η(xn) = xn log 2/ log xn
n − 1 ∼ xlog 2/−E(log A1)

n ,

as n→∞. We note that this almost sure growth rate log 2/−E(logA1) is different
from γ, the mean growth rate. We can make the oscillation precise by using the
law of the iterated logarithm (LIL) for i.i.d. random variables to control the size of
the fluctuation in the convergence of 1

n

∑n
i=1 logAi.

Note that by the LIL, for all ε > 0,

lim sup
n→∞

1
n1/2+ε

|
n∑

i=1

(logAi − E(logAi))| = 0.

Thus, for any c > 0, there exists N <∞ such that xn ≤ exp(−nE(logAi)+cn1/2−ε)
for all n ≥ N , P− a.s. Also there will be a subsequence nk such that

xn ≥ exp(−nkE(logAi) + cn
1/2+ε
k ), ∀k.

Thus we cannot control the growth of the counting function η(x) by its mean growth
rate, nor even by its almost sure growth rate as the fluctuations are too large. Hence
our Euler–Maclaurin approach to meromorphic continuation does not work and a
different approach would be required to prove results about the complex dimensions
of this random fractal string.

7. Tubular neighbourhoods and eigenvalue asymptotics

We conclude with an application of our results on the complex dimensions of the
string to two problems. Firstly we discuss the geometric problem of determining
the volume of a tubular neighbourhood of the string. Secondly we consider the
asymptotic growth of the eigenvalue counting function for the Laplace operator
on a bounded domain. In this case we regard a fractal string as a one-dimensional
domain with a fractal boundary consisting of the Cantor set which is the complement
of the string. We will restrict our attention to random recursive fractals satisfying
Assumption 3.3, and to stable strings.

We will extend the results of [14] concerning explicit formulas for the expansion
of the zeta function from the deterministic to the random case. We begin with two
hypotheses on the growth of the zeta function. Firstly we need two definitions. Let
r : R → [−∞, α] be a bounded Lipschitz continuous function and define the screen
S to be the curve S : t 7→ r(t) + it for t ∈ R and the window W = {s ∈ C : Re(s) ≥
r(Im(s))}. We will write Dη(W) for the set of complex dimensions of the string η
which lie in the window W; these are referred to as the ‘visible’ complex dimensions.
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Assumption 7.1. There exist real constants κ ≥ 0 and C(ω) > 0 and a sequence
{Tn}n∈Z of real numbers tending to ±∞ as n→ ±∞ with T−n < 0 < Tn for n ≥ 1
and limn→∞ Tn/|T−n| = 1, such that for P-almost every ω ∈ Ω,

(H1) For all n ∈ Z and all σ ≥ r(Tn),

|ζη(ω)(σ + iTn)| ≤ C(ω)|Tn|κ,
(H2) For all t ∈ R, |t| ≥ 1,

|ζη(ω)(r(t) + it)| ≤ C(ω)|t|κ.

We will show in Lemma 7.5 that there are examples of fractal strings which
satisfy this assumption.

We now give a distributional formula for the counting function of the string, a
version of [14] Theorem 4.12. We regard the measure η generated by the string as
a Schwartz distribution. It acts on test functions ϕ by

< η,ϕ >=
∫ ∞

0

ϕ(x)η(dx).

We write P [k]η for the k-th primitive of the distribution, defined by its action on
ϕ, through

< P [k]η, ϕ >=
∫ ∞

0

∫ ∞

y

(x− y)k−1

(k − 1)!
ϕ(x)dxη(dy),

and P [0]η = η.

Theorem 7.2. Let η be a random fractal string satisfying Assumption 7.1.
Then for every k ∈ Z the explicit formula for the distribution P [k]η on (0,∞) is
given for P-almost all ω ∈ Ω by

P [k]η(x) =
∑

z∈Dη(ω)(W)

Res(
xs+k−1ζη(ω)(s)
Γ(s+ k)/Γ(s)

; s = z)

+
1

(k − 1)!

k−1∑
j=0

−j∈W\Dη(ω)

(
k − 1
j

)
(−1)jx−jζη(−j) +R

[k]
η(ω)(x),

where

< R[k]
η , ϕ >=

1
2πi

∫
S

∫ ∞

0

ζη(ω)(s)ϕ(x)
xs+k−1

Γ(s+ k)/Γ(s)
dxds.

Remark 7.3. Extending to the random case [14] Theorem 4.20, we conclude
that under the same assumptions as for Theorem 7.2, the error term R(x) =
R

[k]
η(ω)(x) is given for P-a.e. ω by R(x) = O(xσu+k−1) as x → ∞, where σu =

supt∈R r(t). Further, if r(t) < σu for all t ∈ R (that is the screen lies entirely to the
left of the line Re(s) = σu), then R(x) = o(xσu+k−1) as x → ∞. Note that here,
as in [14] Definition 4.22, we write that R(x) = O(xβ) (resp. o(xβ)) as x → ∞ if
< R,φa >= O(aβ) (resp. o(aβ)) as a→∞, where φa(x) = a−1φ(a−1x).

We note that the case we will be most concerned with is when k = 1 and the
screen is a vertical line to the right of 0.

Corollary 7.4. Let η be a random fractal string satisfying Assumption 7.1
with screen given by r(t) = γ, then P-a.s., for x → ∞, the counting function
satisfies

η(x) =
∑

z∈Dη(W)

Res(
xsζη(s)

s
; s = z) + o(xγ+δ),

for every δ > 0.
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Lemma 7.5. The Assumption 7.1 holds for the random recursive fractal string
under Assumption 3.3 and it also holds for the stable string.

Proof. This is proved using the control we obtained on the zeta function
from the Euler–Maclaurin approach to meromorphic continuation. We recall from
Equation (4.4) that the random zeta function can be written as

ζη(σ + it) = WEζη(σ + it) +
∫ ∞

0

x−σ−itV (dx).

Now to control the vertical and horizontal growth of this function we use that

|ζη(σ + it)| ≤ WE|ζη(σ + it)|+
∫ ∞

0

|x−σ−it|V (dx),

≤ WE|ζη(σ + it)|+ C(σ, ω)

for all σ > α− τ and t ∈ R. The constant C(σ, ω) → 0 as σ →∞.
Thus the problem is reduced to that of controlling the growth of the mean zeta

function.
(1) The stable string: For the stable string we have an explicit expression for

the mean zeta function and the control we require just follows from the properties
of the Gamma function. To prove (H1) we consider Γ(s − α)/Γ(s). Note that the
ratio of two Gamma functions, with the parameter of the numerator of smaller real
value than that of the denominator, is bounded as Re(s) → ∞ . Hence we can
choose κ = 0 and a suitable random constant C from the sum of the deterministic
bound and the random control on the fluctuation term to obtain (H1). For (H2)
we note that there are no poles except at α and hence we have the vertical control.

(2) The random recursive string: As we are assuming that the probability
space is finite, we can follow the ideas of [14]. For a lattice string, the poles
of the zeta function occur on a finite number of straight lines, leading to (H2),
while the periodicity ensures that we can satisfy (H1). In [14] it is observed that
a deterministic non-lattice self-similar string can be approximated by a sequence
of lattice strings. As the structure of our mean zeta function is the same as the
deterministic case we can also approximate the non-lattice case by the lattice case.
Thus a suitable screen can be constructed which gives a bound on the growth of the
mean zeta function (see [14] Theorem 2.33) and hence the result we require. �

We now conclude by stating some results that follow from our earlier Theorems.
Let V (ε) denote the volume of the inner ε-neighbourhood of the string L. That

is we recall that the string is defined as a bounded open subset U of the real line
and set V (ε) = |Uε|, the one-dimensional Lebesgue measure of the (one-sided) ε-
neighbourhood of the boundary of the string, Uε = {x ∈ U : dist(x, ∂U) < ε}. This
can be expressed as

V (ε) =
∑

j:lj≥2ε

2ε+
∑

j:lj<2ε

lj =< vε, η >,

where vε(x) = 2ε for x ≤ 1/(2ε) and vε(x) = 1/x for x > 1/(2ε).
The following ‘random tube formula’ is obtained by a simple adjustment of

[14] Theorem 6.1 to the random string setting.

Theorem 7.6. Under the hypotheses of Theorem 7.2, the volume of the tubular
neighbourhood of the boundary of the random string η is given as ε → 0+, for
P-almost all ω ∈ Ω, by
(7.1)

V (ε) =
∑

z∈Dη(ω)(W)

res(
ζη(ω)(s)(2ε)1−s

s(1− s)
; s = z)+2εζη(ω)(0)I{0∈W\Dη(ω)(W)}+Rη(ω)(ε),
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where
Rη(ω)(ε) =

1
2πi

∫
S

(2ε)1−sζη(ω)(s)
ds

s(1− s)
.

The remainder satisfies Rη(ε) = O(ε1−σu) with σu as given in Remark 7.3.

Remark 7.7. If z is a simple pole of ζη(s), then

res(
ζη(ω)(s)(2ε)1−s

s(1− s)
; s = z) = res(ζη(ω)(s); s = z)

(2ε)1−z

z(1− z)
.

We next apply Theorem 7.6 and adapt the techniques of [14] Section 6.3.1 to
the random strings we considered in Sections 4 and 5. We recall that W is the limit
random variable arising in the general branching process and L is the limit random
variable arising from the random sequence with Poisson-Dirichlet distribution.

Theorem 7.8. (1) The volume of the tubular neighbourhood of the random
recursive string L is given P-almost surely by (7.1), where W = {s : Re(s) > α−τ},
with α = df and τ as in Theorem 4.5, and R(ε) = o(ε1−α+τ−δ), for every fixed δ > 0
as ε→ 0+. Moreover, for a non-lattice random recursive string, we have

V (ε) = WRes(E(ζ(s)); s = α)(2ε)1−αα(1− α) + o(ε1−α), as ε→ 0+, P− a.s.

(2) For the α-stable string, the volume V (ε) of a tubular neighbourhood, for every
fixed δ > 0, is given by

V (ε) =
L(2ε)1−α

(1− α)
+ o(ε1−α/2−δ), as ε→ 0+, Pα − a.s.

A consequence of this result is that, in the case of the stable string and the
(strongly) non-lattice random recursive string, the boundary of the string, that is
the associated random Cantor set, is almost surely Minkowski measurable. Some
results in this direction appear in [7].

We now turn to the eigenvalue counting function. In the case of a random frac-
tal, the result of [9] shows that the coefficient of the leading term in the asymptotic
expansion of the counting function can be a random constant. As we are considering
a fractal boundary value problem, we observe a similar result for the second order
term. As the string consists of a sequence of one-dimensional intervals, it is easy
to write down the eigenvalues (up to a normalization) for the Dirichlet Laplacian
as kl−1

j for k, j = 1, 2, . . . . Thus there is a simple relationship between the spectral
zeta function, ζsp(s), for the string and the geometric zeta function as

ζsp(z) =
∞∑

j=1

λs
j

=
∞∑

j,k=1

kslsj

= ζr(z)ζη(z),

where ζr(z) is the usual Riemann zeta function. Hence we can transfer any results
about the geometry of the string through to its spectrum.

Let Nsp(x) denote the number of eigenvalues of the Laplacian of the fractal
string with value less than x.

Theorem 7.9. The eigenvalue counting function for the non-lattice random
recursive fractal string is given by

Nsp(x) = x+Wζr(α)Res(Eζη(s); s = α)
xα

α
+ o(xα), as x→∞, P− a.s.

For the α-stable string

Nsp(x) = x+ Lζr(α)xα + o(xα/2+ε), as x→∞, Pα − a.s.
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In closing we mention an open problem that naturally arises from the results
presented here. In [14] it was proposed that the definition of fractality should be
the existence of at least one non-real complex dimension (with positive real part).
As we have seen in Section 5 there are natural random strings for which this is not
the case. However we have not been able to establish meromorphic continuation of
the geometric zeta functions of these strings to all of C. This raises the question of
whether there is a natural boundary for such strings beyond which the zeta function
cannot be extended.

Acknowledgement: The authors would like to thank the organisers of the
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