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The random free energy barrier hopping model is proposed to explain the ac
conductivity (σac) of chalcogenide glasses. The Coulomb correlation is consis-
tently accounted for in the polarizability and defect distribution functions and the
relaxation time is augmented to include the overlapping of hopping particle wave
functions. It is observed that ac and dc conduction in chalcogenides are due to
same mechanism and Meyer-Neldel (MN) rule is the consequence of temperature
dependence of hopping barriers. The exponential parameter s is calculated and it
is found that s is subjected to sample preparation and measurement conditions and
its value can be less than or greater than one. The calculated results for a − Se,
As2S3, As2Se3 and As2Te3 are found in close agreement with the experimental data.
The bipolaron and single polaron hopping contributions dominates at lower and
higher temperatures respectively and in addition to high energy optical phonons,
low energy optical and high energy acoustic phonons also contribute to the hopping
process. The variations of hopping distance with temperature is also studied. The
estimated defect number density and static barrier heights are compared with other
existing calculations. C 2016 Author(s). All article content, except where other-
wise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4944497]

I. INTRODUCTION

Observation of the low frequency ac conductivity σ(ω) at low temperature being proportional
to the applied field frequency ω to the power 1 − s′ i.e σ(ω) = Aωs where A is complex constant
and s and s′ are less than one.1,2 This is obiquitous feature of hopping conduction.3 It is well known
that this feature simply results from having a broad distribution of relaxation rates surrounding the
low(e.g.KHz) observation frequency.4

Polaron hopping has been reported in a wide variety of low mobility solids.In particular re-
ports of polaron hopping in chalcogenides glasses began in 1972 with study of the dc transport
of As-Te based glasses.5 Subsequent dc measurements indicated polaron hopping in simple binary
chalcogenide glasses.6

Elliot7 extended the Pike3 formalism, based on microscopic model of Pollak and Geballe1

and Pollak,2 to explain the defect induced conductivity of chalcogenides glasses. It is assumed
that electron wave functions are well localized within the potential wells of specific defect sites
D+ and D− and ac conduction is due to bipolaron hopping between these defect sites.8–10 The
hopping barrier height between these defect sites is correlated with intersite separation. This pro-
posed correlated barrier hopping (CBH) model is used to explain the salient features of temperature
dependence of ac conductivity of chalcogenide glasses. The estimated defect number density is
found comparable with the experimental data.

Street11 and Elliot12 modified the CBH model by including Coulomb interaction in the defect
distribution function and it is used by Hirata et. al.13 to explain the ac conductivity of Ag doped
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As2Se3. However Shimakwa14 suggested that in addition to bipolaron hopping, neutral defects D0

produced by reverse reaction 2D0 −→ D+ + D− also contribute to ac conduction through single
polaron hopping. The CBH model is extended by including single polaron hopping and the results
for undopped and doped chalcogenides are explained.

Takano et. al.15 added the contribution of simple pairs in the CBH model to explain the pro-
nounced peaks in the temperature dependent ac conductivity of transition metal atom doped As2Se3.
Since then, the above variances of CBH model are extensively used to explain the temperature
dependence of ac conductivity in chalcogenide glasses.16–22

Shimakawa and Abdel- Wahab23 showed that dc conductivity of chalcogenides glasses follows
the Meyer-Neldel[MN] rule.24 Abdel - Wahab et. al.25 introduced temperature dependent expo-
nential factor in the relaxation time to account for MN rule in the ac conductivity. The CBH
results were rederived with an additional temperature dependent multiplying factor 1/η, where
η = 1 − T/T0, and T0 is denoted as characteristic temperature. The results for σac(ω) for doped and
undoped As and Se based chalcogenides were unevenly explained and T0 is assigned the values
between 500 K0 to 900 K0. Mehta et. al.26 and Sharma et. al.27 also used the similar expres-
sions to explain the ac and dc conductivities of Se80Te19.5M0.5(M = Cd, In,Sb,Ag). However the
above formulation leads to an expression for dc conductivity where the pre-exponential factor is
temperature dependent which is contrary to the experimental observations.

Dyre28 proposed the random free energy barrier hopping model for ac conduction in disordered
solids. The conduction is through hopping process and charge carriers are subjected to spatially
randomly varying energy barriers. Assuming that these energy barriers are free energy barriers, the
ac and dc conductivities and dielectric losses are explained. Prakash et. al.29 used extended pair
model and random free energy barriers to obtain the Meyer -Neldel formula for dc conduction in
chalcogenide glasses. It is found that Meyer -Neldel energy originates from temperature induced
configurational and electronic disorders and it depends upon intersite separation and radius of
localized states.

We found it interesting to extend random free energy barrier hopping [RFBH] model to calcu-
late ac conductivity of chalcogenide glasses. The nearest neighbor Coulomb correlation is included
in both polarizability and defect distribution functions. The carrier wave functions overlap between
the sites is accounted for in the relaxation time by multiplying with the function exp(2αr) where α
is the inverse of polaron radius. The explicit expressions for σac and s are obtained. It is found that
temperature dependence of free energy barrier leads to MN signature in σac. The experimental data
for ac conductivities of a-Se, As2Se3, As2S3, As2Te3 are explained. It is found that in addition to high
energy optical phonons, the low energy optical and high energy acoustic phonons also contribute to
the hopping process.

The plan of the paper is as follows: The necessary formalism is presented in Sec. II, calcula-
tions and results are given in Sec. III, and these are discussed in Sec. IV.

II. FORMALISM

A. General expression for σac

The real part of ac conductivity for the field frequency ω is given as1

σac(ω) = NP

 τmax

τmin

α(τ,∆E) ω2τ

1 + ω2τ2 n(τ)dτ, (1)

where Np is the number density of acceptor sites, τ is the relaxation time, n(τ)dτ is the probability
of a given pair of sites having relaxation time between τ and τ + dτ, τmin and τmax are the allowed
minimum and maximum values of τ for the carrier hopping to take place. Np = N/2, if N is the
number density of localized sites.

The pair polarizability function

α(r,∆E) = (ne)2r2

12kBT cosh2(∆E(r )
2kBT

) , (2)
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where n=1 for one electron hopping and n=2 for two electron hopping, r is the separation between
two hopping sites, kB is the Boltzman constant, T is the temperature and ∆E(r) is the difference
in the energy levels between the pair of sites. In the CBH model the hopping barrier height W is
temperature independent and it is related to the intersite separation r as

W = Wm −
4ne2

εr
, (3)

where Wm is the binding energy of carriers and ϵ is the effective dielectric constant. The experi-
ments are at the finite temperature and there does exist a temperature gradient in the sample due to
applied field, therefore to account for temperature induced configurational and electronic disorders
barrier height W is replaced by free energy F and Eq. (3) is rewritten as

F = Wm −
4ne2

εr
, (4)

where

F = W − T S. (5)

Here we assume that TS is maximum entropy barrier. Evidently from Eq. (4)

r =
4ne2

ε(Wm − F) , (6)

and

dr =
εr2

4ne2 dF. (7)

Kastner et. al.38 pointed out that the energy of charged defects is lowered by Coulomb interac-
tion. Therefore Street11 and Elliot12 included the Coulomb interaction between the defect pairs (D+,
D−) in the defect distribution function at glass transition temperature Tg to estimate ac conductivity
of chalcogenides. These authors presumed that below Tg defects may annihilate. However this
presumption is not necessary as at any given temperature T, σac is measurable. Therefore there does
exit the finite defect number density. The Coulomb interaction is also included in the free energy
barrier heights, therefore for consistency we write spatial distribution of these defects at a given
temperature T as

p(r)dr = 4πr2N exp( z2e2

εrkBT
)dr. (8)

Here the Coulomb interaction between the defect pairs (D+,D−) is −z2e2/ϵr , where z2 = z1z2, z1

and z2 are charge units on defects D+ and D− respectively.
Using Eqs. (6) and (7) in Eq. (8) and equating the probability distribution p(r) to distribution in

r and F we get

p(r)dr =
πεN
ne2 ( 4ne2

ϵ(Wm − F) )
4 exp( z2(Wm − F)

4nkBT
)dF = p(F)dF. (9)

In the quantum hopping model Pike3 suggested the relation between the relaxation time and
activation energy W as

τ = τ0φ(r/a) exp(W/kBT), (10)

where τ0 is of the order of atomic vibrational period, a is the radius of localized orbital wavefunction
and φ(r/a) depends upon carrier wavefunction overlap between the sites. For large (r/a), φ(r/a)
goes as exp(2r/a) and as (r/a) goes to unity, φ(r/a) becomes weak function of its argument and its
value becomes of the order of unity. Pike3 used τ1 = τ0φ(r/a), the effective vibrational period in the
analysis of σ(ω) for ScO films.
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In chalcogenides, the carrier hopping is phonon induced and these carriers are dressed with
lattice distortion field. Thus the ac conduction in chalcogenides is effectively due to polaron hopp-
ing between defects sites D+ and D− and for polaron hopping process Emin and Holestien and
Emin30 suggested that τ = τ0 exp(2αr) exp(Wµ/kBT) where α is the inverse of polaron radius and
Wµ is the half of polaron binding energy. The continuous alternation of carrier wave function with
atomic movements and long range interaction among the carrier does alter the atomic vibrational
frequency, hopping distance and hopping activation energy. In this sprit in the present random free
energy model, we rewrite Eq. (10) as

τ = τ1 exp(F/kBT), (11)

where

τ1 = τ0 exp(2αr). (12)

It is non-trivial to determine parameter α and further the defect sites in the very narrow range of
intersite separation contribute in the hopping process. Therefore we write αr = ζω, a parameter for
a given applied field frequency ω. Long31 has pointed out that parameter 2αr is varied in the range
of 2.5 to 16 to explain the ac conductivity of amorphous semiconductors.

Evidently we find from Eq. (11)

dτ
τ
=

dF
kBT

. (13)

Substituting polarizability function given in Eq. (2) in Eq. (1) we get

σac(ω) = N
2

 τmax

τmin

(ne)2r2

12kBT cosh2(∆E(r )
2kBT

)
ω2τ

1 + ω2τ2 n(τ)dτ. (14)

Further use of the relation n(τ)dτ = p(r)dr = p(F)dF, as given in Eq. (9), Eq. (14) simplifies as

σac(ω) = πϵnN2ω

24

 τmax

τmin

1

cosh2(∆E(r )
2kBT

)r
6 ωτ

1 + ω2τ2 exp( z2e2

kBTϵr
)dτ
τ
. (15)

Here τmin = τ1 and τmax = τ1 exp(Wm
kBT

), are the extreme values of relaxation time for hopping car-
riers. As the contributions to the integral in the limits 0 to τmin and τmax to ∞ are negligible, the
integration limits are extended from 0 to∞ for further calculations.

Pollak2 has shown that ∆E(r) is the sum of energy difference between the ground state energy
of defect sites ∆E0 and the Coulomb correlation between other occupied sites in the vicinity of the
defect sites. However if we consider the Coulomb correlation only between the two participating
defect sites and neglect the correlation between other sites, we get2

∆E(r) = ∆E0 +
z2e2

ϵr
, (16)

Assuming that ∆E0 is negligible as compared to Coulomb interaction, we write

∆E(r) = z2e2

ϵr
= Ec(r), (17)

and simplify Eq. (15) as

σac(ω) = πϵnN2ω

24

 ∞

0

r6

cosh2( Ec(r )
2KBT

)
ωτ

1 + ω2τ2 exp(Ec(r)
kBT

)dτ
τ
. (18)

As argued by Elliot7 the factor ωτ
1+ω2τ2 is sharply peaked at ωτ ≈ 1, it is also extremely sharply

peaked in the domain F or r, therefore it can be treated as delta function and integrand can be taken
at constant F or r. Thus r = rω, or F = Fω for the those sites for which ωτ ≃ 1 and using the relation ∞

0

ωτ

1 + ω2τ2 =
π

2
− tan−1(ωτ) ≈ π

2
, (19)
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Eq. (18) simplifies as

σac(ω) = π2ϵnN2ωr6
ω

48cosh2( Ec(rω)
2kBT

) exp(Ec(rω)
kBT

). (20)

Here

rω =
4ne2

ϵ(Wm − Fw) . (21)

These are the basic equations to calculate σac(ω) in the random free energy barrier hopping model.
If we take n=2 for bipolaron hopping, Ec(rω) ≈ 0 and Fw = Ww, we get the results due to Elliot.7

Further if we assume that T is very large such that cosh2( Ec(r )
2kBT

) ≈ 1 and exp( Ec(r )
kBT

) ≈ exp( z2e2

kBTg ϵr
),

where Tg is glass transition temperature, we get the another result due to Elliot.12 However Eq. (20)
is more general than those obtained by earlier authors.

It is interesting to note that the ratio of exponential and hyperbolic functions in Eq. (20)
partially cancel the temperature dependence of σac(ω). If the Coulomb correlation is weak and
temperature is high, the ratio of exponential and hyperbolic function becomes unity and CBH model
results are retrieved. However for higher defects density (rω is small) and low temperature, the
above ratio will be nearly 4 and hence in this limit σac will be nearly four times larger than that
achieved in the CBH model. Thus the magnitude as well as temperature dependence of σac get
altered by considering free energy barriers and Coulomb correlations in both the polarizability and
defect distribution functions.

B. Evaluation of r

Taking the sixth power of rω in Eq. (21), we get

r6
ω = (4ne2

ϵ
)6 1
(Wt −Wω)6 , (22)

where

Wω = Fω + T S (23)

and

Wt = Wm + T S. (24)

Here Wt is the effective binding energy of polarons at temperature T. Assuming that Wt ≫ Wω and
expanding (1 −Wω/Wt) in power series of (Wω/Wt). Eq. (22) simplifies as

r6
ω = (4ne2

ϵWt
)6 exp(6Wω

Wt
). (25)

As F and r explicitly depend on ω, we write τ = τω in Eq. (11) as

τω = τ1ω exp( Fω

kBT
), (26)

where τ1ω = τ0 exp(2ζω). Further use of Eq. (23) in Eq. (26) gives

τω = τ1s exp( Wω

kBT
), (27)

where

τ1s = τ1ω exp(−S
kB

). (28)
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Defining β = 6kBT
Wt

and using Eqs. (26)-(28), the hopping distance is expressed as

r6
ω = (4ne2

ϵWt
)6(ωτω

ωτ1s
)β, (29)

and further use of relations ωτω = 1, (ωτ1s) β6 = exp( β6 ln(ωτ1s)) one finds

rω =
4ne2

ϵWt

1

[1 + kBT
Wt

ln(ωτ1ω) − TS
Wt

] . (30)

This is the end result to calculate rω for the evaluation of σac(ω) given in Eq. (20). If the en-
tropy S=0, and τ1ω = τ0, Elliot7 result of rω is retrieved. The entropy enhances rω and hence ac
conductivity.

C. Meyer- Neldel Rule

Multiplying and dividing by Wω in the argument of exponential function of Eq. (28) one gets

τ1s = τ1ω exp(−Wω

EMN
), (31)

where the Meyer-Neldel energy,29

EMN =
kBWω

S
= kBTc. (32)

Here the characteristic temperature Tc, the ratio of barrier height Wω and entropy S, will depend
upon the material properties and the experimental procedure followed to measure ac conductivity.
The use of Eqs. (32) and (29) in Eq. (20) gives

σac(ω) = π2ϵnN2

48cosh2( Ec(rω)
2kBT

) (
4ne2

ϵWt
)6( ω

1−β

(τ1ω)β ) exp( βWω

EMN
) exp(Ec(rω)

kBT
). (33)

However to be more specific, let Ec(rw) = 0, as approximated in the earlier calculations,7 we get

σac(ω) = π2ϵnN2

48
(4ne2

ϵWt
)6 ω1−β

(τ1ω)β exp( βWω

EMN
). (34)

Thus Mayer- Neldel signature is achieved in σac of chalcogenides. If the entropy is not accounted
for, the exponential function will be unity and MN signature will vanish.

D. Exponential parameter s

The exponent s is defined as

s =
d lnσac(ω)

d lnω
. (35)

In the CBH model s = 1 − β, and if the third order term in the expansion of (Wm −Wω)−6 is
also added one gets s = 1 − β + γ, where γ = 6( kBT

Wω
)2 ln(ωτ0). Using random free energy barrier

hopping results for σac and rω in Eq. (35), we get

s = 1 − β +
z2

4n
(ωτ1s) β6 [1 − tanh( z2e2

2ϵkBTrω
)]. (36)

The third term in Eq. (36) arise due to Coulomb correlation in the defect distribution and polariz-
ability functions. If the ratio of the Coulomb correlation and thermal field is such that tanh(x) is
nearly one, then s = 1 − β as obtained in CBH model. If we take z2 = 1, n=2, (ωτ1s) ≈ 1, replace
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T by Tg in Eq. (8) and neglect the Coulomb correlation between the defect sites, it can be readily
shown that

s = 1 − β +
1
8

T
Tg

. (37)

This was the result obtained by Elliot.12 If the temperature is higher and inter defect site separation
rω is also large such that tanh(x) −→ 0, one gets

s = 1 − β +
z2

4n
(ωτ1s) β6 . (38)

As the third term in Eqs. (36) and (38) explicitly depends on frequency of applied field, polaron
radii, inter defect site separation and entropy of the system and if it exceeds β, s may be greater
than one. Thus the value of s will depend on the material characteristics and the conditions of
the measurements. Even for the same material if the conditions of preparing the samples and
measurements change, s will change.

III. CALCULATIONS AND RESULTS

Here it is pertinent to discuss the parameters involved in Eq. (20) and Eq. (30) to calculate σac

and rω. To calculate rω, the parameters Wt, τ1ω and S are needed. The effective binding energy Wt

is the sum of maximum barrier height Wm and thermal energy TS. The following arguments are
put forward by various authors to estimate Wm

7,14,31 with the help of energy level diagram for the
chalcogenide defect states given in Fig. 1. If W2, is the energy to take the first electron from defect
center D+ to conduction band and (B −W1) is the energy to take second electron from defect center
D0 to conduction band, then the maximum energy to take pair of electrons in the conduction band is

Wm = W2 + (B −W1), (39)

where B is the band gap obtained from optical data. As suggested by Mott8 and used by Elliot7 that
W2 ≈ W1 and hence Wm = B. This approximation has been invoked later32 and Wm is taken simply
twice the energy difference between Fermi energy E f and optical band gap i.e

Wm = 2(B − E f ). (40)

FIG. 1. The schematic energy levels diagram for the chalcogenide defect states,14 B is the band gap obtained from optical
data, Ev and Ec are the highest valence band and lowest conduction band edge energies, µ is Fermi energy level and W1 and
W2 are the same as described in Table I.
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Here E f is indetermined and amorphous chalcogenides exhibit dc conductivity with activation en-
ergy Edc, therefore E f is replaced by Edc and Wm is estimated with known parameters B and Edc

as

Wm = 2(B − Edc). (41)

If Edc ≃ B/2, Wm = B, is retrieved. Further assuming that Ww ≃ Edc in Eq. (33) and using the
parameters B, Edc and EMN given in Ref. 29 Wm, S and Wt are determined with the help of
Eqs. (41), (32), and (24). The other two critical parameters are the dielectric function ϵ and char-
acteristic relaxation time τ1ω = τ0 exp(2ζω) and both are frequency dependent. Various authors have
used different values of ϵ , and τ1ω. Shimakawa14 used just the half of the static value of ϵ and
τ = τ0 = 10−13sec. presuming that single high energy optical phonon mode contribute to hopping
process. However to be consistent with earlier calculations7,29,31 we use ϵ = ϵ∞ and assign the
positive values to ζω for each ω to get the best explanation of σac(ω). This amount to increase the
relaxation time and hence the jump frequencies will decrease and may be of the order of low energy
optical and high energy acoustic phonon frequencies and a band of phonon modes contribute to the
hopping process.30

An attempt is made to explain the temperature dependence of experimental data for ac conduc-
tivity of Se, As2S3, As2Se3 and As2Te3. The results of σac(ω) were satisfactorily explained for 2ζω
in the range of 1 to 11 and N in the range of 1018cm−3 for a-Se, As2S3, As2Se3 and in the order of
1020cm−3 for As2Te3 in the low temperature range. However the deviations of the experimental data
from linearity at higher temperatures could not be explained for any acceptable values of ζω and N.

In view of this we adopted Shimakawa14 suggestion that at higher temperature, where dc
conduction dominates, single polaron hopping may also contribute substantially to the ac conduc-
tion process. Following Shimakawa14 we write

σac = σb + σsh + σse,= σb + σs (42)

where σb, σsh and σse are the ac conductivities due to bipolaron, single hole polaron and single
electron polaron hopping respectively.

Shimakawa14 proposed that at higher temperature the defects D+ and D− get annihilated and
produce neutral defects D0 following the reverse reaction 2D0 → D+ + D−. Using the law of mass
action the number density of excited D0 centers is obtained as

ND = N exp(− Ueff

2kBT
), (43)

where Ueff is the energy released in the annihilation process of charged defects D+ and D− as shown
in Fig. 1. The hole and electron polaron hoppings are in between D0 ←→ D− and D0 ←→ D+

defects respectively and it is assumed that half of D0 contribute to hole hopping and remain-
ing half to electron hopping processes. To calculate σsh and σse we take n=1, replace N2/2 −→
(N2/4) exp(−Ueff/2kBT), in Eq. (20), and subsequent relations.

The other critical quantity to evaluate single polaron hopping process is Wm. Evidently from
Fig. 1

B = W1 +W2 +Ueff . (44)

As W1 is the energy required to take a hole from D0 center to the valence band, consequently
Mott et. al.32 suggested that W1 is equivalent to the activation energy in the drift mobility and in
the photocurrent in the region when photocurrent is less than the dark current. However the next
suggestion of Mott et. al.32 that W2 = (B − Edc) and Edc ≈ W1 + (1/2)Ueff ≃ E f does not satisfy the
sum rule given in Eq. (44). In view of this we take Wm = W1, for hole hopping and estimate W1 with
the help of activation energy for the drift mobility. For electron hopping process we take Wm = W2,
as hole mobility is larger than the electron mobility, we keep W1 < W2.

First we calculate σb to get the best fit at low temperature and lowest frequency data by choos-
ing suitable values of ζω and N. Assuming that N may not change with frequency of applied field,
ζω is suitably changed to get the best fit of σb for different frequencies for low temperature data.
To account for deviation at higher temperature σsh and σse are calculated as discussed above using
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TABLE I. The physical parameters used in the calculations : B is band gap obtained from optical data, ϵ is dielectric
constant, Wm, W1 and W2 are maximum barrier heights for bipolaron, single hole polaron and single electron polaron
hopping respectively. Edc is activation energy for dc conduction, EMN is Meyer -Neldel energy. and N is the number density
of charged defects.

Material B (eV) ϵ Wm (eV) W1 (eV) W2 (eV) Ueff (eV) Edc (eV) EMN (meV) N (cm−3)

a−Se 2.00 6.4 1.46 0.67 1.09 0.25 1.27 74 2.0 × 1018

As2S3 2.30 7.8 1.72 0.73 1.32 0.25 1.439 67 3.3 × 1018

As2Se3 2.00 11.2 1.56 0.61 0.84 0.55 1.219 70 7.6 × 1018

As2Te3 1.00 10.0 1.00 0.30 0.49 0.21 0.43 22 1.03 × 1020

the same values fo ζω and N as for bipolaron hopping and varying W1 and W2 and estimating Ueff as
given in Eq. (44). The best fit values of W1, W2, Ueff and N are given in Table I and 2ζω is tabulated
in Table II. Further results for each chalcogenide are given as follows.

A. a-Se

The calculated σac for a-Se is compared with the experimental data due to Lakatos and
Abkowitz33 in Fig. 2. The calculated results are close to the experimental data particularly at
higher temperature and at higher frequencies as compared to earlier calculations.14 The low and
intermediate temperature range data is explained considering only bipolaron hopping with N
= 2.0 × 1018cm−3 and 2ζω = 4, 2.2 and 1.1 for 0.1, 1.0, 10 KHz data respectively and single polaron
contribution is added to explain the high temperature data. The best explanation is obtained for
W1 = 0.67 eV and W2 = 1.08 eV. We found that σse is negligible as compared to σsh and major
contribution to single polaron hopping is due to hole polaron hopping. The contribution of single
polaron hopping increases rapidly with increase of temperature.

Elliot7 and Shimakawa14 also used the same experimental data of Lakatos and Abkowitz to
estimate N and their values are 3.3 × 1018cm−3 and 4.2 × 1018cm−3 respectively. Our estimated
N = 2.0 × 1018cm−3 is lower than these values but the order of magnitude is the same. The predicted
defects number density through dc conductivity is 20 × 1018cm−3.29 This is reasonable as the density
deduced from σac is an average over entire temperature range while from σdc it is only at the higher
temperature.

Using the values of 2ζω, the values of effective relaxation time τ1ω are, 5.5 × 10−12 , 9 × 10−13

and 2.7 × 10−13 sec. which correspond to hopping frequencies 1.8 × 1011, 1.1 × 1012, 3.7 × 1012 Hz
and thus we find that optical and acoustic phonons in the range of 1011 to 1012 Hz contribute in the
hopping process of ac conductivity.

B. As2S3

The calculated results for As2S3 for σb, σs(= σsh + σse) and σac along with the experimental
data due to Goyal and Vohra34 are shown in Fig. 3. The low and intermediate temperature range
data is explained with N = 3.3 × 1018cm−3 and 2ζω = 5.5, 4.5, 4.0 for 2KHz, 10KHz, 50KHz

TABLE II. The parameter 2ζω for applied field frequencies ω for a-Se, As2S3, As2Se3 and As2Te3.

Material ω (KHz) 2ζω Material ω (KHz) 2ζω

a−Se 0.1 4 As2Se3 1.0 11
1.0 2.2 10 9.5

10 1.0 100 8.0
As2S3 2.0 5.5 As2Te3 10 6.5

10 4.5 100 5.4
50 4.0
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FIG. 2. Temperature dependence of ac conductivity of a-Se for different frequencies of applied field. The dotted lines
represent single polaron hopping conductivity, thin continuous lines represent bipolaron hopping conductivity and total ac
conductivity is represented by thick solid lines. The dots represent the experimental data due to Lakatos and Abkowitz.33

frequencies data respectively. The addition of single polaron hopping contribution gives the best
explanation of experimental data for W1 = 0.73 eV and W2 = 1.32 eV. The relative contribution of
σb and σs in the different temperature ranges is the same as for a-Se.

Elliot7 estimated N = 1.8 × 1018cm−3 while fitting the experimental data due to Owen and
Robertson35 for σac, Goyal and Vohra34 estimated N = 8 × 1018cm−3 using CBH model and
Prakash29 estimated N = 3.6 × 1019cm−3 to explain σdc due to Lakatoz and Abkowitz.33 However
the values obtained for W1, W2 and Ueff in Ref. 34 do not satisfy the sum rule given in Eq. (44).
Our estimated N is lower than obtained in Ref. 34 and larger than that due to Elliot,7 and lower by
an order of magnitude than that obtained by dc conduction. The values of effective relaxation time
τ1ω are 2.4 × 10−11, 9.0 × 10−12 and 5.45 × 10−12 sec. and corresponding hopping frequencies are
4.1 × 1010, 1.1 × 1011 and 1.8 × 1011 Hz which contribute to hopping process.

FIG. 3. The temperature dependence of ac conductivity of glassy As2S3 for different frequencies of applied field. The
description is same as for Fig. 2. Here the dots represent the experimental data due to Goyal and Vohra.34
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FIG. 4. The temperature dependence of ac conductivity of glassy As2Se3 for different frequencies of applied field. The
description is same as for Fig. 2. Here the dots represent the experimental data due to Hirata et. al.13

C. As2Se3

As discussed earlier the low and intermediate temperature data for σac was explained by taking
N = 7.6 × 1018cm−3 and ζω = 11,9.5 and 8 for 1,10 and 100 KHz frequencies data respectively. The
single polaron contribution is added by varying W1 and W2 and keeping W2 > W1 and the best expla-
nation is achieved for W1 = 0.61 eV and W2 = 0.84 eV. These calculated results for temperature
variation of σac for As2Se3 are compared with experimental data due to Hirata et. al.13 in Fig. 4. The
bipolaron and single polaron hopping contribution are also shown there separately. Our results are
closer to the experimental data than those obtained in earlier calculations.13,14,25 It is evident from
Fig. 4 that single polaron hopping contribution is negligible and most of σac is due to bipolaron
hopping process.

Shimakawa14 explained the experimental results of As2Se3 for σac due to Kitao36 for 100KHz
frequency and estimated N = 4.2 × 1018cm−3 with W1 = 0.55 eV, W2 = 0.75 eV and ζω = 0. El-
liot estimated N = 1.3 × 1018cm−3 with the help of experimental data due to Owen and Robert-
son35 accounting only the bipolaron hopping. Hirata et. al.13 estimated N = 6.48 × 1017cm−3 in the
CBH model and Abdel- Wahab25 estimated N = 1.21 × 1018. The best fit for σdc for As2Se3 gives
N = 2.0 × 1020cm−3.29

The effective relaxation time τ1ω are 5.98 × 10−9, 1.34 × 10−9 and 2.98 × 10−10 sec. which
correspond to optical and acoustical phonons in the range 1.67 × 108 to 3.4 × 109 Hz.

D. As2Te3

Following the same procedure as described above we calculated σac(ω) for As2Te3. These re-
sults along with the experimental data due to Rockstad37 are shown in Fig. 5. The calculated results
are quite close to the experimental data. It is noted that σac is nearly due to bipolaron hopping up
to T = 1800K , however at higher temperature single polaron hopping contribution starts increas-
ing and it become significant above T = 3000K. The estimated parameters are W1 = 0.30 eV, W2

= 0.49 eV, N = 1.03 × 1020cm−3 and 2ζω = 6.5 and 5.4 for 10 and 100 KHz frequencies respec-
tively. Shimakawa estimated W1 = 0.30 eV, W2 = 0.33 eV and N = 1.8 × 1019cm−3 from the same
data, However Elliot7 estimated N = 2.2 × 1019cm−3 accounting for bipolaron hopping and Abdel-
Wahab suggested N = 1.2 × 1018cm−3 for T0 = 5000K . The estimated defect density of states from
σdc is 1.2 × 1021cm−3.29
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FIG. 5. The temperature dependence of ac conductivity of glassy As2Te3 for different frequencies of applied field. The
description is same as for Fig. 2. The dots represent the experimental data due to Rockstad.37

The effective relaxation times are 6.65 × 10−11 and 2.2 × 10−11 sec. for field frequencies 10 and
100KHz respectively and this suggests that the narrow band of optical and acoustic phonons of 4.5
to 1.5 × 1010 Hz contribute to the hopping process.

IV. DISCUSSION

It is pertinent to discuss the non adiabatic and adiabatic hopping process as the barrier height
is temperature dependent and we have used the relaxation time given in Eq. (11) obtained for the
adiabatic hopping instead of that given in Eq. (10) obtained for non adiabatic hopping process.

As described in Landau-Zener charge transfer theory there are two distinct types of hopping
(phonon-assisted charge transfer):non adiabatic and adiabatic.

In non- adiabatic limit the separation between sites involved in hopping is large enough for its
electron -transfer energy to be orders of magnitude smaller than the relevant phonon energy.Then
the hopping rate is proportional to the absolute square of the electron -transfer energy . This factor
may be approximated as exp(−2αr) as given in Eq. (12).The non-adiabatic limits have been applied
to non-polaronic hopping between impurity states in very lightly doped crystalline semiconduc-
tors,where the typical inter-site separation is of the order of 100 nm as in Ref. 1. These authors used
the explicit expression of transition rate given by Millar and Abrahams39 to explain the ac conduc-
tivity of As and Sb dopped with Si.The extreme slowness of the low temperature non-adiabatic
relaxation rates results from the long distances that non-polaronic carriers hop.

By contrast polaron hops are relatively short ,<1nm, and therefore adiabatic.Then the hopping
rate is nearly independent of the electron -transfer energy.The theory of the low temperature low
frequency ac conductivity of adiabatic polaron hopping was developed by Emin.40 The extreme
slowness of the low-temperature adiabatic relaxation rates results from the sluggish atomic move-
ments that must accompany low-temperature hops.

As we are discussing here the ac conductivity of binary chalcogenide glasses in terms of
polaron hopping.Therefore, it can be said that it is assumed here that the polarons hop in the
extreme non adiabatic limit as polaron hopping is usually adiabatic as discussed above.

Here the random free energy barrier hopping model is formulated for both the bipolaron and
single polaron hopping contributions for the ac conductivity of chalcogenides. The different sets
of defect number densities, charge carrier units and barrier heights are used to evaluate σb and σs

which dominate at lower and higher temperatures respectively. In the initial formulation of Pike and
Geballe1 for ac conduction the relaxation was for the single electron and later it was successfully
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extended for the hopping of pair of electrons and holes,30 assuming that their localization and
relaxation process is the same as for single electron. In view of this it is assumed here that the Eqs.
(20) and (30) are equally applicable to bipolaron and single polaron hopping although the number
density of single polaron is augmented by temperature dependent exponential function. In the hole
hopping process D0 ←→ D− an electron has to be localized on the D0 state before D− state can
relax.31

In Eq. (18) the integral over space coordinate r is for r = rω i.e. a narrow band of defect
distribution participate in the hopping process. This approximation is reasonable, however at higher
temperature this may not equally valid. In the present model rω is temperature and frequency
dependent as given in Eq. (30). As an illustration the variation of rω with T for As2Te3 is shown
in Fig. 6. The variation in rω is rather negligible for bipolarons, but for single electron polaron its
value increase about 1.5 times and for hole polaron hopping it increases about 3.5 times at higher
temperature than its value at lower temperature. In lower temperature range magnitude of rω for
hole polaron is nearly three times than that for bipolaron and electron polaron.

Here it is noted that the barrier height for bipolaron hoppong Wm is more than two times than
that for hole hopping W1, while Wm is comparable to the barrier height for electron hopping process
W2. The hole hopping is more pronounced than electron hopping as W2 > W1.

It is found that σs is smaller by order of magnitude than σb at low temperature for all these
materials. However as the temperature increases σs become comparable to σb and it increases
exponentially due to the temperature dependent factor exp( −Ueff

2kBT
) which is nearly the characteristic

of σdc in the conduction process.
We have taken 2ζω as parameter to account for material characteristics and measurement proce-

dure. This parameter is found between the limits 1 to 11 and these limits are well within those as
found by Long.31 Thus contrary to earlier belief that only single high energy optical phonon assist
the hopping process, we found that a finite band of optical and high energy acoustic phonons also
assist to the hopping process.

We have earlier used the extended pair model and random free energy barriers to explain σdc

of chalcogenides and MN rule was achieved.29 The same model is extended here to explain the ac
conductivity of chalcogenides and MN rule is achieved for σac also. The effect of other sites in
hopping process is included through Coulomb correlation in polarizability and defect distribution
function. Thus it is concluded that dc and ac conductivities in chalcogenides are due to same
mechanism and MN rule is the consequence of temperature dependence of hopping barriers.

FIG. 6. Temperature dependence of rω for As2Te3. Thick continuous line represents hopping length for bipolaron, dashed
line for electron and thin continuous line for hole polaron respectively. Here ω = 105 Hz and 2ζω = 5.7 and other parameter
are taken from Table I.
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