92. Random Functions in Fourier Restriction Algebras

By Toru Kawai
Faculty of Science, Kagoshima University
(Communicated by Kôsaku Yosida, M. J. A., Sept. 13, 1976)

We denote by $A(R)$ the Fourier algebra on the real line R. The norm of \hat{h} in $A(R)$ is

$$
\|h\|_{1}=\frac{1}{2 \pi} \int_{\hat{R}}|h(r)| d r .
$$

For a closed subset E of R, set

$$
\begin{gathered}
A(E)=\{g \mid E: g \in A(R)\}, \\
\|f\|_{A(E)}=\inf \left\{\|g\|_{A(R)}: g \in A(R), g \mid E=f\right\} \quad(f \in A(E)) .
\end{gathered}
$$

Let $E_{k}=\left\{x_{m}^{(k)}: m_{k} \leqq m<m_{k}+n_{k}\right\}(k=1,2, \cdots)$ be pairwise disjoint finite subsets of R each of which consists of n_{k} points, where $m_{1}=0$ and $m_{k}+n_{1}=n_{2}+\cdots+n_{k-1}(k \geqq 2)$. Suppose $x_{0} \oplus \bigcup_{k=1}^{\infty} E_{k}$ and $\left\{E_{k}\right\}$ converges to x_{0}. Put

$$
E=\bigcup_{k=1}^{\infty} E_{k} \cup\left\{x_{0}\right\} .
$$

Let $\left\{c_{k}\right\}$ be a sequence of complex numbers and let $\left\{\varepsilon_{m}\right\}$ be the Rademacher sequence. We define a random function $f=f_{\omega}$ on E by

$$
\left\{\begin{array}{l}
f\left(x_{m}^{(k)}\right)=\varepsilon_{m}(\omega) c_{k} \quad\left(k=1,2, \cdots, m_{k} \leqq m<m_{k}+n_{k}\right) \\
f\left(x_{0}\right)=0 .
\end{array}\right.
$$

We investigate the condition for the function f to belong to $A(E)$. By using Rudin-Shapiro polynomials, we see that if each E_{k} is an arithmetic progression and $\left\{c_{k} \sqrt{n_{k}}\right\}$ does not converge to zero, then there exists a function $f \in A(E)$. The following Theorem asserts that it holds almost surely. This is based on the same idea as Paley-Zygmund theorem, but we use the estimate of the L^{1}-norm of random trigonometric polynomials which is due to Uchiyama.

Theorem. Suppose each E_{k} is an arithmetic progression. If $\left\{c_{k} \sqrt{n_{k}}\right\}$ does not converge to zero, then $f \oplus A(E)$ a.s.

Proof. Put

$$
x_{m}^{(k)}=a_{k}+m b_{k} \quad\left(k=1,2, \cdots, m_{k} \leqq m<m_{k}+n_{k}\right) .
$$

For each k, let v_{k} be the function in $L^{1}(\hat{R})$ such that

$$
\hat{v}_{k}(x)=\hat{K}_{\lambda}\left(x-\left\{a_{k}+\left(m_{k}+p_{k}\right) b_{k}\right\}\right) \quad(x \in R),
$$

where $p_{k}=\left[n_{k} / 2\right], \lambda=p_{k} b_{k}$ and

$$
\hat{K}_{\lambda}(y)=\max \left(1-\frac{|y|}{\lambda}, 0\right) \quad(y \in R) .
$$

If $h \in L^{1}(\hat{R})$ and $\hat{h}=f$ on E_{k}, then

$$
\begin{aligned}
& \sum_{m} \widehat{v_{k} * h}\left(x_{m}^{(k)}\right) \exp \left(i b_{k} m r\right) \\
&=\frac{1}{b_{k}} \sum_{n}\left(v_{k} * h\right)\left(r+\frac{2 \pi n}{b_{k}}\right) \exp \left(-i a_{k}\left(r+\frac{2 \pi n}{b_{k}}\right)\right) \quad \text { a.e. }
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\sum_{m} \hat{v}_{k}\left(x_{m}^{(k)}\right) \hat{h}\left(x_{m}^{(k)}\right) e^{i m t}\right| d t \\
& \quad \leqq \frac{1}{2 \pi} \int_{-\infty}^{\infty}\left|\left(v_{k} * h\right)(t)\right| d t \leqq\|h\|_{1}
\end{aligned}
$$

and so

$$
\begin{equation*}
\left\|\sum_{m=m_{k}}^{m_{k}+n_{k}-1} \varepsilon_{m}(\omega) c_{k} \hat{v}_{k}\left(x_{m}^{(k)}\right) e^{i m t}\right\|_{L^{1}(T)} \leqq\|f\|_{A_{\left(E_{k}\right)}} . \tag{1}
\end{equation*}
$$

Choose $\eta>0$ so that $K=\left\{k:\left|c_{k}\right| \sqrt{n_{k}}>\eta\right\}$ is infinite. Let A_{k} be the event that the left side of (1) is not less than

$$
\frac{1}{2}\left|c_{k}\right|\left(\sum_{m=m_{k}}^{m_{k}+n_{k}-1}\left|\hat{v}_{k}\left(x_{m}^{(k)}\right)\right|^{2}\right)^{\frac{1}{2}}
$$

By Theorem 1 in [2], the probability $p\left(A_{k}\right)$ of A_{k} is greater than $1 / 2$. Since $\left\{A_{k}\right\}_{k \in K}$ is independent, the Borel-Cantelli lemma shows that

$$
p\left(\overline{\lim _{k \in K}} A_{k}\right)=1
$$

If $\omega \in \varlimsup_{k \in K} A_{k}$, then for infinitely many k we have

$$
\begin{aligned}
\|f\|_{A\left(E_{k}\right)} & \geqq\left\|\sum_{m} \varepsilon_{m}(\omega) c_{k} \hat{v}_{k}\left(x_{m}^{(k)}\right) e^{i m t}\right\|_{L_{1(T)}} \\
& \geqq \frac{1}{2}\left|c_{k}\right|\left(\sum_{m} \mid \hat{v}_{k}\left(x_{m}^{(k)}\right)^{2}\right)^{\frac{1}{2}}>\frac{\eta}{2 \sqrt{6}} .
\end{aligned}
$$

It follows that $f \notin A(E)$ (cf. [1, Theorem 2.6.4.]), and the proof is complete.

Remark 1. Suppose $\left\{E_{k}\right\}$ are arithmetically disjoint; that is to say, there is a constant C such that

$$
\sum_{k=1}^{N}\left\|\hat{\mu}_{k}\right\|_{\infty} \leqq C\left\|\sum_{k=1}^{N} \hat{\mu}_{k}\right\|_{\infty}
$$

for every positive integer N and every measure μ_{k} supported by E_{k} ($k=1,2, \cdots, N$). (For example, if each E_{k} is an arithmetic progression and $\left\{a_{k}, b_{k}\right\}$ is linearly independent over the rationals, then $\left\{E_{k}\right\}$ are arithmetically disjoint.) If $c_{k} \sqrt{n_{k}} \rightarrow 0(k \rightarrow \infty)$, then for all ω we have $f \neq A(E)$. Indeed, if μ is a measure supported by E_{k}, then

$$
\left|\int f d \mu\right| \leqq\left|c_{k}\right| \sqrt{n_{k}}\left(\sum|\mu(\{x\})|^{2}\right)^{\frac{1}{2}} \leqq\left|c_{k}\right| \sqrt{n_{k}}\|\hat{\mu}\|_{\infty} .
$$

If λ is a measure supported by $\bigcup_{n}^{m} E_{k}$ and $\mu_{k}=\lambda \mid E_{k}$, then

$$
\left|\int f d \lambda\right| \leqq \sum_{n}^{m}\left\|\hat{\mu}_{k}\right\|_{\infty} \sup _{n \leqq k \leqq m}\left|c_{k}\right| \sqrt{n_{k}} \leqq C\|\hat{\lambda}\|_{\infty} \sup _{n \leqq k \leqq m}\left|c_{k}\right| \sqrt{n_{k}} .
$$

This implies that
(2)

$$
\|f\|_{A}\left(\bigcup_{n}^{m} E_{k}\right) \leqq C \sup _{n \leqq k \leq m}\left|c_{k}\right| \sqrt{n_{k}} .
$$

There is a sequence $\left\{g_{n}\right\}$ of functions in $A(E)$ and an increasing sequence $\left\{p_{n}\right\}$ such that $g_{n}=0$ on $\bigcup_{1}^{n} E_{k}, g_{n}=1$ on $\bigcup_{p_{n}}^{\infty} E_{k} \cup\left\{x_{0}\right\}$ and $\left\|g_{n}\right\|_{A(E)}<2$ (cf. [1, Theorem 2.6.3.]). It follows from (2) that $\left\{f-f g_{n}\right\}$ is a Cauchy sequence in $A(E)$, so $f \in A(E)$.

Remark 2. If $\left\{E_{k}\right\}$ diverges to infinity and $E=\bigcup_{k=1}^{\infty} E_{k}$, then the same conclusions as Theorem and Remark 1 are valid.

Finally the author would like to express his hearty thanks to Prof. S. Saeki for his valuable advices.

References

[1] W. Rudin: Fourier Analysis on Groups. Interscience, New York (1962).
[2] S. Uchiyama: On the mean modulus of trigonometric polynomials whose coefficients have random signs. Proc. Amer. Math. Soc., 16, 1185-1190 (1965).

