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92. Random Functions in Fourier Restriction Algebras
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(Communicated by K6saku Y0SlDA, M. J.a., Sept. 13, 1976)

We denote by A(R) the Fourier lgebra on the real line R. The
norm of/ in A(R) is

hll= h()l dr.

For a closed subset E of R, set
A(E)= {g E g e A(R)},

Ilflla =in {llgllaz g e A(R), glE=f} (f e A(E)).
Let E {x" mm<m+n} (k= 1, 2, ..) be pairwise disjoint

finite subsets of R each of which consists of n points, where m 0 and

m+n=nz+... +n_ (k2). Supposex0 e =aE and {E} converges
to xo. Put

E=EU {x0}.
Let {e} be a sequence of complex numbers and let {e} be the Rademaeher
sequence. We define a random function f=f on E by

f()=e(w)c (k= 1, 2, ..., mm<m+n)
f(x0) =0.

We investigate the condition for the function f to belong to A(E).
By using Rudin-Shapiro polynomials, we see that if each E is an
arithmetic progression nd {c} does not converge to zero, then there
exists a unction f A(E). The following Theorem asserts that it holds
almost surely. This is bsed on the same idea as Paley-Zygmund theo-
rem, but we use the estimate of the L-norm of random trigonometric

polynomials which is due to Uchiyama.
Theorem. Suppose each E is an arithmetic progression. If

{c} does not converge to zero, then f A(E) a.s.
Proof. Put

x =a+mb (k= 1, 2, ..., mm<m+n).
For each k, let v be the function in L() such that

(x)=a(x--{a+(m+p)b}) (x e R),
where p=[n/2], a=pb and

(y)=max (1--lYl, 0)(yeR)
If h e L() and =f on E, then
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v h(x)) exp (ibmr)

1 (v.h)(r+2nexp(--ia(r+2Zn))
Hence

v(x )h(x )e 1 dt() () lm

aoe.

and so

1 ) , e(w)C:)(X))emt
m=m L(T)

Choose ]0 so that K--{k" Icl/>V} is infinite. Let A be the event
that the left side of (1) is not less than

1 c (x))I
/

By Theorem 1 in [2], the probability p(AD of A is greater than 1/2.
Since {A}e is independent, the Borel-Cantelli lemma shows that

p(1- A) l.
\kK

If w e lim A, then for infinitely many k we have

L(T)

It follows that f e A(E) (cf. [1, Theorem 2.6.4.]), and the proof is com-
plete.

Remark 1. Suppose {E} are arithmetically disjoint; that is to,

say, there is a constant C such that

for every positive integer N and every measure/ supported by E
(k= 1, 2, ., N). (For example, if eachE is an arithmetic progression
and {a, b} is linearly independent over the rationals, then {E} are
arithmetically disjoint.) If cJ0 (ko), then for all we have

fcA(E). Indeed, if is a measure supported by E, then

If is a measure supported by E and Z=]E, then

fd I111 sup clC IIi1 sup

This implies that
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There is a sequence {g} of functions in A(E) and an increasing sequence
{p} such that g=0 on (._)E, g=l on (.JEU{x0} and
(cf. [1, Theorem 2.6.3.]). It follows from (2) that {f--fg} is a Cauchy
sequence in A(E), so f e A(E).

Remark 2. If {E} diverges to infinity and E--h)= E, then the
same conclusions as Theorem and Remark 1 are valid.

Finally the author would like to express his hearty thanks to Prof.
S. Saeki for his valuable advices.
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