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Abstract  154 

 155 

Homeostatic control of blood glucose requires different physiological responses in the fasting 156 

and post-prandial states. We reasoned that glucose measurements under non-standardised 157 

conditions (random glucose; RG) may capture diverse glucoregulatory processes more 158 

effectively than previous genome-wide association studies (GWAS) of fasting glycaemia or 159 

after standardised glucose loads. Through GWAS meta-analysis of RG in 493,036 individuals 160 

without diabetes of diverse ethnicities we identified 128 associated loci represented by 162 161 

distinct signals, including 14 with sex-dimorphic effects, 9 discovered through trans-ethnic 162 

analysis, and 70 novel signals for glycaemic traits. Novel RG loci were particularly enriched in 163 

expression in the ileum and colon, indicating a prominent role for the gastrointestinal tract in 164 

the control of blood glucose. Functional studies and molecular dynamics simulations of coding 165 

variants of GLP1R, a well-established type 2 diabetes treatment target, provided a genetic 166 

framework for optimal selection of GLP-1R agonist therapy. We also provided new evidence 167 

from Mendelian randomisation that lung function is modulated by blood glucose and that 168 

pulmonary dysfunction is a diabetes complication. Thus, our approach based on RG GWAS 169 

provided wide-ranging insights into the biology of glucose regulation, diabetes complications 170 

and the potential for treatment stratification. 171 

 172 

Main text 173 

 174 

Genetic factors are important determinants of glucose homeostasis and type 2 diabetes (T2D) 175 

susceptibility. Heritability of both fasting glucose (FG) and T2D is high, at 35-40%1 and 30-176 

60%2, respectively. To date, more than 400 genetic loci have been described for T2D3,4. 177 
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Genome-wide association studies (GWAS) for glycaemic traits in individuals without diabetes 178 

have identified genetic predictors of blood glucose, insulin and other metabolic responses 179 

during fasting or after oral or intravenous glucose challenge tests5-8. However, physiological 180 

glucose regulation involves responses to diverse nutritional and other stimuli that were, by 181 

design, omitted from such studies. Blood glucose is frequently measured at different times 182 

throughout the day in clinical practice and research studies (random glucose; RG). Whilst RG 183 

is inherently more variable than standardised measures, we reasoned that, across a very large 184 

number of individuals, it may more comprehensively represent complex glucoregulatory 185 

processes occurring in different organ systems. Therefore, to identify and functionally 186 

validate genetic effects influencing RG, explore its relationships with other traits and diseases, 187 

and utilise these data to inform approaches to T2D treatment stratification, we performed 188 

the first large-scale trans-ethnic GWAS meta-analysis for RG in individuals without diabetes. 189 

 190 

RG GWAS significantly expands the catalogue of glycaemia-related genetic associations 191 

 192 

We undertook RG GWAS in 493,036 individuals without diabetes of European (n=479,482) 193 

and other ethnic (n=16,554) descent with adjustment for age, sex and time since last meal 194 

(where available), along with exclusion of extreme hyperglycaemia (RG>20 mmol/L) and 195 

individuals with diabetes (Supplementary Table 1). The covariate selection was done upon 196 

extensive phenotype modelling (Methods, Supplementary Table 2, Supplementary Figure 197 

1a). We identified 162 distinct signals (P<10-5) within 128 genetic loci reaching genome-wide 198 

significance (P<5x10-8) (Figure 1a, Supplementary Table 3). Seventy RG signals had not 199 

previously been reported for glycaemic traits (Table 1, Supplementary Table 3). In Europeans, 200 

while the UK Biobank (UKBB) study provided 83.8% of the total study size, 128 detected 201 
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signals out of the 143 were directionally consistent in UKBB and other contributing studies 202 

grouped together (Supplementary Table 3). Adjustment for last meal timing (Supplementary 203 

Figure 1b) reduced effect sizes for several loci, including ITPR3, RREB1, RGS17, RFX6/VGLL2 204 

and SYNGAP1, suggesting that these may be more related to the post-prandial state. RREB1, 205 

RFX6 are transcription factors implicated in the development and function of pancreatic beta 206 

cells9,10, and ITPR3 is a calcium channel involved in islet calcium dynamics in response to 207 

glucose and G protein-coupled receptor (GPCR) activation11. Neither adjustment for body-208 

mass index (BMI), nor a more stringent hyperglycaemia cut-off (RG>11.1 mmol/L or 209 

HbA1c≥6.5%) (Supplementary Figure 1c-e) materially changed the magnitude and 210 

significance of the RG effect estimates, although when all covariate models were individually 211 

applied, nine additional signals at genome-wide significance were identified in UKBB (Table 212 

1, Supplementary Table 4).  213 

 214 

Several of the 162 signals identified in Europeans showed nominal significance (P<0.05) in 215 

specific UKBB ethnic groups, with GCK (rs2908286, r2
1000GenomesAllEthnicities=0.83 with rs2971670 216 

lead in Europeans) reaching genome-wide significance in the African descent individuals alone 217 

(Supplementary Table 3). Among the novel RG signals, USP47 was nominally significant in the 218 

individuals of African, FAM46 and ACVR1C in the Indian and TRIM59/KPNA4 and ZC3H13 in 219 

Chinese UKBB ancestry. Trans-ethnic meta-analyses combining Europeans and the other four 220 

UKBB ancestral groups revealed seven novel RG signals, including those at FOXN3, EPS8 and 221 

ISG20L2 (Table 1). Overall, while being only 16,554 individuals larger in sample size than the 222 

European meta-analysis, the trans-ethnic analysis expanded the novel locus discovery for RG 223 

by one tenth (Supplementary Table 5).  224 

 225 
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Among established glycaemic trait signals, the well-known FG loci G6PC2 (P<5.86x10-754) and 226 

GCK (P<6.93x10-301), with key roles in gluconeogenesis12 and glucose sensing13, respectively, 227 

showed the strongest associations with RG (Supplementary Table 3). We also observed two 228 

thirds of RG signals overlapping with T2D-risk loci (Supplementary Figure 1e), including 229 

SLC30A8, DGKB, TCF7L2, GRB10 and THADA. The direction of effects at these loci between 230 

RG, T2D and homeostasis model assessment of beta-cell function/insulin resistance (HOMA-231 

B/-IR)6 (Supplementary Figures 1e-f and 2, Supplementary Table 6) were consistent with 232 

their epidemiological correlation. Notably, 14 established14,15, such as DGKB, THADA, RSPO3, 233 

G6PC2, and novel, including TRIM59, POP7, SLC43A2, and SGIP1, loci showed sex-dimorphic 234 

effects (Methods, Table 1, Figure 1a, Supplementary Table 3). Fine-mapping the associations 235 

at RG loci through conditional analysis (Table 1) we found three independent coding 236 

nonsynonymous rare (minor allele frequency, MAF<1%) variants at G6PC2 with predicted 237 

(rs2232326) and established (rs138726309, rs2232323)16 deleterious effects (Supplementary 238 

Table 7). Within GCK, we observed five rare independent (r2
1000GenomesAllEthnicities<0.001) non-239 

deleterious variants associated with RG at genome-wide significance, including a novel 3’UTR 240 

rs2908276 for T2D, glycaemic traits or obesity (Supplementary Table 7).  241 

 242 

Next, we sought to pinpoint the most plausible set of causal variants by calculating 99% 243 

credible sets for each of RG loci. In the Europeans only analysis, 19 RG signals were explained 244 

by one variant with posterior probability of ≥99% of being causal. For another 20 signals, a 245 

lead variant had a posterior probability >80% (Figure 1b, Supplementary Table 8). The 246 

credible sets were narrowed down in trans-ethnic RG meta-analysis (median credible set size 247 

12.5 in the Europeans only, and 11.0 in the trans-ethnic analysis) (Supplementary Tables 9 248 

and 10).  This analysis helped to prioritise GLP1R for functional studies, in addition to the 249 
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already deeply characterised G6PC2 and CCND217, all three with lead SNPs of low frequency 250 

(1%≤MAF<5%) and posterior probability >99% of being causal. 251 

 252 

The lead RG-associated SNPs at GLP1R, NEUROD1, and EDEM3 loci in our analysis were low-253 

frequency coding variants (Supplementary Figure 3). NEUROD1 (Neuronal Differentiation 1) 254 

and EDEM3 (ER Degradation Enhancing Alpha-Mannosidase Like Protein 3) are plausible 255 

candidates for glucose homeostasis with the former reported for glucosuria18 and the latter 256 

linked to renal function19,20. Additionally, lead variants at three previously reported for FG 257 

(GCKR, TET2 and RREB1) and two novel RG (NMT1, WIPI1) loci were all common (MAF≥5%) 258 

coding variants (Supplementary Figure 3). 259 

 260 

Functional and structural characterisation of RG-associated GLP1R coding variants provides 261 

a possible framework for T2D treatment stratification 262 

 263 

The GLP1R gene, identified in our analysis and in previous T2D21 and glycaemic trait22 GWAS, 264 

encodes a class B G protein-coupled receptor (glucagon-like peptide-1 receptor; GLP-1R) that 265 

is an established target for glucose-lowering and weight loss in T2D using drugs such as 266 

exenatide (exendin-4) and semaglutide23. Within GLP1R, the lead missense variant at 267 

rs10305492 (A316T) had a strong (0.058 mmol/l per allele) RG-lowering effect, second by size 268 

only to G6PC2 locus variants. Previous attempts to functionally characterise A316T and 269 

further GLP1R variants experimentally have been inconclusive24, so we adopted a strategy 270 

based on measuring ligand-induced coupling to mini-Gαs
25, representing the most proximal 271 

part of the Gαs-adenylate cyclase-cyclic adenosine monophosphate (cAMP) pathway that 272 

links GLP-1R activation to insulin secretion. Mini-Gαs coupling efficiency was predictive of RG 273 
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effect for 16 GLP1R coding variants detected in the UKBB dataset with effect allele frequency 274 

ranging from common (G168S, rs6923761, P=4.40x10-5) to rare (R421W, rs146868158, 275 

P=0.054) (Figure 2a, Supplementary Table 11), thereby linking differences in experimentally 276 

measured GLP-1R function to blood glucose homeostasis.  277 

 278 

To probe whether GLP1R coding variation could be therapeutically as well as physiologically 279 

relevant, we also measured responses to several endogenous and pharmacological GLP-1R 280 

agonists. Focussing on the two directly genotyped GLP1R missense variants in UKBB, we 281 

observed that A316T (rs10305492-A) showed increased responses, and R421W 282 

(rs146868158-T) showed reduced responses, to all ligands except exendin-4 (both variants) 283 

and semaglutide (A316T only), in line with their RG effects (Figure 2b). Agonist-induced GLP-284 

1R endocytosis with R421W was normal despite its signalling deficit, suggestive of biased 285 

agonism26. The imputed common G168S variant, with relatively small RG-lowering effect (=-286 

0.0013 [SE=3.14x10-4]), also showed subtle increases in function.  287 

 288 

To gain structural insights into GLP1R variant effects we performed molecular dynamics 289 

simulations of the human GLP-1R bound to oxyntomodulin27 (Extended Data Tables 1-6). 290 

A316T has a single amino acid substitution in the core of the receptor transmembrane domain 291 

(Figure 2c) that leads to an alteration of the hydrogen bond network in close proximity (Video 292 

S1). In A316T, residue T3165.46 replaced Y2423.45 in a persistent hydrogen bond with the 293 

backbone of P3125.42 one turn of the helix above T3165.46 (Figures 2d-e, Video S1). This 294 

triggers a local structural rearrangement that could transmit to the intracellular G protein 295 

binding site through transmembrane helix 3 (TM3) and TM5. A structural water molecule was 296 

found close to position 5.46 in both A316T and WT (water cluster 5, Figure 2f). The same 297 
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water bridged the backbone of Y2413.44 and A3165.46 in WT, or the backbone of Y2413.44 and 298 

the side chain of T3165.46 in A316T. Given the importance of conserved water networks in the 299 

process of activation of class A GPCRs28,29, the presence of a stable hydrated spot close to 300 

position 5.4630 corroborates this site as important for tuning the intracellular conformational 301 

landscape of GLP-1R. Also, a stabilising role for the water molecules at the binding site of the 302 

G protein (water cluster apha5, Figure 2f) cannot be ruled out. Note that our results differ 303 

from a previous analysis of A316T dynamics22, which used an early model that does not fully 304 

capture the full structural features of the current active GLP-1R models.  305 

 306 

In analogy with A316T, molecular simulations with the G168S variant indicate the formation 307 

of a stable new hydrogen bond between the side chain of residue S1681.63 and A1641.59, 308 

located one turn above on the same helix (Video S2, Figure 2g). This moved the C-terminal 309 

end of TM1 closer to TM2 and reduced the overall flexibility of ICL1 (Figure 2h), which could 310 

potentially alter the role of ICL1 in G protein activation. In contrast to A316T and G168S, the 311 

site of mutation R421W is consistent with persistent interactions with the G protein. 312 

Simulations predicted a propensity of R421W to interact with a different region of the G 313 

protein -subunit to that engaged by WT (Figure 2i).  314 

 315 

For a broader view of the impact of GLP1R coding variation, we screened an additional 178 316 

missense variants identified from exome sequencing31 for exendin-4-induced mini-Gs 317 

coupling and endocytosis (Figures 2j-k, Supplementary Table 12). 110 variants showed a 318 

reduced response in either or both pathways (“LoF1”), and 67 displayed a specific response 319 

deficit that was not fully explained by differences in GLP-1R surface expression (“LoF2”), with 320 

many of these defects being larger than in the analysis in Figure 2a.  321 
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 322 

Overall, these data suggest GLP1R variation influences blood glucose levels in health and is 323 

likely to be a direct modifier of responses to drug treatment32. As some patients fail to 324 

respond adequately to GLP-1R agonist treatment, and others are particularly sensitive to side 325 

effects33, this approach may feed into optimised treatment selection in T2D. 326 

 327 

Functional annotation of RG associations and intestinal health 328 

 329 

Previous T2D and glycaemic trait GWAS have primarily implicated pancreatic, adipose and 330 

liver tissues3. To leverage our RG GWA results to identify additional cell and tissue types with 331 

aetiological roles in glucose metabolism, we performed a range of complementary functional 332 

annotation analyses in relation to RG GWAS. DEPICT34, which predicts enriched tissue types 333 

from prioritised gene sets (Methods), highlighted intestinal tissues including ileum and colon, 334 

as well as pancreas, adrenal glands, adrenal cortex and cartilage (False Discovery Rate<0.20) 335 

(Figures 3a-b, Supplementary Tables 13a-c). Similarly, CELLECT35, which facilitates cell-type 336 

prioritisation based on single cell RNAseq datasets (Methods), identified large intestinal 337 

tissue as the second ranked only to pancreatic cell types (Figure 3c, Supplementary Table 14); 338 

interestingly, RG variants were related particularly to enriched expression in pancreatic 339 

polypeptide (PP) cells, exceeding even the more conventionally implicated insulin-secreting 340 

beta cells. Supporting evidence was obtained from transcriptome-wide association study 341 

(TWAS) analysis (Methods), where we identified a total of 216 (119 unique) significant 342 

genetically driven associations across the ten tested tissues; 52 (26 unique) of highlighted 343 

genes are located at genome-wide significant RG loci (Supplementary Tables 15a). TWAS 344 

signals in skeletal muscle showed the largest overlap with RG signals, such as GPSM136 and 345 
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WARS; with combined results from ileum and colon also highly enriched, including the novel 346 

NMT1 and the established FADS1/3 and MADD genes (Figure 1a, Supplementary Tables 15a-347 

b). Moreover, epigenetic annotations using the GARFIELD tool highlighted significant 348 

(P<2.5×10-5, Methods) enrichment of RG-associated variants in foetal large intestine, as well 349 

as blood, liver and other tissues (Supplementary Figure 4, Supplementary Table 16). Adult 350 

intestinal tissues are not available in GARFIELD except for colon. Prompted by multiple 351 

analyses highlighting a potential role for the digestive tract in glucose regulation, we assessed 352 

the overlap between our signals and those from the latest microbiome GWAS37 (Methods) 353 

and identified three genera sharing signals with RG at two loci: Collinsella and 354 

LachnospiraceaeFCS020 at ABO-FUT2 and Slackia at G6PC2 (Figure 1a, Supplementary Table 355 

17). The ABO-FUT2 locus effects on RG could be mediated by abundance of bacteria 356 

producing glucose from lactose and galactose38. 357 

 358 

eQTL colocalization analyses, using eQTLgen blood expression data from 31,684 individuals39 359 

and the COLOC2 approach (Methods), identified 14 loci with strong links (posterior 360 

probability >50%) to gene expression data, including SMC4, TRIM59, EIF5A2, TET2, COG5, 361 

CHMP5, NFX1, FNBP4, MADD, RAPSN, WARS1, HBM, NUFIP2, and PPDPF (Supplementary 362 

Table 18). This further supported elucidation of biological candidates at novel and established 363 

glycaemic loci. 364 

 365 

Finally, we observed associations at two RG loci (GCKR, HNF1A) with nine total plasma N-366 

glycome traits40 at a Bonferroni corrected threshold (Methods, Figure 1a, Supplementary 367 

Table 19). These traits represent highly branched galactosylated sialylated glycans (attached 368 

to alpha1-acid protein - an acute-phase protein41), known to lead to chronic low-grade 369 
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inflammation42,43 and an increased risk of T2D44-46 that might be explained by the role of N-370 

glycan branching of the glucagon receptor in the glucose homeostasis47. In addition, ten 371 

glycans showed association with five RG loci (GCKR, HNF1A, BAG1, PLUT, ACVR1C) loci at a 372 

suggestive level of significance (Figure 1a). Among them, three are attached to 373 

immunoglobulin G molecules41 and their increased relative abundances are associated with a 374 

lower risk of T2D48 and diminished inflammation status49.   375 

 376 

Analysis of genetic relationships between RG and other metabolic or non-metabolic traits 377 

 378 

To quantify the shared genetic contribution between RG and other phenotypes, we estimated 379 

their genetic correlations using linkage-disequilibrium score regression analyses. We 380 

detected positive genetic correlations between RG, squamous cell lung cancer (rg=0.28, 381 

P=0.0015), and lung cancer (rg=0.12, P=0.037, Figure 4, Supplementary Table 20); as well as 382 

inverse genetic correlations with lung function related traits, such as forced vital capacity 383 

(FVC, rg=-0.090, P=0.0059) and forced expiratory volume in 1 second (FEV1, rg=-0.054, 384 

P=0.017) (Figures 3a and 4, Supplementary Table 20). To investigate this further, we 385 

conducted a bi-directional Mendelian Randomisation (MR) analysis, which suggested a causal 386 

effect of RG and T2D on lung function, including FEV1 (βMR-RG=-0.60, P=0.0015; βMR-T2D=-0.049, 387 

P=1.27x10-13) and FVC (βMR-RG=-0.61, P=3.5x10-4; βMR-T2D=-0.062, P=1.42x10-21), but not vice 388 

versa (Methods, Supplementary Table 21). Previous observational studies have highlighted 389 

worsening lung function, as defined by FVC, in T2D patients50,51. More recently, it was shown 390 

that patients with diabetes are at an increased risk of death from the viral infection COVID-391 

1952, with pulmonary dysfunction contributing to mortality53. Our data therefore support the 392 
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causal effect of glycaemic dysregulation on a decline in lung function as a novel complication 393 

of diabetes. 394 

 395 

Genome-wide genetic correlation analyses also showed strong positive genetic correlation of 396 

RG with FG (rg=0.88, P=6.93×10-61, Figure 4, Supplementary Table 20). We meta-analysed RG 397 

studies other than UKBB with FG GWAS summary statistics54, observing 77 signals reaching 398 

nominal significance that were directionally consistent in both UKBB and RG+FG 399 

(Supplementary Table 3), providing an additional support to our RG findings. Given the large 400 

genetic overlap between RG, other glycaemic traits and T2D, we evaluated the ability of a 401 

trait-specific polygenic risk score (PRS) to predict RG, T2D and glycated haemoglobin (HbA1c) 402 

levels using UKBB effect estimates and the Vanderbilt cohort (Methods). The RG PRS 403 

explained 0.58% of the variance in RG levels when individuals with T2D were included, 404 

(Supplementary Table 22) and 0.71% of the variance after excluding those who developed 405 

T2D within one year of their last RG measurement. The RG PRS performance was comparable 406 

to that of the FG loci PRS (0.38% vs. 0.42% for T2D; 0.40% vs. 0.44% for HbA1c) indicating 407 

wide similarities with the latter.  408 

 409 

We previously highlighted diverse effects of FG and T2D loci on pathophysiological processes 410 

related to T2D development by grouping associated loci in relation to their effects on multiple 411 

phenotypes6. Cluster analysis of the RG signals with 45 related phenotypes identified three 412 

separate clusters that give insights into the aetiology of glucose regulation and associated 413 

disease states (Methods, Figure 1a, Supplementary Table 23, Supplementary Figures 5a-d). 414 

Cluster 1 (“metabolic syndrome” cluster) clearly separated 33 loci with effects on higher 415 

waist-to-hip ratio, blood pressure, plasma triglycerides, insulin resistance (HOMA-IR) and 416 
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coronary artery disease risk, as well as lower testosterone and sex hormone binding globulin 417 

levels in men. Cluster 3 was characterised in particular by insulin secretory defects6. Cluster 2 418 

was less clearly defined by a primary effect on insulin release versus insulin action3, but 419 

interestingly included a sub-cluster of 21 loci which exert protective effects on inflammatory 420 

bowel disease. Moreover, cluster 2 was notable for generally reduced impact on T2D risk in 421 

comparison to clusters 1 and 3, underscoring the partial overlap between genetic 422 

determinants of glycaemia and T2D that is known to exist55. 423 

 424 

Discussion 425 

 426 

Taking advantage of data from 493,036 individuals, we have expanded by 58 the number of 427 

loci associated with glycaemic traits. By using RG, our analysis integrates genetic contributions 428 

to a wider range of physiological stages than possible with FG or other standardised 429 

measures. Moreover, the greater statistical power obtained from large trans-ethnic meta-430 

analysis improves confidence in identification of potentially causal variants, thereby helping 431 

to prioritise loci for more detailed functional analyses in the future. Our observation of ligand-432 

specific responses to the A316T, G168S and R421W GLP1R variants provides a mechanism 433 

that can explain why some individuals respond better or worse to particular GLP-1R-targeting 434 

drugs. We note that other class B GPCRs identified in our current analysis and other glycaemic 435 

or T2D GWAS include GIPR, GLP2R3 and SCTR21, all of which are investigational targets for T2D 436 

treatment. Our functional annotation analyses point to underexplored tissue mediators of 437 

glycaemic regulation, with several sources of evidence highlighting a likely role of the 438 

intestine. This observation is compatible with the well-described and profound effects of 439 

gastric bypass surgery on T2D resolution56, as well as links between the intestinal microbiome 440 
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and responses to several diabetes drugs57. Finally, through Mendelian randomisation we 441 

were able to identify a causal effect of glucose levels and T2D on lung function, demonstrating 442 

the utility of this approach for the corroboration of findings from observational studies and 443 

elevating lung dysfunction as a new complication of diabetes.  444 
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Methods 445 

 446 

Phenotype definition and model selection for RG GWAS  447 

We used RG (mmol/l) measured in plasma or in whole blood (corrected to plasma level using 448 

the correction factor of 1.13). Individuals were excluded from the analysis, if they had a 449 

diagnosis of T2D or were on diabetes treatment (oral or insulin). Individual studies applied 450 

further sample exclusions, including pregnancy, fasting plasma glucose equal to or greater 451 

than 7 mmol/l in a separate visit, when available, and having type 1 diabetes. Detailed 452 

descriptions of study-specific RG measurements are given in Supplementary Table 1. All 453 

studies were approved by local ethics committees and all participants gave informed consent. 454 

We examined the distributions of untransformed and natural logarithmic transformed RG in 455 

the first set of six available cohorts. We observed that RG was approximately normally 456 

distributed after natural log transformation. We then determined the variables that could 457 

have a significant effect on RG by fitting several regression models using naturally log-458 

transformed RG as the outcome with age, sex, BMI and time since last meal as predictors. 459 

Modelling of RG revealed significant effects (P<0.05) of age, sex, BMI and time since last meal 460 

(accounted for as T, T2 and T3) in these cohorts (Supplementary Table 2). Compared to RG 461 

models without T, inclusion of T, T2 and T3 increased the proportion of variance explained in 462 

the range of 1-6%. Thus, inclusion of this covariate is potentially equivalent to 1-6% increase 463 

in study sample size. For the GWAS, we included individuals based on two RG cut-offs: <20  464 

mmol/l (20) to account for the effect of extreme RG values and <11.1 mmol/l (11), which is 465 

an established threshold for T2D diagnosis. We then evaluated six different models in GWAS 466 

according to covariates included and cut-offs used: 1) age (A) and sex (S), RG<20 mmol/L 467 

(AS20), 2) age, sex and BMI (B), RG<20 mmol/L (ASB20), 3) age and sex, RG<11.1 mmol/L 468 
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(AS11), 4) age, sex and BMI, RG<11.1 mmol/L (ASB11), 5) age, sex, T, T2 and T3, RG<20 mmol/L 469 

(AST20) and 6) age, sex, T, T2 and T3 and BMI, RG<20 mmol/L (ASTB20). Apart from above, 470 

additional adjustments for study site and geographical covariates were also applied. 471 

 472 

Genotyping and quality control 473 

Commercial genome-wide arrays and the Metabochip58 were used by individual studies for 474 

genotyping. Studies with genome-wide arrays undertook imputation of missing genotypes 475 

using at least the HapMap II CEU reference panel via MACH59, IMPUTE60 or MINIMAC61 476 

software (Supplementary Table 1). For each study, samples reflecting duplicates, low call 477 

rate, gender mismatch, or population outliers were removed. Low-quality SNPs were 478 

excluded by the following criteria: call rate <0.95, minor allele frequency (MAF) <0.01, minor 479 

allele count <10, Hardy-Weinberg P-value <10−4. GWAS were performed with PLINK, SNPTEST, 480 

EMMAX, R package LMEKIN, Merlin, STATA, and ProbABEL (Supplementary Table 1).  481 

 482 

GWAS in the UKBB 483 

For the GWAS of the UKBB data we excluded non-white non-European individuals and those 484 

with discrepancies in genotyped and reported sex. For the RG definition, we used the same 485 

criteria as in the other studies described above. To control for population structure, we 486 

adjusted the analyses for six first principal components. The GWAS was performed using the 487 

BOLT-LMM v2.3 software62,63 restricting the analyses to variants with MAF>1% and 488 

imputation quality>0.4. 489 

 490 

RG meta-analyses  491 
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The GWAS meta-analysis of RG consisted of four components: (i) 37,239 individuals from 10 492 

European GWAS imputed up to the HapMap 2 reference panel, (ii) 3,156 individuals from 493 

three European GWAS with Metabochip coverage, (iii) 21,083 individuals from two European 494 

GWAS imputed up to 1000 genomes reference panel and iv) 401,810 individuals of white 495 

European origin from the UKBB and (iv) 16,983 individuals from the Vanderbilt cohort 496 

imputed to the HRC panel. We imputed the GWAS meta-analysis summary statistics of each 497 

component to all-ancestries 1000 Genomes reference panel64 using summary statistics 498 

imputation method implemented in the SS-Imp v0.5.5 software65. SNPs with imputation 499 

quality score <0.7 were excluded. We then conducted inverse variance meta-analyses to 500 

combine the association summary statistics from all components using METAL (version from 501 

2011-03-25)66. We focused our meta-analyses on models AS20 (17 cohorts, Nmax=481,150) 502 

and AST20 (when time from last meal was available in the cohort) (12 cohorts, Nmax=438,678). 503 

For FHS cohort, where no information was available for individuals with RG>11.1 (an 504 

established threshold for 2hGlu concentration, which is a criterion for T2D diagnosis), AS11 505 

model results were used. In order to maximise the association power while taking into 506 

account T, we also performed meta-analysis using AST20 (when time from last meal was 507 

available in the cohort) combined with AS20 (otherwise) and we termed this analysis as 508 

AS20+AST20 in the following text (17 cohorts, Nmax=480,250).  509 

A signal was considered to be associated with RG if it had reached genome-wide significance 510 

(P<5x10-8) in the meta-analysis of UKBB and other cohorts in either of our two models of 511 

interest (AS20) or (AST20) or in their combination (AS20+AST20). We report the P-value from 512 

the combined model, unless otherwise stated. Full results from all models are provided in the 513 

Supplementary Table 3.  All the follow-up analyses were conducted using the combined 514 

AS20+AST20 model. We checked for nominal significance (P<0.05) and directional consistency 515 
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of the effect sizes for the selected leads in the combined model in UKBB results vs other 516 

cohort results. We further extended the check between UKBB results and meta-analysis of 517 

other cohorts including FG GWAS meta-analysis54 excluding overlapping cohorts. This meta-518 

analysis conducted in METAL was sample size and P-value based due to the measures being 519 

at different scale (natural logarithm transformed RG and untransformed FG).  520 

 521 

Trans-ethnic analyses and meta-analysis 522 

We performed GWAS in those non-European populations within UKBB that had a sample size 523 

of at least 1,500 individuals. These were Black (N=7,644), Indian (N=5,660), Pakistani 524 

(N=1,747) and Chinese (N=1,503). We further meta-analysed our European cohorts with the 525 

trans-ethnic UKBB cohorts. The analyses were performed with BOLT-LMM and METAL.  526 

 527 

Sex-dimorphic analysis 528 

To evaluate sex-dimorphism in our results, we meta-analysed the UKBB and the Vanderbilt 529 

cohort with the GMAMA software67, which provides a 2 degrees of freedom (df) test of 530 

association assuming different effect sizes between the sexes. We considered a signal to show 531 

evidence of sex-dimorphism if the 2 df test P-value was <5x10-8 and if the sex heterogeneity 532 

P-value (1 df) was <0.05.  533 

 534 

Clumping and GCTA analysis 535 

We performed a standard clumping analysis [PLINK 1.9 (v1.90b6.4)68 criteria: P≤510-8, 536 

r2=0.01, window-size=1Mb, 1000 Genomes Phase 3 data as linkage disequilibrium (LD) 537 

reference panel] to select a list of near-independent signals. We then performed a stepwise 538 

model selection analysis (GCTA conditional analysis) to replicate the analysis using GCTA 539 
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v1.93.069 with the following parameters: P≤510-8 and window-size=1Mb. We further 540 

checked for additional distinct signals by using a region-wide threshold of P≤110-5 for 541 

statistical significance.   542 

 543 

GLP-1R pharmacological and structural analysis  544 

Reagents 545 

Custom peptides were purchased from Wuxi Apptec and were at least 95% pure. SNAP-546 

Surface probes were purchased from New England Biolabs. BG-S-S-64970 was provided by 547 

New England Biolabs on a collaborative basis. Furimazine was obtained from Promega.  548 

 549 

Plasmids and cell line generation 550 

Wild-type and variant GLP-1R expression plasmids, termed pcDNA5-SNAPf-GLP-1R-SmBiT, 551 

were generated by Genewiz, as previously described71, to the following design: a fast-labelling 552 

SNAPf tag and upstream signal peptide based on that of the 5-HT3A receptor 553 

(MDSYLLMWGLLTFIMVPGCQA), plus C-terminal SmBiT tag, were appended to the codon-554 

optimised wild-type or variant human GLP-1R sequence (without the endogenous N-terminal 555 

signal peptide, which would lead to cleavage of the N-terminal SNAP-tag; accordingly, known 556 

missense variants in the signal peptide region were not included), and inserted into the 557 

pcDNA5/FRT/TO expression vector. These constructs allow bio-orthogonal labelling of 558 

expressed GLP-1R using SNAP-labelling probes and monitoring of cytosolic protein 559 

interactions made to GLP-1R. Constructs were used either for transient transfection or to 560 

generate stable cell lines. To obtain cell populations with inducible expression of SNAP-GLP-561 

1R-SmBiT from a single genomic locus, Flp-In™ T-REx™ 293 cells72 (Thermo Fisher) were co-562 

transfected with pOG44 (Thermo Fisher) and wild-type or variant pcDNA5-SNAPf-GLP-1R-563 
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SmBiT in a 9:1 ratio, followed by selection with 100 µg/ml hygromycin. The resulting cell lines 564 

were maintained in DMEM supplemented with 10% foetal bovine serum (FBS) and 1% 565 

penicillin/streptomycin.  566 

 567 

Mini-Gs recruitment assay 568 

Assays were performed as previously described71. Where stable cell lines were used (i.e. 569 

Figures 2a and 2b), wild-type or variant T-REx-SNAP-GLP-1R-SmBiT cells were seeded in 12-570 

well plates and transfected with 1 µg/well LgBiT-mini-Gs
25 (a gift from Prof Nevin Lambert, 571 

Medical College of Georgia). The following day GLP-1R expression was induced by addition of 572 

tetracycline (0.2 µg/ml) to the culture medium for 24 hours. For transient transfection assays 573 

(i.e. Figure 2j), HEK293T cells in poly-D-lysine-coated white 96-well plates were transfected 574 

using Lipofectamine 2000 with 0.05 µg/well wild-type or variant SNAP-GLP-1R-SmBiT plus 575 

0.05 µg/well LgBiT-mini-Gs and the assay performed 24 hours later. Cells were then 576 

resuspended in Hank’s balanced salt solution (HBSS) + furimazine (Promega) diluted 1:50 and 577 

seeded in 96-well half area white plates, or the same reagent added to adherent cells for 578 

transient transfection assays. Baseline luminescence was measured over 5 min using a 579 

Flexstation 3 plate reader at 37°C before addition of ligand or vehicle. Agonists were applied 580 

at a series of concentrations spanning the response range. After agonist addition, luminescent 581 

signal was serially recorded over 30 min, and ligand-induced effects were quantified by 582 

subtracting individual well baseline. Signals were corrected for differences in cell number as 583 

determined by BCA assay. 584 

 585 

High content imaging-based GLP-1R internalisation assay 586 
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The assay was performed as previously described71. Where stable cell lines were used (i.e. 587 

Figures 2a and 2b), wild-type or variant T-REx-SNAP-GLP-1R-SmBiT cells were seeded 588 

(10,000/well) in poly-D-lysine-coated black, clear-bottom 96-well plates, in complete medium 589 

supplemented with tetracycline (0.2 µg/ml) for 24 hours before the assay. Medium was 590 

removed and cells labelled with 0.5 µM BG-S-S-649 (a gift from New England Biolabs) in 591 

complete medium for 20 min at 37°C. Agonists were then applied in serum-free medium at 592 

the indicated dose for a 30-min stimulation period to induce GLP-1R internalisation. A series 593 

of concentrations spanning the response range were used. Cells were then washed with HBSS, 594 

followed by a 5-min treatment ± 100 mM sodium 2-mercaptoethanesulfonate (Mesna) in 595 

alkaline TNE buffer (pH 8.6) to cleave residual surface BG-S-S-649 without affecting that 596 

internalised whilst bound to SNAP-GLP-1R. After re-washing, the plate was imaged using a 597 

0.75 numerical aperture 20x phase contrast objective, with 9 fields-of-view (FOVs) per well 598 

acquired for both transmitted phase contrast and epifluorescence. Flat-field correction of 599 

epifluorescence images was performed using BaSiC73 and cell segmentation was performed 600 

using PHANTAST74 for the phase contrast image. To determine specific GLP-1R labelling, cell-601 

free background per image was determined from the segmented epifluorescence image and 602 

subtracted from the mean fluorescence intensity from the cell-containing regions. Ligand 603 

induced effects were determined by subtracting the signal from vehicle-treated cells exposed 604 

to Mesna. Responses were normalised to signal from labelled, untreated cells (i.e. total 605 

surface labelling) within the same assay. GLP-1R surface expression levels were also obtained 606 

from these assays from wells not treated with GLP-1RA or Mesna. For transient transfection 607 

assays (i.e. Figure 2j), the assay was performed similarly but with the following changes: 1) 608 

HEK293T cells in poly-D-lysine-coated black clear-bottom 96-well plates were transfected 609 

using Lipofectamine 2000 with 0.1 µg/well wild-type or variant SNAP-GLP-1R-SmBiT and the 610 
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assay performed 24 hours later; 2) the plate was imaged as above both prior to and after 611 

ligand treatment (+subsequent Mesna cleavage); 3) surface labelling quantification was 612 

obtained from the pre-treatment read, and total internalised receptor was obtained from the 613 

post-treatment read. 614 

 615 

Analysis of pharmacological data 616 

Technical replicates within the same assay were averaged to give one biological replicate. For 617 

concentration-response assays (Figures 2a and 2b), ligand-induced responses were analysed 618 

by 3-parameter fitting in Prism 8.0 (GraphPad Software). As a composite measure of 619 

agonism75, log10-transformed Emax/EC50 values were obtained for each ligand/variant 620 

response. The wild-type response was subtracted from the variant response to give 621 

∆log(max/EC50), a measure of gain- or loss-of-function for the variant relative to wild-type. 622 

Log10-transformed surface expression levels were obtained for each variant relative to wild-623 

type; these were then used to correct mini-Gs ∆log(max/EC50) values for differences in variant 624 

GLP-1R surface expression levels, by subtraction with error propagation. GLP-1R 625 

internalisation responses were already normalised to surface expression within each assay. 626 

Statistical significance between wild-type and variant responses was inferred if the 95% 627 

confidence intervals for ∆log(max/EC50) did not cross zero75. Changes to the profile of 628 

receptor response between mini-Gs recruitment and GLP-1R internalisation were inferred if 629 

p<0.05 with unpaired t-test analysis, with Holm-Sidak correction for multiple comparisons. 630 

For transient transfection assays (Figure 2j), responses were normalised to wild-type 631 

response and log10 transformed to give Log ∆ response. Additionally, the impact of differences 632 

in surface expression on functional responses was determined by subtracting log-633 

transformed normalised expression level from log-transformed normalised response.  634 
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 635 

Variance explained in RG effects by mini-Gs recruitment at coding GLP1R variants 636 

RG (AST20) effects estimated in the UKBB study at 18 independent (r2<0.02) coding GLP1R 637 

variants (Supplementary Table 10) were regressed on mini-Gs coupling in response to GLP-1 638 

stimulation (corrected for surface expression) giving more weight to variants with higher 639 

minor allele frequency. Adjusted R2 is reported as variance explained in RG effects by mini-640 

Gs coupling. 641 

 642 

Computational methods including molecular dynamics simulations 643 

The active state structure of GLP-1R in complex with OXM27 and Gs protein was modelled as 644 

previously described30 and used to simulate the WT GLP-1R and G168S, A316T and R421W. 645 

The systems were prepared for molecular dynamics (MD) simulations and equilibrated as 646 

reported in30. AceMD376 was employed for production runs (four MD replicas of 500 ns each). 647 

AquaMMapS analysis77 was performed as previously described30. 648 

 649 

Credible set analysis  650 

After selecting the signals with each region based on different M-A results from AS20, AST20 651 

and AS20+AST20 models, we further performed a credible set analysis to obtain a list of 652 

potential causal variants for each of the 143 selected signals. Based on the method adopted 653 

from78 under the assumption that there is one causal variant within each region, we created 654 

99% credible sets. We also calculated credible sets for the trans-ethnic meta-analysis and 655 

compared the results between the European only and trans-ethnic meta-analyses.  656 

 657 

DEPICT analysis 658 
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DEPICT uses GWAS summary statistics and computes a prioritization of genes in associated 659 

loci, which are used to prioritise tissues via enrichment analysis. DEPICT v1 (rel 194) was used 660 

with default settings and RG GWAS summary statistics as input against a genetic background 661 

of SNPsnap data79 derived from the 1000 Genomes Project Phase 380 in order to prioritise 662 

genes. Tissue and cell types enriched for prioritised genes were computed on normalised 663 

expression data comprised of 209 tissues and cell types from 37,427 Affymetrix U133 Plus 2.0 664 

Array, as previously described34. We used 500 permutations for bias adjustment and 50 665 

replications for false discovery rate estimation in our analysis in order to calculate empirical P-666 

values and false discovery rate cutoffs for prioritised tissues. 667 

 668 

CELLECT analysis 669 

CELL type Expression-specific integration for Complex Traits (CELLECT)35 v1.0.0 and Cell type 670 

EXpression-specificity (CELLEX)35 v1.0.0 are two toolkits for genetic identification of likely 671 

etiologic cell types using GWAS summary statistics and single-cell RNA-sequencing (scRNA-672 

seq) data. Tabula muris gene expression data81, a scRNA-seq dataset derived from 20 organs 673 

from adult male and female mice, was pre-processed as described previously82. Briefly, 674 

expression values were normalised by using a scaling factor of 10k transcripts. The normalised 675 

values were transformed by taking log(x+1), followed by filtering out infrequently expressed 676 

genes, and keeping only those mouse transcripts with 1-1 mapping to human genes in 677 

Ensembl v.91. This data was supplied to CELLEX to compute a cumulative expression 678 

specificity metric (ESμ) of every gene for each Tabula muris cell type by combining four 679 

different expression specificity measures82. ESμ values were converted to stratified LD-score 680 

regression (S-LDSC) annotations using the 1000 Genomes Project SNPs and mapping each SNP 681 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 20, 2021. ; https://doi.org/10.1101/2021.04.17.21255471doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.17.21255471


30 

 

to the strongest ESμ value within 100kb. Cell types were prioritised by S-LDSC on the basis of 682 

ESμ-derived annotations and GWAS summary statistics from the current RG meta-analysis. 683 

 684 

Genetically regulated gene expression analysis 685 

We used MetaXcan (S-PrediXcan) v0.6.1083 to identify genes whose genetically predicted 686 

gene expression levels are associated with RG in a number of tissues. The tested tissues were 687 

chosen based on their involvement in glucose metabolism. Those were adipose visceral 688 

omentum, adipose subcutaneous, skeletal muscle, liver, pancreas and whole blood. 689 

Additionally, we tested ileum, transverse colon, sigmoid colon and adrenal gland, because 690 

they were highlighted by DEPICT analysis. The models for the tissues of interest were trained 691 

with GTEx Version 7 transcriptome data from European individuals84. The tissue 692 

transcriptome models and 1000 Genomes85 based covariance matrices of the SNPs used 693 

within each model were downloaded from PredictDB Data Repository. The association 694 

statistics between predicted gene expression and RG were estimated from the effects and 695 

their standard errors coming from the AS20+AST20 model. Only statistically significant 696 

associations after Bonferroni correction for the number of genes tested across all tissues (P  697 

8.996x10-7) were included into the table. Genes, where less than 80% of the SNPs used in the 698 

model were found in the GWAS summary statistics, were excluded due to low reliability of 699 

association result.  700 

 701 

GARFIELD analysis 702 

We applied the GARFIELD tool v286 on the RG AS20+AST20 meta-analysis results to assess 703 

enrichment of the RG-associated variants within functional and regulatory features. 704 

GARFIELD integrates various types of data from a number of publicly available cell lines. Those 705 
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include genetic annotations, chromatin states, DNaseI hypersensitive sites, transcription 706 

factor binding sites, FAIRE-seq elements and histone modifications. We considered 707 

enrichment to be statistically significant if the RG GWAS P-value reached P=1×10-8 and the 708 

enrichment analysis P-value was <2.5×10-5 (Bonferroni corrected for 2040 annotations).  709 

 710 

Genetic association with gut microbiome 711 

We assessed the genetic overlap between RG GWAS results and those for gut microbiome. 712 

GWAS of microbiome profiles were publicly available and downloaded from the 713 

https://mibiogen.gcc.rug.nl/ [mibiogen.gcc.rug.nl]. For each of the 211 taxa, the 714 

corresponding P-values for the 143 RG GWAS SNPs and their proxies were extracted. 715 

 716 

Genetic association with GLP-1 and GIP 717 

We assessed the genetic overlap between RG GWAS results and those for glucagon-like 718 

peptide-1 (GLP-1) and gastric inhibitory polypeptide (GIP) measured at 0 and 120 minutes.   719 

We extracted the results for the 143 RG signals from the GWAS summary statistics for GLP-1 720 

and GIP87.  721 

 722 

eQTL co-localization analysis 723 

We further performed co-localization analysis using whole blood gene expression-QTL (eQTL) 724 

data provided by eQTLGen39 and AS20+AST20 meta-analysis results. Only cis-eQTL data from 725 

eQTLGen was incorporated to reduce the computational burden. The COLOC2 Bayesian-726 

based method88 was used to interrogate the potential co-localization between RG GWAS 727 

signals and the genetic control of gene expression. We first extracted the RG GWAS test 728 

statistics of all the SNPs within +/-1Mb region around the 143 RG signals. Then, for each RG 729 
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signal, we matched the eQTLGen results with the RG results and performed COLOC2 analysis 730 

evaluating the posterior probability (PP) of five hypotheses for each region: H0, no 731 

association; H1, GWAS association only; H2, eQTL association only; H3, both GWAS and eQTL 732 

association, but not co-localised; and H4, both GWAS and eQTL association and co-localised. 733 

Only GWAS signals with at least one nearby gene/probe reaching PP (H4) ≥ 0.5 were reported.  734 

 735 

Genetic association with human blood plasma N-glycosylation 736 

We assessed the genetic association between 143 RG signals and 113 human blood plasma 737 

N-glycome traits using previously published genome-wide summary association statistics89. 738 

The description of the analysed traits and details of the association analysis can be found 739 

elsewhere40. We considered associations to be significant when P-740 

value<0.05/113/143=3.09e-6 (after Bonferroni correction). Association was considered as 741 

suggestive when P-value<10-4. 742 

 743 

Genetic correlation analysis 744 

We investigate the shared genetic component between RG and other traits, including 745 

glycaemic ones, by performing genetic correlation analysis using the bivariate LD score 746 

regression method (LDSC v1.0.0)90. To reduce multiple testing burden, only the GWAS results 747 

of the UKBB model AS20 were used. We used GWAS summary statistics available in LDhub91 748 

and the Meta-Analysis of Glucose and Insulin-related Traits Consortium (MAGIC) website 749 

(https://www.magicinvestigators.org) for several traits including FG/FI54, HOMA-B/HOMA-750 

IR92. In total, 228 different traits were included in the genetic correlation analysis with RG. 751 

We considered P≤0.05 as the nominal significant level. 752 

 753 
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MR analysis 754 

We applied a bidirectional two-sample MR strategy to investigate causality between RG and 755 

lung function, as well as T2D and lung function using independent genetic variants as 756 

instruments. MR can provide estimates of the effect of modifiable exposures on an outcome 757 

(e.g. disease) unaffected by classical confounding or reverse causation, whenever randomised 758 

clinical trials are not feasible. We looked for evidence for the presence of a causal effect of 759 

RG and T2D on two lung function phenotypes; FVC and FEV1 in a two-sample MR setting. 760 

Genome-wide summary statistics for the lung function phenotypes were available93, involving 761 

cohorts from the SpiroMeta consortium and the UKBB study. T2D susceptibility variants and 762 

their effects were obtained from the largest-to-date T2D GWAS4. 763 

To avoid confounding due to sample overlap, lung function summary statistics used as 764 

outcome data were those estimated in the SpiroMeta consortium alone. Similarly, when 765 

testing the effect of lung function on RG, RG genetic effects used as outcome data were 766 

estimated in all cohorts except UK Biobank. There was no sample overlap between the lung 767 

function- and the T2D GWAS, thus allowing the use of T2D effects estimated in all contributing 768 

European studies. Genome-wide T2D summary statistics were available from a previous 769 

study3 to test for the causal effect of lung function on T2D. All analyses were conducted using 770 

the R software package TwoSampleMR v0.5.494.  771 

Instrument selection: Independent (established by conditional analyses for both RG and the 772 

lung function phenotypes) genome-wide significant (P<5x10-8) variants were selected as 773 

genetic instruments. In total, 143 independent variants were defined for RG by the current 774 

study, 424 T2D signals were reported for Europeans by Vujkovic et al. and 130/162 775 

independent signals were reported by Shrine et al. for FVC and FEV1, respectively. We looked 776 

for proxy variants with a minimum r2 of 0.8 where the instrumental variant was not present 777 
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in the outcome data. Palindromic variants with minor allele frequency larger than 45% were 778 

excluded to avoid uncertainty when harmonizing effects to the exposure-increasing allele. 779 

After filtering, 136 variants were used to instrument RG and 413 variants were available as 780 

T2D instruments. For FVC, 125 and 115 variants could be used as instruments in the RG and 781 

T2D MR analyses, respectively. For FEV1, 157 and 140 variants served as instruments in the 782 

RG and T2D MR analyses, respectively. 783 

Causal effects were estimated using the inverse-variance weighted method, which combines 784 

the causal estimates of individual instrumental variants (Wald ratios) in a random-effects 785 

meta-analysis95. As a sensitivity analysis, we employed MR-Egger regression to obtain causal 786 

estimates that are more robust to the inclusion of invalid instruments96. 787 

 788 

PRS analysis 789 

We tested the ability of the RG genetic effects to predict RG, T2D and HbA1c. We compared 790 

that to the predictive power of T2D and FG genetic instruments by computing PRS for RG, T2D 791 

and FG and assessing their performance in predicting RG, T2D and HbA1c. PRS analyses 792 

require base- and target data from independent populations. The base datasets in our 793 

analyses were UKBB-only estimates from the present RG GWAS, meta-analysis estimates of 794 

32 studies for T2D97 and meta-analysis estimates from the MAGIC for FG54. We used the 795 

second largest cohort, the Vanderbilt University Medical Centre (VUMC), as our target 796 

dataset.  PRS construction and model evaluation were done using the software PRSice 797 

(v2.2.3)98. The PRS for an individual is the summation of the effect (trait-increasing) alleles 798 

weighted by the effect size of the SNP taken from the base data. The SNPs in the base data 799 

are clumped so that they are largely independent of each other and thus their effects can be 800 

summed. To assess predictive power, PRS for RG, T2D and FG were regressed onto the 801 
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phenotypes of interest (i.e. RG, T2D and HbA1c) providing the coefficient of determination 802 

(R2) as an estimate for the correlation between the phenotype and the PRS in the VUMC 803 

cohort. All models were adjusted for age, four principal components, sex and the cohort-804 

specific batch effect. Since the optimal P-value threshold for including SNPs in the PRS is 805 

unknown a priori, PRS are calculated over a range of thresholds and regressed onto the 806 

phenotype of interest, optimising prediction accordingly. The R2 estimates for each trait were 807 

derived by subtracting the R2 from the null model (Phenotype ~ sex + age + 4 principal 808 

components + batch) from the R2 from the full model (Phenotype ~ PRS + sex + age + 4 809 

principal components + batch) which contains the PRS at the best predicting P-value 810 

threshold. 811 

 812 

Clustering of the RG signals with results for 45 other phenotypes 813 

We looked up the Z-scores (regression coefficient beta divided by the standard error) of the 814 

distinct 143 RG signals in publicly available summary statistics of 45 relevant phenotypes. All 815 

variant effects were aligned to the RG risk allele. HapMap2 based summary statistics were 816 

imputed using SS-Imp v0.5.565 to minimise missingness. Missing summary statistics values 817 

were imputed via mean imputation. The resulting variant-trait association matrix was scaled 818 

by the square root of the study’s mean sample size. We used agglomerative hierarchical 819 

clustering with Ward’s method to partition the variants into groups by their effects on the 820 

considered outcomes. The clustering analysis was performed in R using function hclust() from 821 

in-built stats package.  822 

 823 

Data availability 824 
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GWAS summary statistics for RG analyses presented in this manuscript will be deposited on 825 

https://www.magicinvestigators.org/downloads/ and will be also be available through the 826 

NHGRI-EBI GWAS Catalog https://www.ebi.ac.uk/gwas/downloads/summary-statistics. 827 

 828 
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Tables 1268 

Table 1. Novel loci for glycaemic traits discovered through i) a GWAS meta-analysis of RG 1269 

levels in up to 479,482 Europeans without diabetes, and ii) a trans-ethnic meta-analysis of 1270 

up to 496,036 Europeans and individuals of other ancestries (Black, Indian, Pakistani, 1271 

Chinese) in UKBB. Loci showing sex-dimorphic effects on glycaemic trait levels for the first 1272 

time are also shown. 1273 

 1274 
 

 

Signal 

 

 

Nearest gene(s) 

 

 

Lead variant 

 

 

Chr 

 

 

Position 

 

 

Type 

 

 

Alleles 

(effect/ 

other) 

EAF Effect (SE) 

 

 

P-value 

 

P het 

 

 

N 

European KDM4A rs3791033 1 44,134,077 primary T/C 0.68 

-0.0018 

(0.00030) 4.5x10-9 0.59 476,655 

European FAM46C rs1966228 1 118,144,332 primary A/G 0.74 

0.0032 

(0.00030) 5.8x10-22 0.13 472,798 

European, 

nonsyn EDEM3 rs78444298 1 184,672,098 primary A/G 0.019 

0.0073 

(0.0011) 1.5x10-11 0.61 439,856 

European ACVR1C rs146418816 2 158,432,811 primary A/G 0.057 

-0.0034 

(0.00060) 5.6x10-8 0.055 475,174 

European ACVR1C rs2509903 2 158,514,510 secondary T/C 0.14 

0.0022 

(0.00040) 6.7x10-8 0.14 478,582 

European RBMS1 rs12692596 2 161,265,910 primary T/C 0.37 

0.0018 

(0.00030) 1.3x10-9 0.84 478,570 

European G6PC2 rs143869345 2 169,708,322 secondary A/G 0.98 

-0.0152 

(0.0012) 1.7x10-37 1.00 401,810 

European, 

nonsyn NEUROD1 rs8192556 2 182,542,998 primary T/G 0.024 

0.0053 

(0.00090) 2.8x10-8 0.50 439,856 

European CACNA2D3 rs34222465 3 55,123,055 primary A/G 0.56 

-0.0019 

(0.00030) 5.5x10-10 0.052 439,856 

European MBNL1 rs4679997 3 152,396,466 secondary C/G 0.33 

0.0017 

(0.00030) 9.3x10-8 0.28 473,926 

European MBNL1 rs78482374 3 152,492,522 secondary A/T 0.037 

-0.0042 

(0.00080) 6.7x10-8 0.22 455,510 

European TRIM59,KPNA4 rs56394279 3 160,171,092 primary T/C 0.52 

-0.0018 

(0.00030) 1.2x10-9 0.068 474,089 

European MECOM rs73174306 3 169,194,244 primary A/T 0.96 

-0.0057 

(0.00070) 1.4x10-14 0.095 432,212 

European LCORL rs75631642 4 18,049,216 secondary T/C 0.78 

-0.0017 

(0.00040) 2.1x10-6 0.13 466,061 

European LCORL rs6840504 4 18,205,102 primary T/C 0.45 

0.0018 

(0.00030) 1.2x10-9 0.15 475,423 

European ADRB2 rs71584073 5 148,149,418 primary T/C 0.93 

0.0035 

(0.00060) 3.3x10-10 0.44 439,856 

European SYNGAP1 rs9461856 6 33,395,199 primary A/G 0.48 

-0.00030 

(0.00030) 0.33 0.091 457,070 

European ITPR3 rs1830873 6 33,620,397 primary C/G 0.57 

0.00070 

(0.00030) 0.021 0.87 452,301 

European ARMC2,SESN1 rs118126621 6 109,304,170 primary A/G 0.025 

0.0039 

(0.0010) 5.0x10-5 0.049 432,212 

European POP7,EPO rs534043 7 100,312,724 primary A/G 0.11 

-0.0031 

(0.00050) 1.7x10-11 0.37 475,631 

European PRKAR2B rs3801969 7 106,711,492 primary T/G 0.43 

0.0016 

(0.00030) 2.2x10-8 0.22 478,580 

European A1CF rs61856594 10 52,637,925 primary A/G 0.71 

0.0022 

(0.00030) 1.6x10-11 0.58 473,354 

European PRKG1 rs4415704 10 53,561,613 primary T/C 0.42 

-0.0016 

(0.00030) 5.6x10-8 0.82 474,069 

European LMO1 rs9667977 11 8,541,291 secondary T/C 0.46 

-0.0013 

(0.00030) 4.5x10-6 0.71 457,903 

European USP47 rs34718245 11 11,863,080 primary A/G 0.15 

-0.0023 

(0.00040) 4.3x10-8 0.63 470,144 

European PDE3B rs141521721 11 14,763,828 primary A/C 0.023 

0.0050 

(0.0010) 1.8x10-7 0.0059 439,856 
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European PDHX rs75479466 11 34,961,066 primary A/G 0.083 

0.0029 

(0.00050) 2.1x10-8 0.29 472,109 

European OR4A5 rs72913090 11 50,653,357 primary A/C 0.92 

0.0031 

(0.00050) 1.0x10-8 0.13 418,793 

European TRIM48 rs150587121 11 55,036,391 primary T/C 0.91 

0.0029 

(0.00050) 7.7x10-8 0.14 435,903 

European OR8K3,OR8K1 rs2170441 11 56,095,739 primary A/G 0.076 

-0.0031 

(0.00060) 1.7x10-8 0.28 422,873 

European SOX5 rs12581677 12 24,060,732 primary A/G 0.91 

0.0031 

(0.00050) 1.2x10-9 0.036 477,019 

European MANSC4,KLHL42 rs11049144 12 27,931,511 primary A/C 0.22 

-0.0021 

(0.00040) 1.5x10-9 0.010 455,032 

European MANSC4,KLHL42 rs10492373 12 27,959,998 primary A/G 0.19 

-0.0022 

(0.00040) 2.3x10-9 0.0095 479,267 

European RNF6 rs12874929 13 26,781,607 primary A/G 0.77 

-0.0027 

(0.00030) 1.1x10-14 0.97 476,730 

European KL rs488166 13 33,554,352 primary C/G 0.18 

0.0042 

(0.00040) 3.0x10-27 0.064 478,334 

European ZC3H13 rs12429980 13 46,550,138 primary A/C 0.30 

-0.0018 

(0.00030) 7.3x10-9 0.40 474,764 

European SPRY2 rs1359790 13 80,717,156 primary A/G 0.28 

-0.0019 

(0.00030) 4.2x10-9 0.0010 477,640 

European HECTD1,HEATR5A rs727675 14 31,733,642 primary A/G 0.57 

0.0017 

(0.00030) 7.5x10-9 0.86 477,060 

European WARS rs45617834 14 101,295,801 secondary C/G 0.97 

0.0043 

(0.00090) 1.2x10-6 0.79 432,212 

European HERC1 rs67507374 15 64,038,340 primary A/T 0.30 

-0.0023 

(0.00030) 4.3x10-13 0.20 475,691 

European ITFG3,RAB11FIP3 rs111811257 16 541,818 secondary T/C 0.040 

-0.0046 

(0.00070) 5.5x10-10 0.76 432,212 

European TAOK1,ABHD15 rs9894551 17 27,880,124 primary A/T 0.17 

-0.0027 

(0.00040) 5.2x10-11 0.71 415,229 

European HNF1B rs10908278 17 36,099,952 primary A/T 0.52 

-0.0017 

(0.00030) 5.2x10-9 0.0041 439,856 

European, 

syn NMT1 rs2239923 17 43,176,804 primary T/C 0.29 

0.0019 

(0.00030) 4.1x10-9 0.62 478,582 

European, 

nonsyn WIPI1 rs883541 17 66,449,122 primary A/G 0.77 

-0.0024 

(0.00030) 4.4x10-12 0.24 477,006 

European SKA1,MAPK4 rs2957989 18 48,075,733 primary A/G 0.82 

0.0021 

(0.00040) 2.2x10-8 0.72 458,445 

European RALY rs6059497 20 32,446,960 primary C/G 0.54 

-0.0017 

(0.00030) 9.2x10-9 0.85 464,409 

European HNF4A rs2267850 20 43,524,963 primary T/C 0.27 

-0.0019 

(0.0003) 3.8x10-9 0.92 458,445 

European TSHZ2 rs2255805 20 51,627,634 primary T/C 0.57 

-0.0018 

(0.00030) 5.5x10-10 0.99 457,514 

European STX16-NPEPL1 rs2296529 20 57,282,381 primary T/C 0.77 

0.0020 

(0.0003) 5.5x10-9 0.12 455,859 

European STX16-NPEPL1 rs73129529 20 57,404,701 secondary C/G 0.11 

0.0025 

(0.00050) 1.0x10-7 0.47 439,856 

European EEF1A2,PPDPF rs6122466 20 62,139,177 primary A/G 0.85 

-0.0027 

(0.00040) 1.6x10-10 0.75 443,482 

European MTMR3,HORMAD2 rs5763882 22 30,597,426 primary A/G 0.092 

-0.0028 

(0.00050) 2.9x10-8 0.39 451,947 

European MTMR3,HORMAD2 rs6006399 22 30,598,516 primary T/G 0.88 

0.0025 

(0.00040) 2.4x10-8 0.79 478,119 

European, 

UKBB only PEX7 rs7756291 6 137235325 primary T/C 0.55 

-0.00080 

(0.00030) 0.0084 0.64 456,157 

European, 

UKBB only SLC38A4 rs74832478 12 47193148 primary T/G 0.07 

0.0031 

(0.00060) 7.0x10-8 0.03 476,132 

European, 

UKBB only INAFM2,C15orf52 rs4143838 15 40622374 primary T/C 0.95 

-0.0036 

(0.00070) 2.3x10-7 0.12 418,793 

European, 

UKBB only ADCY9,SRL rs2018506 16 4227922 primary C/G 0.85 

-0.0021 

(0.00040) 1.5x10-7 0.45 461,733 

European, 

UKBB only ERN1 rs57676627 17 62203128 primary T/C 0.15 

0.0022 

(0.00040) 4.0x10-7 0.03 432,212 

European, 

UKBB only CELF5,NFIC rs55740449 19 3334232 primary T/C 0.17 

0.0020 

(0.00040) 5.1x10-7 0.79 439,856 
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European, 

UKBB only RFX1 rs2305780 19 14083761 primary T/C 0.54 

0.0015 

(0.00030) 2.5x10-7 0.24 439,856 

Trans-

ethnic M-A GATAD2B rs10908526 1 153,883,169 primary C/T 0.51 

0.0017 

(0.00030) 1.2x10-8 0.35 479,064 

Trans-

ethnic M-A RRNAD1 rs3806415 1 156,698,265 primary C/T 0.68 

-0.0017 

(0.00030) 4.8x10-8 0.30 480,890 

Trans-

ethnic M-A PPP1CB,SPDYA rs111502507 2 29,009,180 primary A/G 0.99 

0.0064 

(0.0011) 2.6x10-8 0.97 439,427 

Trans-

ethnic M-A MINPP1,PAPSS2 rs11202473 10 89,378,838 primary G/A 0.63 

-0.0017 

(0.00030) 1.2x10-8 0.53 490,575 

Trans-

ethnic M-A EPS8 rs6488794 12 15,816,675 primary A/G 0.030 

0.0048 

(0.00080) 1.4x10-8 0.54 482,276 

Trans-

ethnic M-A SLC38A4 rs74832478 12 47,193,148 primary G/T 0.93 

0.0033 

(0.00060) 7.7x10-9 0.026 492,686 

Trans-

ethnic M-A FOXN3 rs12892260 14 89,580,986 secondary T/C 0.94 

-0.0033 

(0.00060) 1.5x10-8 0.23 448,766 

Sex-dim: 

men 
PRDM16 rs60330317 1 3,107,547 primary G/A 

0.82 

0.0011 

(0.00050) 0.021 
0.0026 

233,066 

       
0.82 

0.0035 

(0.00060) 6.1x10-9 
 

194,008 

Sex-dim: 

women 
SGIP1 rs7532598 1 66,998,624 primary C/A 

0.84 

-0.0029 

(0.00051) 1.2x10-8 
0.030 

233,066 

       
0.84 

-0.0012 

(0.00062) 0.053 
 

194,008 

Sex-dim: 

men 
THADA rs149290349 2 43,451,957 

in LD with 

primary 
G/A 

0.92 

0.0035 

(0.00074) 2.2x10-6 
3.6x10-4 

233,066 

       
0.92 

0.0076 

(0.00089) 1.0x10-17 
 

194,008 

Sex-dim: 

men 
G6PC2 rs13431652 2 169,753,415 

in LD with 

primary 
T/C 

0.7 

0.016 

(0.00042) 1.0x10-1374 
5.6x10-4 

233,066 

       
0.7 

0.018 

(0.00050) 3.4E-286 
 

194,008 

Sex-dim: 

men 
TRIM59,KPNA4 rs56394279 3 160,171,092 primary C/T 

0.49 

0.0012 

(0.00038) 0.0015 
0.0075 

233,066 

       
0.49 

0.0028 

(0.00046) 8.7x10-10 
 

194,008 

Sex-dim: 

men 
SOGA3,RSPO3 rs2800734 6 127,417,035 primary G/A 

0.71 

0.0011 

(0.00042) 0.0077 
0.0032 

233,066 

       
0.71 

0.0031 

(0.00051) 1.5x10-9 
 

194,008 

Sex-dim: 

men 
DGKB,AGMO rs1974619 7 15,065,300 primary C/T 

0.45 

-0.0037 

(0.00038) 8.2x10-22 
1.2x10-5 

233,066 

       
0.45 

-0.0063 

(0.00046) 1.0x10-42 
 

194,008 

Sex-dim: 

women 
SRRM3 rs11773850 7 75,824,961 

in LD with 

primary 
G/A 

0.98 

-0.0087 

(0.0013) 4.2x10-11 
0.0014 

233,066 

       
0.98 

-0.0021 

(0.0016) 0.18 
 

194,008 

Sex-dim: 

men 
POP7,EPO rs534043 7 100,312,724 primary A/G 

0.11 

-0.0019 

(0.00060) 0.0014 
0.0016 

233,066 

       
0.11 

-0.0048 

(0.00072) 1.6x10-11 
 

194,008 

Sex-dim: 

women 
R3HDM2 rs7484541 12 57,714,803 

in LD with 

primary 
A/T 

0.78 

0.0032 

(0.00046) 5.3x10-12 
0.030 

233,066 

       
0.78 

0.0016 

(0.00056) 0.0037 
 

194,008 

Sex-dim: 

men 
RMST rs6538804 12 97,848,910 primary C/G 

0.60 

0.0016 

(0.00040) 7.3x10-5 
6.0x10-4 

233,066 

       
0.60 

0.0037 

(0.00048) 7.8x10-15 
 

194,008 

Sex-dim: 

men 
FBRSL1 rs11146926 12 133,125,450 primary G/A 

0.78 

-0.0014 

(0.00046) 0.0035 
0.016 

233,066 

       
0.78 

-0.0031 

(0.00056) 2.3x10-8 
 

194,008 

Sex-dim: 

women FAM234A rs9929922 16 294,749 

in LD with 

primary A/G 0.82 

0.0042 

(0.00049) 4.8x10-18 
0.033 

233,066 

       
0.82 

0.0026 

(0.00059) 9.6x10-6 
 

194,008 
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Sex-dim: 

women 
SLC43A2 rs56405641 17 1,528,464 primary C/T 

0.91 

-0.004 

(0.00067) 2.2x10-9 
2.7x10-4 

233,066 

       
0.91 

-0.00020 

(0.00080) 0.81 
 

194,008 

 1275 

Chr: chromosome; Pos: Position GRCh37; nonsyn: non-synonymoys; sex-dim: sex-dimorphic; 1276 

EAF: allele frequency of the random glucose (RG) raising allele. A signal was annotated as 1277 

“European” if it had reached genome-wide significance (P<5x10-8) in the meta-analysis of 1278 

European cohorts in either of our two models of interest with adjustment for age, sex with or 1279 

without time since last meal (where available) along with exclusion of extreme 1280 

hyperglycaemia (RG>20 mmol/L) or in their combination. A signal was annotated as 1281 

“European, UKBB only” if it had reached genome-wide significance (P<5x10-8) in UKBB in any 1282 

of the six RG models (Methods). The EAF and P-values reported here are from the combined 1283 

RG model. Heterogeneity among studies was assessed using the I2 index. The Cochran's Q-1284 

test (for sex heterogeneity representing the differences in allelic effects between sexes) P-1285 

value is also shown. Sex-dimorphic effects and P-values are presented first for women. 1286 

 1287 

 1288 

 1289 

 1290 

 1291 

 1292 

 1293 

 1294 

 1295 

 1296 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 20, 2021. ; https://doi.org/10.1101/2021.04.17.21255471doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.17.21255471


54 

 

Figures  1297 

Figure 1. Summary of all RG loci identified in this study. 1298 

 1299 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 20, 2021. ; https://doi.org/10.1101/2021.04.17.21255471doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.17.21255471


55 

 

(a) Circular Manhattan plot summarising findings from the present study. Outermost layer: 1300 

Gene names of the 162 distinct RG signals are labelled with different colours indicating three 1301 

clusters defined in cluster analysis: 1a/b=metabolic syndrome, 2a/b=insulin release versus 1302 

insulin action (with additional effects on inflammatory bowel disease for cluster 2a), 1303 

3=defects of insulin secretion (Methods). Asterisks annotate novel for glycaemic traits RG 1304 

signals. Track 1: RG Manhattan plot reporting -log10(P-value) for RG-GWAS meta-analysis, 1305 

signals reaching genome-wide significance (P-value<510-8) are coloured in red. Crosses 1306 

annotate genome-wide significant loci that show evidence of sex heterogeneity (Methods): 1307 

blue crosses indicate signals with larger effects in men, green crosses – signals with larger 1308 

effects in women. Track 2: Effects of RG genome-wide significant on four GIP/GLP-1-related 1309 

traits GWAS. The colours of the dotted lines indicate four GIP/GLP-1-related traits, grey dot  - 1310 

signals reaching P-value<0.01 for a GIP/GLP-1-related trait, red dot – lead SNP has significant 1311 

effect on GIP/GLP-1-related trait (Bonferroni-corrected P-value<110-4). Track 3: Effects [-1312 

log10(P-value)] of lead RG variants in 113 glycan PheWAS. Blue dots - RG lead SNPs, red dots 1313 

- lead SNPs reaching P-value<10-4. Track 4: Effects [-log10(P-value)] of lead RG variants in 204 1314 

gut-microbiome PheWAS. Light green dots - RG lead SNPs, red dots - variants with significant 1315 

effects at P-value<10-4. Track 5: MetaXcan results for 10 selected tissues for RG GWAS meta-1316 

analysis (Methods), signals colocalising with genes (P-value<510-6) are plotted for each 1317 

tissue. (b) Credible set analysis of RG associations in the European meta-analysis. Variants 1318 

from each of the RG signal credible sets are grouped based on their posterior probability (the 1319 

percentiles labelled on the sides of the bar). SNP variants with posterior probability >80%, 1320 

along with their locus names are provided. All variants from the credible set of the primary 1321 

signals are highlighted in bold.  1322 

 1323 
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Figure 2. Functional and structural analysis of coding GLP1R variants.  1324 

 1325 

(a) Weighted regression of AST20 βRG estimated in the UKBB study on GLP1R variant mini-Gs 1326 

response to GLP-1 stimulation, with correction for variant surface expression, n=5-13. Size of 1327 

dots is proportional to the weight (minor allele frequency) in the regression model (Methods). 1328 

Error bars represent standard errors for βRG and mini-Gs coupling in response to GLP-1 1329 
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stimulation. The grey shaded area corresponds to the 95% confidence interval of the slope of 1330 

the regression analysis (β=-0.027, 95%CI[-0.036 –{-0.016}], P-value=0.0001), which explained 1331 

65% of the variance in these associations. Variants in red showed no detectable surface 1332 

expression (NDE) and are not included in regression analysis. (b) GLP1R variant mini-Gs 1333 

coupling and receptor endocytosis, with surface expression correction, in response to GLP-1, 1334 

oxyntomodulin (OXM), glucagon (GCG), exendin-4 (Ex4), semaglutide (Sema) and tirzepatide 1335 

(TZP), n=6. Positive deviation indicates variant gain-of-function, with statistical significance 1336 

inferred when the 95% confidence intervals shown do not cross zero. Responses are also 1337 

compared between pathways by unpaired t-test, with * indicating statistically significant 1338 

differences. (c) Architecture of the complex formed between the agonist-bound GLP-1R and 1339 

Gs; the likely effect triggered by residues involved in GLP-1R isoforms A316T, G168S, and 1340 

R421W (in magenta) are reported. (d) Distributions of the distance between Y2423.45 side 1341 

chain and P3125.42 backbone computed during MD simulations of GLP-1R WT and A316T; the 1342 

cut-off distance for hydrogen bond is shown. (e) Difference in the hydrogen bond network 1343 

between GLP1-R WT and A316T. (f) Analysis of water molecules within the TMD of GLP1-R 1344 

WT and A316T suggests minor changes in the local hydration of position 5.46 (unperturbed 1345 

structural water molecule). (g) Distributions of the distance between position 1681.63 and 1346 

Y1782.48 during molecular dynamics simulations of GLP-1R WT and G168S. (h) During MD 1347 

simulations the GLP-1R isoform S168G showed increased flexibility of ICL1 and H8 compared 1348 

to WT, suggesting a different influence on G protein intermediate states. (i) Contact 1349 

differences between Gs and GLP-1R WT or W421R; the C terminal of W421R H8 made more 1350 

interactions with N terminal segment of Gs  subunit. (j) Mini-Gs and GLP-1R endocytosis 1351 

responses to 20 nM exendin-4, plotted against surface GLP-1R expression, from 196 missense 1352 

GLP1R variants transiently transfected in HEK293T cells (n=5 repeats per assay), with data 1353 
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represented as mean ± standard error after normalization to wild-type response and log10-1354 

transformation. Variants are categorised as “LoF1” when the response 95% confidence 1355 

interval falls below zero or “LoF2” where expression-normalised 95% confidence interval falls 1356 

below zero. (k) GLP-1R snake plot created using gpcr.com summarizing the functional impact 1357 

of missense variants; for residues with >1 variant, classification is applied as 1358 

LoF2>LoF1>tolerated. 1359 

 1360 

Figure 3. Deterioration of glucose homeostasis progressing into type 2 diabetes (T2D) and 1361 

leading to complications in multiple organs and tissues - established (left, in peach colour) 1362 

and new (right, in green).  1363 

 1364 
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 1365 

(a) A human figure illustrating the main causes of hyperglycemia (a combination of lifestyle 1366 

and genetic factors), and how hyperglycemia affects many organs and tissues. Complications 1367 

on the left panel are well established for T2D. Those on the right panel are emerging ones and 1368 

are supported by our current analyses. (b) Functional annotation of the RG GWAS results with 1369 

DEPICT (Methods). (c) Functional annotation of the RG GWAS results with CELLECT 1370 

(Methods). 1371 
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Figure 4. Genome-wide genetic correlation between RG and a range of traits and diseases1372 

 1373 

X axis provides the rg genetic correlation values for traits or diseases (Y axis) reaching at 1374 

least nominal significance. Correlations reaching a P-value<0.01 are labelled with “ ‘ “, and 1375 

those P-value<0.05/239 are labelled with “ * “. 1376 
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