
2011/16

Random Gradient-Free Minimization
of Convex Functions

Yurii NESTEROV

CORE DISCUSSION PAPER
2011/1

Random gradient-free minimization

of convex functions

Yu. NESTEROV1

January 2011

Abstract

In this paper, we prove the complexity bounds for methods of Convex Optimization based only on
computation of the function value. The search directions of our schemes are normally distributed random
Gaussian vectors. It appears that such methods usually need at most n times more iterations than the
standard gradient methods, where n is the dimension of the space of variables. This conclusion is true
both for nonsmooth and smooth problems. For the later class, we present also an accelerated scheme with
the expected rate of convergence O(n2/k2), where k is the iteration counter. For Stochastic Optimization,
we propose a zero-order scheme and justify its expected rate of convergence O(n/k1/2). We give also some
bounds for the rate of convergence of the random gradient-free methods to stationary points of nonconvex
functions, both for smooth and nonsmooth cases. Our theoretical results are supported by preliminary
computational experiments.

Keywords: convex optimization, stochastic optimization, derivative-free methods, random methods,
complexity bounds.

1 Université catholique de Louvain, CORE, B-1348 Louvain-la-Neuve, Belgium. E-mail: yurii.nesterov@uclouvain.be.
This author is also member of ECORE, the association between CORE and ECARES.

The research results presented in this paper have been supported by a grant "Action de recherche concertées ARC
04/09-315" from the "Direction de la recherche scientifique – Communauté française de Belgique".

This paper presents research results of the Belgian Program on Interuniversity Poles of Attraction initiated by the
Belgian State, Prime Minister's Office, Science Policy Programming. The scientific responsibility is assumed by the
author.

1 Introduction

Motivation. Derivative-free optimization methods were among the first schemes sug-
gested in the early days of the development of Optimization Theory (e.g. [4]). These
methods have an evident advantage of a simple preparatory stage (the program of com-
putation of the function value is always much simpler than the program for computing the
vector of the gradient). However, very soon it was realized that these methods are much
more difficult for theoretical investigation. For example, the famous method by Nelder
and Mead [5] has only an empirical justification up to now. Moreover, the possible rate
of convergence of the derivative-free methods (established usually on an empirical level)
is far below the efficiency of the usual optimization schemes.

On the other hand, as it was established in the beginning of 1980s, any function, repre-
sented by an explicit sequence of differentiable operations, can be automatically equipped
with a program for computing the whole vector of its partial derivatives. Moreover, the
complexity of this program is at most four times bigger than the complexity of compu-
tation of the initial function (this technique is called Fast Differentiation). It seems that
this observation destroyed the last arguments for supporting the idea of derivative-free
optimization. During several decades, these methods were almost out of computational
practice.

However, in the last years, we can see a restoration of the interest to this topic. The cur-
rent state of the art in this field was recently updated by a comprehensive monograph [2].
It appears that, despite to very serious theoretical objections, the derivative-free methods
can probably find their place on the software market. For that, there exist at least several
reasons.

• In many applied fields, there exist some models, which are represented by an old
black-box software for computing only the values of the functional characteristics of
the problem. Modification of this software is either too costly, or impossible.

• There exist some restrictions for applying the Fast Differentiation technique. In par-
ticular, it is necessary to store the results of all intermediate computations. Clearly,
for some applications, this is impossible by memory limitations.

• In any case, creation of a program for computing partial derivatives requires some
(substantial) efforts of a qualified programmer. Very often his/her working time
is much more expensive than the computational time. Therefore, in some situa-
tions it is reasonable to buy a cheaper software preparing for waiting more for the
computational results.

• Finally, the extension of the notion of the gradient onto nonsmooth case is a non-
trivial operation. The generalized gradient cannot be formed by partial derivatives.
The most popular framework for defining the set of local differential characteristics
(Clarke subdifferential [1]) suffers from an incomplete Chain Rule. The only known
technique for automatic computations of such characteristics (lexicographic differen-

tiation [9]) requires an increase of complexity of function evaluation in O(n) times,
where n is the number of variables.

Thus, it is interesting to develop the derivative-free optimization methods and obtain
the theoretical bounds for their performance. It is interesting that such bounds are almost

1

absent in this field (see, for example, [2]). One of a few exception is a derivative-free version
of cutting plane method presented in Section 9.2 of [7] and improved by [12].

In this paper, we present several random derivative-free methods, and provide them
with some complexity bounds for different classes of convex optimization problems. As
we will see, the complexity analysis is crucial for finding the reasonable values of their
parameters.

Our approach can be seen as a combination of several popular ideas. First of all, we
mention the random optimization approach [4], as applied to the problem

min
x∈Rn

f(x), (1)

where f is a differentiable function. It was suggested to sample a point y randomly
around the current position x (in accordance to Gaussian distribution), and move to y if
f(y) < f(x). The performance of this technique for nonconvex functions was estimated
in [3], and criticized by [13] from the numerical point of view.

Different improvements of the random search idea were discussed in Section 3.4 [11].
In particular, it was mentioned that the scheme

xk+1 = xk − hk
f(xk+µku)−f(xk)

µk
u, (2)

where u is a random vector distributed uniformly over the unit sphere, converges under
assumption µk → 0. However, no explicit rules for choosing the parameters were given,
and no particular rate of convergence was established.

The main goal of this paper is the complexity analysis of different variants of method
(2) and its accelerated versions. We study these methods both for smooth and nonsmooth
optimization problems. It appears that the most powerful version of the scheme (2)
corresponds to µk → 0. Then we get the following process:

xk+1 = xk − hkf
�(xk, u)u, (3)

where f �(x, u) is a directional derivative of function f(x) along u ∈ Rn. As compared with
the gradient, directional derivative is a much simpler object. Its exact value can be easily
computed even for nonconvex nonsmooth functions by a forward differentiation. Or, it
can be approximated very well by finite differences. Note that in the gradient schemes
the target accuracy � for problem (1) is not very high. Hence, as we will see, the accuracy
of the finite differences can be kept on a reasonable level.

For our technique, it is convenient to work with a normally distributed Gaussian vector
u ∈ Rn. Then we can define

g0(x) def= Eu(f �(x, u)u).

It appears that for convex f , vector g0(x) is always a subgradient of f at x.
Thus, we can treat the process (3) as a method with random oracle. Usually, these

methods are analyzed in the framework of Stochastic Approximation (see [6] for the state
of art of the field). However, our random oracle is very special. The standard assumption
in Stochastic Approximation is the boundedness of the second moment of the random
estimate ∇xF (x, u) of the gradient for the objective function f(x) = Eu(F (x, u)):

Eu(�∇xF (x, u)�22) ≤ M2, x ∈ Rn. (4)

2

(see, for example, condition (2.5) in [6]). However, in our case, if f is differentiable at x,
then

Eu(�g0(x)�22) ≤ (n + 4)�∇f(x)�22.

This relation makes the analysis of our methods much simpler and leads to the faster
schemes. In particular, for the method (3) as applied to Lipschitz continuous functions,
we can prove that the expected rate of convergence of the objective function is of the order
O(

�
n
k). If functions has Lipschitz-continuous gradient, then the rate is increased up to

O(n
k). If in addition, our function is strongly convex, then we have a global linear rate

of convergence. Note that in the smooth case, using the technique of estimate sequences
(e.g. Section 2.2 in [8]), we can accelerate method (3) up to convergence rate O(n2

k2).
For justifying the versions of random search methods with µk > 0, we use a smoothed

version of the objective function

fµ(x) = Eu(f(x + µu)). (5)

This object is classical in Optimization Theory. For the complexity analysis of the random
search methods it was used, for example, in Section 9.3 [7]1 However, in their analysis the
authors used the first part of the representation

∇fµ(x) = 1
µEu(f(x + µu)u)

(!)
≡ 1

µEu([f(x + µu)− f(x)]u).

In our analysis, we use the second part, which is bounded in µ. Hence, our conclusions
are more optimistic.

Contents. In Section 2, we introduce the Gaussian smoothing (5) and study its proper-
ties. In particular, for different functional classes, we estimate the error of approximation
of the objective function and the gradient with respect to the smoothing parameter µ.
In Section 3, we introduce the random gradient-free oracles, which are based either on
finite differences, or on directional derivatives. The main results of this section are the
upper bounds for the expected values of squared norms of these oracles. In Section 4,
we apply the simple random search method to a nonsmooth convex optimization problem
with simple convex constraints. We show that the scheme (3) works at most in O(n)
times slower than the usual subgradient method. For the finite-difference version (2), this
factor is increased up to O(n2). Both methods can be naturally modified to be used for
Stochastic Programming Problems.

In Section 5, we estimate the performance of method (2) on smooth optimization
problems. We show that, under proper choice of parameters, it works at most n times
slower than the usual Gradient Method. In Section 6, we consider an accelerated version
of this scheme with the convergence rate O(n2

k2). For all methods we derive the upper
bounds for the value of the smoothing parameter µ. It appears that in all situations
their dependence in � and n is quite moderate. For example, for the fast random search
presented in Section 6, the average size of the trial step µu is of the order O(n−1/2�3/4),
where � is the target accuracy for solving (1). For the simple random, this average size is
even better: O(n−1/2�1/2).

1In [7], u was uniformly distributed over a unit ball. In our comparison, we use a direct translation of the
constructions in [7] into the language of the normal Gaussian distribution.

3

In Section 7 we estimate a rate of convergence the random search methods to a sta-
tionary point of nonconvex function (in terms of the norm of the gradient). We consider
both smooth and nonsmopth cases. Finally, in Section 8, we present the preliminary com-
putational results. In the tested methods, we were checking the validity of our theoretical
conclusions on stability and the rate of convergence of the scheme, as compared with the
prototype gradient methods.

Notation. For a finite-dimensional space E, we denote by E∗ its dual space. The value
of a linear function s ∈ E∗ at point x ∈ E is denoted by �s, x�. We endow the spaces E

and E∗ with Euclidean norms

�x� = �Bx, x�1/2, x ∈ E, �s�∗ = �s, B−1s�1/2, s ∈ E∗,

where B = B∗ � 0 is a linear operator from E to E∗. For any u ∈ E we denote by uu∗ a
linear operator from E∗ to E, which acts as follows:

uu∗(s) = u · �s, u�, s ∈ E∗.

In this paper, we consider functions with different level of smoothness. It is indicated
by the following notation.

• f ∈ C0,0(E) if |f(x)− f(y)| ≤ L0(f)�x− y�, x, y ∈ E.

• f ∈ C1,1(E) if �∇f(x) − ∇f(y)�∗ ≤ L1(f)�x − y�, x, y ∈ E. This condition is
equivalent to the following inequality:

|f(y)− f(x)− �∇f(x), y − x�| ≤ 1
2L1(f)�x− y�2, x, y ∈ E. (6)

• f ∈ C2,2(E) if �∇2f(x) − ∇2f(y)� ≤ L2(f)�x − y�, x, y ∈ E. This condition is
equivalent to the inequality

|f(y)− f(x)− �∇f(x), y − x� − 1
2�∇

2f(x)(y − x), y − x�|

≤ 1
6L2(f)�x− y�3, x, y ∈ E.

(7)

We say that f ∈ C1(E) is strongly convex, if for any x and y ∈ E we have

f(y) ≥ f(x) + �∇f(x), y − x�+ τ(f)
2 �y − x�2, (8)

where τ(f) ≥ 0 is the convexity parameter.
Let � ≥ 0. For convex function f , we denote by ∂f�(x) its �-subdifferential at x ∈ E:

f(y) ≥ f(x)− � + �g, y − x�, g ∈ ∂f�(x), y ∈ E.

If � = 0, we simplify this notation up to ∂f(x).

2 Gaussian smoothing

Consider a function f : E → R. We assume that at each point x ∈ E it is differentiable
along any direction. Let us form its Gaussian approximation

fµ(x) = 1
κ

�

E
f(x + µu)e−

1
2�u�

2
du, (9)

4

where
κ

def=
�

E
e
− 1

2�u�
2
du = (2π)n/2

[det B]1/2 . (10)

In this definition, µ ≥ 0 plays a role of smoothing parameter. Clearly, 1
κ

�

E
ue

− 1
2�u�

2
du = 0.

Therefore, if f is convex and g ∈ ∂f(x), then

fµ(x) ≥ 1
κ

�

E
[f(x) + µ�g, u�]e−

1
2�u�

2
du = f(x). (11)

Note that in general, fµ has better properties than f . At least, all initial characteristics
of f are preserved by any fµ with µ ≥ 0.

• If f is convex, then fµ is also convex.

• If f ∈ C0,0, then fµ ∈ C0,0 and L0(fµ) ≤ L0(f). Indeed, for all x, y ∈ E we have

|fµ(x)− fµ(y)| ≤ 1
κ

�

E
|f(x + µu)− f(y + µu)|e−

1
2�u�

2
du ≤ L0(f)�x− y�.

• If f ∈ C1,10, then fµ ∈ C1,1 and L1(fµ) ≤ L1(f):

�∇fµ(x)−∇fµ(y)�∗ ≤ 1
κ

�

E
�∇f(x + µu)−∇f(y + µu)�∗e−

1
2�u�

2
du

≤ L1(f)�x− y�, x, y ∈ E.

(12)

From definition (10), we get also the identity

ln
�

E
e
− 1

2 �Bu,u�
du ≡ n

2 ln(2π)− 1
2 ln detB.

Differentiating this identity in B, we get the following representation:

1
κ

�

E
uu∗e−

1
2�u�

2
du = B−1. (13)

Taking a scalar product of this equality with B, we obtain

1
κ

�

E
�u�2e−

1
2�u�

2
du = n. (14)

In what follows, we often need upper bounds for the moments Mp
def= 1

κ

�

E
�u�pe

− 1
2�u�

2
du.

We have exact simple values for two cases:

M0
(10)
= 1, M2

(14)
= n. (15)

For other cases, we will use the following simple bounds.

Lemma 1 For p ∈ [0, 2], we have

Mp ≤ np/2. (16)

If p ≥ 2, then we have two-side bounds

np/2 ≤ Mp ≤ (p + n)p/2. (17)

5

Proof:
Denote ψ(p) = lnMp. This function is convex in p. Let us represent p = (1−α) · 0 + α · 2
(thus, α = p

2). For p ∈ [0, 2], we have α ∈ [0, 1]. Therefore,

ψ(p) ≤ (1− α)ψ(0) + αψ(2)
(14)
= p

2 lnn.

This is the upper bound (16). If p ≥ 2, then α ≥ 1, and αψ(2) becomes a lower bound
for ψ(p). It remains to prove the upper bound in (17).

Let us fix some τ ∈ (0, 1). Note that for any t ≥ 0 we have

tpe
− τ

2 t2 ≤
� p

τe

�p/2
. (18)

Therefore,

Mp = 1
κ

�

E
�u�pe

− 1
2�u�

2
du = 1

κ

�

E
�u�pe

− τ
2 �u�

2
e
− 1−τ

2 �u�2
du

(18)
≤ 1

κ

� p
τe

�p/2 �

E
e
− 1−τ

2 �u�2
du =

� p
τe

�p/2 1
(1−τ)n/2 .

The minimum of the right-hand side in τ ∈ (0, 1) is attained at τ = p
p+n . Thus,

Mp ≤
�p

e

�p/2
�
1 + n

p

�p/2 �
1 + p

n

�n/2 ≤ (p + n)p/2.

✷

Now we can prove the following useful result.

Theorem 1 Let f ∈ C0,0(E), then,

|fµ(x)− f(x)| ≤ µL0(f)n1/2, x ∈ E. (19)

If f ∈ C1,1(E), then

|fµ(x)− f(x)| ≤ µ2

2 L1(f)n, x ∈ E. (20)

Finally, if f ∈ C2,2(E), then

|fµ(x)− f(x)− µ2

2 �∇
2f(x), B−1�| ≤ µ3

3 L2(f)(n + 3)3/2, x ∈ E. (21)

Proof:
Indeed, for any x ∈ E we have fµ(x)−f(x) = 1

κ

�

E
[f(x+µu)−f(x)]e−

1
2�u�

2
du. Therefore,

|fµ(x)− f(x)| ≤ 1
κ

�

E
|f(x + µu)− f(x)|e−

1
2�u�

2
du

≤ µL0(f)
κ

�

E
�u�e−

1
2�u�

2
du

(16)
≤ µL0(f)n1/2.

6

Further, if f is differentiable at x, then

fµ(x)− f(x) = 1
κ

�

E
[f(x + µu)− f(x)− µ�∇f(x), u�]e−

1
2�u�

2
du.

Therefore,

|fµ(x)− f(x)|
(6)
≤ µ2L1(f)

2κ

�

E
�u�2e−

1
2�u�

2
du

(14)
= µ2L1(f)

2 n.

Finally, if f is twice differentiable at x, then

1
κ

�

E
[f(x + µu)− f(x)− µ�∇f(x), u� − µ2

2 �∇
2f(x)u, u�]e−

1
2�u�

2
du

(13)
= fµ(x)− f(x)− µ2

2 �∇
2f(x), B−1�.

Therefore,

|fµ(x)− f(x)− µ2

2 �∇
2f(x), B−1�|

(7)
≤ µ3L2(f)

6κ

�

E
�u�3e−

1
2�u�

2
du

(17)
= µ3L1(f)

6 (n + 3)3/2.

✷

Inequality (21) shows that that the increase of the level of smoothness of function f ,
as compared with C1,1(E), cannot improve the quality of approximation of f by fµ. If,
for example, f is quadratic and ∇2f(x) ≡ G, then

fµ(x)
(21)
= f(x) + µ2

2 �G,B−1�.

The constant term in this identity can reach the right-hand side of inequality (20).
For any positive µ, function fµ is differentiable. Let us obtain a convenient expression

for its gradient. For that, we rewrite definition (9) in another form by introducing a new
integration variable y = x + µu:

fµ(x) = 1
µnκ

�

E
f(y)e−

1
2µ2 �y−x�2

dy.

Then,
∇fµ(x) = 1

µn+2κ

�

E
f(y)e−

1
2µ2 �y−x�2

B(y − x) dy

= 1
µκ

�

E
f(x + µu)e−

1
2�u�

2
Bu du

= 1
κ

�

E

f(x+µu)−f(x)
µ e

− 1
2�u�

2
Bu du.

(22)

It appears that this gradient is Lipschitz-continuous.

Lemma 2 Let f ∈ C0,0(E) and µ > 0. Then fµ ∈ C1,1(E) with

L1(fµ) = 2n1/2

µ L0(f). (23)

7

Proof:
Indeed, for all x and y in E, we have

�∇fµ(x)−∇fµ(y)�∗
(22)
≤ 1

κµ

�

E
|f(x + µu)− f(x) + f(y)− f(y + µu)|�u�e−

1
2�u�

2
du

≤ 2
κµL0(f)

�

E
�u�e−

1
2�u�

2
du.

It remains to apply (16). ✷

Denote by f �(x, u) the directional derivative of f at point x along direction u:

f �(x, u) = lim
α↓0

1
α [f(x + αu)− f(x)]. (24)

Then we can define the limiting vector of the gradients (22):

∇f0(x) = 1
κ

�

E
f �(x, u)e−

1
2�u�

2
Bu du. (25)

Note that at each x ∈ E the vector (25) is uniquely defined. If f is differentiable at x,
then

∇f0(x) = 1
κ

�

E
�∇f(x), u�e−

1
2�u�

2
Bu du

(13)
= ∇f(x). (26)

Let us prove that in convex case ∇fµ(x) always belongs to some �-subdifferential of
function f .

Theorem 2 Let f be convex and Lipschitz continuous. Then, for any x ∈ E and µ ≥ 0
we have

∇fµ(x) ∈ ∂�f(x), � = µL0(f)n1/2.

Proof:
Let µ > 0. Since fµ is convex, for all x and y ∈ E we have

f(y) + µL0(f)n1/2
(19)
≥ fµ(y) ≥ fµ(x) + �∇fµ(x), y − x�

(11)
≥ f(x) + �∇fµ(x), y − x�.

Taking now the limit as µ → 0, we prove the statement for µ = 0. ✷

Note that expression (22) can be rewritten in the following form:

∇fµ(x) = 1
κ

�

E

f(x)−f(x−µu)
µ e

− 1
2�u�

2
Bu du

(22)
= 1

κ

�

E

f(x+µu)−f(x−µu)
2µ e

− 1
2�u�

2
Bu du.

(27)

8

Lemma 3 If f ∈ C1,1(E) with constant L1(f), then

�∇fµ(x)−∇f(x)�∗ ≤ µ
2 L1(f)(n + 3)3/2. (28)

For f ∈ C2,2(E) with constant L2(f), we can guarantee that

�∇fµ(x)−∇f(x)�∗ ≤ µ2

6 L2(f)(n + 4)2. (29)

Proof:
Indeed, for function f ∈ C1,1(E), we have

�∇fµ(x)−∇f(x)�∗
(26)
≤ 1

κµ

�

E
|f(x + µu)− f(x)− µ�∇f(x), u�| · �u�e−

1
2�u�

2
du

(6)
≤ µL1(f)

2κ

�

E
�u�3e−

1
2�u�

2
du

(17)
≤ µ

2 L1(f)(n + 3)3/2.

Let f ∈ C2,2(E). Denote au(τ) = f(x+τu)−f(x)−τ�∇f(x), u�− τ2

2 �∇
2f(x)u, u�. Then,

|au(±µ)|
(7)
≤ µ3

6 L2(f)�u�3. Since

∇fµ(x)−∇f(x)
(13)
= 1

2κµ

�

E
[f(x + µu)− f(x− µu)− 2µ�∇f(x), u�] ·Bue

− 1
2�u�

2
du,

we have

�∇fµ(x)−∇f(x)�∗ ≤ 1
2κµ

�

E
|f(x + µu)− f(x− µu)− 2µ�∇f(x), u�| · �u�e−

1
2�u�

2
du

= 1
2κµ

�

E
|au(µ)− au(−µ)| · �u�e−

1
2�u�

2
du

≤ µ2L2(f)
6κ

�

E
�u�4e−

1
2�u�

2
du

(17)
≤ µ2

6 L2(f)(n + 4)2.

✷

Finally, we prove one more relation between the gradients of f and fµ.

Lemma 4 Let f ∈ C1,1(E), Then, for any x ∈ E we have

�∇f(x)�2∗ ≤ 2�∇fµ(x)�2∗ + µ2

2 L2
1(f)(n + 4)2. (30)

Proof:

9

Indeed,

�∇f(x)�2∗
(13)
= � 1

κ

�

E
�∇f(x), u�Bue

− 1
2�u�

2
du�2∗

= � 1
κµ

�

E
([f(x + µu)− f(x)]− [f(x + µu)− f(x)− µ�∇f(x), u�])Bue

− 1
2�u�

2
du�2∗

(27)
≤ 2�∇fµ(x)�2∗ + 2

µ2 � 1
κ

�

E
[f(x + µu)− f(x)− µ�∇f(x), u�]Bue

− 1
2�u�

2
du�2∗

≤ 2�∇fµ(x)�2∗ + 2
µ2κ

�

E
[f(x + µu)− f(x)− µ�∇f(x), u�]2�u�2e−

1
2�u�

2
du

(6)
≤ 2�∇fµ(x)�2∗ + µ2

2 L2
1(f)M4.

It remains to use inequality (17). ✷

3 Random gradient-free oracles

Let random vector u ∈ E have Gaussian distribution with correlation operator B−1.
Denote by Eu(ψ(u)) the expectation of corresponding random variable. For µ ≥ 0, using
expressions (22), (27), and (25), we can define the following random gradient-free oracles:

1. Generate random u ∈ E and return gµ(x) = f(x+µu)−f(x)
µ ·Bu.

2. Generate random u ∈ E and return ĝµ(x) = f(x+µu)−f(x−µu)
2µ ·Bu.

3. Generate random u ∈ E and return g0(x) = f �(x, u) ·Bu.

(31)

As we will see later, oracles gµ and ĝµ are more suitable for minimizing smooth func-
tions. Oracle g0 is more universal. It can be also used for minimizing nonsmooth convex
functions. Recall that in view of (25) and Theorem 2, we have

Eu(g0(x)) = ∇f0(x) ∈ ∂f(x). (32)

We can establish now the following upper bounds.

Theorem 3 1. If f is differentiable at x, then

Eu(�g0(x)�2∗) ≤ (n + 4)�∇f0(x)�2∗. (33)

2. Let f be convex. Denote D(x) = diam ∂f(x). Then, for any x ∈ E we have

Eu(�g0(x)�2∗) ≤ (n + 4)
�
�∇f0(x)�2∗ + nD2(x)

�
. (34)

10

Proof:
Indeed, let us fix τ ∈ (0, 1). Then,

Eu(�g0(x)�2∗)
(31)
= 1

κ

�

E
�u�2e−

1
2�u�

2
f �(x, u)2du

= 1
κ

�

E
�u�2e−

τ
2 �u�

2
f �(x, u)2e−

1−τ
2 �u�2

du

(18)
≤ 2

κτe

�

E
f �(x, u)2e−

1−τ
2 �u�2

du

= 2
κτ(1−τ)1+n/2e

�

E
f �(x, u)2e−

1
2�u�

2
du.

The minimum of the right-hand side in τ is attained for τ∗ = 2
n+4 . In this case,

τ∗(1− τ∗)
n+2

2 = 2
n+4

�
n+2
n+4

�n+2
2

>
2

(n+4)e .

Therefore,
Eu(�g0(x)�2∗) ≤ n+4

κ

�

E
f �(x, u)2e−

1
2�u�

2
du.

If f is differentiable at x, then f �(x, u) = �∇f(x), u�, and we get (33) from (13).
Suppose that f is convex and not differentiable at x. Denote

g(u) ∈ Argmax
g
{�g, u� : g ∈ ∂f(x)}.

Then f �(x, u)2 = (�∇f0(x), u�+ �g(u)−∇f0(x), u�)2. Note that

Eu(�∇f0(x), u� · �g(u)−∇f0(x), u�) (13)
= Eu(�∇f0(x), u� · f �(x, u))− �∇f0(x)�2∗

= �∇f0(x), Eu(u · f �(x, u))� − �∇f0(x)�2∗

(25)
= 0.

Therefore,

Eu(�g0(x)�2∗) ≤ n+4
κ

�

E
(�∇f0(x), u�2 + D2(x)�u�2)e−

1
2�u�

2
du

(13)
= (n + 4)

�

�∇f0(x)�2∗ + D2(x)
κ

�

E
�u�2e−

1
2�u�

2
du

�

(14)
= (n + 4)

�
�∇f0(x)�2∗ + nD2(x)

�
.

✷

Let us prove now the similar bounds for oracles gµ and ĝµ.

11

Theorem 4 1. If f ∈ C0,0(E), then

Eu(�gµ(x)�2∗) ≤ L2
0(f)(n + 4)2. (35)

2. If f ∈ C1,1(E), then

Eu(�gµ(x)�2∗) ≤ µ2

2 L2
1(f)(n + 6)3 + 2(n + 4)�∇f(x)�2∗,

Eu(�ĝµ(x)�2∗) ≤ µ2

8 L2
1(f)(n + 6)3 + 2(n + 4)�∇f(x)�2∗.

(36)

3. If f ∈ C2,2(E), then

Eu(�ĝµ(x)�2∗) ≤ µ4

18L2
2(f)(n + 8)4 + 2(n + 4)�∇f(x)�2∗. (37)

Proof:
Note that Eu(�gµ(x)�2∗) = 1

µ2 Eu
�
[f(x + µu)− f(x)]2]�u�2

�
. If f ∈ C0,0(E), then we

obtain (35) directly from the definition of the functional class and (17).
Let f ∈ C1,1(E). Since

[f(x + µu)− f(x)]2 = [f(x + µu)− f(x)− µ�∇f(x), u�+ µ�∇f(x), u�]2

(6)
≤ 2

�
µ2

2 L1(f)�u�2
�2

+ 2µ2�∇f(x), u�2,

we get
Eu(�gµ(x)�2∗) ≤ µ2

2 L2
1(f)Eu(�u�6) + 2Eu(�g0(x)�2∗)

(17),(33)
≤ µ2

2 L2
1(f)(n + 6)3 + 2(n + 4)�∇f(x)�2∗.

For the symmetric oracle ĝµ, we have

f(x + µu)− f(x− µu) = [f(x + µu)− f(x)] + [f(x)− f(x− µu)]

(6)
≤ [µ�∇f(x), u�+ µ2

2 L1(f)�u�2] + µ�∇f(x), u�.

Similarly, we have f(x + µu)− f(x− µu) ≥ 2µ�∇f(x), u� − µ2

2 L1(f)�u�2. Therefore,

Eu(�ĝµ(x)�2∗) = 1
4µ2 Eu

�
[f(x + µu)− f(x− µu)]2�u�2

�

≤ 1
2µ2

�
Eu

�
µ4

4 L2
1(f)�u�6

�
+ Eu

�
4µ2�∇f(u), u�2�u�2

��

(17),(33)
≤ µ2

8 L2
1(f)(n + 6)3 + 2(n + 4)�∇f(x)�2∗.

Let f ∈ C2,2(E). We will use notation of Lemma 3. Since

[f(x + µu)− f(x− µu)]2 = [f(x + µu)− f(x− µu)− 2µ�∇f(x), u�+ 2µ�∇f(x), u�]2

≤ 2[au(µ)− au(−µ)]2 + 8µ2�∇f(x), u�2

(7)
≤ 2µ6

9 L2
2(f)�u�6 + 8µ2�∇f(x), u�2,

12

we get
Eu(�ĝµ(x)�2∗) ≤ µ4

18L2
2(f)Eu(�u�8) + 2Eu(�g0(x)�2∗)

(17),(33)
≤ µ4

18L2
2(f)(n + 8)4 + 2(n + 4)�∇f(x)�2∗.

✷

Corollary 1 Let f ∈ C1,1(E). The, for any x ∈ E we have

Eu(�gµ(x)�2∗) ≤ 4(n + 4)�∇fµ(x)�2∗ + 3µ2

2 L2
1(f)(n + 5)3. (38)

Proof:
Indeed,

Eu(�gµ(x)�2∗)
(36)
≤ µ2

2 L2
1(f)(n + 6)3 + 2(n + 4)�∇f(x)�2∗

(30)
≤ µ2

2 L2
1(f)(n + 6)3 + 2(n + 4)

�
2�∇fµ(x)�2∗ + µ2

2 L2
1(f)(n + 4)2

�
.

It remains to note that (n + 6)3 + 2(n + 4)3 ≤ 3(n + 5)3. ✷

Example f(x) = �x�, x = 0, shows that the pessimistic bound (35) cannot be signifi-
cantly improved.

4 Random search for nonsmooth and stochastic
optimization

From now on, we assume that f is convex. Let us show how to use the oracles (31) for
solving the following nonsmooth optimization problem:

f
∗ def= min

x∈Q
f(x), (39)

where Q ⊆ E is a closed convex set, and f is a nonsmooth convex function on E. Denote
by x∗ ∈ Q one of its optimal solutions.

Let us choose a sequence of positive steps {hk}k≥0. Consider the following method.

Method RSµ: Choose x0 ∈ Q. If µ = 0, we need D(x0) = 0.

Iteration k ≥ 0.

a). Generate uk and corresponding gµ(xk).

b). Compute xk+1 = πQ
�
xk − hkB

−1gµ(xk)
�
.

(40)

13

Note that this method generates a random sequence {xk}k≥0. Denote by

Uk = (u0, . . . , uk)

a random vector composed by i.i.d. variables {uk}k≥0 attached to each iteration of the
scheme. Denote φ0 = f(x0), and φk

def= EUk−1(f(xk)), k ≥ 1.

Theorem 5 Let sequence {xk}k≥0 be generated by RS0. Then, for any N ≥ 0 we have

N�

k=0
hk(φk − f∗) ≤ 1

2�x0 − x∗�2 + n+4
2 L2

0(f)
N�

k=0
h2

k. (41)

Proof:
Let point xk with k ≥ 1 be generated after k iterations of the scheme (40). Denote
rk = �xk − x∗�. Then

r2
k+1 ≤ �xk − hkg0(xk)− x∗�2 = r2

k − 2hk�g0(xk), xk − x∗�+ h2
k�g0(xk)�2∗.

Note that function f is differentiable at xk with probability one. Therefore, using repre-
sentation (26) and the estimate (33), we get

Euk

�
r2
k+1

�
≤ r2

k − 2hk�∇f(xk), xk − x∗�+ h2
k(n + 4)L2

0(f)

≤ r2
k − 2hk(f(xk)− f∗) + h2

k(n + 4)L2
0(f).

Taking now the expectation in Uk−1, we obtain

EUk

�
r2
k+1

�
≤ EUk−1

�
r2
k

�
− 2hk(φk − f∗) + h2

k(n + 4)L2
0(f).

Using the same reasoning, we get

EU0

�
r2
1

�
≤ r2

0 − 2h0(f(x0)− f∗) + h2
0(n + 4)L2

0(f).

Summing up these inequalities, we come to (41). ✷

Denote SN =
N�

k=0
hk, and define x̂N = arg min

x
[f(x) : x ∈ {x0, . . . , xN}]. Then

EUN−1 (f(x̂N))− f∗ ≤ EUN−1

�
1

SN

n�

k=0
hk(f(xk)− f∗)

�

(41)
≤ 1

SN

�
1
2�x0 − x∗�2 + n+4

2 L2
0(f)

N�

k=0
h2

k

�

.

In particular, if the number of steps N is fixed, and �x0 − x∗� ≤ R, we can choose

hk = R
(n+4)1/2(N+1)1/2L0(f)

, k = 0, . . . , N. (42)

Then we obtain the following bound:

EUN−1 (f(x̂N))− f∗ ≤ L0(f)R
�

n+4
N+1

�1/2
. (43)

14

Hence, inequality EUN−1 (f(x̂N))− f∗ ≤ � can be ensured by RS0 in

n+4
�2 L2

0(f)R2 (44)

iterations.
Same as in the standard nonsmooth minimization, instead of fixing the number of

steps apriori, we can define

hk = R
(n+4)1/2(k+1)1/2L0(f)

, k ≥ 0. (45)

This modification results in a multiplication of the right-hand side of the estimate (43)
by a factor O(lnN) (e.g. Section 3.2 in [8]).

Let us consider now the random search method (40) with µ > 0.

Theorem 6 Let sequence {xk}k≥0 be generated by RSµ with µ > 0. Then, for any N ≥ 0
we have

1
SN

N�

k=0
hk(φk − f∗) ≤ µL0(f)n1/2 + 1

SN

�
1
2�x0 − x∗�2 + (n+4)2

2 L2
0(f)

N�

k=0
h2

k

�

. (46)

Proof:
Let point xk with k ≥ 1 be generated after k iterations of the scheme (40). Denote
rk = �xk − x∗�. Then

r2
k+1 ≤ �xk − hkgµ(xk)− x∗�2 = r2

k − 2hk�gµ(xk), xk − x∗�+ h2
k�gµ(xk)�2∗.

Using representation (22) and the estimate (35), we get

Euk

�
r2
k+1

�
≤ r2

k − 2hk�∇fµ(xk), xk − x∗�+ h2
k(n + 4)2L2

0(f)

(11)
≤ r2

k − 2hk(f(xk)− fµ(x∗)) + h2
k(n + 4)2L2

0(f).

Taking now the expectation in Uk−1, we obtain

EUk

�
r2
k+1

�
≤ EUk−1

�
r2
k

�
− 2hk(φk − fµ(x∗)) + h2

k(n + 4)2L2
0(f).

It remains to note that fµ(x∗)
(19)
≤ f∗ + µL0(f)n1/2. ✷

Thus, in order to guarantee inequality EUN−1 (f(x̂N)) − f∗ ≤ � by method RSµ, we
can choose

µ = �
2L0(f)n1/2 , hk = R

(n+4)(N+1)1/2L0(f)
, k = 0, . . . , N,

N = 4(n+4)2

�2 L2
0(f)R2.

(47)

Note that this complexity bound is in O(n) times worse than the complexity bound (44)
of the method RS0. This can be explained by the different upper bounds provided by
inequalities (33) and (35). It is interesting that the smoothing parameter µ is not used

15

in the definition (47) of the step sizes and in the total length of the process generated by
method RSµ.

Finally, let us compare our results with the following Random Coordinate Method:

1. Generate a uniformly distributed number ik ∈ {1, . . . , n}.
2. Update xk+1 = πQ (xk − heik�g(xk), eik�),

(48)

where ei is a coordinate vector in Rn, and g(xk) ∈ ∂f(xk). By the same reasoning as in
Theorem 5, we can show that (compare with [10])

1
N+1

N�

k=0
(φk − f∗) ≤ nR2

2(N+1)h + h
2L2

0(f).

Thus, under an appropriate choice of h, method (48) has the same complexity bound (44)
as RS0. However, note that (48) requires computation of the coordinates of the subgra-
dient g(xk). This computation cannot be arranged with directional derivatives, or with
function values. Therefore, method 48) cannot be transformed in a gradient-free form.

A natural modification of method (40) can be applied to the problems of Stochastic
Optimization. Indeed, assume that the objective function in (39) has the following form:

f(x) = Eξ [F (x, ξ)] def=
�

Ξ
F (x, ξ)dP (ξ), x ∈ Q, (49)

where ξ is a random vector with probability distribution P (ξ), ξ ∈ Ξ. We assume that
f ∈ C0,0(E) is convex (this is a relaxation of the standard assumption that F (x, ξ) is
convex in x for any ξ ∈ Ξ). Similarly to (31), we can define random stochastic gradient-

free oracles:

1. Generate random u ∈ E, ξ ∈ Ξ. Return sµ(x) = F (x+µu,ξ)−F (x,ξ)
µ ·Bu.

2. Generate random u ∈ E, ξ ∈ Ξ. Return ŝµ(x) = F (x+µu,ξ)−F (x−µu,ξ)
2µ ·Bu.

3. Generate random u ∈ E, ξ ∈ Ξ. Return s0(x) = F �
x(x, ξ) ·Bu.

(50)

Consider the following method with smoothing parameter µ > 0.

Method SSµ: Choose x0 ∈ Q.

Iteration k ≥ 0.

a). For xk ∈ Q, generate random vectors ξk ∈ Ξ and uk.

b). Compute sµ(xk), and xk+1 = πQ
�
xk − hkB

−1sµ(xk)
�
.

(51)

Its justification is very similar to the proof of Theorem 6.

16

Theorem 7 Let L0(F (·, ξ)) ≤ L for all ξ ∈ Ξ. Assume the sequence {xk}k≥0 be generated

by SSµ with µ > 0. Then, for any N ≥ 0 we have

1
SN

N�

k=0
hk(φk − f∗) ≤ µLn1/2 + 1

SN

�
1
2�x0 − x∗�2 + (n+4)2

2 L2
N�

k=0
h2

k

�

, (52)

where φk = EUk−1,Pk−1(f(xk)), and Pk = {ξ0, . . . , ξk}.

Proof:
In the notation of Theorem 6, we have

r2
k+1 ≤ r2

k − 2h�sµ(xk), xk − x∗�+ h2�sµ(xk)�2.

In view of our assumptions, �sµ(xk)� ≤ L�uk�2. Since Eξ (sµ(x)) = gµ(x), we have

Euk,ξk
(r2

k+1) ≤ r2
k + Euk

�
−2h�gµ(xk), xk − x∗�+ h2L2�uk�4

�

(22),(17)
≤ r2

k − 2hk�∇fµ(xk), xk − x∗�+ h2(n + 4)L2

≤ r2
k − 2hk(fµ(xk)− fµ(x∗)) + h2(n + 4)L2.

Taking now the expectation in Uk−1 and Pk−1, we get

EUk,Pk(r2
k+1)

(11)
≤ EUk−1,Pk−1(r

2
k)− 2hk(φk − fµ(x∗)) + h2(n + 4)L2.

It remains to note that fµ(x∗)
(19)
≤ f∗ + µLn1/2. ✷

Thus, choosing the parameters of method SSµ in accordance to (47), we can solve
the Stochastic Programming Problem (39), (49) in O(n2

�2) iterations. To the best of our
knowledge, method (51) is the first zero-order method in Stochastic Optimization. A
similar analysis can be applied to the method SS0.

5 Simple random search for smooth optimization

Consider the following smooth unconstrained optimization problem:

f
∗ def= min

x∈E
f(x), (53)

where f is a smooth convex function on E. Denote by x∗ one of its optimal solutions.
For the sake of notation, we assume that dimE ≥ 2.

17

Consider the following method.

Method RGµ: Choose x0 ∈ E.

Iteration k ≥ 0.

a). Generate uk and corresponding gµ(xk).

b). Compute xk+1 = xk − hB−1gµ(xk).

(54)

This is a random version of the standard primal gradient method. A version of method (54)
with oracle ĝµ will be called �RGµ.

Since the bounds (36) and (37) are continuous in µ, we can justify all variants of
method RGµ, µ ≥ 0, by a single statement.

Theorem 8 Let f ∈ C1,1(E), and sequence {xk}k≥0 be generated by RGµ with

h = 1
4(n+4)L1(f) . (55)

Then, for any N ≥ 0, we have

1
N+1

N�

k=0
(φk − f∗) ≤ 4(n+4)L1(f)�x0−x∗�2

N+1 + 9µ2(n+4)2L1(f)
25 . (56)

Let function f be strongly convex. Denote δµ = 18µ2(n+4)2

25τ(f) L1(f). Then

φN − f∗ ≤ 1
2L1(f)

�
δµ +

�
1− τ(f)

8(n+4)L1(f)

�N
(�x0 − x∗�2 − δµ)

�
. (57)

Proof:
Let point xk with k ≥ 0 be generated after k iterations of the scheme (54). Denote
rk = �xk − x∗�. Then

r2
k+1 = r2

k − 2h�gµ(xk), xk − x∗�+ h2�gµ(xk)�2∗.

Using representation (27) and the estimate (36), we get

Euk

�
r2
k+1

�
≤ r2

k − 2h�∇fµ(xk), xk − x∗�+ h2[µ2(n+6)3

2 L2
1(f) + 2(n + 4)�∇f(x)�2∗]

(11)
≤ r2

k − 2h(f(xk)− fµ(x∗)) + h2[µ
2(n+6)3

2 L2
1(f) + 4(n + 4)L1(f)(f(xk)− f∗)]

(20)
≤ r2

k − 2h(1− 2h(n + 4)L1(f))(f(xk)− f∗) + µ2nhL1(f) + µ2(n+6)3

2 h2L2
1(f)

(55)
= r2

k −
f(xk)−f∗

4(n+4)L1(f) + µ2

4

�
n

n+4 + (n+6)3

8(n+4)2

�
≤ r2

k −
f(xk)−f∗

4(n+4)L1(f) + 9µ2(n+4)
100 .

18

Taking now the expectation in Uk−1, we obtain

ρk+1
def= EUk

�
r2
k+1

�
≤ ρk − φk−f∗

4(n+4)L1(f) + 9µ2(n+4)
100 .

Summing up these inequalities for k = 0, . . . , N , and dividing the result by N + 1, we
get (56).

Assume now that f is strongly convex. As we have seen,

Euk

�
r2
k+1

�
≤ r2

k −
f(xk)−f∗

4(n+4)L1(f) + 9µ2(n+4)
100

(8)
≤

�
1− τ(f)

8(n+4)L1(f)

�
r2
k + 9µ2(n+4)

100 .

Taking the expectation in Uk−1, we get

ρk+1 ≤
�
1− τ(f)

8(n+4)L1(f)

�
ρk + 9µ2(n+4)

100 .

This inequality is equivalent to the following one:

ρk+1 − δµ ≤
�
1− τ(f)

8(n+4)L1(f)

�
(ρk − δµ) ≤

�
1− τ(f)

8(n+4)L1(f)

�k+1
(ρ0 − δµ).

It remains to note that φk − f∗
(6)
≤ 1

2L1(s)ρk. ✷

Let us discuss the choice of parameter µ in method RGµ. Consider first the mini-
mization of functions from C1,1(E). Clearly, the estimate (56) is valid also for φ̂N

def=
EUk−1(f(x̂N)), where x̂N = arg min

x
[f(x) : x ∈ {x0, . . . , xN}]. In order to get the final

accuracy � for the objective function, we need to choose µ sufficiently small:

µ ≤ 5
3(n+4)

�
�

2L1(f) . (58)

Taking into account that Eu(�u�) = O(n1/2), we can see that the average length of the

finite-difference step in computation of the oracle gµ is of the order O

��
�

nL1(f)

�
. It is

interesting that this bound is much more relaxed with respect to � than the bound (47)
for nonsmooth version of the random search. However, it depends now on the dimension
of the space of variables. At the same time, inequality φ̂N − f∗ ≤ � is satisfied at most in
O(n

� L1(f)R2) iterations.
Consider now the strongly convex case. Then, we need to choose µ satisfying the

equation 1
2L1(f)δµ ≤ �

2 . This is

µ ≤ 5
3(n+4)

�
�

2L1(f) ·
τ(f)
L1(f) .

(59)

The number iterations of this method is of the order O

�
nL1(f)
τ(f) ln L1(f)R2

�

�
. It is natural

that a faster scheme needs a higher accuracy of the finite-difference oracle (or, a smaller
value of µ).

The complexity analysis of the method �RGµ can be done in a similar way. In accor-
dance to the estimate (36), the corresponding results will have slightly better dependence
in µ. Note that our complexity results are also valid for the limiting version RG0 ≡ �RG0.

19

6 Accelerated random search

Let us apply to problem (53) a random variant of the fast gradient method. We assume
that function f ∈ C1,1(E) is strongly convex with convexity parameter τ(f) ≥ 0. Denote
by κ(f) def= τ(f)

L1(f) its condition number. And let θn = 1
16(n+1)2L1(f) , hn = 1

4(n+4)L1(f) .

Method FGµ: Choose x0 ∈ E, v0 = x0, and a positive γ0 ≥ τ(f).

Iteration k ≥ 0:

a) Compute αk > 0 satisfying θ−1
n α2

k = (1− αk)γk + αkτ(f) ≡ γk+1.

b) Set λk = αk
γk+1

τ(f), βk = αkγk
γk+αkτ(f) , and yk = (1− βk)xk + βkvk.

c). Generate random uk and compute corresponding gµ(yk).

d). Set xk+1 = yk − hnB−1gµ(yk), vk+1 = (1− λk)vk + λkyk − θn
αk

B−1gµ(yk).

(60)

Note that the parameters of this method satisfy the following relations:

1− λk = (1− αl) γk
γk+1

, 1− βk = γk+1

γk+αkτ(f) , (1− λk)1−βk
βk

= 1−αk
αk

. (61)

Theorem 9 For all k ≥ 0, we have

φk − f∗ ≤ ψk · [f(x0)− f(x∗) + γ0
2 �x0 − x∗�2] + µ2L1(f)

�
n + 3(n+8)

32 Ck

�
, (62)

where ψk ≤ min
��

1− κ1/2(f)
4(n+4)

�k
,

�
1 + k

8(n+4)

�
γ0

L1(f)

�−2
�

, and Ck ≤ min
�
k,

4(n+4)
κ1/2(f)

�
.

Proof:
Assume that after k iterations, we have generated points xk and vk. Then we can compute
yk and generate gµ(yk). Taking a random step from this point, we get

fµ(xk+1)
(12)
≤ fµ(yk)− hn�∇fµ(yk), B−1gµ(xk)�+ h2

n
2 L1(f)�gµ(yk)�2∗.

Therefore,

Euk (fµ(xk+1))
(27)
≤ fµ(yk)− hn�∇fµ(yk)�2∗ + h2

n
2 L1(f)Euk

�
�gµ(yk)�2∗

�

(38)
≤ fµ(yk)− hn

4(n+4)

�
Euk

�
�gµ(yk)�2∗

�
− 3µ2

2 L2
1(f)(n + 5)3

�
+ h2

n
2 L1(f)Euk

�
�gµ(yk)�2∗

�

= fµ(yk)− 1
2θnEuk

�
�gµ(yk)�2∗

�
+ ξµ,

20

where ξµ
def= 3(n+5)3µ2

32(n+4)2 L1(f). Note that (n+5)3

(n+4)2 ≤ n + 8 for n ≥ 2.
Let us fix an arbitrary x ∈ E. Note that

δk+1(x) def= γk+1
2 �vk+1 − x�2 + fµ(xk+1)− fµ(x)

= γk+1
2 �(1− λk)vk + λkyk − x�2 − θnγk+1

αk
�gµ(yk), (1− λk)vk + λkyk − x�

+ θ2
nγk+1

2α2
k
�gµ(yk)�2∗ + fµ(xk+1)− fµ(x).

Taking the expectation in uk, and using the equation of Step a) in (60), we get

Euk(δk+1(x))
(22)
≤ γk+1

2 �(1− λk)vk + λkyk − x�2 − αk�∇fµ(yk), (1− λk)vk + λkyk − x�

+1
2θnEuk

�
�gµ(yk)�2∗

�
+ Euk (fµ(xk+1))− fµ(x)

≤ γk+1
2 �(1− λk)vk + λkyk − x�2 + αk�∇fµ(yk), x− (1− λk)vk − λkyk�

+fµ(yk)− fµ(x) + ξµ.

Note that vk = yk + 1−βk
βk

(yk − xk). Therefore,

(1− λk)vk + λkyk = yk + (1− λk)1−βk
βk

(yk − xk)
(61)
= yk + 1−αk

αk
(yk − xk).

Hence,
fµ(yk) + αk�∇fµ(yk), x− (1− λk)vk − λkyk� − fµ(x)

= fµ(yk) + �∇fµ(yk),αkx + (1− αk)xk − yk� − fµ(x)

(8)
≤ (1− αk)(f(xk)− fµ(x))− 1

2αkτ(f)�x− yk�2,
and we can continue:

Euk(δk+1(x)) ≤ γk+1
2 �(1− λk)vk + λkyk − x�2 + ξµ

+(1− αk)(f(xk)− fµ(x))− 1
2αkτ(f)�x− yk�2

≤ γk+1
2 (1− λk)�vk − x�2 + γk+1

2 λk�yk − x�2 + ξµ

+(1− αk)(f(xk)− fµ(x))− 1
2αkτ(f)�x− yk�2

(61)
= (1− αk)δk(x) + ξµ.

Denote φk(µ) = EUk−1(fµ(xk)), ρk = γk
2 EUk−1(�vk − x∗�2). Then, taking the expecta-

tion of the latter inequality in Uk−1, we get

φk+1(µ)− fµ(x) + ρk+1 ≤ (1− αk)(φk(µ)− fµ(x∗) + ρk) + ξµ

≤ . . . ≤ ψk+1 ·
�
fµ(x0)− fµ(x) + γ0

2 �x0 − x�2
�
+ ξµ · Ck+1,

21

where ψk =
k−1�
i=0

(1 − αi), and Ck = 1 +
k−1�
i=1

k−1�

j=k−i
(1 − αj), k ≥ 1. Defining ψ0 = 1 and

C0 = 0, we get Ck ≤ k, k ≥ 0. On the other hand, by induction it is easy to see that
γk ≥ τ(f) for all k ≥ 0. Therefore,

αk ≥ [τ(f)θn]1/2 = κ1/2(f)
4(n+4)

def= ωn, k ≥ 0.

Then, Ck ≤ 1 +
k−1�
i=1

k−1�

j=k−i
(1− ωn)i = 1 + (1− ωn) (1−(1−ωn)k)

ωn
≤ ω−1

n . Thus,

Ck ≤ min
�
k,

4(n+4)
κ1/2(f)

�
, ψk ≤

�
1− κ1/2(f)

4(n+4)

�k
, k ≥ 0.

Further,2 let us prove that γk ≥ γ0ψk. For k = 0 this is true. Assume it is true for some
k ≥ 0. Then

γk+1 ≥ (1− αk)γk ≥ γ0ψk+1.

Denote ak = 1

ψ1/2
k

. Then, in view of the established inequality we have:

ak+1 − ak =
ψ1/2

k −ψ1/2
k+1

ψ1/2
k ψ1/2

k+1

= ψk−ψk+1

ψ1/2
k ψ1/2

k+1(ψ
1/2
k +ψ1/2

k+1)
≥ ψk−ψk+1

2ψkψ1/2
k+1

= ψk−(1−αk)ψk

2ψkψ1/2
k+1

= αk

2ψ1/2
k+1

=
γ1/2

k+1θ1/2
n

2ψ1/2
k+1

≥ 1
8(n+4)

�
γ0

L1(f) .

Hence, 1
ψk1/2 ≥ 1 + k

8(n+4)

�
γ0

L1(f) for all k ≥ 0. It remains to note that

EUk−1(f(xk))− f(x∗)
(11)
≤ φk(µ)− f(x∗)

(20)
≤ φk(µ)− fµ(x∗) + µ2

2 L1(f)n

≤ ψk ·
�
fµ(x0)− fµ(x∗) + γ0

2 �x0 − x∗�2
�
+ ξµ · Ck + µ2

2 L1(f)n

(20)
≤ ψk ·

�
f(x0)− f(x∗) + γ0

2 �x0 − x∗�2
�
+ ξµ · Ck + µ2L1(f)n.

It remains to apply the upper bounds for ψk. ✷

Let us discuss the complexity estimates of the method (60) for τ(f) = 0. In order to get
accuracy � for the objective function, both terms in the right-hand side of inequality (62)
must be smaller than �

2 . Thus, we need

N(�) = O

�
nL1/2

1 (f)R

�1/2

�
(63)

iterations. Similarly to the simple random search method (40), this estimate is n times
larger than the estimate of the corresponding scheme with full computation of the gradient.

2The rest of the proof is very similar to the proof of Lemma 2.2.4 in [8]. We present it here just for the
reader convenience.

22

The parameter of the oracle µ must be chosen as

µ ≤ O

�
�1/2

L1/2
1 (f)(n·N(�))1/2

�
= O

�
�3/4

nL3/4
1 (f)R1/2

�

= O

�
1
n

�
�

L1(f) ·
�

�
L1(f)R2

�1/2
�1/2

�

.

(64)

As compared with (58), the average size of the trial step µu is a tighter function of �.
This is natural, since the method (54) is much faster. On the other hand, this size is still
quite moderate (this is good for numerical stability of the scheme).

Remark 1 1. Method (60) can be seen as a variant of the Constant Step Scheme (2.2.8)

in [8]. Therefore, the sequence {vk} can be expressed in terms of {xk} and {yk} (see

Section 2.2.1 in [8] for details).

2. Linear convergence of method (60) for strongly convex functions allows an effi-

cient generation of random approximations to the solution of problem (53) with arbitrary

high confidence level. This can be achieved by an appropriate regularization of the initial

problem, as suggested in Section 3 of [10].

7 Nonconvex problems

Consider now the problem
min
x∈E

f(x), (65)

where the objective function f is nonconvex. Let us apply to it method (40). Now it has
the following form:

Method �RSµ: Choose x0 ∈ E.

Iteration k ≥ 0.

a). Generate uk and corresponding gµ(xk).

b). Compute xk+1 = xk − hkB
−1gµ(xk).

(66)

Let us estimate the evolution of the value of function fµ after one step of this scheme.
Since fµ has Lipschitz-continuous gradient, we have

fµ(xk+1)
(6)
≤ fµ(xk)− h�∇fµ(xk), B−1gµ(xk)�+ 1

2h2L1(fµ)�gµ�2∗.

Taking now the expectation in uk, we obtain

Euk(fµ(xk+1))
(22)
≤ fµ(xk)− hk�∇fµ(xk)�2∗ + 1

2h2
kL1(fµ)Euk

�
�gµ�2∗

�
. (67)

23

Consider now two cases.
1. f ∈ C1,1(E). Then

Euk(fµ(xk+1))
(38)
≤ fµ(xk)− hk�∇fµ(xk)�2∗

+1
2h2

kL1(f)
�
4(n + 4)�∇fµ(xk)�2∗ + 3µ2

2 L2
1(f)(n + 5)3

�

Choosing now hk = ĥ
def= 1

4(n+4)L1(f) , we obtain

Euk(fµ(xk+1))
(38)
≤ fµ(xk)− 1

2 ĥ�∇fµ(xk)�2∗ + 3µ2

16 L1(f) (n+5)3

(n+4)2

Since (n + 5)3 ≤ (n + 8)(n + 4)2, taking the expectation of this inequality in Uk, we get

φk+1 ≤ φk − 1
2 ĥη2

k + 3µ2(n+8)
16 L1(f),

where η2
k

def= EUk

�
�∇fµ(xk)�2∗

�
. Assuming now that f(x) ≥ f∗ for all x ∈ E, we get

1
N+1

N�

k=0
η2

k ≤ 8(n + 4)L1(f)
�

f(x0)−f∗

N+1 + 3µ2(n+8)
16 L1(f)

�
. (68)

Since θ2
k

def= EUk

�
�∇f(xk)�2∗

� (30)
≤ 2η2

k + µ2(n+4)2

2 L2
1(f), the expected rate of decrease of θk

is of the same order as (68). In order to get 1
N+1

N�

k=0
θ2
k ≤ �2, we need to choose

µ ≤ O

�
�

nL1(f)

�
.

Then, the upper bound for the expected number of steps is O(n
�2).

2. f ∈ C0,0(E). Then,

Euk(fµ(xk+1))
(35)
≤ fµ(xk)− hk�∇fµ(xk)�2∗ + 1

2h2
kL1(fµ) · L2

0(f)(n + 4)2

(23)
= fµ(xk)− hk�∇fµ(xk)�2∗ + 1

µh2
kn

1/2(n + 4)2 · L3
0(f).

Assume f(x) ≥ f∗, x ∈ E, and denote SN
def=

n�

k=0
hk. Taking the expectation of the latter

inequality in Uk, and summing them up, we get

1
SN

N�

k=0
hkη

2
k ≤ 1

SN

�

(fµ(x0)− f∗) + C(µ)
N�

k=0
h2

k

�

,

C(µ) def= 1
µn1/2(n + 4)2 · L3

0(f).

(69)

Thus, we can guarantee a convergence of the process (66) to a stationary point of the
function fµ, which is a smooth approximation of f . In order to bound the gap in this

24

approximation by �, we need to choose µ ≤ µ̄
(19)
= �

n1/2L0(f)
. Let us assume for simplicity

that we are using a constant-step scheme: hk ≡ h, k ≥ 0. Then the right-hand side of
inequality (69) becomes

fµ̄(x0)−f∗

(N+1)h + h
� n(n + 4)2L4

0(f) ≤ L0(f)R
(N+1)h + h

� n(n + 4)2L4
0(f) def= ρ(h).

Minimizing this upper bound in h, we get is optimal value:

h∗ =
�

�R
n(n+4)2L3

0(f)(N+1)

�1/2
, ρ(h∗) = 2

�
n(n+4)2L5

0(f)R
�(N+1)

�1/2
.

Thus, in order to guarantee the expected squared norm of the gradient of function fµ̄ of
the order δ, we need

O

�
n(n+4)2L5

0(f)R
�δ2

�

iteration of the scheme (66). To the best of our knowledge, this is the first complexity
bound for the methods for minimizing nonsmooth nonconvex functions. Note that allow-
ing in the method (66) hk → 0 and µ → 0, we can ensure a convergence of the scheme
to a stationary point of the initial function f . But this proof is quite long and technical.
Therefore, we omit it.

8 Preliminary computational experiments

The main goal of our experiment was the investigation of the impact of the random oracle
on the actual convergence of the minimization methods. We compared the performance of
the randomized gradient-free methods with the classical gradient schemes. As suggested
by our efficiency estimates, it is normal if the former methods need n times more iterations
as compared with the classical ones. Let us describe our results.

8.1 Smooth minimization

We checked the performance of the methods (54) and (60) on the following test function:

fn(x) = 1
2(x(1))2 + 1

2

n−1�
i=1

(x(i+1) − x(i))2 + 1
2(x(n))2 − x(1), x0 = 0. (70)

This function was used in Section 2.1 in [8] for proving the lower complexity bound for the
gradient methods as applied to functions from C1,1(Rn). It has the following parameters:

L1(fn) ≤ 4, R2 = �x0 − x∗�2 ≤ n+1
3 .

These values were used for defining the trial step size µ by (58) and (64). We also tested
the versions of corresponding methods with µ = 0. Finally, we compared these results
with the usual gradient and fast gradient method.

Our results for the simple gradient schemes are presented in the following table. The
first column of the table indicates the current level of relative accuracy with respect to
the scale S

def= 1
2L1(fn)R2. The kth row of the table, k = 2 . . . 9, shows the number of

25

iterations spent for achieving the absolute accuracy 2−(k+7)S. This table aggregates the
results of 20 attempts of the method RG0 and RGµ to minimize the function (70). The
columns 2-4 of the table represent the minimal, maximal and average number of blocks
by n iterations, executed by RG0 in order to reach corresponding level of accuracy. The
next three columns represent this information for RGµ with µ computed by (58) with
� = 2−16. The last column contains the results for the standard gradient method with
constant step h = 1

L1(fn) .

µ = 0 µ = 8.9 · 10−6

Accuracy min max Mean min max Mean GM
2.0 · 10−3 3 4 4.0 3 4 3.9 1
9.8 · 10−4 20 22 21.3 21 22 21.3 5
4.9 · 10−4 85 89 86.8 85 89 86.8 22
2.4 · 10−4 329 343 335.5 327 342 335.4 83
1.2 · 10−4 1210 1254 1232.8 1204 1246 1231.8 304
6.1 · 10−5 4129 4242 4190.3 4155 4235 4190.4 1034
3.1 · 10−5 12440 12611 12536.7 12463 12645 12538.1 3092
1.5 · 10−5 30883 31178 31054.6 30939 31269 31058.1 7654

Table 1. Simple Random Search RGµ.

We can see a very small variance of the results presented in each column. Moreover, the
finite-difference version with an appropriate value of µ demonstrates practically the same
performance as the version based on the directional derivative. Moreover, the number
of blocks by n iterations of the random schemes is practically equal to the number of
iterations of the standard gradient method multiplied by four. A plausible explanation
of this phenomena is related to the choice of the step size h = 1

4·(n+4)L1(f)
. However, we

prefer to use this value since there is no theoretical justification for a larger step.
Let us present the results of 20 runs of the accelerated schemes. The structure of

Table 2 is similar to that of Table 1. Since these methods are faster, we give the results

26

for a more accurate solution, up to � = 2−30.

µ = 0 µ = 3.5 · 10−10

Accuracy min max Mean min max Mean FGM
2.0 · 10−3 7 7 7.0 7 7 7.0 1
9.8 · 10−4 21 22 21.1 21 22 21.1 4
4.9 · 10−4 45 47 45.8 46 47 46.2 10
2.4 · 10−4 93 96 94.1 93 96 94.5 22
1.2 · 10−4 182 187 184.7 180 188 185.4 44
6.1 · 10−5 338 350 345.4 342 349 346.6 84
3.1 · 10−5 597 611 603.2 599 609 604.3 147
1.5 · 10−5 944 967 953.1 948 964 954.9 233
7.6 · 10−6 1328 1355 1339.6 1332 1351 1341.5 328
3.8 · 10−6 1671 1695 1679.4 1671 1688 1680.3 411
1.9 · 10−6 1915 1934 1922.6 1916 1928 1923.1 471
9.5 · 10−7 2070 2083 2075.3 2070 2080 2075.7 508
4.8 · 10−7 2177 2189 2182.1 2177 2187 2182.6 535
2.4 · 10−7 2270 2281 2274.4 2268 2279 2274.4 557
1.2 · 10−7 2360 2375 2366.8 2355 2375 2366.3 580
6.0 · 10−8 4294 4308 4299.9 4291 4308 4300.9 1056
3.0 · 10−8 4396 4410 4402.4 4392 4411 4403.6 1081
1.5 · 10−8 4496 4521 4506.9 4495 4518 4508.0 1107
7.5 · 10−9 6519 6537 6529.0 6517 6540 6529.1 1604
3.7 · 10−9 6624 6669 6646.2 6623 6672 6644.4 1633
1.9 · 10−9 8680 8718 8700.3 8682 8712 8699.1 2139
9.3 · 10−10 10770 10805 10789.9 10779 10808 10791.2 2653

Table 2. Fast Random Search FGµ.

As we can see, the accelerated schemes are indeed faster than the simple random search.
On the other hand, same as in Table 1, the variance of the results in each line is very
small. Method with µ = 0 demonstrates almost the same efficiency as the method with
µ defined by (64). And again, the number of the blocks by n iterations of the random
methods is proportional to the number of iterations of the standard gradient methods
multiplied by four.

8.2 Nonsmooth minimization

For nonsmooth problems, we present first the computational results of two variants of
method (40) on the following test function:

Fn(x) = |x(1) − 1|+
n−1�
i=1

|1 + x(i+1) − 2x(i)|, x0 = 0. (71)

It has the following parameters:

L0(Fn) ≤ 3n1/2, R2 = �x0 − x∗�2 ≤ n.

27

We compared the version RS0 and version RSµ with µ defined by (47) with the
standard subgradient method (e.g. Section 3.2.3 in [8]). The results are presented in
Tables 3-5. The first columns of these tables show the required accuracy as compared
with the scale L0(Fn)R. In this case, the theoretical upper bound for achieving this level
of accuracy is κ

�2 , where κ is an absolute constant. The columns of the tables correspond
to the test problems of dimension n = 2p, p = 2 . . . 8. Each cell shows the number of
blocks of n iterations, which were necessary to reach this level of accuracy. If this was
impossible after 105 iterations, we put in the cell the best value found by the scheme. In
Table 5, representing the results of the standard subgradient scheme, we show the usual
number of iterations. We show the results only for a single run since the variability in the
performance of the random scheme is very small.

Table 3. Method RS0, Limit = 105

� \n 8 16 32 64 128 256
2.5E-1 1 4 2 2 5 4
1.3E-1 10 7 7 7 13 11
6.3E-2 16 11 18 25 27 21
3.1E-2 22 27 49 59 61 74
1.6E-2 50 104 156 187 218 263
7.8E-3 65 328 480 685 885 1045
3.9E-3 477 1086 1812 2749 3397 3848
2.0E-3 533 4080 6834 10828 12872 14773
9.8E-4 5784 10809 27341 41896 51072 54615
4.9E-4 60089 39157 84009 6.0E-4 6.8E-4 7.5E-4

2.4E-4 3.6E-4 3.0E-4 4.8E-4

As compared with the theoretical upper bounds, all methods perform much better.
Note that we observe an unexpectedly good performance of the method RSµ. It is always
better than its variant with exact directional derivative. Moreover, it is very often better
than the usual subgradient method. Let us compare these schemes on a more sophisticated
test problem.

Table 4. Method RSµ, µ = 3.2E-7

� \n 8 16 32 64 128 256
2.5E-1 2 1 4 9 17 33
1.3E-1 12 18 32 58 113 221
6.3E-2 25 38 58 105 199 381
3.1E-2 30 60 78 137 258 482
1.6E-2 38 88 94 161 296 546
7.8E-3 41 108 107 180 323 590
3.9E-3 65 114 126 199 347 624
2.0E-3 130 273 210 221 364 656
9.8E-4 1293 884 966 698 451 698
4.9E-4 9489 3714 3044 2213 1772 981
2.4E-4 3.5E-4 11156 9589 9506 6591 3759
1.2E-4 26608 47570 37870 25565 14691

28

Table 5. Subgradient Method
� \n 8 16 32 64 128 256

2.5E-1 1 1 1 1 1 1
1.3E-1 9 4 3 3 3 3
6.3E-2 13 12 6 4 4 4
3.1E-2 73 30 14 10 6 4
1.6E-2 261 40 24 24 14 14
7.8E-3 1274 94 90 48 44 36
3.9E-3 3858 248 592 118 128 94
2.0E-3 8609 3866 2042 368 342 202
4.9E-4 28607 17698 3442 904 648 392
9.8E-4 93886 46218 9280 3570 5.8E-4 566
2.4E-4 3.9E-4 85778 13684 18354 904
1.2E-4 2.2E-4 1.8E-4 1.8E-4 1.7E-4

Let ∆m ⊂ Rm be a standard simplex. Consider the following matrix game:

min
x∈∆m

max
y∈∆m

�Ax, y� = max
y∈∆m

min
x∈∆m

�Ax, y�, (72)

where A is an m×m-matrix. Define the following function:

f(x, y) = max
�

max
1≤i,j≤m

�
�AT ei, x� − �Aej , y�

�
, |�ē, x� − 1|, |�ē, y� − 1|

�
,

where ei ∈ Rm are coordinate vectors, and ē ∈ Rm is the vector of all ones. Clearly, the
problem (72) is equivalent to the following minimization problem:

min
x,y≥0

f(x, y). (73)

The optimal value of this problem is zero. We choose the starting points x0 = ē
m , y0 = ē

m ,
and generate A with random entries uniformly distributed in the interval [−1, 1]. Then
the parameters of problem (39) are as follows:

n = 2m, Q = Rn
+, L0(f) ≤ n1/2, R ≤ 2.

In Table 6, we present the computational results for two variants of method RSµ and
the subgradient scheme. For problems (73) of dimension n = 2p, p = 3 . . . 16, we report the
best accuracy achieved by the schemes after 105 iterations (as usual, for random methods,
we count the blocks of n iterations). The parameter µ of method RSµ was computed
by (47) with target accuracy � = 9.5E-7.

Table 6. Saddle point problem
Dim RS0 RSµ SubGrad

8 1.3E-5 5.3E-6 1.4E-4

16 3.3E-5 8.3E-6 1.3E-4

32 4.80E-5 7.0E-6 1.3E-4

64 2.3E-4 2.2E-4 2.4E-4

128 9.3E-5 3.1E-5 1.6E-4

256 9.3E-5 2.1E-5 1.7E-4

Clearly, in this competition method RSµ is a winner. Two other methods demonstrate
equal performance.

29

8.3 Conclusion

Our experiments confirm the following conclusion. If the computation of the gradient
is feasible, then the cost of the iteration of random methods, and the cost of iteration
of the gradients methods are the same. In this situation, the total time spent by the
random methods is typically in O(n) times bigger than the time of the gradient schemes.
Hence, the random gradient-free methods should be used only if creation of the code for
computing the gradient is too costly or just impossible.

In the latter case, for smooth functions, the accelerated scheme (60) demonstrates
better performance. This practical observation is confirmed by the theoretical results.
For nonsmooth problems, the situation is more delicate. In our experiments, the finite-
difference version RSµ was always better than the method RS0, based on the exact
directional derivative. Up to now, we did not manage to find a reasonable explanation for
this phenomena. It remains an interesting topic for the future research.

References

[1] F.Clarke. Optimization and nonsmooth analysis. Wliley, New York (1983).
[2] A.Conn, K.Scheinberg, and L.Vicente. Introduction to derivative-free optimization.

MPS-SIAM series on optimization, 8, SIAM, Philadelphia (2009).
[3] C.Dorea. “Expected number of steps of a random optimization method.” JOTA,

39(2), 165-171 (1083).
[4] J.Matyas. “Random optimization.” Automation and Remote Control, 26, 246-253

(1965).
[5] Nelder, John A.; R. Mead. “A simplex method for function minimization”. Com-

puter Journal, 7, 308313 (1965).
[6] A.Nemirovski, A.Juditsky, G.Lan, and A.Shapiro. “Robust Stochastic Approxima-

tion approach to Stochastic Programming.” SIAM Journal on Optimization 19(4),
1574-1609 (2009).

[7] A.Nemirovsky, and D.Yudin. Problem complexity and method efficiency in opti-
mization. John Wiley and Sons, New York (1983).

[8] Yu. Nesterov. Introductory Lectures on Convex Optimization. Kluwer, Boston, 2004.
[9] Yu. Nesterov. “Lexicographic differentiation of nonsmooth functions”. Mathematical

Programming (B), 104 (2-3), 669-700 (2005).
[10] Yu.Nesterov. Efficiency of coordinate descent methods on huge-scale optimization

problems. CORE Discussion Paper #2010/02, CORE (2010).
[11] B.Polyak. Introduction to Optimization. Optimization Software - Inc., Publications

Division, New York (1987).
[12] V.Protasov. “Algorithms for approximate calculation of the minimum of a convex

function from its values.” Mathematical Notes, 59(1), 69-74 (1996).
[13] M.Sarma. “On theconvergence of the Baba and Dorea random optimization meth-

ods.” JOTA, 66(2), 337-343 (1990).

30

