Random Graphs

and

The Parity Quantifier

Phokion G. Kolaitis
UC Santa Cruz
\&
IBM Research-Almaden

Swastik Kopparty

MIT
\&
Institute for Advanced Study

What is finite model theory?

It is the study of logics on classes of finite structures.

Logics:
First-order logic FO and various extensions of FO:

- Fragments of second-order logic SO.
- Logics with fixed-point operators.
- Finite-variable infinitary logics.
- Logics with generalized quantifiers.

Main Themes in Finite Model Theory

- Classical model theory in the finite: Do the classical results of model theory hold in the finite?
- Expressive power of logics in the finite: What can and what cannot be expressed in various logics on classes of finite structures.
- Descriptive complexity: computational complexity vs. uniform definability (logic-based characterizations of complexity classes).
- Logic and asymptotic probabilities on finite structures 0-1 laws and convergence laws.

Classical Model Theory in the Finite

- Preservation under substructures

Theorem: Tait-1959
The Łoś -Tarski Theorem fails in the finite.
(rediscovered by Gurevich and Shelah in the 1980s)

- Preservation under homomorphisms

Theorem: Rossman - 2005
If a FO-sentence ψ is preserved under homomorphisms on all finite structures, then there is an existential positive FO-sentence ψ^{*} that is equivalent to ψ on all finite structures.

Descriptive Complexity

- Characterizing NP

Theorem: Fagin 1974
On the class \boldsymbol{G} of all finite graphs $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, NP = ESO (existential second-order logic).

- Characterizing P

Theorem: Immerman 1982, Vardi 1982
On the class \boldsymbol{O} of all ordered finite graphs $G=(\mathrm{V},<, \mathrm{E})$,
$\mathrm{P}=$ LFP (least fixed-point logic), where
LFP = FO + Least fixed-points of positive FO-formulas.

Logic and Asymptotic Probabilities

- Notation:
- Q: Property (Boolean query) on the class \mathbf{F} of all finite structures
- \mathbf{F}_{n} : Class of finite structures with n in their universe
- μ_{n} : Probability measure on $F_{n}, n \geq 1$
- $\mu_{\mathrm{n}}(\mathrm{Q})=$ Probability of Q on \mathbf{F}_{n} with respect to $\mu_{\mathrm{n}}, \mathrm{n} \geq 1$.
- Definition: Asymptotic probability of property Q

$$
\mu(\mathrm{Q})=\lim \mu_{\mathrm{n} \rightarrow \infty}(\mathrm{Q}) \text { (provided the limit exists) }
$$

- Examples: For the uniform measure μ on finite graphs \mathbf{G} :
- $\mu(\mathbf{G}$ contains a triangle $)=1$.
- $\mu(\mathbf{G}$ is connected $)=1$.
- $\mu(\mathbf{G}$ is 3 -colorable $)=0$.
- $\mu(\mathbf{G}$ is Hamiltonian $)=1$.

0-1 Laws and Convergence Laws

Question: Is there a connection between the definability of a property Q in some logic L and its asymptotic probability?

Definition: Let L be a logic

- The 0-1 law holds for L w.r.t. to a measure $\mu_{n}, \mathrm{n} \geq 1$, if

$$
\mu(\psi)=0 \text { or } \mu(\psi)=1
$$

for every L-sentence ψ.

- The convergence law holds for L w.r.t. to a measure $\mu_{n}, \mathrm{n} \geq 1$, if $\mu(\psi)$ exists, for every L-sentence ψ.

0-1 Law for First-Order Logic

Theorem: Glebskii et al. - 1969, Fagin - 1972
The 0-1 law holds for FO w.r.t. to the uniform measure on the class of all finite graphs.

Proof Techniques:

- Glebskii et al.

Quantifier Elimination + Counting

- Fagin

Transfer Theorem:
There is a unique countable graph \mathbf{R} such that for every
FO-sentence ψ, we have that

$$
\mu(\psi)=1 \text { if and only if } \mathbf{R} \vDash \psi .
$$

Note:

- \mathbf{R} is Rado's graph: Unique countable, homogeneous, universal graph; it is characterized by a set of first-order extension axioms.
- Each extension axiom has asymptotic probability equal to 1.

FO Truth vs. FO Almost Sure Truth

Everywhere true (valid)
Somewhere false
Everywhere false (contradiction)

- First-Order Truth

Testing if a FO-sentence is true on all finite graphs is an undecidable problem (Trakhtenbrot - 1950)

Almost surely true
Almost surely false

- Almost Sure First-Order Truth Testing if a FO-sentence is almost surely true on all finite graphs is a decidable problem; in fact, it is PSPACE-complete (Grandjean - 1985).

Three Directions of Research on 0-1 Laws

- 0-1 laws for FO on restricted classes of finite structures
- Partial Orders, Triangle-Free Graphs, ...
- 0-1 laws on graphs under variable probability measures.
- $G(n, p)$ with $p \neq 1 / 2\left(e . g ., p(n)=n^{-(1 / e)}\right)$
- 0-1 laws for extensions of FO w.r.t. the uniform measure.

Restricted Classes and Variable Measures

- Restricted classes of finite structures

Theorem: Compton - 1986
The 0-1 law hods for the class of all finite partial orders

- Proof uses results of Kleitman and Rothschild - 1975 about the asymptotic structure of partial orders.
- Variable probability measures

Theorem: Shelah and Spencer - 1987
Random finite graphs under the $\mathrm{G}(\mathrm{n}, \mathrm{p})$ model with $\mathrm{p}=\mathrm{n}^{-\alpha}$

- If α is irrational, then the 0-1 law holds for FO.
- If α is rational, then the 0-1 law fails for FO.

0-1 Laws for Extensions of First-Order Logic

Many generalizations of the original 0-1 law, including:

- Blass, Gurevich, Kozen - 1985

0-1 Law for Least Fixed-Point Logic LFP

- Captures Connectivity, Acyclicity, 2-Colorability, ...
- K ... and Vardi - 1990

0-1 Law for Finite-Variable Infinitary Logics $L^{\mathrm{k}}{ }_{\infty \omega^{\prime}} \mathrm{k} \geq 2$

- Proper extension of LFP
- K... and Vardi - 1987, 1988

0-1 Laws for fragments of Existential Second-Order Logic

- Capture 3-Colorability, 3-Satisfiability, ...

Logics with Generalized Quantifiers

- Dawar and Grädel - 1995
- 0-1 Law for FO[Rig], i.e., FO augmented with the rigidity quantifier.
- Sufficient condition for the 0-1 Law to hold for $\operatorname{FO}[\mathbf{Q}]$, where \mathbf{Q} is a collection of generalized quantifiers.
- Kaila - 2001, 2003
- Sufficient condition for the 0-1 Law to hold for $\mathrm{L}^{\mathrm{k}}{ }_{\infty \omega}[\mathbf{Q}]$, $\mathrm{k} \geq 2$, where is a collection of simple numerical quantifiers.
- Convergence Law for $L^{k}{ }_{\infty \omega}[\mathbf{Q}], k \geq 2$, where is a collection of certain special quantifiers on very sparse random finite structures.
- Jarmo Kontinen - 2010
- Necessary and sufficient condition for the 0-1 law to hold for $\mathrm{L}^{\mathrm{k}}{ }^{\omega}\left[\exists \exists^{s / t}\right], \mathrm{k} \geq 2$.

A Barrier to 0-1 Laws

All generalizations of the original 0-1 law are obstructed by

THE PARITY PROBLEM

The Parity Problem

- Consider the property Parity = "there is an odd number of vertices"
- For n odd, μ_{n} (Parity) $=1$
- For n even, $\mu_{n}($ Parity $)=0$
- Hence, μ (Parity) does not exist.
- Thus, if a logic L can express Parity, then even the convergence law fails for L .

First-Order Logic + The Parity Quantifier

Goal of this work:

- Turn the parity barrier into a feature.
- Investigate the asymptotic probabilities of properties of finite graphs expressible in $\mathrm{FO}[\oplus]$, that is, in first-order logic augmented with the parity quantifier \oplus.

FO[\oplus]: \quad FO + The Parity Quantifier \oplus

- Syntax of FO[\oplus]: If $\varphi(v)$ is a formula, then so is $\oplus v \varphi(v)$.
- Semantics of $\oplus \vee \varphi(\mathrm{v})$:
- "the number of v 's for which $\varphi(v)$ is true is odd"
- Examples of $\mathrm{FO}[\oplus]$-sentences on finite graphs:
- $\oplus \mathrm{v} \exists \mathrm{w} \mathrm{E}(\mathrm{v}, \mathrm{w})$
- The number of vertices of positive degree is odd.
- $\neg \exists \mathrm{v} \oplus \mathrm{wE}(\mathrm{v}, \mathrm{w})$
- There is no vertex of odd degree, i.e.,
- The graph is Eulerian.

Vectorized FO[$\oplus]$

- Syntax: If $\varphi\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{t}}\right)$ is a formula, then so is

$$
\oplus\left(v_{1}, \ldots, v_{\mathrm{t}}\right) \varphi\left(\mathrm{v}_{1}, \ldots, v_{\mathrm{t}}\right)
$$

- Semantics of $\oplus\left(v_{1}, \ldots, v_{t}\right) \varphi\left(v_{1}, \ldots, v_{\mathbf{t}}\right)$:
- "there is an odd number of tuples $\left(v_{1}, \ldots, v_{t}\right)$ for which $\varphi\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{t}}\right)$ is true"
- Fact:
$\oplus\left(v_{1}, \ldots, v_{t}\right) \varphi\left(v_{1}, \ldots, v_{t}\right) \quad$ iff $\quad \oplus v_{1} \oplus v_{2} \cdots \oplus v_{t} \varphi\left(v_{1}, \ldots, v_{t}\right)$.
- Thus, $\mathrm{FO}[\oplus]$ is powerful enough to express its vectorized version.

The Uniform Measure on Finite Graphs

Let \mathbf{G}_{n} be the collection of all finite graphs with n vertices

- The uniform measure on G_{n} :
- If $G \in \mathbf{G}_{n}$, then $\operatorname{pr}_{\mathrm{n}}(\mathrm{G})=1 / 2^{n(n-1) / 2}$
- If Q is a property of graphs, then $\operatorname{pr}_{\mathrm{n}}(\mathrm{Q})=$ fraction of graphs in \mathbf{G}_{n} that satisfy Q .

An equivalent formulation

- The G(n, 1/2)-model:
- Random graph with n vertices
- Each edge appears with probability $1 / 2$ and independently of all other edges

FO[\oplus] and Asymptotic Probabilities

Question: Let ψ be a FO[$\oplus]$-sentence.
What can we say about the asymptotic behavior of the sequence

$$
\operatorname{pr}_{\mathrm{n}}(\psi), \mathrm{n} \geq 1 ?
$$

Asymptotic Probabilities of FO[$\oplus]$-Sentences

Fact: The 0-1 Law fails for $\mathrm{FO}[\oplus]$

Reason 1 (a blatant reason):
Let ψ be the $\mathrm{FO}[\oplus]$-sentence $\oplus \mathrm{v}(\mathrm{v}=\mathrm{v})$
Then

- $\mathrm{pr}_{2 \mathrm{n}}(\psi)=0$
- $\mathrm{pr}_{2 \mathrm{n}+1}(\psi)=1$.

Hence,

- $\lim _{n \rightarrow \infty} \mathrm{pr}_{\mathrm{n}}(\psi)$ does not exist.

Asymptotic Probabilities of FO[\oplus]-Sentences

Reason 2 (a more subtle reason):

- Let φ be the FO-sentence

$$
\oplus \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{6}
$$

- Fact (intuitive, but needs proof): $\lim _{\mathrm{n} \rightarrow \infty} \operatorname{pr}_{\mathrm{n}}(\varphi)=1 / 2$

Modular Convergence Law for $\mathrm{FO}[\oplus]$

Main Theorem: For every FO[$\oplus]$-sentence φ, there exist two effectively computable rational numbers a_{0}, a_{1} such that

- $\lim _{n \rightarrow \infty} \operatorname{pr}_{2 n}(\varphi)=a_{0}$
- $\lim _{n \rightarrow \infty} \operatorname{pr}_{2 n+1}(\varphi)=a_{1}$.

Moreover,

- a_{0}, a_{1} are of the form $s / 2^{t}$, where s and t are positive integers.
- For every such a_{0}, a_{1}, there is a FO[$\left.\oplus\right]$-sentence φ such that $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{pr}_{2 \mathrm{n}}(\varphi)=\mathrm{a}_{0}$ and $\lim _{\mathrm{n} \rightarrow \infty} \operatorname{pr}_{2 \mathrm{n}+1}(\varphi)=\mathrm{a}_{1}$.

In Contrast

- Hella, K ..., Luosto - 1996

LFP $[\oplus]$ is almost-everywhere-equivalent to PTIME. Hence, the modular convergence law fails for LFP[$\oplus]$.

- Kaufmann and Shelah - 1985

For every rational number r with $0<r<1$, there is a sentence ψ of monadic second-order logic such that $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{pr}_{\mathrm{n}}(\psi)=\mathrm{r}$.

Modular Convergence Law

Main Theorem: For every FO[$\oplus]$-sentece φ, there exist two effectively computable rational numbers a_{0}, a_{1} of the form $s / 2^{t}$ such that

- $\lim _{n \rightarrow \infty} \operatorname{pr}_{2 n}(\varphi)=a_{0}$
- $\lim _{n \rightarrow \infty} \operatorname{pr}_{2 n+1}(\varphi)=a_{1}$.

Proof Ingredients:

- Elimination of quantifiers.
- Counting results obtained via algebraic methods used in the study of pseudorandomness in computational complexity.
- Functions that are uncorrelated with low-degree multivariate polynomials over finite fields.

Counting Results - Warm-up

Notation: Let H be a fixed connected graph.

- \#H(G) = the number of "copies" of H as a subgraph of G $=|\operatorname{Inj} . \operatorname{Hom}(H, G)| /|\operatorname{Aut}(H)|$.

Basic Question:

What is $\mathrm{pr}(\# \mathrm{H}(\mathrm{G})$ is odd), for a random graph G ?

Lemma: If H is a fixed connected graph, then for all large n ,

$$
\mathrm{pr}_{\mathrm{n}}(\# \mathrm{H}(\mathrm{G}) \text { is odd })=1 / 2+1 / 2^{\mathrm{n}} .
$$

Proof uses results of Babai, Nisan, Szegedy - 1989.

Counting Results - Subgraph Frequencies

Definition: Let m be a positive integer and let
H_{1}, \ldots, H_{t} be an enumeration of all distinct connected graphs that have at most m vertices.

- The m-subgraph frequency vector of a graph G is the vector freq $(\mathrm{m}, \mathrm{G})=\left(\# \mathrm{H}_{1}(\mathrm{G}) \bmod 2, \ldots, \# \mathrm{H}_{\mathrm{t}}(\mathrm{G}) \bmod 2\right)$

Theorem A: For every m, the distribution of freq (m, G) in $\mathrm{G}(\mathrm{n}, 1 / 2)$ is $1 / 2^{\mathrm{n}}$-close to the uniform distribution over $\{0,1\}^{\mathrm{t}}$, except for $\# K_{1}=n$ mod2, where K_{1} is

Quantifier Elimination

Theorem B: The asymptotic probabilities of $\mathrm{FO}[\oplus]$-sentences are "determined" by subgraph frequency vectors.

More precisely:

For every FO[$\oplus]$-sentence φ, there are a positive integer m and a function $\mathrm{g}:\{0,1\}^{\mathrm{t}} \rightarrow\{0,1\}$ such that for all large n ,

$$
\operatorname{pr}_{\mathrm{n}}(\mathrm{G} \vDash \varphi \Leftrightarrow \mathrm{~g}(\text { freq }(\mathrm{m}, \mathrm{G}))=1)=1-1 / 2^{\mathrm{n}} .
$$

Quantifier Elimination

Theorem B: The asymptotic probabilities of $\mathrm{FO}[\oplus]$-sentences are "determined" by subgraph frequency vectors.

Proof: By quantifier elimination. However, one needs to prove a stronger result about formulas with free variables ("induction loading device").

Roughly speaking, the stronger result asserts that:
The asymptotic probability of every FO[\oplus]-formula $\varphi\left(\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{k}}\right)$ is determined by:

- Subgraph induced by $\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{k}}$.
- Subgraph frequency vectors of graphs anchored at w_{1}, \ldots, w_{k}.

Quantifier Elimination

Notation:

- type $_{G}\left(w_{1}, \ldots, w_{k}\right)=$ Subgraph of G induced by w_{1}, \ldots, w_{k}
- $\operatorname{Types}(k)=$ Set of all k-types
- freq $\left(m, G, w_{1}, \ldots, w_{k}\right)=$ Subgraph frequencies of graphs anchored at $\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{k}}$

Quantifier Elimination

Theorem B': For every FO[$\oplus]$-formula $\varphi\left(\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{k}}\right)$, there are a positive integer m and a function h: $\operatorname{Types}(\mathrm{k}) \times\{0,1\}^{t} \rightarrow\{0,1\}$ such that for all large n, $\operatorname{pr}_{\mathrm{n}}\left(\forall \mathbf{w}\left(\mathrm{G} \vDash \varphi(\mathbf{w}) \Leftrightarrow \mathrm{h}\left(\operatorname{type}_{\mathrm{G}}(\mathbf{w})\right.\right.\right.$, freq $\left.\left.\left.(m, G \mathbf{w})\right)=1\right)\right)=1-1 / 2^{\mathrm{n}}$.

Note:

- $k=0$ is Theorem B.
- $\varphi\left(\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{k}}\right)$ quantifier-free is trivial: determined by type.

Modular Convergence Law for $\mathrm{FO}[\oplus]$

Theorem A: For every m, the distribution of freq (m, G) in $\mathrm{G}(\mathrm{n}, 1 / 2)$ is $1 / 2^{\mathrm{n}}$-close to the uniform distribution over $\{0,1\}^{\mathrm{t}}$, except for $\# K_{1}=n \bmod 2$, where K_{1} is O.

Theorem B: For every FO[$\oplus]$-sentence φ, there are a positive integer m and a function $g:\{0,1\}^{\mathrm{t}} \rightarrow\{0,1\}$ such that for all large $n, \operatorname{pr}_{\mathrm{n}}(\mathrm{G} \vDash \varphi \Leftrightarrow \mathrm{g}($ freq $(\mathrm{m}, \mathrm{G}))=1)=1-1 / 2^{\mathrm{n}}$.

Main Theorem: For every FO[\oplus]-sentence φ, there exist effectively computable rational numbers $\mathrm{a}_{0}, \mathrm{a}_{1}$ of the form $\mathrm{s} / 2^{\mathrm{t}}$ such that

- $\lim _{\mathrm{n} \rightarrow \infty} \operatorname{pr}_{2 \mathrm{n}}(\varphi)=\mathrm{a}_{0}$
- $\lim _{n \rightarrow \infty} \operatorname{pr}_{2 n+1}(\varphi)=a_{1}$.

Realizing All Possible Limits of Subsequences

- For every a_{0}, a_{1} of the form $s / 2^{t}$, there is a FO[$\left.\oplus\right]$-sentence φ such that $\lim _{n \rightarrow \infty} \operatorname{pr}_{2 n}(\varphi)=a_{0}$ and $\lim _{n \rightarrow \infty} \operatorname{pr}_{2 n+1}(\varphi)=a_{1}$.
- Example: Take two rigid graphs H and J Let φ be the $\mathrm{FO}[\oplus]$-sentence asserting
"(G has an even number of vertices, an odd number of copies of H , and an odd number of copies of J) or
(G has an odd number of vertices and odd number of copies of H)"
Then
- $\lim _{n \rightarrow \infty} \operatorname{pr}_{2 n}(\varphi)=1 / 4$
- $\lim _{n \rightarrow \infty} \mathrm{pr}_{2 n+1}(\varphi)=1 / 2$.

Modular Convergence Law for $\mathrm{FO}\left[\mathrm{Mod}_{\mathrm{q}}\right.$]

Theorem: Let q be a prime number.
For every $\operatorname{FO}\left[\mathrm{Mod}_{q}\right]$-sentece φ, there exist effectively
computable rational numbers $\mathrm{a}_{0}, \mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{q}-1}$ of the form $\mathrm{s} / \mathrm{q}^{\mathrm{t}}$ such that for every i with $0 \leq \mathrm{i} \leq q-1$,

$$
\lim _{\mathrm{n} \equiv \mathrm{i} \bmod \mathrm{q}, \mathrm{n} \rightarrow \infty} \mathrm{pr}_{\mathrm{n}}(\varphi)=\mathrm{a}_{\mathrm{i}} .
$$

Open Problems

- What is the complexity of computing the limiting probabilities of FO[\oplus]-sentences?
- PSPACE-hard problem;
- In Time (2 ${ }^{2 \cdots}$).
- Is there a modular convergence law for $\mathrm{FO}\left[\mathrm{Mod}_{6}\right]$? More broadly,
- Understand $\mathrm{FO}\left[\mathrm{Mod}_{6}\right.$] on random graphs.
- May help understanding $A C^{0}\left[\operatorname{Mod}_{6}\right]$ better.
- Modular Convergence Laws for $\mathrm{FO}[\oplus]$ on $\mathrm{G}\left(\mathrm{n}, \mathrm{n}^{-\mathrm{a}}\right)$?

