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What is finite model theory?

It is the study of logics on classes of finite structures.

Logics: 

First-order logic FO and various extensions of FO:

� Fragments of second-order logic SO.

� Logics with fixed-point operators.

� Finite-variable infinitary logics.

� Logics with generalized quantifiers. 
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Main Themes in Finite Model Theory

� Classical model theory in the finite:

Do the classical results of model theory hold in the finite?

� Expressive power of logics in the finite:

What can and what cannot be expressed in various logics on

classes of finite structures.

� Descriptive complexity: 

computational complexity vs. uniform definability

(logic-based characterizations of complexity classes). 

� Logic and asymptotic probabilities on finite structures

0-1 laws and convergence laws.
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Classical Model Theory in the Finite

� Preservation under substructures

Theorem: Tait – 1959

The Łoś -Tarski Theorem fails in the finite.

(rediscovered by Gurevich and Shelah in the 1980s)

� Preservation under homomorphisms

Theorem: Rossman – 2005

If a FO-sentence ψ is preserved under homomorphisms on all 

finite structures,  then there is an existential positive 

FO-sentence ψ* that is equivalent to ψ on all finite structures. 
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Descriptive Complexity

� Characterizing NP

Theorem: Fagin 1974

On the class G of all finite graphs G=(V,E),

NP = ESO (existential second-order logic).

� Characterizing P

Theorem: Immerman 1982, Vardi 1982

On the class O of all ordered finite graphs G= (V,<,E),

P = LFP (least fixed-point logic), where

LFP = FO + Least fixed-points of positive FO-formulas.
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Logic and Asymptotic Probabilities

� Notation:

� Q:            Property (Boolean query) on the class F of all finite structures

� Fn:           Class of finite structures with n in their universe

� µn:           Probability measure on Fn,  n ≥ 1

� µn(Q)  =   Probability of Q on Fn with respect to µn,  n ≥ 1.

� Definition:  Asymptotic probability of property Q

µ(Q) = lim µn→ ∞
(Q)  (provided the limit exists)

� Examples: For the uniform measure µ on finite graphs G:

� µ(G contains a triangle)  =  1.

� µ(G is connected)  =   1.

� µ(G is 3-colorable)  =  0.

� µ(G is  Hamiltonian)  = 1.
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0-1 Laws and Convergence Laws

Question: Is there a connection between the definability of a 

property Q in some logic L and its asymptotic probability?

Definition: Let L be a logic

� The 0-1 law holds for L w.r.t. to a measure µn, n≥ 1, if

µ(ψ) = 0  or  µ(ψ) = 1, 

for every L-sentence ψ.

� The convergence law holds for L w.r.t. to a measure µn, n≥ 1, 
if µ(ψ) exists, for every L-sentence ψ.
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0-1 Law for First-Order Logic

Theorem: Glebskii et al. – 1969, Fagin – 1972
The 0-1 law holds for FO w.r.t. to the uniform measure on the class of 
all finite graphs.

Proof Techniques:
� Glebskii et al.

Quantifier Elimination + Counting
� Fagin
Transfer Theorem:
There is a unique countable graph R such that for every 
FO-sentence ψ, we have that

µ(ψ) = 1  if and only if R � ψ.

Note:
� R is Rado’s graph: Unique countable, homogeneous, universal 

graph; it is characterized by a set of first-order extension axioms.
� Each extension axiom has asymptotic probability equal to 1.
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FO Truth vs. FO Almost Sure Truth 

� First-Order Truth

Testing if a FO-sentence is

true on all finite graphs is an

undecidable problem

(Trakhtenbrot - 1950)

� Almost Sure First-Order Truth

Testing if a FO-sentence is 

almost surely true on all finite 
graphs is a decidable problem; in 
fact, it is PSPACE-complete 
(Grandjean - 1985).

Everywhere false (contradiction)

Somewhere true &

Somewhere false

Everywhere true (valid)

Almost surely false

Almost surely true
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Three Directions of Research on 0-1 Laws

� 0-1 laws for FO on restricted classes of finite structures 

� Partial Orders, Triangle-Free Graphs, …

� 0-1 laws on graphs under variable probability measures.

� G(n,p) with p ≠ ½ (e.g., p(n) = n-(1/e))

� 0-1 laws for extensions of FO w.r.t. the uniform measure.
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Restricted Classes and Variable Measures

� Restricted classes of finite structures

Theorem: Compton - 1986

The 0-1 law hods for the class of all finite partial orders

� Proof uses results of Kleitman and Rothschild – 1975

about the asymptotic structure of partial orders.

� Variable probability measures

Theorem: Shelah and Spencer – 1987

Random finite graphs under the G(n,p) model with p = n-α

� If α is irrational, then the 0-1 law holds for FO.

� If α is rational, then the 0-1 law fails for FO.
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0-1 Laws for Extensions of First-Order Logic

Many generalizations of the original 0-1 law, including:

� Blass, Gurevich, Kozen – 1985

0-1 Law for Least Fixed-Point Logic LFP

� Captures Connectivity, Acyclicity, 2-Colorability, …

� K … and Vardi – 1990

0-1 Law for Finite-Variable Infinitary Logics Lk
∞ω

, k≥ 2

� Proper extension of LFP 

� K… and Vardi – 1987, 1988

0-1 Laws for fragments of Existential Second-Order Logic

� Capture 3-Colorability, 3-Satisfiability, …
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Logics with Generalized Quantifiers

� Dawar and Grädel – 1995

� 0-1 Law for FO[Rig], i.e., FO augmented with the rigidity 
quantifier.

� Sufficient condition for the 0-1 Law to hold for FO[Q], where Q is 
a collection of generalized quantifiers.

� Kaila – 2001, 2003

� Sufficient condition for the 0-1 Law to hold  for Lk
∞ω 

[Q],

k≥ 2, where is a collection of simple numerical quantifiers.

� Convergence Law for Lk
∞ω 

[Q], k≥ 2, where is a collection of 
certain special quantifiers on very sparse random finite 
structures.

� Jarmo Kontinen – 2010

� Necessary and sufficient condition for the 0-1 law to hold for 

Lk
∞ω 

[∃s/t], k≥ 2.
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A Barrier to 0-1 Laws

All generalizations of the original 0-1 law are obstructed by

THE PARITY PROBLEM
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The Parity Problem

� Consider the property 

Parity = “there is an odd number of vertices”

� For n odd, µn(Parity) = 1

� For n even,  µn(Parity) = 0

� Hence, µ(Parity) does not exist.

� Thus, if a logic L can express Parity, then even the 
convergence law fails for L.
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First-Order Logic + The Parity Quantifier

Goal of this work:

� Turn the parity barrier into a feature.

� Investigate the asymptotic probabilities of properties of finite
graphs expressible in FO[⊕], that is, in

first-order logic augmented with the parity quantifier ⊕.
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FO[⊕]:   FO + The Parity Quantifier ⊕

� Syntax of FO[⊕]: If ϕ(v) is a formula, then so is ⊕ v ϕ(v).

� Semantics of ⊕ v ϕ(v):

� “the number of v’s for which ϕ(v) is true is odd”

� Examples of FO[⊕]-sentences on finite graphs:

� ⊕ v ∃ w E(v, w) 

� The number of vertices of positive degree is odd.

� ¬ ∃ v ⊕ w E(v, w)

� There is no vertex of odd degree, i.e.,

� The graph is Eulerian. 
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Vectorized FO[⊕]

� Syntax: If ϕ(v1,…,vt) is a formula, then so is 

⊕(v1,…,vt) ϕ(v1,…,vt)

� Semantics of ⊕(v1,…,vt) ϕ(v1,…,vt):

� “there is an odd number of tuples (v1,…,vt) for which 
ϕ(v1,…,vt) is true”

� Fact:

⊕(v1,…,vt) ϕ(v1,…,vt) iff ⊕ v1 ⊕ v2 L ⊕ vt ϕ(v1,…,vt).

� Thus, FO[⊕] is powerful enough to express its vectorized
version.
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The Uniform Measure on Finite Graphs

Let Gn be the collection of all finite graphs with n vertices

� The uniform measure on Gn:

� If G ∈ Gn, then prn(G) = 1/ 2n(n-1)/2

� If Q is a property of graphs, then 

prn(Q) = fraction of graphs in Gn that satisfy Q.

An equivalent formulation

� The G(n, 1/2)-model: 

� Random graph with n vertices 

� Each edge appears with probability ½ and independently of 
all other edges
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FO[⊕] and Asymptotic Probabilities

Question: Let ψ be a FO[⊕]-sentence.

What can we say about the asymptotic behavior of 

the sequence 

prn(ψ),  n ≥ 1 ?
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Asymptotic Probabilities of FO[⊕]-Sentences

Fact: The 0-1 Law fails for FO[⊕]

Reason 1 (a blatant reason):

Let ψ be the FO[⊕]-sentence ⊕ v (v = v)

Then

� pr2n(ψ) = 0 

� pr2n+1(ψ)  =  1.

Hence,

� limn → ∞ prn (ψ) does not exist.
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Reason 2 (a more subtle reason):

� Let ϕ be the FO-sentence

⊕ v1, v2, …, v6

� Fact (intuitive, but needs proof):

limn → ∞ prn(ϕ) = 1/2

Asymptotic Probabilities of FO[⊕]-Sentences

v
1

v
5

v
6

v
4v

3
v
2
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Modular Convergence Law for FO[⊕]

Main Theorem: For every FO[⊕]-sentence ϕ, there exist two

effectively computable rational numbers a0, a1 such that 

� limn → ∞ pr2n(ϕ) = a0

� limn → ∞ pr2n+1(ϕ) = a1.

Moreover, 

� a0, a1 are of the form s/2t, where s and t are positive integers.

� For every such a0, a1, there is a FO[⊕]-sentence ϕ such that 

limn → ∞ pr2n(ϕ) = a0  and limn → ∞ pr2n+1(ϕ) = a1.
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In Contrast

� Hella, K …, Luosto - 1996

LFP[⊕] is almost-everywhere-equivalent to PTIME.

Hence, the modular convergence law fails for LFP[⊕]. 

� Kaufmann and Shelah - 1985

For every rational number r with 0 < r < 1, there is

a sentence ψ of monadic second-order logic such that 

limn → ∞ prn (ψ) = r.
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Modular Convergence Law

Main Theorem: For every FO[⊕]-sentece ϕ, there exist two

effectively computable rational numbers a0, a1 of the form s/2t

such that 

� limn → ∞ pr2n(ϕ) = a0

� limn → ∞ pr2n+1(ϕ) = a1.

Proof Ingredients:

� Elimination of quantifiers.

� Counting results obtained via algebraic methods used in the 
study of pseudorandomness in computational complexity.

� Functions that are uncorrelated with low-degree 
multivariate polynomials over finite fields.
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Counting Results – Warm-up

Notation: Let H be a fixed connected graph.

� #H(G) = the number of “copies” of H as a subgraph of G

= |Inj.Hom(H,G)| / |Aut(H)|.

Basic Question: 

What is pr(#H(G) is odd), for a random graph G?

Lemma: If H is a fixed connected graph, then for all large n, 

prn(#H(G) is odd) =  1/2 + 1/2n .

Proof uses results of Babai, Nisan, Szegedy – 1989.
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Counting Results – Subgraph Frequencies 

Definition: Let m be a positive integer and let

H1,…,Ht be an enumeration of all distinct connected graphs that 

have at most m vertices.

� The m-subgraph frequency vector of a graph G is the vector

freq(m,G)  = (#H1(G) mod2, …, #Ht(G) mod2)

Theorem A: For every m, the distribution of freq(m,G) in 

G(n,1/2) is 1/2n-close to the uniform distribution over {0,1}t, 

except for #K1 = n mod2, where K1 is .
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Quantifier Elimination

Theorem B: The asymptotic probabilities of FO[⊕]-sentences 

are “determined” by subgraph frequency vectors.

More precisely:

For every FO[⊕]-sentence ϕ, there are a positive integer m

and a function g: {0,1}t → {0,1} such that for all large n,

prn(G � ϕ ⇔ g(freq(m,G))=1)  =  1-1/2n.
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Quantifier Elimination

Theorem B: The asymptotic probabilities of FO[⊕]-sentences 

are “determined” by subgraph frequency vectors.

Proof: By quantifier elimination.

However, one needs to prove a  stronger result about formulas

with free variables (“induction loading device”).

Roughly speaking, the stronger result asserts that: 

The asymptotic probability of every FO[⊕]-formula ϕ(w1, …, wk)

is determined by:

� Subgraph induced by w1, …, wk.

� Subgraph frequency vectors of graphs anchored at w1, …, wk.
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Notation:

� typeG (w1, …, wk) = Subgraph of G induced  by w1,…,wk

� Types(k) = Set of all k-types

� freq(m,G,w1, …, wk) =  Subgraph frequencies of graphs 

anchored at w1, …, wk

Quantifier Elimination

w
1

w
2
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Quantifier Elimination

Theorem B’: For every FO[⊕]-formula ϕ(w1, …, wk), there are

a positive integer m and a function h: Types(k) x {0,1}t → {0,1}

such that for all large n,

prn(∀ w (G � ϕ(w) ⇔ h(typeG(w), freq(m,G w))=1)) = 1-1/2n.

Note:

� k = 0 is Theorem B.

� ϕ(w1, …, wk) quantifier-free is trivial:

determined by type.
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Modular Convergence Law for FO[⊕]

Theorem A: For every m, the distribution of freq(m,G) in 

G(n,1/2) is 1/2n-close to the uniform distribution over {0,1}t, 

except for #K1 = n mod2, where K1 is  .

Theorem B: For every FO[⊕]-sentence ϕ, there are a positive 

integer m and a function g: {0,1}t → {0,1} such that 
for all large n, prn(G � ϕ ⇔ g(freq(m,G))=1)  =  1-1/2n.

Main Theorem: For every FO[⊕]-sentence ϕ, there exist

effectively computable rational numbers a0, a1 of the form s/2t

such that 

� limn → ∞ pr2n(ϕ) = a0

� limn → ∞ pr2n+1(ϕ) = a1.
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Realizing All Possible Limits of Subsequences

� For every a0, a1 of the form s/2t, there is a FO[⊕]-sentence ϕ
such that limn → ∞ pr2n(ϕ) = a0  and limn → ∞ pr2n+1(ϕ) = a1.

� Example: Take two rigid graphs H and J

Let ϕ be the FO[⊕]-sentence asserting

“(G has an even number of vertices, an odd number of copies 
of H, and an odd number of copies of J)  or

(G has an odd number of vertices and odd number of copies 
of H)”

Then 

� limn → ∞ pr2n(ϕ)    = 1/4

� limn → ∞ pr2n+1(ϕ) =  1/2.
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Modular Convergence Law for FO[Modq]

Theorem: Let q be a prime number. 

For every FO[Modq]-sentece ϕ, there exist effectively

computable rational numbers a0, a1, …,aq-1 of the form s/qt

such that for every i with 0 ≤ i ≤ q-1,

lim n ≡ i mod q, n → ∞ prn(ϕ) = ai .
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Open Problems

� What is the complexity of computing the limiting probabilities 
of FO[⊕]-sentences?
� PSPACE-hard problem;
� In Time(22…

).

� Is there a modular convergence law for FO[Mod
6
]?

More broadly,
� Understand FO[Mod

6
] on random graphs.

� May help understanding AC0[Mod6] better.

� Modular Convergence Laws for FO[⊕] on G(n, n-a)?


