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RANDOM GROUPS HAVE FIXED POINTS

ON CAT(0) CUBE COMPLEXES

KOJI FUJIWARA AND TETSU TOYODA

(Communicated by Ken Ono)

Abstract. We prove that a random group has fixed points when it isomet-
rically acts on a CAT(0) cube complex. We do not assume that the action is
simplicial.

1. Introduction

In [4], Gromov introduced random groups of the graph model to show the ex-
istence of groups which cannot embed uniformly into Hilbert spaces (see Theo-
rem 1.8). He also showed that when a random group of the graph model isometri-
cally acts on finite or infinite dimensional Hadamard manifolds, there exist common
fixed points. Silberman [12] provided details of the argument for the case of Hilbert
spaces (see Theorem 1.3 for the precise statement).

Definition 1.1 (random group of Gromov’s graph model). Let G = (V,E) be a
finite graph such that V is the set of vertices and E is the set of edges. Orient
the edges E arbitrarily. Fix k alphabets s1, . . . , sk. For each e ∈ E, choose an
element a(e) independently, uniformly at random from {s1, . . . , sk, s−1

1 , . . . , s−1
k }.

Let c = eǫ11 · · · eǫnn , ei ∈ E be a cycle in G, where ǫi = 1 or −1, and e−1 means the
edge e with the orientation reversed. The cycle c defines a random word a(c) =
a(e1)

ǫ1 · · · a(en)ǫn on {s1, . . . , sk, s−1
1 , . . . , s−1

k }. Let RG be the set of the random
words a(c) for all cycles in G. In this way, we obtain a probability distribution over
groups Γ(G) = 〈s1, . . . , sk|RG〉. We say that Γ(G) is the random group associated
to G with k generators.

Properties of the random group Γ(G), for example, infinite, word-hyperbolic, or
property (T), etc., become random variables.

Definition 1.2 (sequence of expanders). A sequence of expanders is a sequence
{Gn = (Vn, En)} of finite graphs which satisfies the following properties:

(1) The number of vertices of Gn goes to infinity as n goes to infinity.
(2) There exists d such that deg(v) ≤ d for all v ∈ Vn and all n, where deg(v)

is the number of edges at vertex v.
(3) There exists λ > 0 such that λ1(Gn) ≥ λ for all n.
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In the above definition, λ1(G) is the first positive eigenvalue of the combinatorial
Laplacian of G. For a finite graph G = (V,E), the combinatorial Laplacian ΔG

acts on a real-valued function f on V as

ΔGf(v) = f(v)−
∑

u∈V such that {v,u}∈E

1

deg(u)
f(u), v ∈ V.

Its first positive eigenvalue λ1(G) can be computed variationally as

λ1(G) = inf
φ

∑

{u,v}∈E ‖φ(u)− φ(v)‖2
∑

v∈V deg(v)‖φ(v)− φ‖2
,

where the infimum is taken over all nonconstant maps φ : V → R, and φ =
∑

v∈V
deg(v)
2|E| φ(v).

The girth of a graph is the minimal length of a cycle in the graph. Recall that
a group Γ has property (T) if and only if every affine isometric action of Γ on a
Hilbert space has a common fixed point (see [3, Ch.4]).

Theorem 1.3 (Silberman [12]). If {Gn = (Vn, En)} is a sequence of expanders,
3 ≤ deg(u) ≤ d for all u ∈ Vn and all n, and the girth of Gn is large enough, then
the group Γ(Gn) has property (T) with high probability.

Formally he showed that given k ∈ N, d ∈ N, λ > 0, there exists an explicit
constant g = g(k, λ) such that if {Gn = (Vn, En)} is a sequence of expanders such
that for all n, λ ≤ λ1(Gn), the girth of Gn is at least g, and 3 ≤ deg(u) ≤ d for all
u ∈ Vn, then the probability for the random group Γ(Gn) generated by k elements
to have property (T) is at least 1−ae−b|Vn|, where a, b are explicit and only depend
on the parameters k, d and λ. The statement in Theorem 1.5 and Theorem 2.2
should be understood similarly.

Izeki and Nayatani [7] introduced an invariant 0 ≤ δ ≤ 1 for a complete CAT(0)
space. See Definition 2.1 for the definition of δ. A recent theorem by Izeki, Kondo
and Nayatani generalizes a Hilbert space (in the definition of property (T)) in
Theorem 1.3 to a complete CAT(0) space Y with δ(Y ) < 1 (Theorem 2.2).

A cube complex is a metric polyhedral complex in which each cell is isometric
to the Euclidean cube [0, 1]n, and the gluing maps are isometries. In this paper,
we study the geometry of CAT(0) cube complexes in comparison with Euclidean
and more generally Hilbert spaces, using the invariant δ. The following is our main
technical result.

Theorem 1.4. Let X be a complete CAT(0) cube complex. Then we have

δ(X) ≤ 1

2
.

Therefore Theorem 2.2 applies to complete CAT(0) cube complexes and we ob-
tain the following.

Theorem 1.5. If {Gn = (Vn, En)} is a sequence of expanders, 2 ≤ deg(u) ≤ d for
all u ∈ Vn and all n, and the girth of Gn is large enough, then any isometric action
of Γ(Gn) on a complete CAT(0) cube complex has a common fixed point, with high
probability.

We want to emphasize that we do not assume that the actions are simplicial, that
the cube complexes are locally compact, or even that they are finite dimensional.
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CAT(0) CUBE COMPLEXES 1025

For simplicial actions, the conclusion is not new since it follows from Theorem 1.4
and the following theorem.

Theorem 1.6 (Niblo-Reeves, [10]). If a group with property (T) acts on a complete
CAT(0) cube complex by simplicial isometries, then it has a common fixed point.

We note that although they assume that X is finite dimensional in the paper,
they are only using that X is complete in the proof. But the assumption that the
isometries are simplicial is essential in their argument.

We give an example of a nonsimplicial isometry without a common fixed point on
a CAT(0) cube complex, which is not Euclidean. Let Pn, n ∈ Z be Euclidean planes
with tessellations by unit squares. For each n, choose a base vertex vn ∈ Pn and
join vn and vn+1 by a unit edge. This is our cubical CAT(0) complex Y . We define
a simplicial isometry on Y , s, as a shift by 1, sending (Pn, vn) to (Pn+1, vn+1) and
preserving the square structure. Let r be an isometry of Y rotating each Pn around
vn. Generally r is not simplicial. Now the composition sr is a desired isometry.

We record another consequence of Theorem 1.4.

Definition 1.7. Let (X, dX) and (Y, dY ) be metric spaces. A map f : X → Y
is called a uniform embedding if there exist unbounded nondecreasing functions
ρ1, ρ2 : [0,∞) → [0,∞) such that

ρ1(dX(x, x′)) ≤ dY (f(x), f(x
′)) ≤ ρ2(dX(x, x′)),

for all x, x′ ∈ X. For a sequence {(Xn, dXn
)} of metric spaces, we call a sequence

of maps fn : Xn → Y a uniform embedding if there exist unbounded nondecreasing
functions ρ1, ρ2 : [0,∞) → [0,∞) such that

ρ1(dXn
(x, x′)) ≤ dY (fn(x), fn(x

′)) ≤ ρ2(dXn
(x, x′)),

for all n and all x, x′ ∈ Xn.

In [4], Gromov showed the following. This is a key step to produce a finitely
generated group which does not uniformly embed in a Hilbert space.

Theorem 1.8 (Gromov, see [11]). Let {Gn} be a sequence of expanders. Then
there is no uniform embedding of {Gn} into a Hilbert space.

Using Theorem 1.1, we can adapt the proof of Theorem 1.8 to a complete CAT(0)
cube complex as follows. Similar variations have been well known to experts; for
example, see Kondo [8] in the case of a complete CAT(0) space with δ < 1, and
also Mendel-Naor [9].

Corollary 1.9. Let Y be a complete CAT(0) cube complex. Let {Gn} be a sequence
of expanders. Then there is no uniform embedding of {Gn} into Y .

As we will see in the proof of Theorem 1.4, we have a uniform control of the
tangent cone of a cube complex in comparison to a Hilbert space. We ask the
following question.

Question 1.10. Does a complete CAT(0) cube complex always uniformly embed
in a Hilbert space?

It is known that if the complex is finite dimensional, then such an embedding
exists ([2]). In their argument the assumption of finite dimension is essential. Since
a sequence of expanders does not uniformly embed in a CAT(0) cube complex, it
seems there is no easy argument to answer this question in the negative.
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1026 K. FUJIWARA AND T. TOYODA

The paper is organized as follows. In Section 2, we recall the definition and
basic facts about the invariant δ and quote the recent theorem by Izeki-Kondo-
Nayatani which generalizes Theorem 1.3. In Section 3, we prove Theorem 1.4 and
Theorem 1.5. In Section 4, we recall the proof of Theorem 1.8 and explain how to
modify it for Corollary 1.9 using Theorem 1.4.

We would like to thank G. Yu for explaining the proof of Theorem 1.8.

2. Relation between distortion and δ

We assume that readers are familiar with the definition and elementary facts on
CAT(0) spaces. A standard reference is the book [1]. We recall the definition of
the invariant introduced by Izeki-Nayatani in [7].

Definition 2.1 ([7]). Let Y be a complete CAT(0) space and P(Y ) be the space of
all finitely supported probability measures μ on Y each of whose supports supp(μ)
contains at least two points. For μ ∈ P(Y ), we define

0 ≤ δ(μ) = inf
φ:supp(μ)→H

‖
∫

Y
φ(p)μ(dp)‖2

∫

Y
‖φ(p)‖2μ(dp) ≤ 1,

where the infimum is taken over all maps φ : supp(μ) → H with H a Hilbert space
such that

‖φ(p)‖ = d (p, bar(μ)) ,(2.1)

‖φ(p)− φ(q)‖ ≤ d(p, q)(2.2)

for all p, q ∈ supp(μ), where bar(μ) ∈ Y is the barycenter of μ. Notice that such
a map φ exists. To see that, fix a unit vector e ∈ H. Define φ(p) = d(p, bar(μ))e.
Then, by the triangle inequality, (2.2) is satisfied. We define the Izeki-Nayatani
invariant δ(Y ) of Y as

0 ≤ δ(Y ) = sup
μ∈P(Y )

δ(μ) ≤ 1.

In [7], [5], [6] it is proved by Izeki, Kondo and Nayatani that certain classes of
groups must have fixed points when they isometrically act on complete CAT(0)
spaces Y if δ(Y ) is small enough. Among these, they proved that a random group
of the graph model has the fixed point property for the complete CAT(0) spaces
whose δ are at most some constant less than 1.

Theorem 2.2 (Izeki-Kondo-Nayatani [6]). Let 0 ≤ C < 1. If {Gn = (Vn, En)} is
a sequence of expanders, 2 ≤ deg(u) ≤ d for all u ∈ Vn and all n, and the girth of
Gn is large enough, then with high probability, any isometric action of the random
group Γ(Gn) on a complete CAT(0) space Y with δ(Y ) ≤ C has a common fixed
point.

Generally, computation of the Izeki-Nayatani invariant is difficult. The following
are examples of spaces for which we know some estimations:

• Assume that Y is a finite or infinite dimensional Hadamard manifold or an
R-tree. Then we have δ(Y ) = 0.

• Assume that Yp is the building PSL(3,Qp)/PSL(3,Zp). Then δ(Yp) ≥
(
√
p−1)2

2(p−√
p+1) . When p = 2, we have δ(Y2) ≤ 0.4122 . . . .
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In [13], the second author obtained a geometric condition for δ to be bounded from
above by a constant less than 1. Kondo [8] constructed the first example of a
complete CAT(0) space with δ = 1

Although the Izeki-Nayatani invariant is defined as a global invariant of the
space, it can be estimated by the local property of the space. To see this, we define
the following notation, which is introduced in [7].

Definition 2.3. Let Y be a complete CAT(0) space, and O ∈ Y . We define
δ(Y,O) ∈ [0, 1] to be

δ(Y,O) = sup {δ(ν) | ν ∈ P(Y ), bar(ν) = O} .
If no such ν exists, we define δ(Y,O) = 0.

The following lemma is basic (see [14, Lemma 3.3]).

Lemma 2.4. Suppose that Y is a complete CAT(0) space. Then we have

(2.3) δ(Y ) = sup{δ(TCpY, O) | p ∈ Y } = sup{δ(TCpY ) | p ∈ Y }.

We recall the following definition from [6].

Definition 2.5. Let T be a metric cone with the origin OT . Let Drad(T ) be the
infimum of D satisfying the following condition: there exists a map f : T → H to
a Hilbert space H such that

(2.4) ‖f(v)‖ = dT (OT , v)

and
1

D
dT (v, w) ≤ ‖f(v)− f(w)‖ ≤ dT (v, w)

for all v, w ∈ T . This number Drad(T ) is called the radial distortion of T . If there
exists no such f , we define Drad(T ) = ∞.

Izeki, Kondo and Nayatani [6] proved the following relation between this invari-
ant and δ.

Lemma 2.6 ([6]). Let T be a complete CAT(0) metric cone with the origin OT .
Then we have

δ(T,OT ) ≤ 1− 1

Drad(T )2
.

We will estimate the radial distortion of each tangent cone of CAT(0) cube
complexes in the next section.

3. Embeddings of tangent cones of cube complexes

In this section, we prove Theorem 1.4. Let C be the (metric) product of half
lines ℓ1, . . . , ℓn such that each ℓi = [0,∞). For each nonempty subcollection of
{1, . . . , n}, {i1 < i2 < · · · < im}, we define a subset, called a face of dimension m
of C, by

{0} × · · · × {0} × ℓi1 × {0} × · · · × {0} × ℓim × {0} × · · · × {0},
where all coordinates other than ij are 0. (This is like a face of a cube.) We say
that the point 0× · · · × 0 is the face of dimension 0.
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Lemma 3.1 (cube lemma). Let C be a finite product of half-lines. Let X be the
union of several faces of C. Denote the path metric in X by dX , and let dC be the
(path) metric in C. Then for any points p, q ∈ X,

dX(p, q)/
√
2 ≤ dC(p, q) ≤ dX(p, q).

Proof. dC(p, q) ≤ dX(p, q) is clear. So we show the other inequality. There is a
unique face P of C which has the least dimension among faces which contain p.
Also, there is a unique face Q for q. Let R = P ∩ Q be the intersection, which is
also a face. Let p′, q′ ∈ R be the projections of p, q, respectively. Look at the path

[p, p′] ∪ [p′, q′] ∪ [q′, q] ⊂ (P ∪Q) ⊂ X.

The angle at p′, q′, measured in C, is π/2, and therefore we compute

dC(p, q)
2 = dC(p, p

′)2 + dC(p
′, q′)2 + dC(q

′, q)2.

On the other hand, to estimate dX(p, q), we compute dP∪Q(p, q). Let us look for
the shortest path among the paths from p to q in P ∪ Q which starts from p then
reaches some point r ∈ [p′, q′], then goes to q. (Imagine for example that P is a
3-cube and Q is a square such that P and Q share an edge, which is R.) We then
find a path, the square of whose length is

dC(p
′, q′)2 + (dC(p, p

′) + dC(q, q
′))2.

This number gives an upper bound of dX(p, q)2. On the other hand, this number
is ≤ 2dC(p, q)

2 by the above computation, so that dX(p, q)2 ≤ 2dC(p, q)
2. �

Lemma 3.2. Let X be a CAT(0) cube complex and p a vertex. Then there exists
a 1-Lipschitz map φ : TCp(X) → H such that

dH(0, φ(v)) = dTCpX(O, v), dTCpX(u, v)/
√
2 ≤ dH(φ(u), φ(v)) ≤ dTCpX(u, v)

for all u, v ∈ TCpX.

Proof. Let ei(i ∈ I) be the set of all edges of X which contain p. For each n-cube
C in X which contains p, any point x ∈ C is uniquely written as x =

∑n
i tieji such

that eji are the edges which are contained in C, and 1 ≥ ti ≥ 0. In this way, any
point x ∈ C is uniquely written as x =

∑

i tiei such that 1 ≥ ti ≥ 0 and ti = 0
except for finitely many ones. Similarly, any point x ∈ TCpX is uniquely written
as

x =
∑

i

tiei,

where 0 ≤ ti ≤ 1 and ti = 0 except for finitely many ones. To be precise we
have abused the notation such that ei is now the unit vector in TCpX which
corresponds to the direction of the edge ei. Now prepare a set of orthonormal
vectors vi ∈ H(i ∈ I). To define a map φ : TCpX → H, for x =

∑

i tiei, set
φ(x) =

∑

i tivi. Now apply Lemma 3.1. �

Remark 3.3. In the proof of the above lemma, we use the following condition which
is satisfied at each vertex v of a CAT(0) cube complex X: Let ei(i ∈ I) be the
collection of all edges which contain v. For each finite subset J ⊂ I, there is at
most one cube in X which contains all of the ej , j ∈ J and whose dimension is |J |.
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Thus, we have proved the following proposition.

Proposition 3.4. Let Y be a CAT(0) cube complex, and p ∈ Y . Then we have

D(TCpY ) ≤
√
2, Drad(TCpY ) ≤

√
2.

Proof. Notice that we may assume without loss of generality that p is a vertex. This
is because if p is not a vertex, namely, p is an interior point of an n-dimensional
cube, then there exists another CAT(0) cube complex X ′ and a vertex p′ such that
a neighborhood of p in X is isometric to a neighborhood of (p′, 0) in X ′×Rn. Then,
TCpX is isometric to TCp′X ′ × Rn.

Now the proposition follows from Lemma 3.2. �

Combining Proposition 3.4 with Lemma 2.6 and Lemma 2.4, we obtain Theo-
rem 1.4. Now Theorem 2.2 applies to CAT(0) cube complexes; therefore we obtain
Theorem 1.5.

4. Wang’s invariant and uniform embeddability of expanders

In this section, we prove Corollary 1.9. For a finite graph G and a complete
CAT(0) space Y , Wang [15] defined the first positive eigenvalue of a combinatorial
Laplacian, λ1(G, Y ), for maps from the set of vertices of G to Y . This is a natural
generalization of the one for the usual combinatorial Laplacian, λ1(G), for real-
valued functions on the set of vertices.

Definition 4.1 (λ1(Γ, Y ) by Wang). Let G = (V,E) be a finite graph, and Y be
a complete CAT(0) space. We assume that Y contains at least two points. The
Wang’s invariant λ1(G, Y ) is defined by

λ1(G, Y ) = inf
φ

∑

{u,v}∈E dY (φ(u), φ(v))
2

∑

v∈V deg(v)dY (φ(v), φ)2
,

where the infimum is taken over all nonconstant maps φ : V → Y , and φ denotes

the barycenter of the probability measure
∑

v∈V
deg(v)
2|E| Diracφ(v) on Y . Diracφ(v) is

the Dirac measure at φ(v) ∈ Y .

If we see R as a CAT(0) space, λ1(G) = λ1(G,R) holds. If we take a Hilbert space
H, it is not hard to show from the definition that λ1(G,H) = λ1(G). Originally, the
invariant δ(Y ) was introduced to give an estimate of λ1(G, Y ). Izeki and Nayatani
have shown the following.

Theorem 4.2 (Izeki-Nayatani). [7, Proposition 6.3] Let G be a finite graph and Y
a complete CAT(0) space. Then we have

(1− δ(Y ))λ1(G) ≤ λ1(G, Y ) ≤ λ1(G).

By Theorems 1.4 and 4.2, we immediately obtain the following.

Corollary 4.3. Let X be a complete CAT(0) cube complex, and G be a finite graph.
Then

λ1(G)/2 ≤ λ1(G,X) ≤ λ1(G).

The invariant λ1(G, Y ) is important not only in the study of fixed point theorems,
but also in connection with the embedding of graphs in Y . To explain the result
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by Gromov that a sequence of expanders does not uniformly embed into a Hilbert
space, let {Gn = (Vn, En)} be a sequence of finite graphs such that

(1) The number of vertices of Gn goes to infinity as n goes to infinity.
(2) There exists d > 0 such that deg(v) ≤ d for all v ∈ Vn and all n.

If the sequence Gn uniformly embeds into a Hilbert space H, then one can show
that

(4.1) lim inf
n

λ1(Gn) = 0.

If {Gn} is a sequence of expanders, then by definition, it must satisfy

lim inf
n

λ1(Gn) = c > 0;

therefore we obtain the following.

Theorem 4.4 (Gromov, see [11]). Let {Gn} be a sequence of expanders. Then
there is no uniform embedding of {Gn} into a Hilbert space.

By Corollary 4.3, for a complete CAT(0) cube complex Y , the sequence of ex-
panders {Gn} satisfies

(4.2) lim inf
n

λ1(Gn, Y ) ≥ lim inf
n

λ1(Gn)/2 = c/2 > 0.

As for the equation (4.1), the same conclusion follows from the same argument if
we replace the Hilbert space by a complete CAT(0) space Y . A similar observation
can be found in [8] and [9] as we mentioned. For the reader’s convenience, we record
the argument.

Theorem 4.5. Let {Gn = (Vn, En)} be a sequence of finite graphs satisfying the
conditions (1) and (2). If {Gn} embeds uniformly into a complete CAT(0) space
Y , then we have

lim inf
n→∞

λ1(Gn, Y ) = 0.

Proof. Let {fn : Gn → Y } be a uniform embedding and ρ1, ρ2 : [0,∞) → [0,∞) be
unbounded nondecreasing functions such that

ρ1(dGn
(x, x′)) ≤ dY (fn(x), fn(x

′)) ≤ ρ2(dGn
(x, x′)),

for all x, x′ ∈ Gn and all n. Put c = ρ2(1). Then we have d(fn(v), fn(w)) ≤ c for
all {v, w} ∈ En and all n.

First, observe that for any r > 0, the preimage of an r-ball has diameter at
most ρ−1

1 (2r). Thus the preimage of any r-ball in Y by any fn contains at most

d1+ρ−1

1
(2r) vertices of Gn since Gn satisfies the property (2).

Next, by the definition of λ1(Gn, Y ), if λ1(Gn, Y ) > 0 we have

∑

v∈Vn

dY (fn(v), fn)
2 ≤ 1

λ1(Gn, Y )

∑

{v,w}∈En

dY (fn(v), fn(w))
2.

The right-hand side is no greater than 1
λ1(Gn,Y )

d|Vn|
2 c2. Thus at least |Vn|

2 terms

in the sum on the left-hand side are at most 1
λ1(Gn,Y )c

2d. This means that the

preimage of the ball of radius
(

d
λ1(Gn,Y )

)
1

2

c centered at fn ∈ Y contains at least

|Vn|
2 vertices of Gn.
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CAT(0) CUBE COMPLEXES 1031

To argue by contradiction we assume that

lim inf
n

λ1(Gn, Y ) = λ > 0.

Then there exists an arbitrarily large n such that λ1(Gn, Y ) > λ
2 . Put r =

(

2d
λ

)
1

2 c.
The above discussion implies that for such an n the preimage of the r-ball centered

at fn by fn contains at least |Vn|
2 vertices of Gn. But then

|Vn|
2 ≤ d1+ρ

−1

1
(2r), which

is impossible. �

Now, Corollary 1.9 follows immediately from (4.2) and Theorem 4.5.
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