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Abstract. This paper proposes an ensemble method for multilabel clas-
sification. The RAndom k-labELsets (RAKEL) algorithm constructs each
member of the ensemble by considering a small random subset of labels and
learning a single-label classifier for the prediction of each element in the
powerset of this subset. In this way, the proposed algorithm aims to take
into account label correlations using single-label classifiers that are applied
on subtasks with manageable number of labels and adequate number of
examples per label. Experimental results on common multilabel domains
involving protein, document and scene classification show that better per-
formance can be achieved compared to popular multilabel classification
approaches.

1 Introduction

Traditional single-label classification is concerned with learning from a set of
examples that are associated with a single label λ from a set of disjoint labels
L, |L| > 1. If |L| = 2, then the learning task is called binary classification (or
filtering in the case of textual and web data), while if |L| > 2, then it is called
multi-class classification. In multilabel classification, the examples are associated
with a set of labels Y ⊆ L.

Multilabel classification is a challenging research problem that emerges in
several modern applications such as music categorization [1], protein function
classification [2,3,4,5] and semantic classification of images [6,7]. In the past,
multilabel classification has mainly engaged the attention of researchers working
on text categorization [8,9,10], as each member of a document collection usually
belongs to more than one semantic category.

Multilabel classification methods can be categorized into two different groups
[11]: i) problem transformation methods, and ii) algorithm adaptation methods.
The first group of methods are algorithm independent. They transform the mul-
tilabel classification task into one or more single-label classification, regression
or label ranking [12] tasks. The second group of methods extend specific learn-
ing algorithms in order to handle multilabel data directly. There exist multilabel
extensions of decision tree [2], support vector machine [13,14], neural network
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[15,5], Bayesian [9], lazy learning [16] and boosting [10] learning algorithms. This
paper focuses on the former group of methods.

The most widely-used problem transformation method considers the predic-
tion of each label as an independent binary classification task. It learns one
binary classifier hλ : X → {¬λ, λ} for each different label λ ∈ L. It transforms
the original data set into |L| data sets Dλ that contain all examples of the orig-
inal data set, labeled as λ if the labels of the original example contained λ and
as ¬λ otherwise. It is the same solution used in order to deal with a multi-class
problem using a binary classifier, commonly referred to as one-against-all or
one-versus-rest. Following [12], we will refer to this method as Binary Relevance
(BR) learning, a name popular within the Information Retrieval community. BR
is criticized for not considering correlations among the labels.

A less common problem transformation method considers each different subset
of L as a single label. It so learns one single-label classifier h : X → P (L) , where
P (L) is the powerset of L, containing all possible label subsets. We will refer to
this method as Label Powerset (LP) learning. LP has the advantage of taking
label correlations into account, but suffers from the large number of label subsets,
the majority of which are associated with very few examples.

This paper proposes an approach that constructs an ensemble of LP classi-
fiers. Each LP classifier is trained using a different small random subset of the
set of labels. The proposed approach, dubbed RAKEL (RAndom k-labELsets),
aims at taking into account label correlations and at the same time avoiding
the aforementioned problems of LP. Ensemble combination is accomplished by
thresholding the average zero-one decisions of each model per considered la-
bel. The paper investigates the issue of selecting appropriate parameters (subset
size, number of models, threshold) for RAKEL through an experimental study
on three domains concerning protein, image and document classification. Results
of performance comparison against the BR and LP methods are in favor of the
proposed approach.

A secondary contribution of this paper is a unified presentation of existing
evaluation measures for multilabel classification, including their categorization
into example-based and label-based measures. The categorization goes further
discussing micro and macro averaging operations for any label-based measure.

The remainder of this paper is organized as follows: Section 2 introduces
the proposed approach and Section 3 presents the categorization of evaluation
measures. Section 4 gives the setup of the experimental study and Section 5
discusses the results. Finally, Section 6 concludes and points to future work.

2 The RAKEL Algorithm

We first define the concept of k-labelsets and introduce notation that is sub-
sequently used. Let L = {λi}, i = 1..|L| be the set of labels in a multilabel
classification domain. A set Y ⊆ L with k = |Y | is called k-labelset. We will use
the term Lk to denote the set of all distinct k-labelsets on L. The size of Lk is
given by the binomial coefficient: |Lk| =

(|L|
k

)
.
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The RAKEL (RAndom k-LabELsets) algorithm iteratively constructs an en-
semble of m Label Powerset (LP) classifiers. At each iteration, i = 1..m, it
randomly selects a k-labelset, Yi, from Lk without replacement. It then learns
an LP classifier hi : X → P (Yi). The pseudocode of the ensemble production
phase is given in Figure 1.

Input: Number of models m, size of labelset k, set of labels L, training set D
Output: An ensemble of LP classifiers hi and corresponding k-labelsets Yi

R ← Lk;
for i ← 1 to min(m, |Lk|) do

Yi ← a k-labelset randomly selected from R;
train an LP classifier hi : X → P (Yi) on D;
R ← R \ {Yi};

Fig. 1. The ensemble production phase of RAKEL

The number of iterations (m) is a user-specified parameter with acceptable
values ranging from 1 to |Lk|. The size of the labelsets (k) is another user-
specified parameter with meaningful values ranging from 2 to |L| − 1. For k = 1
and m = |L| we get the binary classifier ensemble of the Binary Relevance
(BR) method, while for k = |L| (and consequently m = 1) we get the single-
label classifier of the LP method. We hypothesize that using labelsets of small
size and an adequate number of iterations, RAKEL will manage to model label
correlations effectively. The experimental study in Section 5 provides evidence
in support of this hypothesis and guidelines on selecting appropriate values for
k and m.

For the multilabel classification of a new instance x, each model hi provides
binary decisions hi(x, λj) for each label λj in the corresponding k-labelset Yi.
Subsequently, RAKEL calculates the average decision for each label λj in L and
outputs a final positive decision if the average is greater than a user-specified
threshold t. An intuitive value for t is 0.5, but RAKEL performs well across a
wide range of t values as it shown by the experimental results. The pseudocode
of the ensemble production phase is given in Figure 2.

2.1 Computational Complexity

If the complexity of the single-label base classifier is O(g(|C|, |D|, |A|)) for a
dataset with |C| class values, |D| examples and |A| predictive attributes, then
the computational complexity of RAKEL is O(mg(2k, |D|, |A|)). The complexity
is linear with respect to the number of models m, as in most ensemble methods,
and it further depends on the complexity of the base classifier.

One important thing to note is the high number of class values (2k) that each
LP classifier of RAKEL must learn. This may become an important hindrance
of the proposed algorithm, especially if the base classifier has quadratic or greater



RAKEL: An Ensemble Method for Multilabel Classification 409

Input: new instance x, ensemble of LP classifiers hi, corresponding set of
k-labelsets Yi, set of labels L

Output: multilabel classification vector Result
for j ← 1 to |L| do

Sumj ← 0;
V otesj ← 0;

for i ← 1 to m do
forall labels λj ∈ Yi do

Sumj ← Sumj + hi(x, λj);
V otesj ← V otesj + 1;

for j ← 1 to |L| do
Avgj ← Sumj/V otesj ;
if Avgj > t then

Resultj ← 1 ;
else Resultj ← 0 ;

Fig. 2. The ensemble combination phase of RAKEL

complexity with respect to the number of class values, as in the case of support
vector machine classifiers. In practice however, the actual number of class values
is never 2k, because LP can simply consider the label subsets that appear in
the training data. The number of these subsets is typically significantly smaller
than 2k. See for example the number of label subsets for the multilabel datasets
considered in the experimental study of this paper (Section 4, Table 1).

3 Evaluation Measures

Multilabel classification requires different evaluation measures than those used
in traditional single-label classification. Several measures have been proposed in
the past for the evaluation of multilabel classifiers. Some of them are calculated
based on the average differences of the actual and the predicted sets of labels
over all test examples. Others decompose the evaluation process into separate
evaluations for each label, which they subsequently average over all labels. We
call the former example-based and the latter label-based evaluation measures.

3.1 Example-Based

Let D be a multilabel evaluation data set, consisting of |D| multilabel examples
(xi, Yi), i = 1..|D|, Yi ⊆ L. Let h be a multilabel classifier and Zi = h(xi) be the
set of labels predicted by h for example xi.

Schapire and Singer [10] consider the Hamming Loss, which is defined as:

HammingLoss(h, D) =
1

|D|

|D|∑

i=1

|Yi�Zi|
|L|
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where � stands for the symmetric difference of two sets, which is the set-theoretic
equivalent of the exclusive disjunction (XOR operation) in Boolean logic.

Classification Accuracy [17] or Subset Accuracy [18] is defined as follows:

ClassificationAccuracy(h, D) =
1

|D|

|D|∑

i=1

I(Zi = Yi)

where I(true)=1 and I(false)=0. This is a very strict evaluation measure as it
requires the predicted set of labels to be an exact match of the true set of labels.

The following measures are used in [14]:

Precision(h, D) =
1

|D|

|D|∑

i=1

|Yi ∩ Zi|
|Zi|

Recall(h, D) =
1

|D|

|D|∑

i=1

|Yi ∩ Zi|
|Yi|

F(h, D) =
1

|D|

|D|∑

i=1

2|Yi ∩ Zi|
|Zi| + |Yi|

Accuracy(h, D) =
1

|D|

|D|∑

i=1

|Yi ∩ Zi|
|Yi ∪ Zi|

3.2 Label-Based

Any known measure for binary evaluation can be used here, such as accuracy,
area under the ROC curve, precision and recall. The calculation of these mea-
sures for all labels can be achieved using two averaging operations, called macro-
averaging and micro-averaging [8]. These operations are usually considered for
averaging precision, recall and their harmonic mean (F -measure) in Information
Retrieval tasks.

Consider a binary evaluation measure M(tp, tn, fp, fn) that is calculated
based on the number of true positives (tp), true negatives (tn), false positives
(fp) and false negatives (fn). Let tpλ, fpλ, tnλ and fnλ be the number of true
positives, false positives, true negatives and false negatives after binary evalua-
tion for a label λ. The macro-averaged and micro-averaged versions of M , are
calculated as follows:

Mmacro =
1

|L|

|L|∑

λ=1

M (tpλ, fpλ, tnλ, fnλ)

Mmicro = M

⎛

⎝
|L|∑

λ=1

tpλ,

|L|∑

λ=1

fpλ,

|L|∑

λ=1

tnλ,

|L|∑

λ=1

fnλ

⎞

⎠

Note that micro-averaging has the same result as macro-averaging for some
measures, such as accuracy, while it differs for other measures, such as precision,
recall and area under the ROC curve. Note also that the average (macro/micro)
accuracy and Hamming loss sum up to 1, as Hamming loss is actually the average
binary classification error.
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4 Experimental Setup

4.1 Datasets

We experiment with 3 datasets from 3 different application domains: bioin-
formatics, semantic scene analysis and document categorization. The biolog-
ical dataset yeast [13] is concerned with protein function classification. The
image dataset scene [6] is concerned with semantic indexing of still scenes.
The textual dataset tmc2007 [19] concerns aviation safety reports. These and
other multilabel datasets are available for download in Weka’s ARFF format at:
http://mlkd.csd.auth.gr/multilabel.html

Table 1 shows certain standard statistics of these datasets, such as the number
of examples in the train and test sets, the number of numeric and discrete at-
tributes and the number of labels, along with multilabel data statistics, such as
the number of distinct label subsets, the label cardinality and the label density
[11]. Label cardinality is the average number of labels per example, while label
density is the same number divided by |L| .

Table 1. Standard and multilabel statistics for the data sets used in the experiments

Examples Attributes Distinct Label Label
Dataset Train Test Numeric Discrete Labels Subsets Cardinality Density

scene 1211 1196 294 0 6 15 1.074 0.179
tmc2007 21519 7077 0 48981 22 1341 2.158 0.098

yeast 1500 917 103 0 14 198 4.327 0.302

Feature selection was applied on tmc2007, in order to reduce the computa-
tional cost of training. We used the χ2 feature ranking method separately for
each label in order to obtain a ranking of all features for that label. We then
selected the top 500 features based on the their maximum rank over all labels. A
similar approach was found to have high performance in previous experimental
work on textual datasets [20].

4.2 Multilabel Methods

We compare RAKEL against the BR and LP methods. In all datasets we ex-
periment with 9 different threshold values for RAKEL, ranging from 0.1 to 0.9
with a 0.1 step. We also experiment with a range of subset sizes and number of
models, that differ depending on the dataset. We evaluate the performance of
methods using a hold-out set. In particular, we use the original train and test
set splits that come with the distributions of the datasets. Although we calcu-
late most of the evaluation measures of Section 3, we only present results for
Hamming loss and the micro-averaged F -measure, due to limited space. These
two metrics are widely-used in the literature and indicative of the performance
of multilabel classification methods.
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The BR, LP and RAKEL methods can utilize any learning algorithm for
classifier training. Evaluating the performance of different algorithms was out of
the scope of this paper. We selected the support vector machine (SVM) [21] for
the experiments, based on its strong performance in a past study [11]. The SVM
was trained with a linear kernel and the complexity constant C equal to 1. The
one-against-one strategy is used for dealing with multi-class tasks.

We have implemented a package of Java classes for multilabel classification
based on Weka [22]. The package includes implementations of BR, LP, RAKEL
and other methods, an evaluation framework that supports the measures pre-
sented in Section 3 and code for the calculation of multilabel statistics. It has a
command line interface similar to Weka but the full feature set is available only
as an API. The package contains source code and a compiled library. Java v1.5
or better and Weka v3.5.5 is required to run the software, which is available for
download at http://mlkd.csd.auth.gr/multilabel.html.

5 Results and Discussion

5.1 Scene Dataset

For the scene dataset we experiment with all meaningful values for k (2 to 5).
We also build incrementally the ensemble with values for m ranging from 1 to
|Lk|. Figures 3(a) and 3(b) show the Hamming loss and F -measure respectively
(y-axis) of BR, LP and RAKEL for t = 0.5, with respect to the number of
iterations m (x-axis).
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Fig. 3. Hamming loss (a) and F -measure (b) of BR, LP and RAKEL for t=0.5

We first notice that LP is better than the more popular BR in this dataset.
The small number of labels (6) and label subsets (15) are factors that may
contribute to this result. We also notice that for all values of k RAKEL has
better performance than BR after the construction of a few models. For k = 3,
RAKEL achieves the best results, which are better than LP for m >= 10. Better



RAKEL: An Ensemble Method for Multilabel Classification 413

0,09

0,1

0,11

0,12

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

k=2 k=3

k=4 k=5

BR LP

(a)

0,65

0,66

0,67

0,68

0,69

0,7

0,71

0,72

0,73

0,74

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

k=2 k=3

k=4 k=5

BR LP

(b)

Fig. 4. Hamming loss (a) and F -measure (b) of BR, LP and RAKEL for optimal m

results than LP are also achieved for certain values of m in the cases where
k = 4 and k = 5. These results show that for the default threshold value (0.5)
the performance of RAKEL exceeds that of BR and LP for a range of subset
sizes and iterations.

Figures 4(a) and 4(b) show the minimum Hamming loss and maximum F -
Measure respectively (y-axis) for RAKEL across all iterations m, with respect
to all values of t. The performance of BR and LP is given too. These figures
show the best performance that can be achieved by RAKEL irrespectively of
the number of models for the different threshold values.

We notice that low Hamming loss can be achieved for a range of t values for
k = 3 and k = 4, with the best results being achieved for t = 0.6. The F -measure
on the other hand seems to be favored by threshold values around 0.4. RAKEL
can achieve higher F -measure than LP for k = 3 or k = 4 for threshold values
ranging from 0.2 to 0.5.

5.2 Yeast Dataset

For the yeast dataset we experimented with k values from 2 to 7 (half of all
labels). The number of iterations (m) were ranging from 1 to min(|Lk|, 300).
Similarly to the scene dataset, Figures 5(a) and 5(b) show the Hamming loss
and F -measure respectively (y-axis) of BR, LP and RAKEL for t = 0.5, with
respect to the number of iterations m (x-axis). For clarity of presentation, we
grouped the values in batches of 5 models and calculated the average.

In Figure 5(a) we notice that the Hamming loss of BR and LP is not displayed,
as their values (BR=0.1997 and LP=0.2022) are beyond the focus of the plot.
RAKEL achieves better Hamming loss than BR and LP for all values of k after
the first 20 models. Hamming loss has a decreasing trend up to around 150 mod-
els, while from then on it seems to have a slightly increasing trend. In Figure 5(b)
we notice similar results for F -measure, but this time for k > 3. As a conclusion
we can argue that RAKEL using the default threshold value (0.5) attains better
performance than BR and LP for a wide range of k and m values.
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Fig. 5. Hamming loss (a) and F -measure (b) of BR, LP and RAKEL for t=0.5
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Fig. 6. Hamming loss (a) and F -measure (b) of BR, LP and RAKEL for optimal m

In Figure 6(a), we notice that irrespectively of the subset size, RAKEL has
lower Hamming loss than BR and LP for a range of t values (0.4 to 0.8). Re-
garding the different subset sizes, we notice high performance for k = 4 and
k = 5 consistently for a range of t values (0.5 to 0.8). The lowest Hamming
loss is achieved for k=4 and t=0.7. In Figure 6(b), we notice that similarly to
the Hamming loss results, RAKEL has higher F -measure than BR and LP for
a range of t values (0.1 to 0.6), but this time for k > 2. We also notice that
compared to Hamming loss, the F -measure is favored by low threshold values.
In fact, it seems that F -measure is linearly decreasing with t. The highest F -
measure is achieved for k = 7 and t = 0.2. For k > 4 we notice consistently
higher performance than for k ≤ 4 for a range of t values (0.2 to 0.5).

5.3 Tmc2007 Dataset

For the tmc2007 dataset we present preliminary experiments for k = 5, k = 7
and m ranging from 1 to 50. Similarly to the previous datasets, Figures 7(a) and
7(b) show the Hamming loss and F -measure respectively (y-axis) of BR and
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Fig. 7. Hamming loss (a) and F -measure (b) of BR, LP and RAKEL for t=0.5
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Fig. 8. Hamming loss (a) and F -measure (b) of BR, LP and RAKEL for optimal m

RAKEL for t = 0.5, with respect to the number of iterations m (x-axis). The
performance of the full LP classifier was not computed, due to the high memory
requirements and computational complexity that comes from the high number
of distinct subsets and the quadratic complexity of SVM with respect to the
classes.

In Figure 7, we notice that RAKEL achieves better Hamming loss and F -
measure than BR for both values of k after the first 10 models. For k = 7 the
results are better than for k = 5. Once more, we conclude that RAKEL using
the default t = 0.5 value has better performance than BR for a wide range of m
values and for both the two k values of the preliminary experiments.

In Figures 8, we notice that irrespectively of the subset size and the threshold
value, RAKEL has better Hamming loss and F -measure than BR. Similarly to
the yeast dataset, we notice that the F -measure is linearly decreasing with t.
This behavior of the F -measure with respect to the threshold is consistent in all
three datasets, so we can conclude that low t values lead to higher F measure.
Similar behavior is noticed for Hamming loss in this dataset, which is linearly
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increasing with respect to t. This result is different from the previous datasets
where large t values seemed to favor Hamming loss.

6 Conclusions and Future Work

This paper has presented a new ensemble method for multilabel classification
that is based on random projections of the label space. We train an ensemble of
Label Powerset (LP) classifiers in this work and show that higher performance
can be achieved than the popular Binary Relevance (BR) method and the LP
classifier on the full set of labels. We consider the novel idea of label space pro-
jection an important contribution, as it offers a framework for the development
of new multilabel ensemble methods, using different multilabel classifiers than
LP at the base level and heuristic projection approaches, instead of random.

The latter issue definitely deserves further investigation, as the random nature
of RAKEL may be leading to the inclusion of models that affect the ensemble’s
performance in a negative way. To alleviate this problem, we plan as future work
to couple RAKEL with an ensemble selection method [23] in order to select those
models that will lead to increased performance.
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