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We report on observations of random lasers with coherent feedback in highly transparent polymer

films embedded with silver nanoparticles. The hybrid materials were fabricated via in situ synthesis

method, through which silver nanoparticles were precipitated by thermal treatment. Sharp peaks

with linewidth �0.5 nm were observed to emerge on the broad emission background when the

pump energy reached a threshold, together with unidirectional laser irradiation. Random lasers with

coherent feedback induced by silver nanoparticles have been rarely reported, hence, we expect that

this work will add an aspect to random lasers by using metal nanostructures to obtain coherent

feedback. © 2008 American Institute of Physics. �DOI: 10.1063/1.2912527�

Random lasers have attracted tremendous attention since

they theoretically concern the fundamental physics of Ander-

son localization for photon and experimentally provide po-

tential laser devices readily accessible from a technical point

of view.
1–6

Random lasers operate based on light scattering,

that is why the scattering strength of random media is crucial

to evaluate whether a coherent feedback is involved or not.

Generally, weak scattering strength results in a gradual nar-

rowing of emission spectrum with linewidth in scale of sev-

eral nanometers while strong scattering strength gives rise to

discrete sharp peaks with linewidth less than 1 nm superim-

posed on the emission spectrum. In order to achieve coherent

feedback, dielectric materials with high refractive index

�e.g., GaP, TiO2, and ZnO� have been utilized for several

decades because large refractive index contrast significantly

contributes to the intense scattering according to the Mie

scattering theory.
7–9

Metal nanoparticles are potential candidates that may

play an important role in coherent feedback in random lasers.

The potential of metal nanoparticles toward applications in

random lasers includes two aspects. First of all, metal nano-

particles have much larger scattering cross section ��s� than

dielectric nanoparticles with the same dimensions. Second,

metal nanoparticles are more advantageous in their unique

surface plasmon resonance �SPR� property, which has proved

to spatially confine light wave near particle surface so that

high gain for lasing is expected. Unfortunately, metal nano-

particles toward random lasers suffer from light absorption

that is detrimental to laser oscillation and negligible for di-

electric nanoparticles-based random lasers. This may explain

why coherent feedback random lasers have not been ob-

served in media composed of metal nanoparticles.
10,11

In this letter, we report on a breakthrough in metal

nanoparticles-based random lasers: random lasers with

coherent feedback have been observed in polymer films

embedded with silver nanoparticles. Silver nanoparticles em-

bedded inside polymer films were prepared via in situ

reduction.
12

In the procedure, the mixture of polyvinyl alco-

hol �PVA�, silver nitrate, and rhodamine 6G �R6G� aqueous

solutions is spin coated on glass substrate followed by an-

nealing, leading to the precipitation of silver nanoparticles.

The evolution of silver nanoparticles in PVA matrix against

annealing time was characterized by optical absorption spec-

tra recorded with a JASCO-V570 ultraviolet-visible-near in-

frared spectrophotometer. The samples were optically

pumped by the second harmonics of a mode-locked Nd: yt-

trium aluminum garnet �YAG� laser ��=1064 nm, 10 Hz

repetition rate, 25 ps pulse duration� in order to conduct ran-

dom laser experiments. The laser beam was focused on the

samples through a cylindrical lens to form a stripe with a

width of 17 �m and a length that could be varied from

0.1 to 6.0 mm. Figure 1 shows the configuration of PVA-Ag-

R6G film and excitation-detection. The emission was col-

lected along the stripe with a fiber device into a monochro-

mator �SPEX 270M� coupled to a liquid nitrogen cooled

charge couple device �CCD 3000, the spectral resolution is

0.07 nm�.
Figure 2�a� describes the evolution of optical absorption

spectra for PVA-Ag-R6G films as a function of annealing

time at 110 °C. An absorption band at around �=420 nm

a�
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FIG. 1. �Color online� Schematic illustration of configuration of PVA-Ag-

R6G film and excitation-detection. The PVA acts as a matrix while silver

nanoparticles as scattering centers and R6G as a light emitting material. The

film thickness is about 4 �m. The sample is pumped by the second harmon-

ics of a mode-locked Nd:YAG laser ��=1064 nm, 10 Hz repetition rate,

25 ps pulse duration�. The inset is a photograph of the sample �top view�.
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emerged when the annealing time reached 30 min and then

gradually rose with the increase in annealing time and finally

saturated after 420 min annealing. This band can be ascribed

to SPR signal of spherical silver nanocrystals. During the

thermal treatment, the PVA reduces Ag+ ion while the alco-

hol is oxidized to ketone.
13

The absorption band at around

�=530 nm is due to the electronic transition from the ground

state S0 to the first singlet excited state S1 of R6G. Figure

2�b� presents the difference in absorption spectra between

annealed samples and as-prepared one, as well as the simu-

lation curves by using the Mie scattering theory and Drude

model.
14

The curves at longer wavelength are not involved in

the simulation process since they are significantly affected by

the absorption band at around �=530 nm of R6G. The evo-

lution of SPR signal is very obvious with an increase in the

annealing time. The simulation result indicates that the aver-

age size of Ag nanoparticles is �1.0 nm in radius while the

volume fraction of silver nanoparticles relative to PVA is

�3.8�10−4. The particle size is consistent with the previous

report.
12

It should be noted that no change of appearance has

been found in the sample during the 532 nm laser irradiation

in laser experiment, indicating that the pump laser has no

influence on silver nanoparticles in PVA matrix.

Figure 3 depicts the evolution of emission spectra as a

function of pump energy. The emission spectrum shows a

broad spontaneous emission band with a linewidth of

�32 nm when the pump energy is low. However, when the

pump energy reaches the threshold �herein �1.12 �J�, a

sharp peak that centers at ��567 nm with a linewidth of

�0.5 nm suddenly emerges on the broad amplified sponta-

neous emission background. In contrast, the sample contain-

ing no silver nanoparticles merely showed a spontaneous

emission band, indicating that silver nanoparticles have

played a crucial role in the emergence of sharp peaks. With a

further increase in pump energy, more sharp peaks are ob-

served in the broad emission background. For a clear dem-

onstration of sharp peaks, the emission spectra just below

and above the pump threshold are inserted in Fig. 3. We

suppose that these peaks are really due to laser oscillation by

analyzing the evolution of emission intensity as a function of

pump energy that clearly confirms a threshold behavior, as

shown in Fig. 4. Another evidence for laser oscillation is the

observation of unidirectional laser emission, as shown in the

inset of Fig. 4, since the spontaneous emission is lack of

unidirectional irradiation. The results in Fig. 4 resemble re-

ported random lasers with coherent feedback.
5,9

For instance,

the number of laser modes is small when the pump energy is

relatively low since only those cavities with gain high

enough can lead to lasing. The increase in pump energy in-

creases the number of cavities that contribute to the lasing.

The extinction cross section ��e� of one particle

consists the scattering and absorption cross section ��a�,

namely, �e=�s+�a. The scattering cross section of one Ag

FIG. 2. �Color online� �a� Optical absorption spectra of PVA-Ag-R6G film

as a function of annealing times: t=0 �black�, 30 �red�, 60 �blue�, 120 �dark

yellow�, 240 �navy�, and 420 min �olive�. �b� The difference spectra �open

circles� between the annealed samples and as-prepared one along with the

simulation �solid lines� by the Mie scattering theory and Drude model. The

sample was annealed at 110 °C.

FIG. 3. �Color online� Emission spectra as a function of pump energy for

PVA-Ag-R6G film. The inset shows the emission spectra just below and

above the pump threshold. The stripe width and length is 17 �m and

2.4 mm, respectively.

FIG. 4. �Color online� Evolution of emission intensity as a function of pump

energy. The transition from spontaneous emission to laser irradiation is

clearly indicated by the sharp increase in the slope. The inset is a photograph

of emission when the pump energy is above threshold. At right is the sample

while the left is the emission projected on a screen 12 cm away from the

sample edge.
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nanosphere with 1.0 nm in radius is �s�1.5�10−24 m2

while �a�5.3�10−21 m2 at �=567 nm. Therefore, the scat-

tering intensity of such a silver nanoparticle is much weaker

than the absorption intensity. However, we have found cer-

tain enhancement of fluorescence instead of fluorescence

quenching for all the samples containing silver nanoparticles.

The results indicate that the enhancement is possibly caused

by SPR, as previously revealed.
15

The scattering mean free

path ls can be estimated via the Mie theory ls=1 /��s where

� is the number density of silver nanoparticles in PVA host.

The � is calculated to be �9.1�1022
/m3, thus, ls�7.3

�103 mm. Therefore, kls�1.2�108�1, implying that the

present system operates in extremely weak scattering regime.

Although coherent feedback random lasers have been ob-

served in dielectric based random media,
16,17

the scattering

strength as weak as that in this work has never been con-

ducted. We surmise that the observed lasing peaks are asso-

ciated with the highly localized optical modes due to SPR.

The present random media include three important char-

acteristics that make it distinct from existing random media.

First, metal nanoparticles instead of dielectric nanoparticles

are used as scattering centers. Second, the particle size is

much smaller than the emission wavelength, which rules out

the possibility of single particle as a resonator. Third, the

scattering strength is extremely weak, which makes polymer

films highly transparent for efficient optical pumping. Fur-

thermore, the number density and particle size of silver

nanoparticles in PVA matrix can be facilely manipulated

through annealing temperature and time, as well as the initial

concentration of Ag+ ions.

In summary, we have observed random lasers with co-

herent feedback in highly transparent polymer films embed-

ded with silver nanoparticles. The scattering mean free path

estimated by the Mie theory is about eight orders of magni-

tude larger than the emission wavelength, indicating that nor-

mal light scattering barely contributes to the emergence of

coherent feedback. We infer that the observed random lasers

with coherent feedback are closely associated with highly

localized light modes caused by SPR interaction between

silver nanoparticles and light. We expect that this work adds

an aspect to the fields of random lasers with metal

nanostructure-based random media.
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