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Abstract

We extend and simplify Smale's work on the expected number of

pivots for a linear program with many variables and few constraints.

Our method applies to new versions of the simplex algorithm and new

random distributions.





Random Linear Programs with Many Variables
and Few Constraints

by Charles Blair

1. Introduction . In the important papers [1,2], Smale studies

the expected number of pivots required by the simplex algorithm for a

randomly generated problem.

Smale considers a version of the simplex algorithm which can be

viewed as a path-following procedure. For a fixed constraint matrix

one begins with a right-hand-side and objective function for which

the optimal solution is trivial and deforms to the actual ones. The

"main formula" in [1,2] gives the expected number of pivots for a fixed

matrix. The "main formula" is then used to prove the "main theorem"

—

that for a fixed number of constraints the expected number of steps

grows in a sublinear manner as the number of variables increases.

In this note we show how the "main theorem" can be obtained without

using the geometric analysis leading up to the "main formula." This

simplifies the proof. At the same time the result is generalized to

include other versions of the simplex algorithm and other random dis-

tributions of the data, which are not necessarily amenable to geometric

analysis.

2. Statement of the Problem . We will consider linear programs in

the form

max ex

Ax >_ b (2.1)

x > [b G R
m

, c G R
n

]
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We will assume b is a fixed non-positive* vector and study the ex-

pected number of pivots when A and c are generated randomly. The case

in which b also varies can be obtained as a corollary. The crucial

property assumed of the random distribution is

c \

Let A' = (.)• For any (m+1) by n matrix B with all

elements different
(2.2)

prob{a! . > a!, if b.. > b., for all i,j,k} = (^r-)
11*1

ij ik ij lk n!

In words (2.2) says that the order of elements in c and the rows

of A are independent of one another. This is clearly the case if A

and c are chosen using the spherical measure of [1], but includes

other possibilities. (2.2) does imply that the probability that any

two members of the same row of A are equal is zero, and is essentially

equivalent to the symmetry assumption in [2J. In section 5 we show

how our analysis can be extended to those distributions satisfying

Let B and B* be two matrices such that each row of one is

a permutation of the corresponding row of the other. Then

(2.2)'

probU^ > a»
k

iff b
±j

> b.
k ; all i,j,k} =

* k
prob{a|. > a' iff b.. > b., ; all i,j,k}

ij ik ij ik

*To insure feasibility. This assumption can be avoided by minor

modifications, which we indicate in section 5.
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(2.2)' would allow, for example, choice of all elements of A and c

from independent identically distributed discrete random variables.

3. Idea of the proof . Consider the LP

max lOx, + 5x„ + 9x_ + 4x,12 3 4

-x, - 2x - 7x - 10x. > -5 (3.1)
1 2 3 4 —

-7x_ - 8x. + 3x„ + x. > -15
1 1 3 4 —

V V V X
4
-°

We can see immediately that the optimal solution to (3.1) must

have x = x, = 0. This is because the column of A' (10,-1,-7)

(5,-2,-8) and (9,-7,3)^(4,-10,1). In general a column of A' is

said to be undominated if there is no other column at least as large

in every row.* We are concerned with those versions of the simplex

algorithm which satisfy

No variable corresponding to a dominated column of A'

(3.2)
enters the basis at any iteration.

The path-following algorithm in [1,2] satisfies (3.2). Other ver-

sions of the simplex algorithm satisfying (3.2) include

If possible, choose a surplus variable as entering

variable. Otherwise choose the entering variable with (3.3a)

largest reduced cost.

*If we allow the possibility that several columns of A' are equal,
we say the leftmost equal column dominates the others but not vice
versa.
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Delete all dominated columns from Che tableau at

the beginning, then use any version of the simplex (3.3b)

algorithm. (See [3,4] for algorithms for identifying

the set of dominated columns.)

The largest reduced cost rule for choosing entering variables does

not satisfy (3.2). Consider the program:*

max 5X n
+ 3X„ + X + X,

1 2 3 4

subject -X, + X„ - 5X - 3X. > -10J 12 3 4 —
to

-3X. - X - X, - X. -40
1 2 3 4 —

+2X, - X + 2.9X„ + 3X. > -10 12.5 2.512 3 4 —
31 2/3 8 1/3

The column for X. dominates the column for X- but X_ enters the basis
4 3 3

at the third iteration (see table at right).

If the matrix A' has U undominated columns then any version of the

simplex algorithm which satisfies (3.2) will use at most

( ) < (U+m) pivot steps to find the optimum (or discover the LP is
ra —

unbounded)

.

To establish bounds on the expected number of pivots it suffices

to show that the size of U grows slowly with n, for m fixed.

Theorem 3.1 : Fix m. There are constants C < e and C„ such

x
l

X
2

X
3

X
4

10

12.5 2. 5

that, for n sufficiently large and A' generated so that (2.2) holds

the probability that there are at most

*This example also shows that the "maximum increase" rule for

choosing entering variables does not satisfy (3.2). This corrects an

erroneous claim in the original manuscript.



C
2
(Ln B)

(-«)L«C-H) + 1
(3 . 4)

undorainated columns is at least

, . (nri-l)Ln(nri-l) Ln n . .

1 - (Ln n) C (3.5)

We prove this result in section 4. From this we easily obtain

Theorem 3.2 : Fix m. Let P(n) be the expected number of pivots

for an A' generated by (2.2). Then

m(ro+l)Ln(m+l) + m jn
Lim P(n)/(Ln n)

v
'

v '
_< C£ (36)

n>°°

Proof : With probability ) (3.5) the number of pivots will be

(U+m) , where U is given by (3.4). In the remaining cases, the

worst number of pivots is n . The bound on C. implies that

, . /t \ k„Ln n m . . ,

Lim (Ln n) C. n = 0, for any k.

n QED

4. The Number of Undominated Columns in a Randomly Generated Matrix .

The assumption (2.2) has the effect of converting our problem to

the following:

Suppose we generate an m by n matrix A in which each row is a per-

mutation of {1, 2, ... n} chosen independently from the uniform

distribution. Study the behavior of the random variable U = number of

undorainated columns.

This problem has been studied in [5,6], and we suspect there are

earlier references. [5,6] show that the expected value of U is

0(log n) for n large. However, we need different information to
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obtain Theorem 3.2. The admittedly crude approach in this section

uses Stirling's formula and elementary probability.

Lemma 4.1 : Suppose we choose sets of size an, 3n independently

from a set of n elements, <_ a, 3 < ~. There is E < 1 such that

the probability that the intersection has exactly — a3n elements is

<_ E
a6n

.

Proof . The probability in question is

an.'gnla'b.'B'n!
K J

n.^aSn!S(l- -|a)n!o(l- -|e)n!(l-g-a+ -|aB)n!

where a + a' = 3 + 3
f = 1. If we apply Stirling's formula in the form

~x 1 1 u.
l 1

""
2 -n,„ ,2 y ,

/ 2 -ti/0 ,2 l/12n . . . T
„- . . „n e (2tt) _< n! _<n e (2ir) e and the estimate Ln(l+X) _< X,

|a3n
X < 1, we obtain the upper bound R0(2/e) , where =

exp(12n~
1
(a~

1
+B~

1
+a'~

1+3'~ 1
)) and R <_ SivnaQ)'

1
. For nag sufficiently

1/2
large (_>_ 10) we may take E = (2/e)

QED

Lemma A. 2: There is D < 1 and Q such that, if a(3n > Q the proba-

bility that the intersection as in lemma 4.1 has <_— ctSn elements is

< D
a6n

.

Proof: If we denote by P the probability that the intersection
1

K,

has exactly k elements and look at the formula for P in factorials,

we see that for agn sufficiently large and k_<_y a3n, P.
i _i.~2"

P
k*
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Hence the probability is bounded by Z2 ~^E = 2E . If a3n is suf-

ficiently large D can be chosen suitably.
OED

We have abbreviated the proofs of lemmas 4.1 and 4.2 partly

because the details are cumbersome, and partly because these are known

properties of the hypergeometric distribution.

Lemma 4.3 : There is a B < 1 and Q such that if a < — a n >_

and A is chosen so that (2.2) is satisfied, then the probability that
m

A has a column in which each entry is > (l-a)n is at least 1-B

Proof : The sets consisting of those columns whose first

(second) entry is among the an largest in the first (second) row are

both of size an and chosen independently. Hence the probability that

1 2
there are at least —an columns whose first two entries are

2
a n

(l-a)n is _>_ 1 ~ D , by lemma 4.2. Next we consider the set of

columns whose third entry is among the an largest in the third row.

This set is independent of the set of columns whose first two entries

1 2
are among the an largest. We may apply lemma 4.2 with 3 = -r- a to

1 3
conclude that the probabilitv that there are at least -ran columnsv J 4

2 -j<x n

with entries ) (l-a)n is _>_ (1-D )(1-D~ ). Continuing in this way

we conclude that the probability that there are at least 2 a' n

columns, all of whose entries are among the an largest is at least

, 1 3 -k+2 k -k+2 k
2 ^ra n. > . _2 a n N . . , _2 an . , _

.

(l_ D
a n

)(l_D
2 )...(1~D ) 2. 1 " kD (4.3)

3 and may be chosen so that the conclusion follows.
QED



If the matrix A has at least one column with all entries among the

an largest, then that column will dominate all those columns whose

entries are all _<_ (l-a)n. This would imply that the number of undomi-

nated columns is at most man. We may repeat this analysis, con-

centrating on those columns of A corresponding to the an largest

entries in row j, 1 _<_ j l_ m. This idea is carried out formally below.

Definition 4.4: Let A and a, , ... a <„— be fixed. For
1' s —

2

j .
£ {1, 2, ... m} 1 < i _<_ s define a subset of the columns of

A, T(j , ..., j ) inductively as follows: (1) T(j.) is the columns of

A which have the an largest entries in the j. component. (ii)

T(j,, ••• j ) is a subset of T(j , ... j ) which has the

a n a^ ... a ,,n largest entries in the j , n component.
1 2 q+1 & J q+1 v

Lemma 4.5 : If A is randomly generated and satisfies (2.2), the

probability that A has _<_ m a,a
9

... an undominated columns is at

least

L , oc,a„. . .a , a n

1 - E m^B 1 2 I""1 q
. (4.4)

q-1

m
Proof : Let P(j,, ... j ) be the probability that n T(j, , ... j , i)

l q i-1 q

is non-empty. By lemma 4.3, the probability of this event is at least

k
a, a«. . .a a , ,

n

1 - B
1 Z q q+1

. (4.5)

If this event occurs, it implies that every member of T(j., . . . j )
-

m

U T(i,, ... i , i) is dominated by a member of the intersection. If
. , 1 q
i=l
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the events corresponding to P(j,, ... j ) occur for all _<_ q <_ L -1

and all sequences* i,, ... i all occur then the dominated columnsM J
l

J
q

must all be in T(i n , ... j_ ) , where the union is taken over all
1 Ij

sequences of length L. The number of elements in the union and the

lower bound on the probability of all the events occuring are as

stated (note we do not assume the events are independent).
OED

Theorem 4.6 : For any 0, if A is randomly generated and satisfies

(2.2) the probability that A has less than

,. ,, . mLn m+1 ,, . N0(Ln n) e (4.6)

undominated columns is at least

.
f

.mLn mOLn n ,, 7 ,

1 - (Ln n) B (4.7)

for n sufficiently large.

Proof : We apply lemma 4.5. Let L = m Ln Ln n and a = (QLn n/n)

m m „, L ,, v mLn m,., x/ ,„ x v
i. = a. a.,. ,

l l l+l
Let a_. = a.a.,,. Then m'a, ...an = (Ln n) (QLn n)(n/QLn n)

,

where v = (1-1/m) '. exp (-L/m) = 1/Ln n. Hence n [ e. To justify

(4.7) note that the expression (4.4) is in this case

QLn n q-1 QLn n, L.
1 - B (ZnP ) > 1 - B (m ).— QED

n

*The event corresponding to q = is n T(i) non-empty.
1
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To obtain Theorem 3.1 from 4.6 replace ia by n + 1 and choose Q so

tnat B < e

5. Concluding Remarks .

The expression (3.6) compares unfavorably with the expected value

obtained in [1], which is essentially (Log n) . I conjecture that

the analysis in section 4 can be improved to obtain this stronger

result. It should also be mentioned that [1,2] also use the dominance

idea (see the definition of the X-sets in section 5 of [1]). The

contribution of this paper is to show that the key properties for this

problem are (2.2), (3.2), and dominance, rather than geometric

analysis

.

These results extend to cases in which b is not necessarily

feasible. To determine feasibility, one adds m columns corresponding

to artificial variables. Since property (3.2) still holds, the exten-

sion is immediate.

Similarly, the possibility of a degenerate problem does not affect

the analysis. The standard device of perturbing the right-hand side

(lexicographic pivot rules) may be implemented in such a way that

(3.2) still holds.

To replace (2.2) by (2.2)' we must show that the analysis in sec-

tion 4 still works. For any matrix B let A be a matrix with all ele-

ments different such that a.. < a., if b.. > b., . The number of undo-
ij lk ij lk

minated columns of B is < the number of undominated columns of A.

Further, if we permute row elements of 3 and A to obtain B* , A* # un-

dominated B* \ :.-" undominated A*. Thus the average number of undomi-

nated columns of B as we go through all possible permutations is
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smaller than average number for A, to which the analysis in section 4

applies.

The results in this paper depend in a crucial way on n >> m. It

might be useful to look for dominance every few iterations, since new

dominant columns may appear. Also, it might help to extend the

concept of dominance to cases in which a non-negative multiple of one

column dominates another.

Finally, we wish to mention work of Megiddo [7] on specialized

algorithms for LPs with many variables and few constraints.
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