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Abstract We introduce and simulate a two-dimensional Edwards-style model of granular

matter at vanishing pressure. The model incorporates some of the effects of gravity and

friction, and exhibits a random loose packing density whose standard deviation vanishes

with increasing system size, a phenomenon that should be verifiable for real granular matter.

Keywords Granular matter · Random loose packing

1 An Edwards-Style Model

We introduce and analyze a crude model for the random loose packings of granular matter.

These packings, as well as random close packings, were carefully prepared by Scott et al.

in the 1960s [17, 18], in samples of steel ball bearings. Gently pouring samples of 20,000

to 80,000 spheres into a container, the lowest possible volume fraction obtainable—the so-

called random loose packing density—was determined to be 0.608 ± 0.006.

The above refers to monodisperse steel spheres immersed in air; they also worked with

spheres of other materials immersed in other fluids; variations in the coefficient of friction

and in the effective gravitational force lead to somewhat different values for the random

loose packing density [18].

Matter is generally described as “granular” if it is composed of a large number of non-

cohesive subunits each of which is sufficiently massive that its gravitational energy is much

larger than its thermal energy. A common example is a sand pile.

There are several classic phenomena characteristic of static granular matter, in particular

dilatancy, random close packing, and random loose packing, none of which can yet be con-

sidered well-understood; see [3] for a good review. A basic question about these phenomena
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is whether they are sharply defined or inherently vague. Dilatancy has recently been associ-

ated with a phase transition measured by the response of the material to shear [19], which

answers the question for this phenomenon. The case of random close packing is contro-

versial and awaits further experiment; see [16, 21]. Our main goal here is to analyze this

question with respect to random loose packing, to determine whether or not traditional theo-

retical approaches to granular matter predict a sharply defined random loose packing density.

It is clear that any experimental determination of a random loose packing density will vary

with physical conditions such as coefficient of friction, and we will take this variation into

account in our analysis below.

We begin by contrasting two common approaches to modelling static granular matter.

One, the more common, is the “protocol-dependent simulation,” in which one studies prop-

erties of dense packings by exploring a variety of methods of preparation of the packings;

see [5, 21] or [23] for examples. Another approach goes under the name of Edwards theory

[4], in which, basically, one adds the effects of friction and a strong gravitational force to

the hard sphere model of equilibrium statistical mechanics. We note that appropriate spec-

ification of the added forces fully determines an Edwards model; there are no adjustable

parameters beyond those familiar from statistical mechanics, such as density and pressure.

(Of course one can always introduce further approximations or features, for instance mean

field theory, soft core, attraction, etc.) In particular, in an Edwards model all Markov chain

Monte Carlo simulations will, if done correctly, give the same result; there is no freedom in

preparing the packings the way there is in protocol-dependent simulation.

These two approaches—the protocol-dependent simulations and the Edwards approach—

have different strengths. There have been serious claims that the former approach has seri-

ous difficulty making sense of some granular phenomena, in particular random close pack-

ing [21]. We have previously shown [16] how Edwards theory allows a clean definition of

random close packing, and in this paper we show, by a very different mechanism, how it

allows for an understanding of random loose packing. In that sense our choice of using an

Edwards-type model is central to our argument. (We do not claim that the Edwards approach

has been proven the most accurate theory of static granular matter, but only that it is a serious

contender.)

We briefly summarize our Edwards-style model as follows: We consider arrangements of

hard-core parallel squares in a fixed rectangular box, where each square has to rest on either

two squares below it or on the box’s floor, and we put a uniform probability distribution on

the set of all such arrangements. Then we run Markov chain Monte Carlo simulations and

measure the packing fraction of the Markov chain configurations.

We begin more ambitiously by discussing a more realistic model. As is standard in Ed-

wards theory we take as a starting point a variant of the hard sphere model of equilibrium

statistical mechanics. Consider a model consisting of large collections of impenetrable, unit

mass, unit diameter spheres in a large container, acted on by gravity and with infinite coeffi-

cient of friction between themselves and with the container. Put a probability density on the

set of all mechanically stable packings of the spheres in their container, with the probability

density of a packing c proportional to exp[−E(c)], where E(c) is the sum of the heights,

from the floor of the container, of the centers of the spheres in the packing c. We expect, but

cannot show, that such an ensemble will exhibit a gradient in the volume fraction (with vol-

ume fraction decreasing with height) and that there is a well-defined random loose packing

density as one approaches the top of the packing (where the analogue of hydrostatic pressure

goes to zero). By a “well-defined random loose packing density” we mean that as one takes

an infinite volume limit, the probability distribution for the volume fraction of the top layer

of the packing becomes concentrated at a single nonzero value. We emphasize that we are

focusing on a bulk property near the top of the configuration, not a surface phenomenon.



Random Loose Packing in Granular Matter 3

The above determines a well defined zero pressure probability distribution for packings c.

One could imagine simulating the distribution with Monte Carlo or molecular dynamics,

but this is not practical at the high densities which are necessary in a granular model. (We

emphasize that any such simulation should reproduce the above probability distribution; in

this Edwards-style model the equilibrium probability distribution is completely determined,

so there is no freedom available in deciding how packings are simulated.)

To make Monte Carlo simulations feasible, we make several simplifications in the way

gravity and friction are incorporated in the above model. First we switch to an ensemble con-

sisting of packings which are limits, as the gravitational constant goes to zero, of mechani-

cally stable packings; we effect this by setting E(c) = 0 in the relative density exp[−E(c)].
With this simplification configurations are now, in their entirety, representative of the top

layer in the original model. Next we consider the two dimensional version of the above:

congruent frictional unit disks in mechanically stable configurations under vanishingly small

gravity. Note that each such disk must be in contact with either a pair of supporting disks

below it or part of the container. (Here and elsewhere in this paper we neglect events of

probability zero, such as one sphere perfectly balanced on another.) We simplify the role of

gravity and friction in the model one last time by replacing the disks by congruent squares,

with edges aligned with the sides of the (rectangular) container, each square in contact with

either a pair of supporting squares below it or the floor of the container. This is now a gran-

ular version of the old model of “(equilibrium) hard squares” [8], which is a simplification

of “hard disks” and “hard spheres” (see [1] for a review), in which gravity and friction is ne-

glected but kinetic energy plays a significant role. We emphasize that in our granular model

there is no longer any need to concentrate on the “top layer”; in fact we will eventually be

concerned with an infinite volume limit which, as usual, focuses on the middle of the collec-

tion of squares and lets the boundaries grow to infinity. (We note that the model is capable of

handling higher densities by constraining the squares to lie in a tightly containing box. We

also note recent work by Song et al. [20, 22] which takes a different path, employing a mean

field approximation instead of a simplified short range model which can be fully simulated,

as we have done.)

We have run Markov chain Monte Carlo simulations on this model with the following

results. We initialize the squares in an allowed configuration of some well-defined volume

fraction anywhere between 0.5 and 1. If the initial volume fraction φ is not approximately

0.76, the simulation gradually expands or contracts the packings until the packing fraction

reaches the range 0.76 ± 0.01; see Figs. 1 and 2. Furthermore, as the size of the packings

increases, the standard deviation of the volume fraction tends towards zero.

The process is insensitive to the dimensions of the containing box except for extremes.

We choose the height of the box to be large enough so that the configurations of squares can-

not reach the ceiling (so the box height becomes irrelevant). We must choose the box width

more carefully, since if the side walls of the containing box abut a closely-packed initial

configuration, the simulation cannot significantly change the volume fraction; alternatively,

if the width of the box is much larger than that of the initial configuration, the simulation

will produce a monolayer on the floor. We ignore both extremes, however, and find that

the equilibrium volume fraction is otherwise insensitive to the width of the box. More pre-

cisely, we found that the equilibrium volume fraction should be accurate if the box width

is between 2
√

N and 8
√

N , where N ≥ 100 is the number of squares. To understand these

limits, first note that since we will be conjecturing the behavior of the model in the infinite

volume limit, the equilibrium configuration should be a single bulk pile, so the box width

should be on the order of
√

N . Regarding the lower bound, note that at any volume fraction

a configuration occupies the least amount of floor space when the squares are arranged in a
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Fig. 1 Plot of volume fraction versus number of moves, from an initial volume fraction of 0.9991, for 970

squares

Fig. 2 Plot of volume fraction versus number of moves, from an initial volume fraction of 0.5192, for 994

squares
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single full triangle. The bottom level of such a triangle has just under
√

2N squares. Assume

the containing box fits tightly around the triangle; if the triangle has volume fraction greater

than 0.754 then the configuration will not be able to decrease to this equilibrium volume

fraction. We avoid this by ensuring that the box width is at least 2
√

N > (0.754)−1
√

2N . To

arrive at the upper bound we performed simulations on fixed particle number and let the box

width vary. We found that the equilibrium volume fraction was reliable so long as the box

width was less than about 8
√

N , at least for N ≥ 100.

We conclude that, for box widths in the aforementioned acceptable range, the equilibrium

volume fraction depends only on the number of squares in the system. The main goal of our

work is an analysis of the distribution of volume fraction—both the mean and standard

deviation—as the number of particles increases. We conclude that the limiting standard

deviation as particle number goes to infinity is zero, so the model exhibits a sharp value for

the random loose packing density, which we estimate to be approximately 0.754.

The heart of our argument is the degree to which we can demonstrate that in this model

there is a sharp value, approximately 0.754, for the equilibrium volume fraction of large

systems, and we postpone analysis of error bars to later sections. But to understand the value

0.754, consider the following crude estimate of the volume in phase space of all allowable

packings at fixed volume fraction φ. First notice that the conditions defining the model

prevent the possibility of any “holes” in a configuration. Furthermore, if we consider any

rectangle in the interior of a configuration, each horizontal row in the rectangle contains

the same number of squares. (One consequence is that in the infinite volume limit each

individual configuration must have a sharply defined volume fraction; of course this says

nothing about the width of the distribution of volume fraction over all configurations.) Now

consider a very symmetrical configuration of squares at any desired volume fraction φ, with

the squares in each horizontal row equally spaced, and gaps between squares each of size

(1 −φ)/φ centered over squares in the next lower horizontal row; see Fig. 3. Consider these

squares to represent average positions, fix all but one square in such a position, and consider

the (horizontal) degree of motion allowed to the remaining square. There are two constraints

on its movement: the gap size separating it from its two neighbors in its horizontal row, and

the length to which its top edge and bottom edge intersects the squares in the horizontal

rows above and below it. These two constraints are to opposite effect: increasing the gap size

decreases the necessary support in the rows above and below. A simple calculation shows

that the square has optimum allowed motion when the gap size is 1/3, corresponding to a

volume fraction of 0.75, roughly as found in the simulations. In other words, this argument

suggests that the volume in phase space (which for N squares we estimate to be LN , where

L is the allowed degree of motion of one square considered above) is maximized among

allowed packings of fixed volume fraction by the packings of volume fraction about 0.75.

Note that this is only a free volume-type estimate, so it is by no means a proof that a sharp

entropy-maximizing volume fraction exists or is equal to or near 0.75.

Fig. 3 An allowed configuration
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To obtain accurate physical measurements a fluidization/sedimentation method has been

developed to prepare samples of millions of grains in a controlled manner; see [9, 13] and

references therein for the current state of the experimental data. In these experiments a flu-

idized bed of monodisperse grains sediment in a fluid. The sediment is of uniform volume

fraction, at or above 0.55 depending on various experimental parameters. Recall that the

old experiments of Scott et al. [17, 18] reported a value of 0.608 for ball bearings in air; to

achieve the low value (0.55 ± 0.001 [9]) the grains need to have a high friction coefficient

and the fluid needs to have mass density only slightly lower than the grains to minimize the

destabilizing effect of gravity. (In the absence of gravity one could still produce a granular

bed by pressure; we do not know of experiments reporting a random loose packing value for

such an environment.)

Given the dependence of the lowest achievable density on the characteristics of the exper-

iment, we need to clarify the goal of this paper. From the physical perspective it is interesting

that, for any fixed coefficient of friction and fixed relative density between the grains and

background fluid, there seems to be a sharply defined lowest volume fraction achievable by

bulk manipulation. It is possible furthermore that by suitably varying the coefficient of fric-

tion and relative density there is a single lowest possible volume fraction (currently believed

to be about 0.55 [9]); we expect that this is the case, and that this has a simple geometri-

cal interpretation in terms of ensembles of frictional hard spheres under gravity, as discussed

above. This was the motivation of this work, and it is supported by simulations of our model.

Our results suggest that whatever the initial local volume fraction of the fluidized granular

bed, on sedimentation (in low effective gravity) most samples would have a well-defined

volume fraction, the random loose packing density, with no intrinsic lower bound on the

standard deviation of the distribution of volume fraction.

There have been previous probabilistic interpretations of the random loose packing den-

sity, for instance [11, 15], as well as the recent mean field model of Song et al. [20, 22].

A distinguishing feature of our results is our analysis of the degree of sharpness of the basic

notion, which, as we shall see below, requires unusual care in the treatment of error analysis.

In summary, we have performed Markov chain Monte Carlo simulations on a two dimen-

sional model of low pressure granular matter of the general Edwards probabilistic type [4].

Our main result, superficially summarized in Fig. 8, is that in this model the standard devia-

tion of the volume fraction decays to zero as the particle number increases, which indicates

a well-defined random loose packing density for the model. This suggests that real granular

matter exhibits sharply defined random loose packing; this could be verified by repeating

sedimentation experiments [9] at a range of physical dimensions. Our argument is only con-

vincing to the extent that the confidence intervals in Fig. 8 are small and justified, which

required a statistical treatment of the data unusual in the physics literature. We hope that our

detailed error analysis may be useful in other contexts.

2 Analysis of Simulations

We performed Markov chain Monte Carlo simulations on our granular model, which we

now describe more precisely. We begin with a fixed number of unit edge squares contained

in a large rectangular box B . A collection of squares is “allowed” if they do not overlap

with positive area, their edges are parallel to those of the box B , and the lower edge of each

square intersects either the floor of the box B or the upper edge of each of two other squares;

see Fig. 3. Note that although the squares have continuous translational degrees of freedom

in the horizontal direction, this is not in evidence in the vertical direction because of the

stability condition: the squares inevitably appear at discrete horizontal “levels”.



Random Loose Packing in Granular Matter 7

Markov chain simulations were performed as follows. In the rectangular container B

a fixed number of squares are introduced in a simple “crystalline” configuration: squares

are arranged equally spaced in horizontal rows, the spacing determined by a preassigned

volume fraction φ, and with squares centered above the centers of the gaps in the row below

it; see Fig. 4. The basic step in the simulation is the following. A square is chosen at random

from the current configuration and all possible positions are determined to which it may be

relocated and produce an allowed configuration. Note that if the chosen square supports a

square above it then it can only be allowed a relatively small horizontal motion; otherwise it

may be placed atop some pair of squares, or the floor. So the boundary of the configuration

plays a crucial role in the ability of the chain to change the volume fraction. In any case

the positions to which the chosen square may be moved constitute a union of intervals.

A random point is selected from this union of intervals and the square is moved. The random

movement of a random square is the basic element of the Markov chain. It is easy to see that

this protocol is transitive and satisfies detailed balance, so the chain has the desired uniform

probability distribution as its asymptotic state [12]. See Fig. 5 for a configuration of 399

squares after 106 moves. Our interest is in random loose packing, which occurs in the top

(bulk) layer of a granular pile, and we assume that the entirety of each of our configurations

represents this top layer. We emphasize that our protocol is not particularly appropriate for

Fig. 4 A uniform configuration

Fig. 5 399 squares after 106

moves
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studying other questions such as the statistical shape of the boundary of a granular pile, or

properties associated with high volume fraction, such as random close packing.

After a prescribed number of moves, a volume fraction is computed for the collection

of squares as follows. Within horizontal level Lj , where j = 0 corresponds to the squares

resting on the floor, the distances between the centers of neighboring squares is computed.

(Such a distance is 1 + g where g is the gap between the squares.) Suppose that nj of these

neighboring distances are each less than 2, and that the sum of these distances in the level

is sj . At this point our procedure will be complicated by the desire to obtain information

during the simulation about inhomogeneities in the collection, for later use in analyzing

the approach to equilibrium. For this purpose we introduce a new parameter, p. For fixed

0 < p < 1 we consider those levels, beginning from j = 0, for which nj is at least 0.75p

times the length of the box’s floor. Suppose LJ (p) is the highest level such that it, and all

levels below it, satisfy the condition. We then assign the volume fraction

φ(p) =
∑J (p)

j=0 nj

∑J (p)

j=0 sj

(1)

to the assembly of squares. (The factor 0.75 represents the volume fraction we expect the

box’s floor to reach in equilibrium. Note that any two such calculations of volume fraction of

the same configuration may only differ by a term proportional to the length of the boundary

of the configuration, so any inhomogeneity is limited to this size.) Such a calculation of

volume fraction was performed regularly, after approximately 106 moves, producing a time

series of volume fractions φt for the given number of squares. (We suppress reference to the

variable p for ease of reading. As will be seen later all our results correspond to the choice

p = 0.4, so one can, without much loss, ignore other possible values.) Variables φt and φt+1

are highly dependent, but we can be guaranteed that if the series is long enough then the

sample mean:

1

N

N
∑

t=1

φt (2)

will be a good approximation to the true mean of the target (uniform) probability distribution

for the given number of squares [10].

We created such time series φt , each of about 104 terms (roughly 1010 elementary moves),

using values p = 0.2,0.4,0.6,0.8, on systems for the following numbers of squares: 100 m,

and 1000 m, for m = 1,2, . . . ,9, with varying initial volume fractions. For each system

we needed to determine the initialization period—the number of moves necessary to reach

equilibrium—and then the total number of moves to be performed. Both of these determina-

tions were made based on variants of the (sample) autocorrelation function f (k) of the time

series {φt | 1 ≤ t ≤ T } of volume fractions, defined for 1 ≤ k ≤ T by:

f (k) =
1

T − k + 1

T −k+1
∑

t=1

(φt − φ̄)(φt+k − φ̄), (3)

where φ̄ is the mean of the series. This function is easily seen to give less reliable results as

k increases, because of limited data, so it is usual to work with functions made from it as

follows. One way to avoid difficulties is to restrict the domain of f ; we define the “unbiased”

autocorrelation f1(k) by f1(k) = f (k) for k ≤ T/10. Another variant we consider is the
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“biased” autocorrelation f2, defined for all 1 ≤ k ≤ T by:

f2(k) = 1

T

T −k+1
∑

t=1

(φt − φ̄)(φt+k − φ̄), (4)

which reduces the value of f (k) for large k. (See pages 321–324 of Priestley [14] for a

discussion of this biased variant.) We consider both variants of autocorrelation; to refer to

either we use the term fj .

With these autocorrelations we determined the smallest k = kz such that fj (k) = 0. We

then computed the sample standard deviation σfj
away from zero of fj restricted to k ≥ kz,

and defined kI to be the smallest k such that |fj (k)| ≤ σfj
; see Fig. 6. (For ease of reading

we sometimes do not add reference to j to quantities derived using fj .) This defined the

initialization period. Then starting from φkI
we recomputed the autocorrelation f̃j and σf̃j

and determined the mixing time, the smallest k = kM such that |f̃j (k)| ≤ σf̃j
. kM was in-

terpreted as the separation k needed such that the random variables φt and φt+k are roughly

independent for all t ≥ k. (We performed the above using the different definitions of volume

fraction corresponding to different values of p, allowing us to analyze different geometrical

regions of the samples. For each system of squares we selected, for initialization and mixing

times, the largest obtained as above corresponding to the various values of p, which was

always that for p = 0.2, corresponding to the lowest layers of the configuration.)

Once we determined kI and kM we ran the series to φF , where F = kI + T kM for some

T ≥ 20. The values of kI and kM are given in Tables 1 and 2; the empirical means and

standard deviations of volume fraction are given in Tables 3 and 4.

In all our results we use p = 0.4 to minimize the boundary effects presumably associated

with small or large p. (With large p the lowest level may have undue influence on the

volume fraction; with small p, the surface levels could have undue influence. Note that

the arrangements of squares on the lowest level and the surface levels are not restricted by

the arrangements of squares below and above them, respectively, and so the corresponding

volume fractions are not bound to the logic, discussed above, which suggested that each

level should equilibrate at a volume fraction of about 0.75. In spite of this, we found that

using any series corresponding to p in the range 0.2 ≤ p ≤ 0.8 generated a similar result.)

For all systems the volume fraction quickly settles to the range 0.76 ± 0.01 and we can

easily see from Table 4 that the empirical standard deviations decrease with increase of

particle number. In Fig. 7 we plot the empirical standard deviations against particle number,

and in Fig. 8 the data is replotted using logarithmic scales. In Fig. 8 we include the best

least-squares fit to a straight line y = ax +b, obtaining a = −0.5004 and b = −0.8052. The

corresponding curve is included in Fig. 7. Also included in both graphs are 90% confidence

intervals for the true standard deviations, obtained as described in the next section, using f2.

(There was not enough data to obtain a confidence interval by this method for the system

with 8995 squares.) The same data is reanalyzed in Figs. 9 and 10 with confidence intervals

derived using f1.

We use the close fit to the line in Figs. 8 or 10, corresponding to 33 data points in a

range of particle number varying from 100 to 9000, to extend the agreement to arbitrarily

large particle number, and therefore to claim that the standard deviation is zero in the infinite

volume limit, or that there is a sharp value for the random loose packing density. The argu-

ment is supported from the theoretical side by noting the closeness of the slopes in Figs. 8

and 10 to −1/2. A slope of −1/2 would be expected if it were true that an equilibrium

configuration of N squares could be partitioned into similar subblocks which are roughly
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(a)

(b)

Fig. 6 a Plot of biased autocorrelation (for 8000 particles) versus number of moves, with horizontal lines

denoting one standard deviation away from zero. b Close-up of the above plot, with initialization time
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Table 1 Basics (using unbiased autocorrelation f1)

Number of

squares

in packing

Number of

moves in

units of 109

Step size

in units

of 106

moves

kI

(init. time)

in units of

step size

using f1

kM

(mixing time)

in units of

step size

using f1

Run length

in units of

mixing time

using f1

99 0.4 0.2 1 1 1998

100 0.4 0.2 1 1 1998

195 0.4 0.2 1 1 1998

205 0.4 0.2 1 1 1998

294 0.4 0.2 5 5 398

294 0.4 0.2 4 4 498

399 2 0.2 10 10 998

413 2 0.2 9 9 1110

497 2 0.2 17 17 587

504 2 0.2 17 17 587

600 2 0.2 12 12 832

603 2 0.2 23 23 433

690 2 0.2 14 14 713

690 2 0.2 20 20 498

790 2 0.2 43 43 231

803 2 0.2 14 14 713

913 2 0.2 34 34 293

913 2 0.2 75 73 135

996 12 1 13 13 953

1001 12 1 16 16 755

1955 12 1 38 38 318

2980 12 1 44 44 277

3003 12 1 51 53 234

3933 12 1 64 63 193

4008 12 1 99 75 158

4995 12 1 193 174 68

5908 12 1 163 96 125

6030 12 1 143 143 84

7037 12 1 223 261 46

7161 12 1 222 181 48

8015 12 1 132 120 100

8991 12 1 283 287 41

8995 12 1 632 631 18

independent—a proposition which would not be surprising given a phase interpretation of

granular media [16]. Verifying such independence might be of some independent interest

but would require much more data and much longer running times.

This is our main result, since it shows how to make sense of a perfectly well-defined

random loose packing density within a granular model of the standard Edwards’ form.
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Table 2 Basics (using biased autocorrelation f2)

Number of

squares

in packing

Number of

moves in

units of 109

Step size

in units

of 106

moves

kI

(init. time)

in units of

step size

using f2

kM

(mixing time)

in units of

step size

using f2

Run length

in units of

mixing time

using f2

99 0.4 0.2 1 1 1998

100 0.4 0.2 3 2 998

195 0.4 0.2 1 1 1998

205 0.4 0.2 1 1 1998

294 0.4 0.2 5 5 398

294 0.4 0.2 4 4 498

399 2 0.2 12 12 832

413 2 0.2 11 11 908

497 2 0.2 20 20 498

504 2 0.2 19 19 525

600 2 0.2 12 12 832

603 2 0.2 23 23 433

690 2 0.2 14 15 665

690 2 0.2 25 20 498

790 2 0.2 43 44 226

803 2 0.2 15 14 713

913 2 0.2 36 38 262

913 2 0.2 77 75 132

996 12 1 18 18 687

1001 12 1 16 16 755

1955 12 1 38 38 318

2980 12 1 56 56 218

3003 12 1 51 54 230

3933 12 1 76 78 156

4008 12 1 101 88 135

4995 12 1 191 177 67

5908 12 1 179 100 120

6030 12 1 139 151 80

7037 12 1 220 290 41

7161 12 1 199 186 47

8015 12 1 131 126 95

8991 12 1 282 355 33

8995 12 1 565 609 19

As to the actual asymptotic value of the volume fraction in the limit of large systems, we

assume that our simulations suffer from a surface error proportional to
√

N for a system of

N squares. The least-squares fit of a function of form A + B/
√

N to the data (see Figs. 11

and 12) yields A = 0.7541, and the good fit suggests an (asymptotic) random loose packing

density in our granular model of about 0.754.



Random Loose Packing in Granular Matter 13

Table 3 Volume fraction

Number of

squares

in packing

Sample

value

End points of

95% confidence

interval for

true value,

using f1

End points of

95% confidence

interval for

true value,

using f2

99 0.7637 0.7637 ± 0.0007 0.7637 ± 0.0007

100 0.7631 0.7631 ± 0.0007 0.7631 ± 0.0007

195 0.7617 0.7617 ± 0.0005 0.7617 ± 0.0005

205 0.7608 0.7608 ± 0.0005 0.7608 ± 0.0005

294 0.7605 0.7605 ± 0.0004 0.7605 ± 0.0004

294 0.7598 0.7598 ± 0.0004 0.7598 ± 0.0004

399 0.7596 0.7596 ± 0.0002 0.7596 ± 0.0002

413 0.7593 0.7593 ± 0.0002 0.7593 ± 0.0002

497 0.7590 0.7590 ± 0.0002 0.7590 ± 0.0002

504 0.7590 0.7590 ± 0.0003 0.7590 ± 0.0002

600 0.7583 0.7583 ± 0.0002 0.7583 ± 0.0002

603 0.7588 0.7588 ± 0.0002 0.7588 ± 0.0002

690 0.7581 0.7581 ± 0.0002 0.7581 ± 0.0002

690 0.7583 0.7583 ± 0.0003 0.7583 ± 0.0003

790 0.7578 0.7578 ± 0.0003 0.7578 ± 0.0003

803 0.7579 0.7579 ± 0.0002 0.7579 ± 0.0002

913 0.7575 0.7575 ± 0.0002 0.7575 ± 0.0003

913 0.7578 0.7578 ± 0.0003 0.7578 ± 0.0003

996 0.7575 0.7575 ± 0.0001 0.7575 ± 0.0001

1001 0.7574 0.7574 ± 0.0001 0.7574 ± 0.0001

1955 0.7565 0.7565 ± 0.0002 0.7565 ± 0.0002

2980 0.7558 0.7558 ± 0.0002 0.7558 ± 0.0001

3003 0.7559 0.7559 ± 0.0002 0.7559 ± 0.0003

3933 0.7554 0.7554 ± 0.0002 0.7554 ± 0.0002

4008 0.7558 0.7558 ± 0.0003 0.7558 ± 0.0003

4995 0.7555 0.7555 ± 0.0004 0.7555 ± 0.0005

5908 0.7549 0.7549 ± 0.0003 0.7549 ± 0.0003

6030 0.7551 0.7551 ± 0.0004 0.7551 ± 0.0003

7037 0.7545 0.7545 ± 0.0005 0.7545 ± 0.0004

7161 0.7550 0.7550 ± 0.0005 0.7550 ± 0.0007

8015 0.7551 0.7551 ± 0.0004 0.7551 ± 0.0004

8991 0.7551 0.7551 ± 0.0004 0.7551 ± 0.0012

8995 0.7550 none none

Our argument concerning asymptotically large systems depends on the fit of our standard

deviation data to a curve, and the degree to which this fit is convincing depends on the

confidence intervals associated with our simulations. In the next section we explain how we

arrived at our confidence intervals.
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Table 4 Standard deviation of volume fraction

Number of

squares

in packing

Sample

value

End points of

95% confidence

interval for

true value,

using f1

End points of

95% confidence

interval for

true value,

using f2

99 0.0160 0.0160 ± 0.0005 0.0160 ± 0.0005

100 0.0157 0.0157 ± 0.0006 0.0157 ± 0.0006

195 0.0110 0.0110 ± 0.0004 0.0110 ± 0.0004

205 0.0108 0.0108 ± 0.0004 0.0108 ± 0.0004

294 0.0090 0.0090 ± 0.0003 0.0090 ± 0.0003

294 0.0090 0.0090 ± 0.0003 0.0090 ± 0.0003

399 0.0078 0.0078 ± 0.0001 0.0078 ± 0.0002

413 0.0076 0.0077 ± 0.0001 0.0077 ± 0.0001

497 0.0070 0.0070 ± 0.0001 0.0070 ± 0.0001

504 0.0069 0.0069 ± 0.0001 0.0069 ± 0.0001

600 0.0064 0.0064 ± 0.0001 0.0064 ± 0.0001

603 0.0064 0.0064 ± 0.0001 0.0064 ± 0.0001

690 0.0060 0.0061 ± 0.0002 0.0060 ± 0.0001

690 0.0060 0.0060 ± 0.0002 0.0060 ± 0.0001

790 0.0055 0.0055 ± 0.0002 0.0055 ± 0.0002

803 0.0055 0.0055 ± 0.0002 0.0055 ± 0.0002

913 0.0052 0.0052 ± 0.0002 0.0052 ± 0.0002

913 0.0053 0.0053 ± 0.0001 0.0053 ± 0.0001

996 0.0050 0.0050 ± 0.0001 0.0050 ± 0.0001

1001 0.0049 0.0049 ± 0.0001 0.0049 ± 0.0001

1955 0.0036 0.0036 ± 0.0001 0.0036 ± 0.0001

2980 0.0028 0.0028 ± 0.0001 0.0028 ± 0.0001

3003 0.0029 0.0029 ± 0.0001 0.0029 ± 0.0001

3933 0.0024 0.0025 ± 0.0001 0.0025 ± 0.0001

4008 0.0025 0.0025 ± 0.0001 0.0025 ± 0.0002

4995 0.0022 0.0022 ± 0.0002 0.0022 ± 0.0002

5908 0.0021 0.0021 ± 0.0002 0.0021 ± 0.0002

6030 0.0020 0.0020 ± 0.0002 0.0020 ± 0.0002

7037 0.0018 0.0019 ± 0.0002 0.0019 ± 0.0002

7161 0.0019 0.0020 ± 0.0003 0.0021 ± 0.0004

8015 0.0016 0.0017 ± 0.0002 0.0017 ± 0.0002

8991 0.0017 0.0017 ± 0.0003 0.0021 ± 0.0008

8995 0.0016 none none

3 Data Analysis

A good source for common ways to analyze the data in Markov chain Monte Carlo sim-

ulation is Chap. 3 in Newman and Barkema [12]. We will give a more detailed analysis,

following the paper by Geyer [6] in the series put together for this purpose by the statis-



Random Loose Packing in Granular Matter 15

Fig. 7 Plot of the standard deviation of the volume fraction versus number of squares, using f2 for confi-

dence intervals

tics community [7]. As will be seen, our argument is based on the precision of estimates of

various statistical quantities, and necessitates a delicate treatment.

Our simulations produce a time series cj of (dependent) random configurations of

squares. From this we produce other series g(cj ) using functions g on the space of pos-

sible configurations c, in particular the volume fraction g1(c) = φ and g2(c) = (φ − K)2 for

constant K .

We use the common method of batch means. As described in the previous section, we

first determine an initialization time kI and a mixing time kM for our series cj from autocor-

relations. After removing the initialization portion of the series, we break up the remaining

W terms of the series into w ≥ 2 equal size consecutive batches (subintervals), each of the

same length W/w, discarding the last few terms from the series if w does not divide W

evenly.

It should be emphasized that rarely, if ever, are conclusions drawn from a finite number

of Monte Carlo simulations a literal proof of anything interesting. We are going to obtain
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Fig. 8 Plot of the standard deviation of the volume fraction versus number of squares, using log scales and

f2 for confidence intervals. The line is y = −0.5004x − 0.8052

confidence intervals (using the Student’s t-test) for the mean and standard deviation of the

volume fraction of our systems of fixed particle number. The t-test’s results would be math-

ematically rigorous if in our simulations we had performed infinitely many moves; of course

this is impossible, so we will try to make a convincing case that we have enough data to give

reliable results. Ultimately, this is the most sensitive point in our argument.

Assume fixed some function g, and denote the true mean of g(c) by µg . Assume, tem-

porarily, that enough moves have been taken for the t-test to be reliable. (We will come back

to this assumption below.) With the notation g(c) for the empirical average (1/w)
∑

k〈g(c)〉k
of g(c), where 〈g(c)〉k is the empirical average of the kth batch, the random variable:

g(c) − µg
√

1
w(w−1)

∑

k(〈g(c)〉k − g(c))2

(5)



Random Loose Packing in Granular Matter 17

Fig. 9 Plot of the standard deviation of the volume fraction versus number of squares, using f1 for confi-

dence intervals

approximates a t-distribution, allowing one to compute confidence intervals for µg .

The above outline explains how (given the validity of the t-test) we could compute confi-

dence intervals for the mean value of the volume fraction for the time series associated with

our simulations for fixed numbers of squares. A small variation allows us to give confidence

intervals for the standard deviations of these variables, as follows.

Denote the true standard deviation of g(c) by σg . Using conditioning,

Prob(µg ∈ I and σg ∈ J )

= Prob(µg ∈ I )Prob(σg ∈ J | µg ∈ I )

= Prob(µg ∈ I )
∑

i

Prob(σg ∈ J | µg ∈ Ii)Prob(µg ∈ Ii | µg ∈ I ), (6)
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Fig. 10 Plot of the standard deviation of the volume fraction versus number of squares, using log scales and

f1 for confidence intervals. The line is y = −0.5003x − 0.8055

where {Ii} is a partition of I . We have discussed how to obtain I so that the factor

Prob(µg ∈ I ) is at least 0.95. We now want to obtain J so that the factor

Prob(σg ∈ J | µg ∈ I ) is also at least 0.95, and therefore Prob(µg ∈ I and σg ∈ J ) is at

least (0.95)(0.95) > 0.90.

Consider, for each constant K , the random variable

ΣK =
√

(1/w)
∑

j

[〈g(c)〉j − K]2. (7)

Using (5) with (g(c)−K)2 playing the role of g(c), we can obtain a 95% confidence interval

for the mean of Σ2
K , which we translate into a 95% confidence interval JK for the mean

of ΣK . Assume the partition so fine that within the desired precision JK = Ji only depends
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Fig. 11 Plot of the mean of the volume fraction versus number of squares, using f2 for confidence intervals.

The curve is y = 0.7541 + 0.0998x−1/2

on i, where K ∈ Ii . Note that if K = µg , then the random variable ΣK has as its mean

the standard deviation σg . So if we let J =
⋃

i Ji , then Prob(σg ∈ J | µg ∈ Ii) > 0.95 for

all i, and therefore Prob(σg ∈ J | µg ∈ I ) > 0.95. In practice the union J =
⋃

i Ji is easy to

compute.

In the above arguments we have assumed that enough moves have been taken to justify

the t-test, which has independence and normality assumptions which are not strictly satisfied

in our situation. We now consider how to deal with this situation. Some guidance concerning

independence can be obtained from the following toy model.

Assume that for the time series of the simulation one can determine some number kM ,

perhaps but not necessarily derived as above from the autocorrelation f (k), such that vari-

ables φi and φi+k in the time series are roughly independent if k ≥ kM . We model this

transition between independent random variables as follows.
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Fig. 12 Plot of the mean of the volume fraction versus number of squares, using f1 for confidence intervals.

The curve is y = 0.7541 + 0.0998x−1/2

Let T and M be nonnegative (integer) constants. For 0 ≤ t ≤ T and 1 ≤ m ≤ M − 1 we

first define independent, identically distributed random variables XtM and from these define:

XtM+m =
(

1 − m

M

)

XtM + m

M
X(t+1)M , (8)

together defining Xt for 0 ≤ t ≤ T M − 1. Note that variables Xt and Xt+m are independent

for m ≥ 2M − 1.

A simple calculation shows that:

M−1
∑

m=0

XtM+m =
(

M + 1

2

)

XtM +
(

M − 1

2

)

X(t+1)M . (9)
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Then another simple calculation shows that:

ST ≡ 1

T M

T M−1
∑

m=0

Xm

=
1

T

[

T −1
∑

t=1

XtM +
1

2
(X0 + XT M) +

1

2M
(X0 − XT M)

]

. (10)

In other words ST is the mean of roughly K independent variables.

Returning to the question of the assumptions in the t-test, the toy model suggests that

the independence assumption is easily satisfied. The normality assumption is usually taken

as the more serious [6]. But we note from [2] that the t-test is quite robust with respect

to the normality assumption. Although the robustness of the t-test is well known and is

generally relied on, in practice one still has to pick specific batch partitions in a reliable

way. This is not covered in [6]. We arrived at a standard for batches of length 10 times

mixing time for our series as follows. In outline, we use mixing times as computed above

to standardize comparison between our systems with different particle number. Those for

which our runs constituted at least 800 mixing times are assumed to give accurate values for

the mean volume fraction. Various initial segments of these runs are then used, with various

choices of batch partitions, to see which choices (if any) give reliable results for confidence

intervals. Batches of size 10 mixing times proved reliable even for initial segments in the

range of 20–100 mixing times, so this choice was then used for all systems. We emphasize

that we are using this method to determine a minimum reliable batch size on the sequence of

configurations, and then we apply this to the time series φt as well the time series [φt −K]2.

We now give more details.

For most of the systems of particle numbers 100–900 we have over 500 mixing times

worth of data, yet for some of the systems of particle numbers 1000–9000 we have, for

practical reasons, less than one tenth that depth of data. We want to choose a fixed multiple

of mixing time as batch length for all of our batches. To decide what range of mixing times

will be reliable we used various portions of the data from those of our longest runs, and then

applied the conclusions we drew to the other 3/4 of the runs.

More specifically, we treat as “reliable” the empirical volume fraction of the longest runs,

those of length at least 800 times mixing time. We then consider a range of batch partitions

of these systems to see which ones give accurate t-test results. We are looking for 95%

confidence intervals, so we expect such intervals to contain the true volume fraction 95%

of the time; since the true volume fraction is unknown we instead check how frequently the

intervals contain the empirical volume fraction, which for the longer runs we have assumed

is reliable. We do this for each of the runs of length 800 or more times mixing time. The

results on these systems are the following.

For each of our longer runs (of at least 800 mixing times), we considered various ini-

tial portions of the run in each of six ranges of mixing times: 20–100, 100–200, 300–400,

400–500, and 500–600. For each of these truncated runs we considered batch partitions of

the data into equal size batches of a variety of multiples of mixing time: 1–5, 6–10, 11–15,

16–20, 21–30, 31–40 and 41–50. For each size run and for each batch size we computed a

95% confidence interval for the true mean of the volume fraction, and determined whether

or not the confidence interval covers the sample mean for the full run (which we are assum-

ing is interchangeable with the true mean). The fraction of the more than 200 cases in each

category for which the sample mean lies within the confidence interval is recorded in Ta-

ble 5. From this it appears that using batches of size 1–5 mixing times would be unreliable,
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Table 5 Fraction of times the given batch size gives acceptable confidence interval for given segment of total

data of long runs, using unbiased autocorrelation f1

20–100

mixing

times of

total data

100–200

mixing

times of

total data

200–300

mixing

times of

total data

300–400

mixing

times of

total data

400–500

mixing

times of

total data

500–600

mixing

times of

total data

Number of 1–5 0.0849 0.0867 0.1119 0.1191 0.1938 0.2082

mixing 6–10 0.9410 0.9394 0.9830 1.0000 1.0000 1.0000

times 11–15 0.9648 0.9231 0.9656 1.0000 1.0000 1.0000

per batch 16–20 0.9524 0.9095 0.9777 0.9879 1.0000 1.0000

21–31 0.9650 0.9177 0.9673 1.0000 1.0000 1.0000

31–40 0.9712 0.9042 0.9643 1.0000 1.0000 0.9957

41–51 0.9375 0.8869 0.9402 0.9511 0.9783 0.9402

Table 6 Fraction of times the given batch size gives acceptable confidence interval for given segment of total

data of long runs, using biased autocorrelation f2

20–100

mixing

times of

total data

100–200

mixing

times of

total data

200–300

mixing

times of

total data

300–400

mixing

times of

total data

400–500

mixing

times of

total data

500–600

mixing

times of

total data

Number of 1–5 0.0833 0.0924 0.1182 0.1259 0.2006 0.2326

mixing 6–10 0.9245 0.9784 0.9805 0.9552 0.9762 1.0000

times 11–15 0.9107 0.9451 0.9607 0.9524 0.9707 1.0000

per batch 16–20 0.9728 0.9212 0.9745 0.9493 0.9655 1.0000

21-31 0.9486 0.9059 0.9592 0.9547 0.9744 1.0000

31–40 0.9780 0.9190 0.9592 0.9704 0.9852 1.0000

41–51 0.9000 0.8639 0.9441 0.9565 0.9814 1.0000

but that size 10 times mixing times would be reliable. (Table 5 is based on mixing times

obtained using the autocorrelation f2. Table 6 is similar, using the autocorrelation f1, and

again justifies the use of batches of size 10 times mixing time.)

We then used batches of size 10 times mixing times to obtain 95% confidence intervals

for the true mean of all the systems, obtaining the results tabulated in Table 3 and included

in Figs. 11 and 12.

Finally, we applied the above batch criterion to obtain 90% confidence intervals for the

true standard deviation of all our systems, using the method described earlier in this section.

The results are in Table 4 and in Figs. 7 to 10.
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