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Any linear statistic defined on a random-matrix ensemble is shown to be Gaussian distributed.
This supports the prediction of weak-disorder perturbation theory in the diffusive, metallic limit for
the distribution of conductance, since conductance is a linear statistic on the ensemble of transfer

matrices.

Many features of sample-specific conductance fluctua-
tions in small systems' have been explained in terms of
weak-disorder perturbation theory.? For example, such
calculations predict O (1) fluctuations (in units of e?/h)
that depend weakly on the shape of the conductor but not
on its mean conductance as long as the number of elastic
scatterings is large while the number of inelastic scatter-
ings is small. A complementary explanation® for the
magnitude of the fluctuations and their approximate
universality follows from considering conductance in
terms of transfer matrices. If many channels contribute
to the conductance, the results for ensembles of random,
large matrices should apply. In particular, the variance
of the conductance should be O(1) and independent of
the average conductance or the number of channels. *

It is also widely believed that mesoscopic conductance
is Gaussian distributed in the metallic regime.> This fol-
lows immediately from a perusal of the leading scattering
diagrams in the limit of weak disorder. (All connected
diagrams in two or three dimensions with ladders con-
necting the external currents, extending the analysis of
Ref. 2 to third and higher moments of the conductance
distribution, vanish in the limit of weak disorder and
large size. Including ladder-ladder vertices® allows some
contributions to survive in this limit in two dimensions,
but the vertices introduce inverse powers of the conduc-
tance. It follows that the conductance distribution devi-
ates from a pure Gaussian as the impurity concentration
increases and the mean conductance decreases.’) The
purpose of this note is to show that all linear statistics
(defined below) of random-matrix theory are Gaussian
distributed. This fact may be viewed as an explanation of
this feature of weak-disorder perturbation theory or as an
extension of the prediction to more general cir-
cumstances.

A “linear statistic,” 4, on a matrix* is a quantity that
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can be expressed as a sum over the eigenvalues, E;, of a
function of one variable, u(x), evaluated at each eigenval-
ue, ie., A= 3,u(E;). If the transfer matrix T is made
up of the coefficients connecting incoming and outgoing
waves in the various channels allowed at the Fermi ener-
gy by quantization of the transfer momenta due to the
finite size, then the conductance g is given by’

oy : =i,

ITT'+(TT") "' +2
at least for large g. So g is a linear statistic on the ensem-
ble of T’s. The variance of any linear statistic 4 over an
ensemble of matrices can be expressed as an integral in-
volving the function u(x) and the eigenvalue two-point
correlation function for the ensemble.* If there are very
many eigenvalues in intervals over which the mean densi-
ty of eigenvalues is approximately constant, then the ei-
genvalue correlations approach universal functions.
Which of the three known universality classes of func-
tions depends on the nature of the short-range “level
repulsion,” which, in turn, can be determined from the
Haar measure on the space of possible matrices. (Refer-
ence 8 discusses the analysis of the Haar measure for
transfer matrices.) The universality reflects the insensi-
tivity of the eigenvalue correlations to any further
smooth modification of the measure on the space of possi-
ble matrices that the physics might impose.®

Further characteristics of the distribution of a linear
statistic, 4, are provided by the higher cumulants, which
are measures of the deviations from a Gaussian distribu-
tion. An explicit calculation (by the author) of the third
and fourth cumulants, ie., (A4 —(A4))) and
((4—C(A)*)Y—=3((A4 —(A4))*)? yielded zero for each.
In particular, the analysis of Ref. 4 was extended to these
higher cumulants for ensembles with a measure on eigen-
values that vanishes like |E; —E j[2 for near degeneracies,

g=
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for which the level correlations are known in closed form.
(Transfer matrices in the presence of an external magnet-
ic field are in this category.) The eigenvalue correlations
for such ensembles can be expressed in Fourier space in
terms of absolute values—and absolute values of sums
and differences of absolute values. The third and fourth
cumulants vanish for any smooth u(x) when one uses the
explicit, universal forms of the eigenvalue correlations. It
is because the eigenvalues are correlated (and not Poisson
distributed) that the central limit theorem is not applic-
able. Furthermore, it is because these eigenvalue correla-
tions are non-Gaussian (e.g., the four-eigenvalue correla-
tion is not simply a sum of products of two-eigenvalue
correlations) that the calculations are nontrivial. In units
for which A4 is O (N) and the variance of 4 is O (1), these
higher cumulants are down by 1/N, where N is the num-
ber of eigenvalues within the interval on which the ex-
pected density of eigenvalues is roughly constant.

A proof (albeit formal) that the full distribution for any
linear statistic is Gaussian, i.e., all higher cumulants van-
ish, goes as follows. The expected density of eigenvalues
E; is given by

p(x)z<28<E,.—x)> .

In the limit of a large number of eigenvalues, N, contrib-
uting to a smooth density p(x), the density p(x) satisfies
an integral equation determined by the underlying proba-
bility distribution for the various eigenvalue config-
urations. This equation can be viewed as a consequence
of a mean-field approximation, !° and it has the following
structure: Interpret the E; as the positions of N particles
in one dimension and the probability for each particular
set of E; as the exponential of minus the energy of that
configuration of particles. The equation for p(x) is a
statement of equilibrium, i.e., the force on a particle at x
is zero. For example, if the probability of a set of E; is

|E;—E;| [expS V(E,) 1
j

i<j k

then p(x) satisfies
aVi(x) py)
ox Pfdyx -y 0, @

where the first term is the force at x due to the external
potential V and the second term is a principal-part in-
tegral representing the repulsive force at x due to the
density of particles at y. If the probability for sets of E;’s
contains terms that can be interpreted as n-body forces
with n =3, then there will be terms nonlinear in p (i.e.,
n —1 factors of p) in the generalization of Eq. (2).
Consider, now, a particular random-matrix ensemble,
with arbitrarily complicated n-eigenvalue ‘“forces” that
satisfy the smoothness criteria needed to ensure the reali-
zation of the universal eigenvalue correlation functions,’
and let p be the consequent expected eigenvalue density.
It is always possible to replace this ensemble with one of
the form of Eq. (1) such that the effective ¥ (x) generates
the original p(x) (thereby replacing all the original n-
eigenvalue “forces”), and all eigenvalue correlations re-
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tain their original values—at least to leading order in
1/N. If the eigenvalue probability distribution is then
perturbed by an additional factor of exp[ 3; u(E;)], the
expected density will change to a new function p+8p.
Since the original p satisfies the original mean-field in-
tegral equation (2), 8p satisfies an equation of the same
form as Eq. (2) but now linear in u(x). The general form
of p+8p is

(=85, —xrenp [;;AE,»])

| (exp [ngn])

plx)+8p(x)= (3)

where the brackets ( ) refer to averages taken with the
unperturbed probability distribution, i.e., without pu.
Since 8p is precisely linear in p, i.e., all higher powers of
p have vanishing coefficients, and using

[ dx p(x) 3 8(E;—x)= S WE)=4 ,
it follows that

4
Sde?) 4y —(a?)+(a)=0. (4)
(e4)

Equation (4) is a statement that the distribution of 4 in
the original ensemble is Gaussian. One can confirm this
either by expanding Eq. (4) in powers of 4 and deriving
the vanishing of the third and higher cumulants or by
deriving Eq. (4) as a consequence of Gaussian statistics
for a random variable A.

There are two aspects which earn this derivation the
somewhat pejorative ‘“formal” epithet. Not all quantities
in random-matrix theory admit a useful expansion in
powers of a perturbing u. For example, the eigenvalue
correlation functions depend nonlinearly on p, and a
small change in p due to a small change in u leads to
large changes in the functions. However, the cancella-
tions implicit in Eq. (4) presumably persist. A more seri-
ous issue is how zero is the left-hand side of Eq. (4) or,
equivalently, how accurate is the mean-field integral
equation for p? If we scale p and { 4) to be O(N), it is
not sufficient that the corrections to Egs. (2) and (4) be
O(1) because the variance of A4 is already O(1), and we
wish to show that the higher cumulants are yet smaller.
Unfortunately, there exists no systematic 1/N expansion
to the general random-matrix problem. However, several
specific problems of the form of Eq. (1) have been solved
exactly for finite N in terms of orthogonal solutions of
particular differential equations.!! By inspection of the
asymptotics of these special functions (or using the
differential equations themselves) one can show that the
corrections to p relative to Eq. (2) are indeed O(1/N)—
as desired.

The applicability of these random-matrix notions to
mesoscopic conductance rests on the assumption that the
conductance in the diffusive, metallic limit comes from
many eigenvalues of the transfer matrix and that their
distribution is suitably smooth. Given that, the Gaussian
distribution is a necessary consequence. This result may
have more general validity than weak-disorder perturba-
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tion theory, which corresponds to vanishing disorder in a
finite, large volume. For example, a small but finite den-
sity of disorder in the limit of increasing volume may be a
more accurate description of real mesoscopic systems,
which may require a renormalization group analysis rath-
er than direct perturbation theory. Such an analysis is re-
ported in Ref. 12, and it is claimed that much of the
universality of the weak-disorder calculations® is lost.
However, the general results of random-matrix theory as
applied to the transfer matrix in the metallic regime
should still apply. These results are somewhat weaker
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than the weak-disorder predictions in that random-
matrix theory implies that the conductance is Gaussian
distributed with variance of O (1) but does not give the
numerical value of the variance nor imply that the shape
of the conductor is the only variable that determines that
value.
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