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Random matrix eigenvalue problems in structural dynamics
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SUMMARY

Natural frequencies and mode shapes play a fundamental role in the dynamic characteristics of linear
structural systems. Considering that the system parameters are known only probabilistically, we obtain
the moments and the probability density functions of the eigenvalues of discrete linear stochastic dynamic
systems. Current methods to deal with such problems are dominated by mean-centred perturbation-based
methods. Here two new approaches are proposed. The first approach is based on a perturbation expansion
of the eigenvalues about an optimal point which is ‘best’ in some sense. The second approach is based
on an asymptotic approximation of multidimensional integrals. A closed-form expression is derived for
a general rth-order moment of the eigenvalues. Two approaches are presented to obtain the probability
density functions of the eigenvalues. The first is based on the maximum entropy method and the second
is based on a chi-square distribution. Both approaches result in simple closed-form expressions which can
be easily calculated. The proposed methods are applied to two problems and the analytical results are
compared with Monte Carlo simulations. It is expected that the ‘small randomness’ assumption usually
employed in mean-centred-perturbation-based methods can be relaxed considerably using these methods.
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1. INTRODUCTION

Characterization of the natural frequencies and mode shapes play a key role in the analysis and
design of engineering dynamic systems. The determination of natural frequency and mode shapes
require the solution of an eigenvalue problem. Eigenvalue problems also arise in the context of the
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RANDOM MATRIX EIGENVALUE PROBLEMS 563

stability analysis of structures. This problem could either be a differential eigenvalue problem or a
matrix eigenvalue problem, depending on whether a continuous model or a discrete model is used
to describe the given vibrating system. Description of real-life engineering structural systems is
inevitably associated with some amount of uncertainty in specifying material properties, geometric
parameters, boundary conditions and applied loads. When we take account of these uncertainties,
it is necessary to consider random eigenvalue problems. The solution of the random eigenvalue
problem is the first step to obtain the dynamic response statistics of linear stochastic systems.
Random eigenvalue problems also arise in the stability analysis of linear systems with random
imperfections. Several studies have been conducted on this topic since the mid-1960s. The study
of probabilistic characterization of the eigensolutions of random matrix and differential operators
is now an important research topic in the field of stochastic structural mechanics. The paper by
Boyce [1], the book by Scheidt and Purkert [2] and the review papers by Ibrahim [3], Benaroya
[4], Manohar and Ibrahim [5], and Manohar and Gupta [6] are useful sources of information on
early work in this area of research and also provide a systematic account of different approaches
to random eigenvalue problems.

In this paper, discrete linear systems or discretized continuous systems are considered. The
random eigenvalue problem of undamped or proportionally damped systems can be expressed by

KX, = /;M®)b; (1)

where 4; and ¢; are the eigenvalues and the eigenvectors of the dynamic system. M(x) R™

RVY*N and Kx): R" — RN*N , the mass and stiffness matrices, are assumed to be smooth,
continuous and at least twice differentiable functions of a random parameter vector x € R™. The
vector X may consist of material properties, e.g. mass density, Poisson’s ratio, Young’s modulus;
geometric properties, e.g. length, thickness, and boundary conditions. Statistical properties of the
system are completely described by the joint probability density function px(x):R™ — R. For
mathematical convenience we express

px(x) = exp{—L(x)} (@)

where — L (x) is often known as the log-likelihood function. For example, if x is an m-dimensional
multivariate Gaussian random vector with mean p € R and covariance matrix X € R™*™ then

1 1
L(x)= % InQ2m) + > In |IZ] + 3 (x WE'x—p A3)

It is assumed that in general the random parameters are non-Gaussian and correlated, i.e. L(X)
can have any general form provided it is a smooth, continuous and at least twice differentiable
function. It is further assumed that M and K are symmetric and positive definite random matrices
so that all the eigenvalues are real and positive.

The central aim of studying random eigenvalue problems is to obtain the joint probability density
function of the eigenvalues and the eigenvectors. The current literature on random eigenvalue
problems arising in engineering systems is dominated by the mean-centred perturbation methods
[7-16]. These methods work well when the uncertainties are small and the parameter distribution
is Gaussian. In theory, any set of non-Gaussian random variables can be transformed into a set
of standard Gaussian random variables by using numerical transformations such as the Rosenblatt
transformation or the Nataf transformation. These transformations are however often complicated,
numerically expensive and inconvenient to implement in practice. Some authors have proposed
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564 S. ADHIKARI AND M. 1. FRISWELL

methods which are not based on the mean-centred perturbation method. Grigoriu [17] examined
the roots of characteristic polynomials of real symmetric random matrices using the distribution
of zeros of random polynomials. Lee and Singh [18] proposed a direct matrix product (Kronecker
product) method to obtain the first two moments of the eigenvalues of discrete linear systems.
More recently Nair and Keane [19] proposed a stochastic reduced basis approximation which
can be applied to discrete or discretized continuous dynamic systems. Hala [20] and Mehlhose
et al. [21] used a Ritz method to obtain closed-form expressions for moments and probability
density functions of the eigenvalues (in terms of Chebyshev—Hermite polynomials). Szekely and
Schueller [22], Pradlwarter er al. [23] and Du et al. [24] considered simulation-based methods
to obtain eigensolution statistics of large systems. Ghosh et al. [25] used a polynomial chaos
expansion for random eigenvalue problems. Adhikari [26] considered complex random eigenvalue
problems associated with non-proportionally damped systems. Recently, Verhoosel et al. [27]
proposed an iterative method that can be applied to non-symmetric random matrices also. Rahman
[28] developed a dimensional decomposition method which does not require the calculation of
eigensolution derivatives.

Under special circumstances when the matrix H=M"'K € RV*" is Gaussian unitary ensemble
(GUE) or Gaussian orthogonal ensemble (GOE) an exact closed-form expression can be obtained
for the joint pdf of the eigenvalues using random matrix theory (RMT). See the book by Mehta [29]
and references therein for discussions on RMT. RMT has been extended to other type of random
matrices. If H has Wishart distribution then the exact joint pdf of the eigenvalues can be obtained
from Muirhead [30, Theorem 3.2.18]. Edelman [31] obtained the pdf of the minimum eigenvalue
(first natural frequency squared) of a Wishart matrix. A more general case when the matrix H has
p-distribution has been obtained by Muirhead [30, Theorem 3.3.4] and more recently by Dumitriu
and Edelman [32]. Unfortunately, the system matrices of real structures may not always follow
such distributions and consequently some kind of approximate analysis is required.

In this paper, two new approaches are proposed to obtain the moments and probability density
functions of the eigenvalues. The first approach is based on a perturbation expansion of the
eigenvalues about a point in the x-space which is ‘optimal’ is some sense (and in general different
from the mean). The second approach is based on asymptotic approximation of multidimensional
integrals. The proposed methods do not require the ‘small randomness’ assumption or Gaussian
pdf assumption of the basic random variables often employed in literature. Moreover, they also
eliminate the need to use intermediate numerical transformations of the basic random variables.
In Section 2, perturbation-based methods are discussed. In Section 2.1, mean-centred perturbation
methods are briefly reviewed. The perturbation method based on an optimal point is discussed
in Section 2.2. In Section 3, a new method to obtain arbitrary order moments of the eigenvalues
is proposed. Using these moments, some closed-form expressions of approximate pdf of the
eigenvalues are derived in Section 4. In Section 5, the proposed analytical methods are applied to
two problems and the results are compared with Monte Carlo simulations.

2. STATISTICS OF THE EIGENVALUES USING PERTURBATION METHODS
2.1. Mean-centred perturbation method

2.1.1. Perturbation expansion. The mass and the stiffness matrices are in general non-linear func-
tions of the random vector x. Denote the mean of x as p € R, and consider that

M@p) =M and K(pu)=K 4)
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are the ‘deterministic parts’ of the mass and stiffness matrices, respectively. In general M and K
are different from the mean matrices. The deterministic part of the eigenvalues:

2j =7 )
is obtained from the deterministic eigenvalue problem:

The eigenvalues, 4;(x) : R" — R are non-linear functions of the parameter vector x. If the eigenval-
ues are not repeated, then each 4;(x) is expected to be a smooth and twice differentiable function
since the mass and stiffness matrices are smooth and twice differentiable functions of the random
parameter vector. In the mean-centred perturbation approach, the function 4;(x) is expanded by
its Taylor series about the point X =p as

i)~ 2 () +d] & —p) + 3= W'D, (& —p) )

Here d;; (n) € R™ and D PR(DXS R™>™ are, respectively, the gradient vector and the Hessian matrix
of 4j(x) evaluated at x=p, that is

82,'
(@, wh = 2 ®)
Xk |xep
and
0, = LH® ©)
W= 2o

Expressions for the elements of the gradient vector and the Hessian matrix are given in Section A.1.
Due to Equation (5), Equation (7) implies that the eigenvalues are effectively expanded about their
corresponding deterministic value 4;.

Equation (7) represents a quadratic form in basic non-Gaussian random variables. The first-
order perturbation, which is often used in practice, is obtained from Equation (7) by neglecting
the Hessian matrix. In this case, the eigenvalues are simple linear functions of the basic random
variables. This formulation is expected to produce acceptable results when the random variation
in x is small. If the basic random variables are Gaussian, then first-order perturbation results in
a Gaussian distribution of the eigenvalues. In this case, a closed-form expression for their joint
probability density function can be obtained easily, see for example, Reference [7]. Recently,
Adhikari [26] used the first-order perturbation method for complex eigenvalue problems arising
in non-proportionally damped systems. However, if the elements of x are non-Gaussian then even
the first-order perturbation method is not helpful because there is no general method to obtain the
resulting pdf in a simple manner.

When the second-order terms are retained in Equation (7), each 4;(x) results in a quadratic
form in x. If the elements of x are Gaussian, then it is possible to obtain descriptive statistics using
the theory of quadratic forms as discussed next.

2.1.2. FEigenvalue statistics using theory of quadratic forms. Extensive discussions on quadratic
forms in Gaussian random variables can be found in the books by Johnson and Kotz [33, Chapter 29]
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566 S. ADHIKARI AND M. 1. FRISWELL

and Mathai and Provost [34]. Using the methods outlined in these references moments/cumulants
of the eigenvalues are obtained in this section.

When x is a multivariate Gaussian random vector, the moment generating function of 4;(x), for
any s € C, can be obtained from Equation (7) as

M;,(s) = Elexp{s2; (®)}]

= /R expls; () + s =W + 5x = 'D;, Wx—w — LEojdx  (10)

where L(x) is given by Equation (3). Using the transformation
y=x-p an

the integral in Equation (10) can be evaluated exactly as

- 1
M, (s) = @m "5~ /R | exp {sij +5d}, (y—5y'[E7'=sD;, (u)]y} dy (12
or

exp(sZ; + (s*/2)d} I — sED;, (0] ~'dy; (W)

JIT=sZD;,

To obtain the pdf of 4;(x), the inverse Laplace transform of Equation (13) is required. The exact
closed-form expression of the pdf can be obtained for few special cases only. Some approximate
methods to obtain the pdf of /;(x) will be discussed in Section 4.

If the mean-centred first-order perturbation is used then D iy (n) = O and from Equation (13) we
obtain

M (s) = (13)

= 52
M;, (s) ~ exp {sﬂj + 54, WId;, (u)} (14)

This implies that 4;(x) is a Gaussian random variable with mean 2 j and variance d}( (mxd, ; (n).
j :
However, for second-order perturbations in general the mean of the eigenvalues is not the deter-
ministic value. The cumulants of /;(x) can be obtained from
=Y, ()] (15)
b T dsr Aj s=0

(

Here k jr) is the rth-order cumulant of jth eigenvalue and from Equation (13) we have

2
- S _ 1
In M;,(s)=s7; + - d} EI - sED; (] "'dy, () — 7 In [T sZD;, ()] (16)
Using this expression and after some simplifications it can be shown that

KE.” =1, + 3Trace(D;, WE) if r=1 (17
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ol . — 1!
K=l @iz, o1 22d;, g +

; 5 Trace([D;, X)) ifr=2 (18)

The mean and first few cumulants of the eigenvalues can be explicitly obtained as

7 =1 =7 + S Trace(D;, (WE) (19)
Var[Z,]= K =d} (WEd;, (W) + § Trace(ID;; WET) (20)
k) =3d] (WIED;, (WIEd;, (b + Trace([D;, WEL) @1)
and
x() =12d] WIED;, W PEd;, (W) + 3 Trace(ID;, (WE]*) (22)
From the cumulants, the raw moments ,u(.r ) E [),;-] and the central moments ,u/j(r) =E[(4; — A A

can be obtained using standard formulae [35, Chapter 26].

2.2. Perturbation method based on an optimal point

2.2.1. Perturbation expansion. In the mean-centred perturbation method, 4;(x) is expanded in a
Taylor series about x =p. This approach may not be suitable for all problems, especially if x is
non-Gaussian then px(x) may not be centred around the mean. Here we are looking for a point
x=a in the x-space such that the Taylor series expansion of /;(x) about this point

2j(X) ~ L (ar) + d}j (@) (x — o)+ 3(x — )" D, (0)(x — o) (23)

is optimal in some sense. The idea of the optimal point is related to the saddle point approximation,
see for example the book by MacKay [36, Chapter 29]. The optimal point a can be selected in
various ways. For practical applications the mean of the eigenvalues is often the most important. For
this reason, the optimal point a is selected such that the mean or the first moment of each eigenvalue
is calculated most accurately. The mathematical formalism presented here is not restricted to this
specific criteria and can be easily modified if any moment other than the first moment is required
to be obtained more accurately. Using Equation (2), the mean of 4;(x) can be obtained as

1j=E[;(x)]= / 20 px(x) dx = / § Jj(x)e ™ dx (24)
N R R
Tj= f e dx (25)
where
h(x)=L(x) — In 2j(x) (26)

Evaluation of integral (25), either analytically or numerically, is in general difficult because (a)
/j(x) and L(x) are complicated non-linear functions of x, (b) an explicit functional form /;(x)
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568 S. ADHIKARI AND M. 1. FRISWELL

is not easy to obtain except for very simple problems (usually an FE run is required to obtain
Aj for every x), and (c) the dimension of the integral m is large. For these reasons some kind
of approximation is required. From Equation (25), note that the maximum contribution to the
integral comes from the neighbourhood where 4 (x) is minimum. Therefore, the function /4 ;(x)
is expanded in a Taylor series about the point where & ;(x) has its global minimum. By doing so,
the error in evaluating integral (25) would be minimized. Thus, the optimal point can be obtained
from

5h i "L 1 a;u i
Ohi® _ o or L™ _ i e 27)
Oxy Oxx 2j(X)  Ox
Combining the above equation for all k, at x=a we have
d, (o) =4j(edp (o) (28)

Equation (28) implies that at the optimal point the gradient vectors of the eigenvalues and log-
likelihood function are parallel. The non-linear set of equations (28) have to be solved numerically.
Due to the explicit analytical expression of d;; in terms of the derivative of the mass and stiffness
matrices, expensive numerical differentiation of /;(x) at each step is not needed. Moreover, for
most px(X), a closed-form expression of dy (x) is available. For example, when x has multivariate
Gaussian distribution, L(x) is given by Equation (3). By differentiating this, we obtain

AL =X""(x— (29)
Substituting this in Equation (28), the optimal point o can be obtained as
1
j (o)

This equation also gives a recipe for an iterative algorithm to obtain a. One starts with an initial & in
the right-hand side and obtains an updated a in the left-hand side. This procedure can be continued
until the difference between the values of a obtained from both sides of Equation (30) is less than
(I> vector norm can be used to measure the difference) a predefined small value. A good value to
start the iteration process is @ =p, as in the case of mean-centred approach. Note that the solution
of a deterministic eigenvalue problem is needed at each step of the iteration process. The form
of Equation (23) is similar to that of Equation (7). As mentioned before, when the basic random
variables are non-Gaussian, determination of moments and the pdf is not straightforward. However,
when x is Gaussian, some useful statistics of the eigenvalues can be obtained in closed-form.

o=pN+

2d;, () (30)

2.2.2. Eigenvalue statistics using theory of quadratic forms. For notational convenience we rewrite
the optimal perturbation expansion (23) as

Aj(x)mcj+a}x+%xTij (31)
where the constants ¢; € R, a; € R™ and A; € R™*™ are given by
cj=7j@ —d] (@a+ 1a'D; (e)a (32)
J=4 4 2%
aj=d;; (@) — Dy, (o (33)
Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 69:562-591
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Aj=D;, (0 (34
From Equation (31), the closed-form expression of the moment generating function of 4;(x) can
be obtained exactly in a way similar to that for the case of the mean-centred perturbation method.

Using Equation (3), it can be shown that

M, (s) = Elexp{s4;(x)}]
=Qmn) "2~ /Rm exp{s(c; +ajx + 3x"A;x)

—fx—w T (x — )} dx (35)
This m-dimensional integral can be evaluated exactly to obtain

exp{sc; — %uTE*Iu + %(u —i—sZaJ-)T[I - sZAj]_l(u +sXa;)}
[T —sXA|

M, (s) = (36)

From the preceeding expression, the cumulants of the eigenvalues can be evaluated using
Equation (15) as

KE’) =c; + § Trace(A;X) + 1p"A;p + a?u ifr=1 (37)

and

- D!
=D

r!
; Trace([A,;X]) + Ea}[ZA i Xa;

+rin [AGZI T A+ rlal [EA T T A i 2 (38)

The mean and first few cumulants of the eigenvalues can be explicitly obtained as

—~ a

i =x ) =c;+ %Trace(AjE) + %uTAju + a;u (39)

Var[/;] = Kf) = 1 Trace([A;X1%) + a}Za i+ 20" A ZIA p + 2aJT-[)2A ilAn (40)

k'Y = Trace(IA;EI°) + 3a] [ZA]a; + 6p"[A,ZI°A p + 6a] [EA;1°Ajp (41)

and
K'Y =3 Trace(IA;Z1%) + 12a] [ZA 18, + 24n"[A;Z1°A jp + 242 [ZA TP Ajp (42)

Since Equations (17), (18), (37) and (38) gives cumulants of arbitrary order, it is possible to
reconstruct the pdf of the eigenvalues from them. However, when the elements of x are non-
Gaussian, then neither the first-order perturbation nor the second-order perturbation methods are
helpful because there is no general method to obtain the resulting statistics in a simple manner. In
such cases, the method outlined in the next section might be more useful.
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3. METHOD BASED ON THE ASYMPTOTIC INTEGRAL

3.1. Multidimensional integrals in unbounded domains

In this section, the moments of the eigenvalues are obtained based on an asymptotic approximation
of the multidimensional integral. Consider a function f(x) : R — R which is smooth and at least
twice differentiable. Suppose we want to evaluate an integral of the following form:

7= [, expi-rerax @3)

This is an m-dimensional integral over the unbounded domain R™. The maximum contribution to
this integral comes from the neighbourhood where f (x) reaches its global minimum. Suppose that
f (%) reaches its global minimum at a unique point @ € R™. Therefore, at x=10

0f(x)

Oxy

=0 Vk or ds(0)=0 (44)
Using this, f(x) is expanded in a Taylor series about @ and Equation (43) is rewritten as

/Z/R,,, exp{—(f(8) + 5(x — 0)'D(8)(x — 0) + &(x, 8)}} dx

= exp{— f(0)} / exp{—3(x — 0)"D ;(0)(x — 0) — &(x, 0)} dx (45)
Rm

where &(x, 0) is the error if only the terms up to second-order were retained in the Taylor series
expansion. With suitable scaling of x the integral in Equation (43) can be transformed to the
so-called ‘Laplace integral’. Under special conditions, such integrals can be well approximated
using asymptotic methods. The relevant mathematical methods and formal derivations are covered
in detail in the books by Bleistein and Handelsman [37] and Wong [38]. Here we propose a
somewhat different version of the asymptotic integrals. The error &(x, 8) depends on higher order
derivatives of f(x) at x=0. If they are small compared to f(0) and the elements of D (), their
contribution will be negligible to the value of the integral. Therefore, we assume f(0) and the
elements of D 7(0) are large so that

9(’)(f(9))' —0 and Vk,I, D (fO)] >0 for j>2 (46)

‘f(e)

where 2U)( f(0)) is jth-order derivative of f(x) evaluated at x=0. Under such assumptions,
&(x, 0) — 0. Therefore, the integral in (45) can be approximated as

7= expl=fO) [ expl—- 0D, @ x— 0))ox @)

If 0 is the global minimum of f(x) in R™, the symmetric Hessian matrix D y(8) € R™*"™ is also
expected to be positive definite. Now use the coordinate transformation

£=x—0)D;"*®) (48)
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The Jacobian of this transformation is

13 =D @)~/ (49)
Using Equation (48), the integral in Equation (47) can be evaluated as
s expl=f ) [ D@1 expl- 4" o) ae (50
or
S~ 2m)"/ exp{—f(0)}|D £ (0)| ="/ (51)

The analysis proposed here is somewhat different from the widely used Laplace’s method of
asymptotic approximation of integrals [38, Chapter IX, Theorem 3]. Here it is simply assumed
that the higher order derivatives & W f(0)) are negligibly small compared to f(0) and the elements
of D(0). This approximation is expected to yield good results if the minimum of f(x) around
x = 0 is sharp. If 0 is not unique then it is required to sum the contributions arising from all such
optimal points separately. Equation (51) will now be used to obtain moments of the eigenvalues.
3.2. Calculation of an arbitrary moment of the eigenvalues

An arbitrary rth-order moment of the eigenvalues can be obtained from

,,LE.” =E[X;(x)] = /R A0 px(x) dx

=f exp{—(L(X) —rInZ;(x)}dx, r=1,2,3,... (52)
Rﬂ’l

The equation can be expressed in the form of Equation (43) by choosing
fX)=L(x) —rlni;j(x) (53)
Differentiating the above equation with respect to xi, we obtain

0f(x) OL(x) o 07.j(X)
axk B axk ij(X) 8xk

(54)

The optimal point 0 can be obtained from Equation (44) by equating the above expression to zero.
Therefore at x=0

0
™ _o vk (55)
Oxy
or
04;(@) JoL(®
40 LG -y, (56)
30 oxp  ox
or
d;, (0)r = 7;(8)d, (8) (57)
Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 69:562-591
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572 S. ADHIKARI AND M. 1. FRISWELL

Equation (57) is similar to Equation (28) and needs to solved numerically to obtain 0. The steps
to obtain 0 are similar to those described in Section 2.2.

The elements of the Hessian matrix D #(0) can be obtained by differentiating Equation (54)
with respect to x;:

Ffx) LK) L0000, 1 %7 (x)
= —7r — =
Oxy 0x; Ox 0x; /13 (x) 0x; Oxy /lj (X) Oxi0x;

L™ [ o 9 ro04(x) ro0A(x) 58)
 Oxgdx Ai(X)  Oxg Ai(x) Ox 2 (x) Oxy0x
At x =0 we can use Equation (56) so that Equation (58) reads
Ifrx|  PL®) L LOL®OL®) s GNIC) 59)
dxlxy| o Oxkdx v dxe dx o 2j(8) dxkdx
Combining this equation for all k and / we have
1
D;(0)=D.(0) +-d.(0)d.(0)" — D;,;(0) (60)
r ](e)

where D, (e) is defined in Equation (9). Using the asymptotic approximation (51), the rth moment
of the eigenvalues can be obtained as

. 1 -1/2
'~ (2m)™/? 15(8) exp{—L(0)} HDL(O) +-dL(0)d.(0)" — (e) —=D, ( )H (61)

This is perhaps the most general formula to obtain the moments of the eigenvalues of linear
stochastic dynamic systems. The optimal point 0 needs to be calculated by solving non-linear
set of equations (57) for each A; and r. Several special cases arising from Equation (61) are of
practical interest:

e Mean of the eigenvalues: The mean of the eigenvalues can be obtained by substituting r =1
in Equation (61), that is

7 =1l = @n)"/21;(8) exp(~L(®)} DL (®) + d. ®)dL(®) —D;,®)/4;®1*  (62)

o Central moments of the eigenvalues: Once the mean is known, the central moments can be

(r)

expressed in terms of the raw moments 15 using the binomial transform

W) = ElG; =7 1= % ( )( DTy (63)
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e Random vector X has multivariate Gaussian distribution: In this case L(x) is given by
Equation (3) and by differentiating Equation (29) we obtain

D.(x)=X""! (64)

The optimal point 0 can be obtained from Equation (57) as

r

O=p+
SRR

Xd,;(8) (65)
Using Equations (29) and (64), the Hessian matrix can be derived from Equation (60) as

I Tyl T
Ds(0)=X +r2 O-wO-—p'E )vj(O)D)‘f(G)

r

4;(0)

—x-! (I + %(9 —w®-— u)TZ‘l) — ;D) (66)

Therefore, the rth moment of the eigenvalues can be obtained from Equation (61) as

1~ 77(0) exp{—3® — WTET (O — W} I ZI /2D @) 71/ (67)
Using Equation (66) and recalling that for any two matrices A and B, ||A|/||B|| = ||[AB]|| we have
W~ 50) expl— (0 — WTZ (O — WL+ D 0) 2 (68)
where
D, ®)=-0-w®-w'=" — D, ©) (69)
r 2;(0) J

The probability density function of the eigenvalues is considered in the next section.

4. PROBABILITY DENSITY FUNCTION OF THE EIGENVALUES

4.1. Maximum entropy probability density function

Once the cumulants/moments of the eigenvalues are known, the pdf of the eigenvalues can be
obtained using the maximum entropy method (MEM). Because Equations (17), (18), (37), (38)
and (61) can be used to calculate any arbitrary order cumulant and moment, the pdf can be
obtained accurately by taking higher order terms. Here, following Kapur and Kesavan [39], a
general approach is presented.

Since M and K are symmetric and positive definite random matrices, all the eigenvalues are real
and positive. Suppose the pdf of 4; is given by p;; (u) where u € R is positive, that is u € [0, oo].
Considering that only first » moments are used, the pdf of each eigenvalue must satisfy the
following constraints:

/0 " du=1 (70)
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and
> _ 0
up,lf(u)du—,uj , r=1,2,3,....n 71)
0 :
Using Shannon’s measure of entropy
o
S = —/ pi;(w)Inp; (u) du (72)
0

we construct the Lagrangian

$=—/0 pzj(u)lnpzj(u)du—(Po—1)[/0 mj(u)du—l]

_ Zl P, |:/o u"py,;(u)du — u;r)i| (73)

where p,,r=0,1,2,...,n are Lagrange multipliers. The function p; («) which maximizes %
can be obtained using the calculus of variations. Using the Euler-Lagrange equation the solution
is given by

n . n .
pi; () = exp {—Po - piu’} = exp {—po} exp {—Zpiu’} , u=0 (74)
i=1 i=1

The Lagrange multipliers can be obtained from the constraint equations ((70) and (71)) as

o.¢] n .
exp{p0}=/0 exp{—Zpiu‘} du (75)
i=1
and
o n .
exp{po}/,t;r) = /0 u” exp {—Z p;u’ } du forr=0,1,2,....n (76)
i=1

Closed-form expressions for p, are in general not possible for all n. If we take n =2, then the
resulting pdf can be expressed as the truncated Gaussian density function

P S S _w=7)? . u=0 77)
N \/EGJ'(D(A]'/GJ') 203

where o is given by
2) 52
a?:,ui. -7 (78)

The approach presented above can also be used in conjunction with the perturbation methods by
transforming the cumulants obtained from Equations (17), (18), (37) and (38) to moments. The
truncated Gaussian density function derived here ensures that the probability of any eigenvalues
becoming negative is zero.
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4.2. Approximation by y* probability density function

We use an approximation analogous to Pearson’s [40] three moment central x> approximation to
the distribution of a noncentral y2. The eigenvalues are approximated as

A+, ) (79)

where X%j (u) is a central y?> density function with v ; degrees of freedom (see Reference [35,
Chapter 26]). The constants 7;, 7;, and v; are obtained such that the first three moments of 4; are

equal to that of the approximated 2 pdf. The moment generating function of the approximated y2
pdf is given by

Elexp{—s(n; + 7,13, )11 = exp{—sn;}(1 + 257,) 7"/ (80)
Equating the first three moments we have
nj+viy=u 81)
7’1? +2n;v;y; —i—v?y? +2v,y?=,u5.2) (82)
and
134 4y 6 B =) ®)

This set of coupled non-linear equations can be solved exactly in closed-form to obtain 7;, 7;,
and v;:

D2 2 2)2 E
_#;)#E)_zﬂﬁ) +M§)#§)

Mj 3 (84)
(1 m, 2, 03
2u;7 =3 Ry g
13 M, @ 3)
N Rl R Ry 55)
J @ (1?2
A =)
and
@ (D23
(" =57
v;i=8 J J (86)

13 D @
@uy” = 3u u? + 1)?

Moments of A;(x) obtained in Equation (61), can be used directly in the right-hand side of
these equations. Alternatively, this approach can also be used in conjunction with the perturbation
methods by transforming the cumulants obtained from Equations (17), (18), (37) and (38) to
moments. Using the transformation in Equation (79), the approximate probability density function
of 4j(x) is given by

1 w—n;\ = n)" exp(—u —n;)/2y;)
pi )~ —p, L) = ’ 7 Tt (87)
‘ Vi i Vi 2y F(vj/2)
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The two approximated pdf proposed here have simple forms but it should be noted that they are
not exhaustive. Given the moments/cumulants, different probability density functions can be fitted
using different methods. The application of the approximate pdfs derived here is illustrated in the
next section.

5. APPLICATION EXAMPLES

5.1. A two-DOF system

5.1.1. System model and computational methodology. A simple two-degree-of-freedom undamped
system has been considered to illustrate a possible application of the expressions developed so far.
The main purpose of this example is to understand how the proposed methods compare with the
existing methods. Figure 1 shows the example, together with the numerical values of the masses
and spring stiffnesses. The system matrices for the example are given by

m; 0 ki+ks  —k3
M= and K= (88)
0 my —k3 ko + k3

It is assumed that only the stiffness parameters k; and kp are uncertain so that k; =
ki(14¢;x;), i =1, 2 and k; denote the deterministic values of the spring constants. Here x={x1, 1)t
€ R? is a vector of standard Gaussian random variables, that is p=0 and X =1. The numerical
values of the ‘strength parameters’ are considered as &1 =& =0.25. The strength parameters are
selected so that the system matrices are almost surely positive definite. Noting that M is indepen-
dent of x and K is a linear function of x, the derivative of the system matrices with respect to the
random vector X can be obtained as

oK ki 0 K 0 0
—— =g L (89)
0x1 0 0 0x2 0 ky

2
6—M =0 and rK =0 (90)
ax,- - axiaxj' -

We calculate the raw moments and the probability density functions of the two eigenvalues of
the system. Recall that the eigenvalues obtained from Equation (1) are the square of the natural

1 2

m; my

k; kg k;

Figure 1. The undamped two-degree-of-system, m; =1kg, m» =1.5kg, k1 =1000N/m,
k; =1100N/m and k3 = 100N/m.
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frequencies (4; = w%). The following six methods are used to obtain the moments and the pdfs:

1. Mean-centred first-order perturbation: This case arises when Dij (n) in the Taylor series
expansion (7) is assumed to be a null matrix so that only the first-order terms are retained.
This is the simplest approximation, and as mentioned earlier, results in a Gaussian distribution
of the eigenvalues. Recalling that for this problem, p =0 and X =1, the resulting statistics
for this special case can be obtained from Equations (19) and (20) as

-~

=1 ©1)
and
Varl1;]1=d}_(0)d;; (0) (92)

The gradient vector d;; (0) can be obtained from Equation (A2) using the system derivative
matrices (89) and (90).

2. Mean-centred second-order perturbation: In this case all the terms in Equation (7) are retained.
This approximation results in a quadratic form in the Gaussian random variables. The resulting
statistics can be obtained from Equations (17) and (18) by substituting p =0 and X =1. The
elements of the Hessian matrix D i (0) can be obtained from Equation (A4) and using the
system derivative matrices (89) and (90).

3. Optimal point first-order perturbation: This case arises when D/I, (o) in the Taylor series
expansion (23) is assumed to be a null matrix so that only the first-order terms are retained.
Like its mean-centred counterpart, this approach also results in a Gaussian distribution of the
eigenvalues. From Equation (31) we have

cj=2j) —d} (o, a;=d; (@) and A;=0 (93)
The equation for the optimal point a is obtained from Equation (30) as
a=d;, (o)/4j(o) or d;, (o) =/j(o)a (94)

Using these equations, the mean and the variance can be obtained as special cases of
Equations (39) and (40) as

7y =1j(@) —d] @@a=1;(@ — ij@a’a (95)
. _
Tj=rj@( = | (96)
and
Var[Zj]=d}, ()d;,; (@) = 2 (@)o® 97)

4. Optimal point second-order perturbation: In this case all the terms in Equation (23) are
retained. Like the mean-centred approach, this approximation also results in a quadratic form
in the Gaussian random variables, but with different coefficients. The resulting statistics can
be obtained from Equations (37) and (38).
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5. Method based on the asymptotic integral: In this case, the moments can be obtained using
Equation (61). For the standardized Gaussian random vector, substituting p=0 and X =1 in
Equation (67) the moment formula can be simplified to

r

4.;(0)

D;;(0)

-1/2
‘ (98)

1 1
1"~ @) exp{ —= 1012} |1+ —007 /r —
J J 2 r

and
0=rdgj(0)//1j(9), r=1,2,3,... (99)

The vector 0 needs to be calculated for each r and j from Equation (99) using the iterative
approach discussed before. The moments obtained from Equation (98) can be used to obtain
the pdf using the approach given in Section 4.

6. Monte Carlo simulation: The samples of two independent Gaussian random variables x; and
xp are generated and the eigenvalues are computed directly from Equation (1). A total of
15000 samples are used to obtain the statistical moments and pdf of both the eigenvalues.
The results obtained from the Monte Carlo simulation are assumed to be the benchmark for
the purpose of comparing the five analytical methods described above.

5.1.2. Numerical results. Figure 2 shows the percentage error for the first four raw moments of
the first eigenvalue. The percentage error for an arbitrary kth moment of an eigenvalue obtained
using any one of the five analytical methods is given by

|{,u§'r)}ith method — {NE'F)}MCS| ,
Error;th method = x 100, i=1,...,5 (100)

{MY) IMcs

20 T T T T
- Mean—centered 1st—order
I - Mean—centered 2nd—order
16 H I:l Optimal point Ist—order e
- Optimal point 2nd—order
I - Asymptotic Method

Percentage error wrt MCS
>

1 2 3 4
k—th order moment: E [7»11(]

Figure 2. Percentage error for the first eigenvalue.
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- Mean—centered 1st—order
- Mean—centered 2nd—order
8t |:|Optima] point Ist—order i
- Optimal point 2nd—order
r - Asymptotic Method 1

Percentage error wrt MCS
W

1 2 3 4
k—th order moment: E [?\.];]

Figure 3. Percentage error for the second eigenvalue.

Figure 3 shows the percentage error for the first four raw moments of the second eigenvalue. For
both eigenvalues, the error corresponding to the mean-centred first-order perturbation method is
more than the other four methods. The error corresponding to the optimal point first-order pertur-
bation method follows next. Moments obtained from mean-centred and optimal point second-order
perturbation methods are more accurate compared to their corresponding first-order counterparts.
In general, the moments obtained from the asymptotic formula equation (61) turn out to be quite
accurate. The absolute errors for the second eigenvalue are less compared to the first eigenvalue.
For the first eigenvalue, the moments obtained from the asymptotic formula turn out to be the most
accurate, while for the second eigenvalue, the mean-centred second-order perturbation method
yields the most accurate results.

Now consider the probability density function of the eigenvalues. Figures 4 and 5, respec-
tively, show the pdf of the first and the second eigenvalue obtained from the five methods
described earlier. The pdf corresponding to first five methods are obtained using the > dis-
tribution in Equation (87). The constants appearing in this equation are calculated from the
moments using Equations (84)—(86). In the same plots, the normalized histograms of the eigen-
values obtained from the Monte Carlo simulation are also plotted. For the first eigenvalue, the
pdf from the second-order perturbation methods are accurate in the lower and in the upper tail.
For the second eigenvalue, the pdf from the asymptotic moment method is accurate over the
whole curve.

5.2. A three-DOF system with closely spaced eigenvalues

5.2.1. System model and computational methodology. A three-degree-of-freedom undamped
spring—mass system, taken from Reference [41], is shown in Figure 6. The main purpose
of this example is to understand how the proposed methods work when some of the system
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Figure 4. Probability density function of the first eigenvalue.
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Figure 5. Probability density function of the second eigenvalue.

eigenvalues are closely spaced. This is an interesting case because it is well known that closely
spaced eigenvalues are parameter sensitive. We will investigate how the parameter uncertainty af-
fects the eigenvalue distribution in such cases. This study has particular relevance to the dynamics
of nominally symmetric rotating machines, for example, turbine blades with random imperfections.
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A ™ P PR

Figure 6. The three-degree-of-freedom random system.

The mass and stiffness matrices of the example system are given by

m; O 0 ki + kqa + kg —ky —kg
M=| 0 my; O and K= —ky ks + ks + kp —ks (101)
0 0 m3 —kg —ks ks + k3 + k¢

It is assumed that all mass and stiffness constants are random. The randomness in these parameters
are assumed to be of the following form:

mi=m;(1 +¢&,x;), i=1,2,3 (102)
ki =ki(1+exxip3), i=1,...,6 (103)
Here x={x,..., xg}T € R? is the vector of random variables. It is assumed that all random

variables are Gaussian and uncorrelated with zero mean and unit standard deviation, that is p=10
and X =1. Therefore, the mean values of m; and k; are given by m; and k;. The numerical values
of both the ‘strength parameters’ ¢, and ¢; are fixed at 0.15. In order to obtain statistics of the
eigenvalues using the methods developed in this paper, the gradient vector and the Hessian matrix
of the eigenvalues are required. As shown in Section A.1, this in turn requires the derivative of the
system matrices with respect to the entries of x. For most practical problems, which usually involve
finite element modelling, these derivatives need to be determined numerically. However, for this
simple example the derivatives can be obtained in closed-form and they are given in Section A.2.
We calculate the moments and the probability density functions of the three eigenvalues of the
system. The following two sets of physically meaningful parameter values are considered:

e Case 1: All eigenvalues are well separated.

For this case m; =1.0kg fori =1, 2, 3; ki = 1.ON/m fori=1,...,5 and k¢ =3.0N/m.
e Case 2: Two eigenvalues are close.

All parameter values are the same except kg = 1.275 N/m.

The moments of the eigenvalues for the above two cases are calculated from Equations (98)
and (99). The moments are then used to obtain ¢; from Equation (78) and the constants in
Equations (84)—(86). Using these constants, the truncated Gaussian pdf and the x> pdf of the
eigenvalues are obtained from Equations (77) and (87), respectively. These results are compared
with Monte Carlo simulation. The samples of the nine independent Gaussian random variables

Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 69:562-591
DOI: 10.1002/nme



582 S. ADHIKARI AND M. 1. FRISWELL

xi,i=1,...,9 are generated and the eigenvalues are computed directly from Equation (1). A
total of 15000 samples are used to obtain the statistical moments and histograms of the pdf
of the eigenvalues. The results obtained from Monte Carlo simulation are assumed to be the
benchmark for the purpose of comparing the analytical methods. For the purpose of determining
the accuracy, we again calculate the percentage error associated with an arbitrary »th moment using
Equation (100). The results for the two cases are presented and discussed in the next
subsection.

5.2.2. Numerical results. Case 1: All eigenvalues are well separated. When all of the eigenvalues
are well separated, their derivatives with respect to the system parameters generally behave well.
For the given parameter values, the eigenvalues of the corresponding deterministic system is
given by

Ji=1, Jp=4 and J3=38 (104)

The random ‘scatter’ of the eigenvalues is shown in Figure 7 for 1000 samples (out of 15000)
from the Monte Carlo simulation. It can be seen that the highest eigenvalue has the maximum
scatter and because the eigenvalues are well separated, there is very little statistical overlap be-
tween them. Figure 8 shows the percentage error for the first four moments of the eigenvalues.
These errors are reasonably small considering that the strength of randomness for all nine random
variables is 15%. The error associated with higher eigenvalues are higher and also for a fixed eigen-
value, the higher order moments have more errors. Now consider the probability density function
of the eigenvalues. The pdfs of the first eigenvalue obtained from the two methods are shown

1000

900

> o> >
[FOIN
T

N

800 [
700
600

500 [
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400 [
300
200

100

Eigenvalues, kj (rad/s)2

Figure 7. Statistical scatter in the eigenvalues: Case 1.
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Figure 8. Percentage error for first four moments of the eigenvalues: Case 1.
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Figure 9. Probability density function of the first eigenvalue: Case 1.

in Figure 9. On the same plot, normalized histograms of the eigenvalue obtained from the Monte
Carlo simulation are also shown. Both approximate methods match well with the Monte Carlo
simulation result. This is expected since the first three moments are obtained accurately (less
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Figure 10. Probability density functions of the second and third eigenvalues: Case 1.

than 0.2% error as seen in Figure 8). The probability density functions of the second and third
eigenvalues are shown in Figure 10. The region of statistical overlap is indeed small and can be
verified from the plot of the actual samples in Figure 7. Again, both approximate methods match
well with the Monte Carlo simulation result.

Case 2: Two eigenvalues are close. When some eigenvalues are closely spaced, their derivatives
with respect to the system parameters may not behave well [41]. Indeed, if repeated eigenvalues
exist, the formulation proposed here breaks down. The purpose of studying this case is to investigate
how the proposed methods work when there are closely spaced eigenvalues so that there is a
significant statistical overlap between them. For the given parameter values, the eigenvalues of the
corresponding deterministic system are calculated as

=1, Jp=4 and J3=4.55 (105)

Clearly Z; and /3 are close to each other. The random scatter of the eigenvalues is shown in
Figure 11 for 1000 samples from the Monte Carlo simulation. It can be seen that the third
eigenvalue has the maximum scatter and because the second and the third eigenvalues are close,
there is significant statistical overlap between them. Figure 12 shows the percentage error for the
first four moments of the eigenvalues. The general trend of these errors are similar to the previous
case except that the magnitudes of the errors corresponding to second and third eigenvalues are
higher. This is expected because these two eigenvalues are close to each other.

The probability density function of the first eigenvalue obtained from the two methods are
shown in Figure 13. On the same plot, normalized histograms of the eigenvalue obtained from
Monte Carlo simulation are also shown. As in the previous case, both approximate methods match
well with the Monte Carlo simulation result. This is expected since the first three moments are
obtained accurately for this case also. The probability density functions of the second and third
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2.5 T T T
Il First moment
[ Second moment
5 | | ] Third moment |
" B Fourth moment
O
b=
£ 15t 1
5
2 __
(5}
b __
on
s 1t 1
f=1
15
o)
(=9
i I I |
0 L . f

1 2
Eigenvalue number j

Figure 12. Percentage error for first four moments of the eigenvalues: Case 2.

eigenvalues are shown in Figure 14. There is a significant region of statistical overlap which can
also be verified from the plot of the actual samples in Figure 11. In this case, the truncated Gaussian
density function performs better than the %> density function. However, none of the approximate
methods match the Monte Carlo simulation result as well as in the previous case.

Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 69:562-591
DOI: 10.1002/nme



586 S. ADHIKARI AND M. 1. FRISWELL

3.5 T T T T T T T
_ ____ Truncated Gaussian distribution
N _ _ x’ distribution
3F ir 1
i
i
251 | 1
1
n ]
2 - B
S I M
< I
(=¥
151 \ J
! \
\
1 - B
05 1
O P— 1
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

u

Figure 13. Probability density function of the first eigenvalue: Case 2.
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Figure 14. Probability density functions of the second and third eigenvalues: Case 2.

8

6. CONCLUSIONS

The statistics of the eigenvalues of discrete linear dynamic systems with parameter uncertainties
have been considered. It is assumed that the mass and stiffness matrices are smooth and at least
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twice differentiable functions of a set of random variables. The random variables are in general
considered to be non-Gaussian. The usual assumption of small randomness employed in most
mean-centred-based perturbation analysis is not employed in this study. Two methods, namely
(a) optimal point expansion method, and (b) asymptotic moment method, are proposed. The
optimal point is obtained so that the mean of the eigenvalues are estimated most accurately. Both
methods are based on an unconstrained optimization problem. Moments and cumulants of arbitrary
orders are derived for both the approaches. Two simple approximations for the probability density
function of the eigenvalues are derived. One is in terms of a truncated Gaussian random variable
obtained using the maximum entropy principle. The other is a x> random variable approximation
based on matching the first three moments of the eigenvalues. Both formulations yield closed-form
expressions of the pdf which can be computed easily.

The proposed formulae are applied to two problems. The moments and the pdf match en-
couragingly well with the corresponding Monte Carlo simulation results. However, when some
eigenvalues are closely spaced, the proposed methods do not produce very accurate results. Further
research is required to deal with systems with closely spaced or repeated eigenvalues. In order
to obtain dynamic response statistics and system reliability, joint probability density functions of
the eigenvalues and eigenvectors are required. Future studies will extend the proposed methods to
obtain joint statistics of the eigenvalues.

APPENDIX A

A.l. Gradient vector and Hessian matrix of the eigenvalues

The eigenvectors of symmetric linear systems are orthogonal with respect to the mass and stiffness
matrices. The eigenvectors are mass normalized, that is,

OiMp; =1 (A1)

Using this and differentiating Equation (1) with respect to x it can be shown that [42] for any x

04j
6X(X) = ;0G0 b; (%) (A2)
where
K oM
femx):[ ax(")_; ®) (X)} (A3)

Differentiating Equation (1) with respect to xi, and x;, Plaut and Huseyin [43] have shown that,
providing the eigenvalues are distinct,

A K M
. =¢j(x)T[ N (X)}cb,( )

— 4j(x)
Oxi 0x; Oxi 0x; O0x 0

M
(¢J< et )¢,<x>) (6,00 %,100,;)
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1+ OM(x)
ox;

- (¢ () ; <x>) (6,000,

N (0,079 ()0, (x) (0,07 1), (x))
= 2j(X) — 2 (x)

(A4)

Equations (A2) and (A4) completely define the elements of the gradient vector and Hessian matrix
of the eigenvalues.

A.2. Derivative of the system matrices with respect to the random variables

The derivatives of M(x) and K(x) with respect to elements of x can be obtained from
Equation (101) together with Equations (102) and (103). For the mass matrix we have

mie, 0 O 0 0 0 0 0 0
M oM oM
— = 0 0 0, —=10 mpe, O], —=10 O 0 (AS5)
0x1 0x2 0x3
0 0 0 0 0 0 0 0 ms3ey

All other 0M/0x; are null matrices. The derivatives of the stiffness matrix are

[kiex 0 0 0 0 0 00 0
0K oK - oM
—=] 0 0 0|, —=10 kg 0|, —=1]0 0 O
0x4 0xs 0x6 _

. 0 00 0o 0 O 0 0 kze

[ kaer  —kagr O 0 0 0 keer 0 —keek
oK — _ oK — — oM
— = | —kaex  kaex O, — =10 ksex —ksg |, — = 0 0 0
0x7 0Oxg _ _ 0x9 _ _

. 0 0 0 0 —kser  kseg —keer 0 keér

(A6)

and all other K/dx; are null matrices. Also note that all of the first-order derivative matrices are
independent of x. For this reason, all the higher order derivatives of the M(x) and K(x) matrices
are null matrices.

APPENDIX B: NOMENCLATURE

aj constant in optimal perturbation expansion

Aj constant in optimal perturbation expansion

cj constant in optimal perturbation expansion

de)(x) gradient vector of (e) at x

D) (x) Hessian matrix of (e) at x
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Abbreviations

dof
exp
pdf
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mathematical expectation operator

identity matrix

stiffness matrix

negative of the log-likelihood function
number of basic random variables

moment generating function of the eigenvalues
mass matrix

number of moments used for pdf construction
degrees-of-freedom of the system

null matrix

probability density function of (e)

basic random variables

optimal point for perturbation method

strength parameters associated with mass and stiffness coefficients

parameters of y2-approximated pdf of A j
optimal point for asymptotic method
rth-order cumulant of the eigenvalues
eigenvalues of the system

mean of parameter vector X

rth-order (raw) moment of the eigenvalues

rth-order central moment of the eigenvalues
Lagrange multipliers, r =0, 1,2,...,n
standard deviation of 4;

covariance matrix

eigenvectors of the system

cumulative Gaussian distribution function
y? density function with v ; degrees-of-freedom
Lagrangian

deterministic value of (e)

matrix transpose

approximately equal to

space of real numbers

determinant of matrix (e)

belongs to

maps into

[» norm of (e)

mean of (e)

degrees-of-freedom
exponential function
probability density function
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