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1

Introduction

From its inception, random matrix theory has been heavily influenced

by its applications in physics, statistics and engineering. The landmark

contributions to the theory of random matrices of Wishart (1928) [311],

Wigner (1955) [303], and Marc̆enko and Pastur (1967) [170] were moti-

vated to a large extent by practical experimental problems. Nowadays,

random matrices find applications in fields as diverse as the Riemann

hypothesis, stochastic differential equations, condensed matter physics,

statistical physics, chaotic systems, numerical linear algebra, neural

networks, multivariate statistics, information theory, signal processing,

and small-world networks. Despite the widespread applicability of the

tools and results in random matrix theory, there is no tutorial reference

that gives an accessible overview of the classical theory as well as the

recent results, many of which have been obtained under the umbrella

of free probability theory.

In the last few years, a considerable body of work has emerged in the

communications and information theory literature on the fundamental

limits of communication channels that makes substantial use of results

in random matrix theory.

The purpose of this monograph is to give a tutorial overview of ran-

1
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2 Introduction

dom matrix theory with particular emphasis on asymptotic theorems

on the distribution of eigenvalues and singular values under various as-

sumptions on the joint distribution of the random matrix entries. While

results for matrices with fixed dimensions are often cumbersome and

offer limited insight, as the matrices grow large with a given aspect

ratio (number of columns to number of rows), a number of powerful

and appealing theorems ensure convergence of the empirical eigenvalue

distributions to deterministic functions.

The organization of this monograph is the following. Section 1.1

introduces the general class of vector channels of interest in wireless

communications. These channels are characterized by random matrices

that admit various statistical descriptions depending on the actual ap-

plication. Section 1.2 motivates interest in large random matrix theory

by focusing on two performance measures of engineering interest: Shan-

non capacity and linear minimum mean-square error, which are deter-

mined by the distribution of the singular values of the channel matrix.

The power of random matrix results in the derivation of asymptotic

closed-form expressions is illustrated for channels whose matrices have

the simplest statistical structure: independent identically distributed

(i.i.d.) entries. Section 1.3 gives a brief historical tour of the main re-

sults in random matrix theory, from the work of Wishart on Gaus-

sian matrices with fixed dimension, to the recent results on asymptotic

spectra. Chapter 2 gives a tutorial account of random matrix theory.

Section 2.1 focuses on the major types of random matrices considered

in the literature, as well on the main fixed-dimension theorems. Sec-

tion 2.2 gives an account of the Stieltjes, η, Shannon, Mellin, R- and

S-transforms. These transforms play key roles in describing the spec-

tra of random matrices. Motivated by the intuition drawn from various

applications in communications, the η and Shannon transforms turn

out to be quite helpful at clarifying the exposition as well as the state-

ment of many results. Considerable emphasis is placed on examples

and closed-form expressions. Section 2.3 uses the transforms defined in

Section 2.2 to state the main asymptotic distribution theorems. Section

2.4 presents an overview of the application of Voiculescu’s free proba-

bility theory to random matrices. Recent results on the speed of con-

vergence to the asymptotic limits are reviewed in Section 2.5. Chapter
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1.1. Wireless Channels 3

3 applies the results in Chapter 2 to the fundamental limits of wire-

less communication channels described by random matrices. Section 3.1

deals with direct-sequence code-division multiple-access (DS-CDMA),

with and without fading (both frequency-flat and frequency-selective)

and with single and multiple receive antennas. Section 3.2 deals with

multi-carrier code-division multiple access (MC-CDMA), which is the

time-frequency dual of the model considered in Section 3.1. Channels

with multiple receive and transmit antennas are reviewed in Section

3.3 using models that incorporate nonideal effects such as antenna cor-

relation, polarization, and line-of-sight components.

1.1 Wireless Channels

The last decade has witnessed a renaissance in the information theory

of wireless communication channels. Two prime reasons for the strong

level of activity in this field can be identified. The first is the grow-

ing importance of the efficient use of bandwidth and power in view

of the ever-increasing demand for wireless services. The second is the

fact that some of the main challenges in the study of the capacity of

wireless channels have only been successfully tackled recently. Fading,

wideband, multiuser and multi-antenna are some of the key features

that characterize wireless channels of contemporary interest. Most of

the information theoretic literature that studies the effect of those fea-

tures on channel capacity deals with linear vector memoryless channels

of the form

y = Hx + n (1.1)

where x is the K-dimensional input vector, y is the N -dimensional

output vector, and the N -dimensional vector n models the additive

circularly symmetric Gaussian noise. All these quantities are, in gen-

eral, complex-valued. In addition to input constraints, and the degree

of knowledge of the channel at receiver and transmitter, (1.1) is char-

acterized by the distribution of the N × K random channel matrix H

whose entries are also complex-valued.

The nature of the K and N dimensions depends on the actual ap-

plication. For example, in the single-user narrowband channel with nT
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4 Introduction

and nR antennas at transmitter and receiver, respectively, we identify

K = nT and N = nR; in the DS-CDMA channel, K is the number of

users and N is the spreading gain.

In the multi-antenna case, H models the propagation coefficients

between each pair of transmit-receive antennas. In the synchronous DS-

CDMA channel, in contrast, the entries of H depend on the received

signature vectors (usually pseudo-noise sequences) and the fading coef-

ficients seen by each user. For a channel with J users each transmitting

with nT antennas using spread-spectrum with spreading gain G and a

receiver with nR antennas, K = nTJ and N = nRG.

Naturally, the simplest example is the one where H has i.i.d. entries,

which constitutes the canonical model for the single-user narrowband

multi-antenna channel. The same model applies to the randomly spread

DS-CDMA channel not subject to fading. However, as we will see, in

many cases of interest in wireless communications the entries of H are

not i.i.d.

1.2 The Role of the Singular Values

Assuming that the channel matrix H is completely known at the re-

ceiver, the capacity of (1.1) under input power constraints depends on

the distribution of the singular values of H. We focus in the simplest

setting to illustrate this point as crisply as possible: suppose that the

entries of the input vector x are i.i.d. For example, this is the case

in a synchronous DS-CDMA multiaccess channel or for a single-user

multi-antenna channel where the transmitter cannot track the channel.

The empirical cumulative distribution function of the eigenvalues

(also referred to as the spectrum or empirical distribution) of an n× n

Hermitian matrix A is denoted by F
n
A defined as1

F
n
A(x) =

1

n

n
∑

i=1

1{λi(A) ≤ x}, (1.2)

where λ1(A), . . . , λn(A) are the eigenvalues of A and 1{·} is the indi-

cator function.

1 If Fn
A

converges as n → ∞, then the corresponding limit (asymptotic empirical distribution
or asymptotic spectrum) is simply denoted by FA(x).
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1.2. The Role of the Singular Values 5

Now, consider an arbitrary N × K matrix H. Since the nonzero

singular values of H and H† are identical, we can write

NF
N
HH†(x) − Nu(x) = KF

K
H†H

(x) − Ku(x) (1.3)

where u(x) is the unit-step function (u(x) = 0, x ≤ 0; u(x) = 1, x > 0).

With an i.i.d. Gaussian input, the normalized input-output mutual

information of (1.1) conditioned on H is2

1

N
I(x;y|H) =

1

N
log det

(

I + SNR HH†
)

(1.4)

=
1

N

N
∑

i=1

log
(

1 + SNR λi(HH†)
)

=

∫ ∞

0
log (1 + SNR x) dF

N
HH†(x) (1.5)

with the transmitted signal-to-noise ratio (SNR)

SNR =
NE[||x||2]
KE[||n||2] , (1.6)

and with λi(HH†) equal to the ith squared singular value of H.

If the channel is known at the receiver and its variation over time

is stationary and ergodic, then the expectation of (1.4) over the dis-

tribution of H is the channel capacity (normalized to the number of

receive antennas or the number of degrees of freedom per symbol in

the CDMA channel). More generally, the distribution of the random

variable (1.4) determines the outage capacity (e.g. [22]).

Another important performance measure for (1.1) is the minimum

mean-square-error (MMSE) achieved by a linear receiver, which deter-

mines the maximum achievable output signal-to-interference-and-noise

2The celebrated log-det formula has a long history: In 1964, Pinsker [204] gave a general
log-det formula for the mutual information between jointly Gaussian random vectors but
did not particularize it to the linear model (1.1). Verdú [270] in 1986 gave the explicit form
(1.4) as the capacity of the synchronous DS-CDMA channel as a function of the signature
vectors. The 1991 textbook by Cover and Thomas [47] gives the log-det formula for the

capacity of the power constrained vector Gaussian channel with arbitrary noise covariance
matrix. In the mid 1990s, Foschini [77] and Telatar [250] gave (1.4) for the multi-antenna
channel with i.i.d. Gaussian entries. Even prior to those works, the conventional analyses
of Gaussian channels with memory via vector channels (e.g. [260, 31]) used the fact that
the capacity can be expressed as the sum of the capacities of independent channels whose
signal-to-noise ratios are governed by the singular values of the channel matrix.
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6 Introduction

ratio (SINR). For an i.i.d. input, the arithmetic mean over the users (or

transmit antennas) of the MMSE is given, as function of H, by [271]

1

K
min

M∈C
K×N

E
[

||x − My||2
]

=
1

K
tr

{

(

I + SNR H†H
)−1

}

(1.7)

=
1

K

K
∑

i=1

1

1 + SNR λi(H†H)
(1.8)

=

∫ ∞

0

1

1 + SNR x
dF

K
H†H

(x)

=
N

K

∫ ∞

0

1

1 + SNR x
dF

N
HH†(x) − N − K

K

(1.9)

where the expectation in (1.7) is over x and n while (1.9) follows from

(1.3). Note, incidentally, that both performance measures as a function

of SNR are coupled through

SNR

d

dSNR

loge det
(

I + SNR HH†
)

= K − tr

{

(

I + SNR H†H
)−1

}

.

As we see in (1.5) and (1.9), both fundamental performance measures

(capacity and MMSE) are dictated by the distribution of the empirical

(squared) singular value distribution of the random channel matrix.

In the simplest case of H having i.i.d. Gaussian entries, the density

function corresponding to the expected value of F
N
HH† can be expressed

explicitly in terms of the Laguerre polynomials. Although the integrals

in (1.5) and (1.9) with respect to such a probability density function

(p.d.f.) lead to explicit solutions, limited insight can be drawn from

either the solutions or their numerical evaluation. Fortunately, much

deeper insights can be obtained using the tools provided by asymptotic

random matrix theory. Indeed, a rich body of results exists analyzing

the asymptotic spectrum of H as the number of columns and rows goes

to infinity while the aspect ratio of the matrix is kept constant.

Before introducing the asymptotic spectrum results, some justifica-

tion for their relevance to wireless communication problems is in order.

In CDMA, channels with K and N between 32 and 64 would be fairly

typical. In multi-antenna systems, arrays of 8 to 16 antennas would be
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1.2. The Role of the Singular Values 7

at the forefront of what is envisioned to be feasible in the foreseeable fu-

ture. Surprisingly, even quite smaller system sizes are large enough for

the asymptotic limit to be an excellent approximation. Furthermore,

not only do the averages of (1.4) and (1.9) converge to their limits

surprisingly fast, but the randomness in those functionals due to the

random outcome of H disappears extremely quickly. Naturally, such

robustness has welcome consequences for the operational significance

of the resulting formulas.

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

β=

0.2

0.5

1

Fig. 1.1 The Marc̆enko-Pastur density function (1.10) for β = 1, 0.5, 0.2.

As we will see in Chapter 2, a central result in random matrix theory

states that when the entries of H are zero-mean i.i.d. with variance 1
N

,

the empirical distribution of the eigenvalues of H†H converges almost

surely, as K,N → ∞ with K
N

→ β, to the so-called Marc̆enko-Pastur

law whose density function is

fβ(x) =

(

1 − 1

β

)+

δ(x) +

√

(x − a)+(b − x)+

2πβx
(1.10)

where (z)+ = max (0, z) and

a = (1 −
√

β)2 b = (1 +
√

β)2. (1.11)
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8 Introduction
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10

Fig. 1.2 The Marc̆enko-Pastur density function (1.12) for β = 10, 1, 0.5, 0.2. Note that the
mass points at 0, present in some of them, are not shown.

Analogously, the empirical distribution of the eigenvalues of HH†

converges almost surely to a nonrandom limit whose density function

is (cf. Fig. 1.2)

f̃β(x) = (1 − β) δ(x) + β fβ(x)

= (1 − β)+ δ(x) +

√

(x − a)+(b − x)+

2πx
. (1.12)

Using the asymptotic spectrum, the following closed-form expres-

sions for the limits of (1.4) [275] and (1.7) [271] can be obtained:

(1.13)

1

N
log det

(

I + SNR HH†
)

→ β

∫ b

a

log(1 + SNR x)fβ(x) dx

= β log

(

1 + SNR − 1

4
F (SNR , β)

)

+ log

(

1 + SNR β − 1

4
F (SNR , β)

)

− log e

4 SNR

F (SNR , β) (1.14)
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1.2. The Role of the Singular Values 9

1

K
tr

{

(

I + SNR H†H
)−1

}

→
∫ b

a

1

1 + SNR x
fβ(x) dx (1.15)

= 1 − F(SNR , β)

4β SNR

(1.16)

with

F(x, z) =

(

√

x(1 +
√

z)2 + 1 −
√

x(1 −
√

z)2 + 1

)2

. (1.17)

N = 50

SNR SNR

SNRSNR

N = 3 N = 5

N = 15

0 2 4 6 8 10
0

1

2

3

4

0 2 4 6 8 10
0

1

2

3

4

0 2 4 6 8 10
0

1

2

3

4

0 2 4 6 8 10
0

1

2

3

4

Fig. 1.3 Several realizations of the left-hand side of (1.13) are compared to the asymptotic
limit in the right-hand side of (1.13) in the case of β = 1 for sizes: N = 3, 5, 15, 50.

The convergence of the singular values of H exhibits several key

features with engineering significance:

• Insensitivity of the asymptotic eigenvalue distribution to

the shape of the p.d.f. of the random matrix entries. This

property implies, for example, that in the case of a single-

user multi-antenna link, the results obtained asymptotically

Full text available at: http://dx.doi.org/10.1561/0100000001



10 Introduction

hold for any type of fading statistics. It also implies that

restricting the CDMA waveforms to be binary-valued incurs

no loss in capacity asymptotically.3

• Ergodic behavior: it suffices to observe a single matrix realiza-

tion in order to obtain convergence to a deterministic limit.

In other words, the eigenvalue histogram of any matrix re-

alization converges almost surely to the average asymptotic

eigenvalue distribution. This “hardening” of the singular val-

ues lends operational significance to the capacity formulas

even in cases where the random channel parameters do not

vary ergodically within the span of a codeword.
• Fast convergence of the empirical singular-value distribution

to its asymptotic limit. Asymptotic analysis is especially use-

ful when the convergence is so fast that, even for small values

of the parameters, the asymptotic results come close to the

finite-size results (cf. Fig. 1.3). Recent works have shown that

the convergence rate is of the order of the reciprocal of the

number of entries in the random matrix [8, 110].

It is crucial for the explicit expressions of asymptotic capacity and

MMSE shown in (1.14) and (1.16), respectively, that the channel matrix

entries be i.i.d. Outside that model, explicit expressions for the asymp-

totic singular value distribution such as (1.10) are exceedingly rare.

Fortunately, in other random matrix models, the asymptotic singular

value distribution can indeed be characterized, albeit not in explicit

form, in ways that enable the analysis of capacity and MMSE through

the numerical solution of nonlinear equations.

The first applications of random matrix theory to wireless commu-

nications were the works of Foschini [77] and Telatar [250] on narrow-

band multi-antenna capacity; Verdú [271] and Tse-Hanly [256] on the

optimum SINR achievable by linear multiuser detectors for CDMA;

Verdú [271] on optimum near-far resistance; Grant-Alexander [100],

3The spacing between consecutive eigenvalues, when properly normalized, was conjectured
in [65, 66] to converge in distribution to a limit that does not depend on the shape of the
p.d.f. of the entries. The universality of the level spacing distribution and other microscopic
(local) spectral characteristics has been extensively discussed in recent theoretical physics
and mathematical literature [174, 106, 200, 52, 54].
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1.3. Random Matrices: A Brief Historical Account 11

Verdú-Shamai [275, 217], Rapajic-Popescu [206], and Müller [185] on

the capacity of CDMA. Subsequently, a number of works, surveyed in

Chapter 3, have successfully applied random matrix theory to a vari-

ety of problems in the design and analysis of wireless communication

systems.

Not every result of interest in the asymptotic analysis of channels of

the form (1.1) has made use of the asymptotic eigenvalue tools that are

of central interest in this paper. For example, the analysis of single-user

matched filter receivers [275] and the analysis of the optimum asymp-

totic multiuser efficiency [258] have used various versions of the central-

limit theorem; the analysis of the asymptotic uncoded error probability

as well as the rates achievable with suboptimal constellations have used

tools from statistical physics such as the replica method [249, 103].

1.3 Random Matrices: A Brief Historical Account

In this subsection, we provide a brief introduction to the main devel-

opments in the theory of random matrices. A more detailed account

of the theory itself, with particular emphasis on the results that are

relevant for wireless communications, is given in Chapter 2.

Random matrices have been a part of advanced multivariate statis-

tical analysis since the end of the 1920s with the work of Wishart [311]

on fixed-size matrices with Gaussian entries. The first asymptotic re-

sults on the limiting spectrum of large random matrices were obtained

by Wigner in the 1950s in a series of papers [303, 305, 306] motivated by

nuclear physics. Replacing the self-adjoint Hamiltonian operator in an

infinite-dimensional Hilbert space by an ensemble of very large Hermi-

tian matrices, Wigner was able to bypass the Schrödinger equation and

explain the statistics of experimentally measured atomic energy levels

in terms of the limiting spectrum of those random matrices. Since then,

research on the limiting spectral analysis of large-dimensional random

matrices has continued to attract interest in probability, statistics and

physics.

Wigner [303] initially dealt with an n×n symmetric matrix A whose

diagonal entries are 0 and whose upper-triangle entries are independent

and take the values ±1 with equal probability. Through a combinatorial

Full text available at: http://dx.doi.org/10.1561/0100000001
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Fig. 1.4 The semicircle law density function (1.18) compared with the histogram of the
average of 100 empirical density functions for a Wigner matrix of size n = 100.

derivation of the asymptotic eigenvalue moments involving the Cata-

lan numbers, Wigner showed that, as n → ∞, the averaged empirical

distribution of the eigenvalues of 1√
n
A converges to the semicircle law

whose density is

w(x) =

{

1
2π

√
4 − x2 if |x| ≤ 2

0 if |x| > 2
(1.18)

Later, Wigner [305] realized that the same result would be obtained if

the random selection was sampled from a zero-mean (real or complex)

Gaussian distribution. In that case, it is even possible to find an exact

formula for the joint distribution of the eigenvalues as a function of

n [176]. The matrices treated in [303] and [305] are special cases of

Wigner matrices, defined as Hermitian matrices whose upper-triangle

entries are zero-mean and independent. In [306], Wigner showed that

the asymptotic distribution of any Wigner matrix is the semicircle law

(1.18) even if only a unit second-moment condition is placed on its

entries.

Figure 1.4 compares the semicircle law density function (1.18) with

the average of 100 empirical density functions of the eigenvalues of a

10 × 10 Wigner matrix whose diagonal entries are 0 and whose upper-

triangle entries are independent and take the values ±1 with equal

probability.

If no attempt is made to symmetrize the square matrix A and all

its entries are chosen to be i.i.d., then the eigenvalues of 1√
n
A are
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1.3. Random Matrices: A Brief Historical Account 13

asymptotically uniformly distributed on the unit circle of the complex

plane. This is commonly referred to as Girko’s full-circle law, which is

exemplified in Figure 1.5. It has been proved in various degrees of rigor

and generality in [173, 197, 85, 68, 9]. If the off-diagonal entries Ai,j and

Aj,i are Gaussian and pairwise correlated with correlation coefficient

ρ, then [238] shows that the eigenvalues of 1√
n
A are asymptotically

uniformly distributed on an ellipse in the complex plane whose axes

coincide with the real and imaginary axes and have radius 1 + ρ and

1− ρ, respectively. When ρ = 1, the projection on the real axis of such

elliptic law is equal to the semicircle law.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Fig. 1.5 The full-circle law and the eigenvalues of a realization of a matrix of size n = 500.

Most of the results surveyed above pertain to the eigenvalues of

square matrices with independent entries. However, as we saw in Sec-

tion 1.2, key problems in wireless communications involve the singular

values of rectangular matrices H; even if those matrices have indepen-

dent entries, the matrices HH† whose eigenvalues are of interest do not

have independent entries.
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14 Introduction

When the entries of H are zero-mean i.i.d. Gaussian, HH† is com-

monly referred to as a Wishart matrix. The analysis of the joint dis-

tribution of the entries of Wishart matrices is as old as random matrix

theory itself [311]. The joint distribution of the eigenvalues of such ma-

trices is known as the Fisher-Hsu-Roy distribution and was discovered

simultaneously and independently by Fisher [75], Hsu [120], Girshick

[89] and Roy [210]. The corresponding marginal distributions can be

expressed in terms of the Laguerre polynomials [125].

The asymptotic theory of singular values of rectangular matrices

has concentrated on the case where the matrix aspect ratio converges

to a constant

K

N
→ β (1.19)

as the size of the matrix grows.

The first success in the quest for the limiting empirical singular

value distribution of rectangular random matrices is due to Marc̆enko

and Pastur [170] in 1967. This landmark paper considers matrices of

the form

W = W0 + HTH† (1.20)

where T is a real diagonal matrix independent of H, W0 is a determin-

istic Hermitian matrix, and the columns of the N × K matrix H are

i.i.d. random vectors whose distribution satisfies a certain symmetry

condition (encompassing the cases of independent entries and uniform

distribution on the unit sphere). In the special case where W0 = 0,

T = I, and H has i.i.d. entries with variance 1
N

, the limiting spectrum

of W found in [170] is the density in (1.10). In the special case of square

H, the asymptotic density function of the singular values, correspond-

ing to the square root of the random variable whose p.d.f. is (1.10) with

β = 1, is equal to the quarter circle law:

q(x) =
1

π

√

4 − x2, 0 ≤ x ≤ 2. (1.21)

As we will see in Chapter 2, in general (W0 �= 0 or T �= I) no closed-

form expression is known for the limiting spectrum. Rather, [170] char-
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acterized it indirectly through its Stieltjes transform,4 which uniquely

determines the distribution function. Since [170], this transform, which

can be viewed as an iterated Laplace transform, has played a funda-

mental role in the theory of random matrices.
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Fig. 1.6 The quarter circle law compared a histogram of the average of 100 empirical sin-
gular value density functions of a matrix of size 100 × 100.

Figure 1.6 compares the quarter circle law density function (1.21)

with the average of 100 empirical singular value density functions of

a 100 × 100 square matrix H with independent zero-mean complex

Gaussian entries with variance 1
100 .

Despite the ground-breaking nature of Marc̆enko and Pastur’s con-

tribution, it remained in obscurity for quite some time. For example, in

1977 Grenander and Silverstein [101] rediscovered (1.10) motivated by

a neural network problem where the entries of H take only two values.

Also unaware of the in-probability convergence result of [170], in 1978

Wachter [296] arrived at the same solution but in the stronger sense of

almost sure convergence under the condition that the entries of H have

4The Stieltjes transform is defined in Section 2.2.1. The Dutch mathematician T. J. Stieltjes
(1856-1894) provided the first inversion formula for this transform in [246].
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uniformly bounded central moments of order higher than 2 as well as

the same means and variances within a row. The almost sure conver-

gence for the model (1.20) considered in [170] was shown in [227]. Even

as late as 1991, rediscoveries of the Marc̆enko-Pastur law can be found

in the Physics literature [50].

The case where W = 0 in (1.20), T is not necessarily diagonal but

Hermitian and H has i.i.d. entries was solved by Silverstein [226] also

in terms of the Stieltjes transform.

The special case of (1.20) where W0 = 0, H has zero-mean i.i.d.

Gaussian entries and

T = (YY†)−1

where the K × m matrix Y has also zero-mean i.i.d. Gaussian entries

with variance 1
m

, independent of H, is called a (central) multivariate

F -matrix. Because of the statistical applications of such matrix, its

asymptotic spectrum has received considerable attention culminating

in the explicit expression found by Silverstein [223] in 1985.

The speed of convergence to the limiting spectrum is studied in

[8]. For our applications it is more important, however, to assess the

speed of convergence of the performance measures (e.g. capacity and

MMSE) to their asymptotic limits. Note that the sums in the right

side of (1.4) involve dependent terms. Thanks to that dependence, the

convergence in (1.13) and (1.15) is quite remarkable: the deviations

from the respective limits multiplied by N converge to Gaussian random

variables with fixed mean5 and variance. This has been established

for general continuous functions, not just the logarithmic and rational

functions of (1.13) and (1.15), in [15] (see also [131]).

The matrix of eigenvectors of Wishart matrices is known to be

uniformly distributed on the manifold of unitary matrices (the so-

called Haar measure) (e.g. [125, 67]). In the case of HH† where H

has i.i.d. non-Gaussian entries, much less success has been reported in

the asymptotic characterization of the eigenvectors [153, 224, 225].

For matrices whose entries are Gaussian and correlated according

to a Toeplitz structure, an integral equation is known for the Stielt-

5The mean is zero in the interesting special case where H has i.i.d. complex Gaussian
entries [15].
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jes transform of the asymptotic spectrum as a function of the Fourier

transform of the correlation function [147, 198, 55]. Other results on

random matrices with correlated and weakly dependent entries can be

found in [170, 196, 146, 53, 199, 145]. Reference [191], in turn, consid-

ers a special class of random matrices with dependent entries that falls

outside the Marc̆enko-Pastur framework and that arises in the context

of the statistical physics of disordered systems.

Incidentally, another application of the Stieltjes transform approach

is the generalization of Wigner’s semicircle law to the sum of a Wigner

matrix and a deterministic Hermitian matrix. Provided Lindeberg-type

conditions are satisfied by the entries of the random component, [147]

obtained the deformed semicircle law, which is only known in closed-

form in the Stieltjes transform domain.

Sometimes, an alternative to the characterization of asymptotic

spectra through the Stieltjes transform is used, based on the proof

of convergence and evaluation of moments such as 1
N

tr{(HH†)k}. For

most cases of practical interest, the limiting spectrum has bounded

support. Thus, the moment convergence theorem can be applied

to obtain results on the limiting spectrum through its moments

[297, 314, 315, 313].

An important recent development in asymptotic random matrix

analysis has been the realization that the non-commutative free prob-

ability theory introduced by Voiculescu [283, 285] in the mid-1980s is

applicable to random matrices. In free probability, the classical notion

of independence of random variables is replaced by that of “freeness”

or “free independence”.

The power of the concept of free random matrices is best illustrated

by the following setting. In general, we cannot find the eigenvalues of

the sums of random matrices from the eigenvalues of the individual

matrices (unless they have the same eigenvectors), and therefore the

asymptotic spectrum of the sum cannot be obtained from the indi-

vidual asymptotic spectra. An obvious exception is the case of inde-

pendent diagonal matrices in which case the spectrum of the sum is

simply the convolution of the spectra. When the random matrices are

asymptotically free [287], the asymptotic spectrum of the sum is also

obtainable from the individual asymptotic spectra. Instead of convolu-
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tion (or equivalently, summing the logarithms of the individual Fourier

transforms), the “free convolution” is obtained through the sum of

the so-called R-transforms introduced by Voiculescu [285]. Examples

of asymptotically free random matrices include independent Gaussian

random matrices, and A and UBU∗ where A and B are Hermitian

and U is uniformly distributed on the manifold of unitary matrices

and independent of A and B.

In free probability, the role of the Gaussian distribution in classical

probability is taken by the semicircle law (1.18) in the sense of the free

analog of the central limit theorem [284]: the spectrum of the normal-

ized sum of free random matrices (with given spectrum) converges to

the semicircle law (1.18). Analogously, the spectrum of the normalized

sum of free random matrices with unit rank converges to the Marc̆enko-

Pastur law (1.10), which then emerges as the free counterpart of the

Poisson distribution [239, 295]. In the general context of free random

variables, Voiculescu has found an elegant definition of free-entropy

[288, 289, 291, 292, 293]. A number of structural properties have been

shown for free-entropy in the context of non-commutative probabil-

ity theory (including the counterpart of the entropy-power inequality

[248]). The free counterpart to Fisher’s information has been investi-

gated in [289]. However, a free counterpart to the divergence between

two distributions is yet to be discovered.

A connection between random matrices and information theory was

made by Balian [17] in 1968 considering the inverse problem in which

the distribution of the entries of the matrix must be determined while

being consistent with certain constraints. Taking a maximum entropy

method, the ensemble of Gaussian matrices is the solution to the prob-

lem where only a constraint on the energy of the singular values is

placed.
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