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Abstract

Following the success of hashing methods for multidi-

mensional indexing, more and more works are interested

in embedding visual feature space in compact hash codes.

Such approaches are not an alternative to using index struc-

tures but a complementary way to reduce both the mem-

ory usage and the distance computation cost. Several data

dependent hash functions have notably been proposed to

closely fit data distribution and provide better selectivity

than usual random projections such as LSH. However, im-

provements occur only for relatively small hash code sizes

up to 64 or 128 bits. As discussed in the paper, this is mainly

due to the lack of independence between the produced hash

functions. We introduce a new hash function family that

attempts to solve this issue in any kernel space. Rather

than boosting the collision probability of close points, our

method focus on data scattering. By training purely ran-

dom splits of the data, regardless the closeness of the train-

ing samples, it is indeed possible to generate consistently

more independent hash functions. On the other side, the

use of large margin classifiers allows to maintain good gen-

eralization performances. Experiments show that our new

Random Maximum Margin Hashing scheme (RMMH) out-

performs four state-of-the-art hashing methods, notably in

kernel spaces. 1

1. Introduction

10 years after the first LSH [6] version, hashing meth-

ods are gaining more and more interest in the computer vi-

sion community. Embedding visual feature spaces in very

compact hash indeed allow to drastically scale up many

computer vision applications (from 10 to 1000 times larger

datasets). One advantage of hashing methods over trees

or other structures is that they allow simultaneously effi-

1Acknowledgement: This work was co-funded by the EU through the

Integrated Project GLOCAL http://www.glocal-project.eu/

and by the French Agropolis foundation through the project Pl@ntNet

http://www.plantnet-project.org/

cient indexing and data compression. Hash codes can in-

deed be used either to gather features into buckets but also

to approximate exact similarity measures by efficient hash

code comparisons (typically a hamming distance on binary

codes). Memory usage and time costs can therefore be dras-

tically reduced. Hashing methods can be classified across

three main categories:

Data independent hashing functions: in these meth-

ods, the hashing function family is defined uniquely and in-

dependently from the data to be processed. We can distin-

guish the one based on randomized process, to which Lo-

cality Sensitive Hashing (LSH) functions belong (Lp sta-

ble [4], min-hash [3], random fourier features [17]), and

the one based on a deterministic structuring, including grids

[22], space filling curves [10, 16] or more recently, lattices

[7, 19]. The randomized ones are usually considered as

more adaptive to heterogeneous data distributions and are

thus usually more efficient than deterministic hash func-

tions. However, some recent works did show that using

more complex lattices may be more effective [7, 19], at

least under the L2 metric and for the studied data distri-

butions. Most recent research on randomized methods did

focus more on new similarity measures, notably the work of

Raginsky et al. who defined a hashing function sensitive to

any Shift-Invariant Kernel [17].

Data dependent hashing functions: In that case, the

hashing function family is defined uniquely only for a

given training dataset and the hash functions usually involve

similarity comparisons with some features of the training

dataset. The objective of these methods is to closely fit the

data distribution in the feature space in order to achieve a

better selectivity while preserving locality as much as possi-

ble. Among the most popular methods, we can cite K-mean

based hashing [15], Spectral Hashing (SH) [23] based on

graph partitioning theory, subspaces product quantization

[8] and Restricted Boltzmann Machine (RBM) [18] based

on the training of a multilayer neural network. KLSH [11],

is a slight different approach since its main objective was to

generalize hashing to any Mercer kernel rather than outper-

forming data independent methods.
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Figure 1. LSH vs Spectral Hashing for increasing hash code sizes

(Semi-)supervised data dependent hashing functions:

In this last category, the training dataset contains additional

supervised information, e.g. class labels [21, 12] or pair-

wise constraints [14]. These methods usually attempt to

minimize a cost function on the hash functions set, com-

bining an error term (to fit training data) and a regulariza-

tion term (to avoid over-fitting). Our method being fully

unsupervised, we did not consider these methods in our ex-

periments.

Efficiency improvements of data dependent methods

over independent ones have been shown in several studies

[8, 23, 18]. But this acts only for limited hash code sizes,

up to 64 or 128. Indeed, the drawback of data dependent

hash functions is that their benefit degrades when increas-

ing the number of hash functions, due to a lack of inde-

pendence between the hash functions. This is illustrated by

Figure 1 showing the performance of a standard LSH func-

tion compared to the popular Spectral Hashingmethod [23],

known to outperform several other data dependent meth-

ods. This conclusion is confirmed by [17] who did show

that their Shift-Invariant Kernel hashing function (data in-

dependent) dramatically outperforms Spectral Hashing for

all hash code sizes above 64 bits.

Our new method answers to the two limitations of previ-

ous data dependent methods: (i) It is usable for any Mercer

Kernel (ii) it produces more independent hashing functions.

2. Hashing in kernel spaces

Let us first introduce some notations. We consider a

dataset X of N feature vectors xi lying in a Hilbert space

X. For any two points x, y ∈ X, we denote as x.y the inner

product associated with X and ‖x‖ =
√
x.x represents the

norm of any vector x. We generally denote as H, a family
of binary hash functions h : X → {−1, 1}.
If we consider hash function families based on random hy-

perplanes we have

h(x) = sgn (w.x+ b) (1)

where w ∈ X is a random variable distributed according to

pw and b is a scalar random variable distributed according

to pb. When working in the Euclidean space X = R
d and

choosing pw = N (0, I) and b = 0, we get the popular LSH
function family sensitive to the inner product [2, 11]. In that

case, for any two points q, v ∈ R
d we have:

Pr [h(q) = h(v)] = 1 − 1

π
cos−1

(

q.v

‖q‖ ‖v‖

)

(2)

Unfortunately, this hashing function family can not be

generalized in arbitrary kernalized spaces. Let κ : X
2 → R

denote a symmetric kernel function satisfying Mercer’s the-

orem, so that κ can be expressed as an inner product in some

unknown Hilbert space through a mapping function Φ such
as κ(x, y) = Φ(x).Φ(y). We can still define a kernalized
hashing function family as:

h(x) = sgn (κ(w, x) + b) = sgn (Φ(w).Φ(x) + b) (3)

But in that case, Φ being usually unknown, it is not possible
to draw Φ(w) from a normal distribution.
Recently, Raginsky et al. [17], did introduce a new hashing

scheme for the specific case of shift invariant kernels, i.e

Mercer kernels verifying κ(x, y) = κ(x− y). They notably
define the following family sensitive to the RBF kernel:

h(x) = sgn (cos (w.x+ b)) (4)

where w is drawn from pw = N (0, γI), γ being the ker-

nel band width, and b is uniformly distributed in [0, 2π].
Although it is proved that a unique distribution pw may be

found for any shift invariant kernel, other shift invariant ker-

nels have not been addressed for now. The proposedmethod

is therefore limited to the RBF kernel.

The only method proposing a solution for anyMercer kernel

is KLSH [11]. In this work, the authors suggest to approx-

imate a normal distribution in the kernel space thanks to a

data dependent hashing function using only kernel compar-

isons. The principle is based on the central limit theorem

which states that the mean of a sufficiently large number of

independent random variables will be approximately nor-

mally distributed. The authors suggest to average p samples

selected at random from X and to use a Kernel-PCA like

strategy to whiten the resulting data. More formally, they

define the following hashing function family:

h(x) = sgn

 

p
X

i=1

wiκ(x, xi)

!

(5)

w = K
−

1

2 et

whereK is a p×p kernel matrix computed on the p training

samples xi, and et is a random vector containing t ones
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Figure 2. LSH vs KLSH for increasing hash code sizes

at random positions (in order to randomly select t indices

among p). The authors show that interesting results may be

achieved on diversified kernels. The performance of KLSH

are however usually far from what we could expect with

a real normal distribution. The convergence of the central

limit theorem is indeed usually weak and depends on the

input data distribution. A good way to show how this weak

convergence affects the hashing quality, is to study KLSH

in the linear case (i.e. by using κ(x, y) = x.y in KLSH

algorithm) and to compare to a real normal distribution

(or at least the normal distribution produced by a standard

Gaussian generator). Figure 2 presents such result on

ImageNet-BOF dataset (see section 5), by comparing the

mean average precision of the exact 100-NN within the

hash codes produced by both methods (see section 5 for

details). It shows that the performance of KLSH is quickly

degrading when the number of hash functions increases.

For a hash code size of 256 bits, the mean average precision

is several times lower.

3. Random Maximum Margin Hashing

Our claim is that the lack of independence between hash

functions is the main issue affecting the performance of data

dependent hashing methods compared to data independent

ones. Indeed, the basic requirement of any hashing method

is that the hash function provide a uniform distribution of

hash values, or at least as uniform as possible. Non-uniform

distributions do increase the overall expected number of

collisions and therefore the cost of resolving them. For Lo-

cality Sensitive Hashing methods, we argue that this unifor-

mity constraint should not be relaxed too much even if we

aim at maximizing the collision probability of close points.

More formally, let us denote as hp = [h1, ..., hp] a binary
hash code of length p, lying in B

p = {−1, 1}p
, where the

hash functions hi are built from a hash function family H.
For data independent hashing methods, the resulting colli-

sion probability follows:

Prp(q, v) = Pr [hp(q) = hp(v)] = [f (d(q, v))]
p

where f(.) is the sensitivity function of the family H for a

given metric d(.), i.e the collision probability function of a
single hash function.

Data dependent hash functions usually aim at providing a

better sensitivity function than data independent ones. They

are indeed built to boost the collision probability of close

points while reducing the collision probability of irrelevant

point pairs. But when the hash functions are dependent

from each other, we have:

Prp(q, v)

Prp−1(q, v)
= Pr [hp(q) = hp(v)|hp−1(q) = hp−1(v)]

Without independence, the second term is usually increas-

ing with p and more and more diverging from the initial

sensitivity function. At a certain point, the number of irrel-

evant collisions might even be not reduced anymore.

Following these remarks, we consider uniformity of pro-

duced hash codes as a primary constraint for building an

efficient data dependent hash function family. For a dataset

drawn from a probability density function px defined on X,

an ideal hash function should respect:

∀p ∈ N
∗, ∀hi ∈ B

p

∫

h(x)=hi

px(x)dx = c (6)

where c is a constant (equal to 1
2p ). From this follows that

(i) each individual hash function should be balanced (when

p = 1):

∫

h(x)=1

px(x)dx =

∫

h(x)=0

px(x)dx =
1

2
(7)

and (ii) all hash functions must be independent from each

others.

In this work, we propose to approximate this ideal objec-

tive by training balanced and independent binary partitions

of the feature space. For each hash function, we pick up

M training points selected at random from the dataset X

and we randomly label half of the points with −1 and the
other half with 1. We denote as x+

j the resulting M
2 pos-

itive training samples and as x−j the M
2 negative training

samples. The hash function is then computed by training a

binary classifier hθ(x) such as:

h(x) = argmax
hθ

M
2

∑

j=1

hθ(x
+
j ) − hθ(x

−

j ) (8)

Now, the remaining question is how to choose the best type

of classifier. Obviously, this choice may be guided by the

nature of the targeted similarity measure. For non-metric or

non-vectorial similarity measures for instance, the choice
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may be very limited. In such context, a KNN classifier

might be very attractive in the sense that it is applicable

in all cases. Using a 1-NN classifier for kernalized feature

spaces would for exemple define the following hash func-

tion family:

h(x) = sgn

(

max
j

κ(x, x+j ) − max
j

κ(x, x−j )

)

(9)

Interestingly, it is easy to show that such family is in-

deed sensitive to the expected number of shared neighbors.

Shared neighbors information has already been proved to be

a consistent similarity measure for clustering purposes.

Better classifiers may however be found for kernel spaces.

In this way, let us now consider the second main require-

ment of an ideal Locality Sensitive Hashing function family,

that is preserving locality. Maximizing the collision proba-

bility of close points is indeed the primary principle of clas-

sical LSH methods. Within our balanced training strategy,

we should thus minimize the probability that a point close to

one of the training sample spill over the boundary between

the two classes. In this context, maximizing the margin be-

tween positive and negative samples appear to be very well

appropriated. This will indeed maximize the distance of all

training samples to the boundary and guaranty that neigh-

bors with a distance lower than the half margin do not spill

over. This remark is closely related to Vapnik & Chervo-

nenkis theory which states that large margin classifiers have

low capacities and thus provide better generalization. We

therefore propose to define our hash function family by the

set of hyperplanes maximizing the margin between random

balanced samples:

h(x) = sgn (wm.x+ bm) (10)

(wm, bm) = argmax
w,b

1

‖w‖
min

»

min
j

(w.x
+

j + b), min
j

(−w.x
−

j − b)

–

(11)

We refer to the proposed method as RMMH, for Random

Maximum Margin Hashing. In practice, optimal hyper-

planes wm can be computed easily by a Support Vector

Machine (SVM). For kernel spaces, wm’s can only be ex-

pressed as a weighted sum over support vectors, so that the

hash function becomes:

h(x) = sgn

(

m
∑

i=1

α∗

i κ(x∗i , x) + bm

)

(12)

where x∗i are the m support vectors selected by the SVM

(x∗i ∈
{

x+j , x−j
}

).

4. ParameterM

The number M of samples selected for each hash func-

tion is the only parameter of RMMH. Deriving a theoretical

optimal value for M unfortunately appears to be a tricky

task. It would require to formally model the distribution pw

of wm which is an open problem to the best of our knowl-

edge. Some interesting logical guidelines can however be

discussed according to three constraints: hashing effective-

ness, hashing efficiency and training efficiency.

Let us first discuss efficiency concerns. SVM training be-

ing based on quadratic programming, an acceptable training

cost implies thatM << N (even if it is an offline process).

But hashing efficiency is even more critical: hash functions

usually need to be computed online and the resulting cost

is part of the overall search cost. In the linear case, this is

obviously not a problem since a single projection on wm

needs to be computed, making our method as efficient as

normal projections. In kernel spaces however, the hashing

cost is higher since we need to compute as much kernel val-

ues as the number of support vectors, for each of the p hash

functions. Worst case hashing cost complexity is therefore

O(pM). So that an important requirement is that:

M <<
N

p
(13)

Let us now discuss effectiveness concerns related to the two

ideal objectives discussed above: uniformity and locality

preservation. The larger the training size M and the bet-

ter the uniformity. For an extreme value M = N (sup-

posing that the capacity of the classifier is large enough to

separate any training set of size N ), we would get a per-

fect uniformity and the probability of irrelevant collisions

would be minimal. In other words, the data would be per-

fectly shattered, to re-use Vapnik-Chervonenkis terminol-

ogy. But this would also lead to overfitting, since close

pairs would be shattered as well. On the other extreme,

too small training data would increase the error expectation

of the classifier and thus degrade the expected uniformity.

Data would be not shattered enough. The optimal value

for M is thus guided by the a tradeoff between uniformity

(data shattering) and locality preservation (generalization).

To estimate an approximate max bound on M , we can at

least control the risk that close points might be split in the

training data itself. Let us consider k-nearest neighbors as

relevant matches and any other pair of point as irrelevant. In

that case, the expected number of relevant pairs in a random

training set ofM points is equal to M2k
N
. If we want to have

this expected number lower than 1, we get:

M <

√

N

k
(14)

Interestingly, this value is sub-linear in dataset sizeN . With

this max bound value, the hashing cost complexity O(pM)

becomes O(p
√

N
k

) which guaranties that it does not be-

come preeminent for very large datasets.
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5. Experiments

We used the 3 following datasets to conduce our experi-

ments:

• SIFT: A set of about 11 M SIFT features [13] ex-

tracted from OxfordBuilding dataset2 (d=128).

• ImageNet-BOF: A set of 1.2 M Bags Of

SIFT Features (d=1000) provided within Ima-

geNet/PASCAL VOC Large Scale Visual Recognition

Challenge (ILSVRC3).

• Wikipedia-DescX: X ∈ [1 : 5], 5 datasets of 237
K global visual features extracted from ImageClef

wikipedia dataset 4. The 5 global visual features

are the following: Desc1=HSV histogram (d=120),

Desc2=Fourier histogram ([5], d=49), Desc 3=Hough

histogram ([5], d=40), Desc4=Weighted color his-

togram ([20], d=216).

From these initial data we derived different subsets, either

to study data size factor or to comply with implementation

constraints of some of the state-of-the-art methods exper-

imented in the paper. For example, SIFT-1M and BOF-

100K correspond respectively to subsamples of 1M SIFT

and 100K BOF.

All experiments are based on a leave-one-out procedure:

1000 queries are randomly selected from the dataset and

removed one by one before being searched. Hash codes are

compared with the Hamming distance and ranked accord-

ingly. Performance is measured by the Mean Average Pre-

cision of the produced ranked list of results using the exact

top k nearest neighbors as ground truth (k=100 when not

specified). The metric used for generating the exact k near-

est neighbors depends on the experiment and is discussed

respectively. Quantization effects related to the Hamming

space have to be considered when computing the Mean Av-

erage Precision: to compute the precision for a given neigh-

bor v in the ground truth, we first compute the Hamming

distance between its hash code and the query hash code. We

then consider in the precision’s calculation all items having

a Hamming distance lower or equal to this value.

For a better understanding of the results, we notice that low

MAP values can still provide very interesting performances.

Hash codes are indeed usually used only to filter the data,

either within a hash table or by a direct scanning (as done

in VA-file [22] for example). Retrieved results can still be

refined or re-ranked afterwards with the original metric. For

example, a map of 0.1 for k = 100 nearest neighbors means
that on average 1000 points would need to be re-ranked.

2http://www.robots.ox.ac.uk/˜vgg/data/oxbuildings/
3http://www.image-net.org/challenges/LSVRC/2010/
4http://www.imageclef.org/2010/wiki

5.1. Stability of parameterM

We first conduced an empirical study of M parameter.

Figure 3 shows MAP curves when varying M value, for

several data configuration. The first conclusion is that M

always reaches an empirical maximum, which confirms our

discussion of section 4 regarding the tradeoff between uni-

formity and locality preservation. It also shows that M is

rather stable around its maximum and that it evolves only

slightly for varying data sizes (from 10K to 1M) and vary-

ing number of neighbors (from 10 to 1000). The max bound

we introduced in Equation 14 is not always respected by the

empirical optimum, but the order of magnitude is correct.

In the following experiments of this paper, we used a fixed

valueM = 32.

0.00

0.10

0.20

0.30

0.40

0.50

 0  10  20  30  40  50  60  70  80  90  100

K
-N

N
 m

a
p

M

SIFT-1M 10-NN 128 bits
SIFT-1M 100-NN 128 bits

SIFT-1M 1000-NN 128 bits
BOF-10K 100NN 128 bits

BOF-100K 100NN 256 bits
BOF-1.2M 100NN 1024 bits

Figure 3. Impact of M parameter for various number of neighbors

and various dataset sizes

5.2. Comparison to state-of-the-art

5.2.1 Euclidean space

We first evaluate RMMH in R
d to allow comparisons to

state-of-the-art methods. We used a dataset of 1 M SIFT

features (SIFT-1M) normalized according to L2-norm, so
that the exact k-nearest neighbors according to L2 are

equivalent to the exact top k items according to the inner

product, the triangular L2 kernel or the RBF kernel. This al-

lowed us to compare a quite large range of methods on this

dataset: RMMH was experimented with 3 different kernels:

linear, triangular L2 and RBF. For the RBF kernel, we esti-

mated γ on real k-nn samples. We did compare RMMH to

two data dependent methods (KLSH [11] and spectral hash-

ing [23]) and two data independent methods (LSH and Ran-

dom Fourier Features, the RBF-sensitive method of Ragin-

sky et al. [17] discussed in section 2). For Spectral Hashing

and KLSH, we used the same number of training samples

than the one required by RMMH (p × M ). For KLSH we

used the L2 triangular kernel, since we got the best perfor-

mances with it. For LSH, we used the family sensitive to

the inner product (equation 1). For Raginsky’s method, we
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used the same RBF kernel parameter γ than for RMMH.

Results are provided in Figure 4. They show that RMMH

clearly outperforms the two other data dependent methods,

whatever the used kernel, even the linear one. Thanks to the

better independence of RMMH hash functions, the perfor-

mance are indeed less degrading when increasing the hash

code size. Comparisons to data independent methods show

that RMMH performs better for a wide range of useful hash

code sizes from 1 to about 800 bits which coversmany hash-

ing applications. Beyond the quite slight effectiveness gain,

the most important point is that RMMH succeed in produc-

ing independent enough hash functions. This means that we

can expect a good independence as well in kernel spaces

(that cannot be addressed by data independent methods).
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Figure 4. Comparison of RMMH to state-of-the-art methods (top)

comparison to data dependent methods (bottom) comparison to

data independent methods

5.2.2 Kernel spaces

We now evaluate the performance of RMMH in other ker-

nel spaces. We compare only to KLSH [11], since it is

the only one dealing with any Mercer kernel. We used a

10K subset of ImageNet-BOF with a Chi Square kernel

andWikipedia-HSV dataset with a Generalized Histogram

Intersection kernel (GHI, [1]). Results of Figure 5 confirm

that RMMH outperforms KLSH.
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Figure 5. Comparison between RMMH and KLSH in 2 different

kernel space: (top) GHI kernel (WIKIPEDIA-HSV dataset) (bot-

tom) Chi2 kernel (ImageNet-BOF-10K)

5.3. Image retrieval performances

We now evaluate the performance of RMMH for image

retrieval. The concern here is not to retrieve the k-nearest

neighbors in the original feature space but the most rele-

vant images. We therefore used the full ImageNet-BOF

dataset with associated labels (1000 categories). We still

used a leave-on-out procedure over 1000 random queries

but we now run a k-nn classifier on the top k results re-

trieved by each evaluated method (i.e. the score of each cat-

egory is determined by the number of instances retrieved in

the top k hash codes. k was set up to 1000). As suggested in

ILSVRC challenge, we relaxed the classification tolerance

to the five best retrieved classes (recognition rate@5). We

first did evaluate RMMH with 3 different kernels: Linear,

Chi Square and Triangular L2. Results of table 1 show that

the best kernel is the Chi Square one. However the gain over

the linear kernel is very slight whereas the hashing com-

plexity is much larger (as discussed in section 4). Overall,

the linear kernel appears to be the best choice. Furthermore,

it allows an interesting comparison between RMMH and the

LSH family sensitive to the inner product (equ. 1).

In this way, Figure 6 presents the classification rate of

RMMH and LSH for varying hash code sizes. The horizon-
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Kernel Linear Chi Square Triang L2

recognition rate@5 0.149 0.150 0.135
Table 1. Classification performance of RMMH with 3 different

kernels (ImageNet dataset, 128 bits)

tal line corresponds to the classification rate obtained with

the exact inner product in the original feature space. We

can first remark that the gain of RMMH over LSH is much

larger than previous experiments (when searching approx-

imate k-nearest neighbors). That means that RMMH pro-

vides a better embedding of the underlying data structure,

whereas LSH only converges to the original metric. RMMH

is even better than the exact distances for hash code sizes

larger than 600 bits. Finally, with only 512 bits (64 bytes),

RMMH hash codes provide equivalent performances than

the original 1000 dimensional bag-of-features.
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Figure 6. Classification performances on ImageNet-BOF

5.4. Indexing performances

We now evaluate RMMH in terms of indexing perfor-

mances, using a multi-probe Locality Sensitive Hashing

framework to reduce memory usage. We used the a posteri-

ori multi-probe LSH method of Joly at al. [9] (AMP-LSH).

It allows using any hash function whereas other multi-probe

methods are focused on L2. In this experiment, we only

used RMMH to construct the hash table and we kept the

original data in the buckets. Of course, we can also replace

the original features by RMMH hash codes to achieve even

better speed-up and memory saving (as presented below).

But our first goal here is to study the partition induced

by RMMH for constructing hash tables. We present only

the results on ImageNet-BOF which is more challenging

than the SIFT dataset due to the higher dimension. It is

important to notice that the sparsity of this dataset is rather

weak (about 2/3 of null components), which means that

an inverted list would fail to provide consistent efficiency

gains (up to about 3 compared to exhaustive scan).

The used metric is the inner product and we did vary the

dataset size from 100 features to 1 M features. We used the

following AMP-LSH settings: quality control parameter

α = 0.7, number of hash tables L = 1, number of searched
nearest neighbors k = 100. The depth p of each table (i.e.

the hash code size) depends on the dataset size thanks to

the following empirical formula p = log2(N) + 5 (values
ranged from 11 to 25). RMMH was used with the linear

kernel and M = 40. It was compared to the LSH family
sensitive to the inner-product. For hardware independent

comparisons, performances of the exhaustive scan are

reported as well.

Results are reported in Figure 7 and table 2. The plot shows

that both LSH and RMMH achieve sub-linear search time

in data size, providing consistent efficiency gains over the

linear scan (which is not trivial with a dimension equal to

1000). But RMMH clearly outperforms LSH (as much as

LSH outperforms the exhaustive scan). The sub-linearity

coefficient of RMMH is indeed higher, leading to increas-

ing efficiency gains when the size increases. That confirms

again that RMMH closely fit the data distribution while

keeping a good independence between the hash functions.

For the full dataset of 1M BoF (see table 2), RMMH is

finally 37 times faster than exhaustive scan and 5 times

faster than LSH.

In table 2, we finally report the performances obtained on

the full dataset when replacing the original features by

RMMH hash codes. We used 1024 bits for the hash codes

and returned the 10K nearest hash codes (before re-ranking

with the exact inner product). This combined strategy

allows to divide the search time by 5 and the memory usage

by 13.
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Figure 7. search time vs data size - comparison of RMMH to LSH

and exhaustive scan

5.5. Conclusion

We introduced a new hashing function family suitable

for any kernel space and providing excellent performances
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method time (ms) NN recall Mem (Gb)

Exhaustive 1777 1.0 5.05

LSH index 247 0.67 5.11

RMMH index 49 0.69 5.11

RMMH index + sketch 10 0.62 0.39
Table 2. Indexing and Search statistics on ImageNet-BOF

in Euclidean space. Contrary to previous data dependent

methods, we did not focus on boosting the collision proba-

bility of close points. We rather try to minimize the collision

probability of irrelevant pairs by boosting the scattering of

the data. We therefore suggest to train purely random splits

of the data, regardless the closeness of the training samples

or any kind of supervision. Experiments did confirm that

the resulting hash functions are consistently more indepen-

dent than other data dependent methods. On the other side,

the use of large margin classifiers prevents from overfitting

and provides good generalization capacities for neighboring

data. Image retrieval experiments did show that no more

than 64 bytes are enough to achieve similar performances

than exact distances in a 1000-dimensional feature space.
Indexing performances finally confirmed that RMMH pro-

duces better partitions than purely random projections.

In future works, we will continue investigating a theoreti-

cal modeling of RMMH. This would help defining accurate

bounds for M parameter and provide a better understand-

ing on how data structures are embedded (density, sym-

metry, etc.). We believe that RMMH could be useful for

many other goals including dimensionality reduction, inde-

pendent component analysis or feature selection.
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