1049
Progress of Theoretical Physics, Vol. 55, No. 4, April 1976

Random Mixture of the Ising Magnets
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A method using projection operators developed in a previous paper [Can. J. Phys. 52
(1974), 120] to obtain the specific heat and the susceptibility of the random mixture of
magnets, is applied for the low-field expansion of the free energy and the magnetization.
The quartic terms of the free energies of the linear chain and of the infinite Bethe lattice
for the site and the bond problems are obtained. The exact solution of the infinite Bethe
lattice is equivalent to the Bethe approximation of the ordinary lattices. A divergence of
the quartic term of the free energy of the bond problem is discussed in connection with a
phase transition relating to the glass-like phase. Transparent formal similarity (which serves as
a check and an outlook) between the site and the bond problems is found, and a relation (which
serves as an approximation) between the quenched and the annealed systems is discussed.

§ 1. Introduction and conclusion

In a previous paper” a method using projection operators to obtain thermo-
dynamic and magnetic properties of the random mixture of the magnets (the site
and the bond problems in the quenched Ising spin systems) was presented. The
method was applied to the linear chain and to the infinite Bethe lattice (of which
the exact solution is equivalent to the Bethe approximation) giving the free energy
and the susceptibility at zero field. A remarkable distinction in the phase diagrams
between the site and the bond problems was clarified. The method was also
applied to the quenched classical Heisenberg model.? For the free energy and
the magnetization at a finite magnetic field, a concentration expansion was carried
out and anomalous behavior in the magnetization process of the dilute linear chain
at low temperatures was explained.?

In this paper the method of Ref. 1) is applied to the low-field expansion of
the free energy and the magnetization of the site and the bond problems for the
linear chain and for the infinite Bethe lattice, and the quartic terms with respect
to the magnetic field is obtained. The divergence of the second derivative of the
susceptibility (0%/0H") of the bond problem characterizes the appearance of the
glass-like phase introduced by Matsubara and Sakata.” Transparent formal simi-
larity between the site and the bond problems is found and it serves as a good
check. An approximation for the bond model and a relation to the annealed system
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are discussed.

S. Katsura

§ 2. Expansion of the partition function of the quenched site model

We consider a random mixture (site model) of two kinds of spins A and B,

the magnetic moments of which are denoted by m, and mj the concentrations

P4 and pp, and the nearest neighbor exchange energies Jy4, Jspz and Jpz. The

species 4 and B are denoted by s;=
spins of the whole crystal is denoted by {s;}.
is given by

where

We denote the partition function for the configuration {s;} by Z{s;}.
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The con-

figurational average of log Z{s;} gives the negative of the free energy divided by
KT of the quenched site system.
Expressing log Z{s;} by the method of high temperature low field expansion,

we have

where N and Nj are the numbers of lattice points and bonds,
=N-—1 for open linear chain and the finite Bethe lattice).

log Z4{s;} =log[ 2. HchC (1+0,thCy)

Gi=x1 4

xZ chK;;A+00;th K;;) ],
L5y

(2-4)

respectively (Ng
We carry out the

multiplication, arrange terms in the order of th C, then the summation 2wy glves
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log Z{s;} =2 logch K;;+ >  logch C; +Nlog 2
&5 7
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+37th C;,
th C,
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%23

thC; th K; ;,---th K;

mimet

XthCy th Ky th Ky, thCy 4. (2-5)

The coefficient of O (th™ C) is given™ by summation of all graphs (connected and

disconnected) in which the sum of the number of the end points and that of odd

junctions is 2.

When we expand log{l+X}, the terms O(N®), O(NV*) .-+ cancel out. The
configurational average of the terms of O(N) in log{l+ X} gives the partition

function of the quenched system.

§ 3. Expansion of the order th’C for the linear chain

We consider a linear chain
of the quenched site model. The
free energy and the susceptibility
at zero field together with those
of the infinite Bethe lattice were
given previously.” In this sec-
tion the term of O(th* C) is
calculated. The fourth term in
r.h.s. of (2-5) is expressed as

log{ }=log{l+82,+2,(th*C)
+2,h*C) +-}. (3-1)

If the chain is open, then £,=0.
If the chain is closed (ring), then
2,=th K, th Kpy--thK y_; yth Ky,.
We omit £, since it does not
contribute in the thermodynamic
limit even in the ring.

Each term in &, is represen-
ted by a chain of length n. Each
term in £, is represented by a
pair of unlinked chains of length
m and n In the expansion
log{ }, the coefficient of th*C
is given by £2,—82,2/2. Pairs of

o X X

=NX[ o
+ o0 o0
+ 6e—e—e0 0—e0
+ o————e——o ¢:0
+ o—s—e—axT0o—0 €=1=n-1
+ o O f:=2
+ o—ox oo €:=2 m-n+|
+ @< o0 €:=2
+ OO0 €=
+ o——@—s——0 €:=0
+ o0 o o
+ o o o o
N e J

Fig. 1. A term in {&£:th*Cy. m=4, n=2. Single and
double bonds contribute to x and y, respectively.
Single and double circles contribute to thC and th*C,
respectively. Unlinked graphs are canceled out by the
corresponding graph in £..
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1052 S. Katsura

unlinked chains in £, are canceled out by those in £,°/2, and only pairs of linked
chains in —2,°/2 contribute to log Z{s;} (see Fig. 1).

=

N-1
92 (thzc) = Z th Cz th Ki,i+1 th Ki+1,i+2' : 'th Ki+m—],i+m
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Q2 (th'C) =3 S S th Gy th Kyevvooth Ky o th Ca

k2

XthC] tth’j,lLl."tth+n_]yj+n tth+n (3'3)
N n-1 N-n-1
:Z Z (Z""‘Z)Zth Cz th Ki,i+1"'th Ki+m—1,i+m th CzAm
i m=1 m=1 m=n j

XthC,;th K, ;o th K g i thCipn. (3-4)
Let j=¢{+m—I and we change the summation index j to I. Then the contribution

of linked graphs in (3-3) is given by

O of 22ty =1 31X 4 30 3

i m=1lm=11=0 m=n l=0
X th Ci th Ki,i+l' --th Ki+m—1,i+m th Ci+m th Ci'Tm‘L
s th Ki+m—z,i+m—z+1' --th Ki+m»l+n——1,i+mfl+n th Ci+m—l+'ﬂ. . (3 . 5)

For the meaning of 3, see (3:19). The terms for m+n=>N do not contribute
in the thermodynamic limit.

We substitute (2-2) and (2-2") into a term in (3-5). Then the configurational
average (denoted by { ) can be obtained by equating {(1+s,)/2> =p4, (1 —35:)/2)
=p,, after the multiplication of s; at the same site is carried out (cf. [3.8] and
[3.9] in Ref. 1)). The average of a term in (3:5) is given by

{thCith Ko th Kyt iem—ion th Cramy
KWK om yiometin WK ier gome 2 th’ K oty i4m
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1o o ] Tesue o ]
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Itsimue
: o o]
1f5i+m—l+k 0 ¢z

0
2

0

<o o Nl 2]
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Random Mixture of the Ising Magnets in a Magnetic Field 1053
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X

—

=Tt pPex™'ey'ex" " ep'”*, (3-8)

where

p- [O pB] (3-9)

0 cp 0 thCyl

[t,m tAB] [t,m tw]
tBA tBB tBA tBB

H

Il

{ Patas VPaps tm} (3.11)
Vpspatsa potss |
Pataa Vbapstis
y:[ 2 2 :I (3'12)
Vpspatia Patss
11
T’ 4=TrgAd, = [ ],
g g9 11
tAA:t]l KAA’ ete.
Here we have used a lemma”
f(Kij) — l:l“}"sz lhsi][ (KAA) f(KAB)} 2
2 2 S (Kpa) f(Kzs) 77:;97]7
2
for f(x) which is regular at x=0.
Using the orthogonal transformations
uxu=»\, VYv=p, (3-13)

- Uy U - v v
w=u 1:[ , p=p-1=|"1 12 ,
Uy Uy Vg —Vn
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1054 S. Katsura

SRS
0 xz’ 0 yz’

we have
(3-8) =T’ pcuN™ "'ucvp'veur" 'ucp™”*
2 2 2
:7; ]2 kgl 2"yt e (3-14)
where
2 2 2 2
Sue=20 35 30 2o ettt Civi 0,y
X €yt ol D7 (3-15)
and
1 2
j“; 0 {Patas+ Potos+ [ (Patas—Potps)’ + 4papstas]l "}, (3-16)
2
1 2 N2 ’
i > {patiat pottet [ (Patha —Putss) + 4patstin]’}, (3-16%)
2
Ui _ {_1_[ Dalaa — PDolrs ]} 1z (3-17)
Uy 12 [ (ataa— botss) +4pabstis]” 1) 7

k4T

T {l PAtQAA _th;lBB ]} 1/2. (3 . 17/)

2 [ [ (Patia—bsti) +4patstin]”

We substitute (3-14) into (3-5) and rearrange terms of which the configurational
averages are equal, then > ; gives simply X N, and X, is divided into three parts.
Then

2 2 2
(3 5) NZ Z z]kgwk > (318)
i=1 j=1 k=1
where
N n—-1 m-1 n—m m—-1
gijlc: Z{Z\, [Z xim—lyjlxkn—l_{_lzo xilyjmxkn_m_l—I_l_Zn xin—lyjlka—-l]

2z e ‘+Zx vz ‘+sz il (3-19)

Carrying out the summation ».,> .2 and taking the thermodynamic limit, we

have

gzjlc’—‘l y] (x1+xk xixk+ 1) +2x1xk . (3.20)

2 (A-z)Q—z) A—vy)
Substituting (3-20) and (3-15) into (3-18), and carrying out the summation
33>, we transform (3-18) in a simplified matrix form. Thus we have obtain-

ed the free encrgy of the random mixture of Ising spins (quenched site model)
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Random Mixture of the Ising Magnets in a Magnetic Field 1055

up to order O(th*C).

1 , log ch K, logch K,z
1 1og z1s, 2>:T { [
<N o8 2t/ " 1Pllog ch Ky, log ch Kyp

_'_pl/g[log ch CA 0 ]p1/2+pl/zcz (1 _x>—1xp1/2

0 logchCy
- %pl/z A =2 acA—y) 'ye+cA—y) yex

—xc (1 —y)"yex+2xc (1 —y) 'ex

el —y)lyel(d ~x)‘lcp1/2}, (3-21)
where
SR [1‘_P3t133 x/pAthAB]’
det M%) | Vpupatpn 1—patia

(3-22)

1 —-1_. ,71,,,,,,, l“th%B '\/pAthziB
R R :

\/PBPA tha 1—patha

Hence the magnetization (per site) is given by

(may = 0A/N) log Z1{s/2)
0 (H/ET)

=Tr'{p"me(1—x)"'A+x)p”—2p""m (1 —x)"[xc (A —y) lcx
+ae(l—y)yextaxe(A—y)'eted—y)ye] (1 —x)'ep?. (3-23)

Here we have used the identity

oc’

Lo i o
bRy~ Am e e, (3-24)
WHa/kT) cAcBcDc=4mAcBeDe+ O ((H/ETY) (3-25)

for 4, B, D which do not contain H/ET, and

e [mA 0 ]
0 mg
The explicit form of the first term, Tr’' p”’me(1—x) '(1 +x)p"*, the suscepti-
bility term, is given in Ref. 1).
In the case of the dilute magnetism (K., =K, Kiz=Kzz=0, C,=C, Cz=0,
ba=p)

<]_17_ logZ{si}>:P2 log ch K+1log 2+ p log ch C+ p th? C%hjth

_? 2K 2pth K—p"th* K+ 1) +2p'th° K . (3-26)
2 (1—-pthKY(Q—-pth*K)
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1056 S. Katsura

In the case K,3=0, all f;; other than fi;,(=p4C,*) and fo,(=p5Cs') vanish,
and the free energy is given by simply the sum of those of A and B species with
concentration p, and ps

% log Z{si}> ~log 2+ p,* log ch Kus+ palog ch Cyt pa th* C,  Patas
1—patia

_ Pa 1 0Lataa(L+ 2patas—Pa’tan) -+ 204" aa
2 (1 —pataa)’ A —Patia)

+ p log ch Kpp+ pg log ch Cs-+ py th? Cy- £2I22
1—pstss

_ b5 gt CEPBI%B(l + 2pstes :j)BZtQBB) j‘ 2p5’tsn +0(C%. (3-27)
2 (1 — puten)* (1 — patan)

When p,=1, p5=0, we have

1 th K 1 3th’ K —th*’K
1, Z>=1 h K+log 2+log chC+th?c PE 1 qup3th'K
<N ogz)=logch htlogZtiog nbHtie, k2 M YA mky

(3-28)

-which agrees with the corresponding low field expansion of the regular linear chain

and serves as a check.

§ 4. Bond model

Similar calculation is also carried out for the bond model of a mixture of
« and B bonds, and s;= +1 refer a and 3, respectively. The exchanges and
concentrations of both species are denoted by J,, Js Pa, Ps respectively. Then

Ki.:[,l;*:‘ﬂ L“SLJ’][Ka], 4-1)
2 2 1Lk,

K.,=J,/2kT, etc.

In the bond model the configurational average can be taken for each bond
separately. For example,

{th Ky, th K, th Ky, th Ky th Ky, th K5 th Kie)
={th Kj;>{th® K,s>{th® Ky »>{th K »>{th K. (4-2)
The averages of single and double bonds are given by
x=(th K>=p,th K,+p;th K,
y=<{th® K>=p,th* K,+p, th* K;. (4-3)

Hence
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Random Mixture of the Ising Magnets in a Magnetic Field 1057

<lo (N) of 5 th* c>
N

N—n

St
=0

1 -1 m+im .
xm-—:—n4
m=1 m=n ;)) Y }

=t C (Y

n—1

~1
23+

m=1 n N-n
=N 1=0

—th'C ¥ [Zijl(z IED DR

=M m

[z

)]xm+ﬂ~2Lyl . (4 4)

n

o~
i

Fach term in 2> 7% (and in 2377)) is represented by a linked graph composed
of a chain of m bonds and that of n bonds in which / bonds are doubled. Each
term in i (or D> 7.) is represented by a graph composed of a chain of m bonds
and that of » bonds in which 7m bonds (7 bonds) are doubled.

n-1 m—1
(4-4) =th*C {37 [2 2 2™yt + (n—m+1) 2" ™y™]
m=1 =0

n

N-n-1 =n-1
_|_ Z [2 me+n——21yl+ (771"71“{‘ 1)xm—nyn]} (44/)
m=n 1=0
Carrying out the summation »,> ,>. and taking the thermodynamic limit, we
have

<]l\f log Z{sij}>:palog ch K, +pszlog ch K;+log 2

tlogchCrthiC F ~—1~th“C[—2x2~+ 2¥y:@ﬂ]+---. (4-5)
1-x 2 A—x)A—w)

The magnetization is given by

itz o s @ty) A+2) 4 . 6
(oY= l_xthC 2(1_x)2(1_y) th®* C+ O (th°C). (4-6)

Equation (4-6) agrees with the known results.”'®
When p, ¢, a, ¥, of the corresponding expressions of the site model, in (3-23).
are regarded as a scalar, the right-hand side of (3-23) is reduced to (4-6) multi-

plied by #. This is a remarkable similarity between the site and the bond problems.

§ 5. The Bethe lattice

In this section the method and the results of the preceding sections are
generalized to the infinite Bethe lattice, of which the exact solution is equivalent
to the solution of the Bethe approximation of the ordinary lattice.”™®

We consider the infinite Bethe lattice in which the exchange energies and
the magnetic moments are denoted by J; (=dJu4, Jpz or Jup) and m; (=m, or
myg). Then the magnetization {m;0) at the site 7 is determined in terms of the
effective field at the nearest neighbors of the 7 site, and the recurrence relation

between effective fields is derived.¥”
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1058 S. Katsura

(migy = (mi th[Ci 3T tho't,,0,1> 5-1)
J
z—1
L,_:Cl*}‘ Z th_ltijlj 3 (5' 2)
J

-where
Li=th L;, Li=m;H*/kT (H*: effective field),

and 2/ represents the summation for all nearest neighbors j of 7, and 3" that
for which one of them is removed.
Using (5-2), we have transformed (5-1) into

<77’l,,(7> = <ml th [LL + th—ltizlz] >

/Lt

<m 1+ 02, :3)
:<7721; <Zl+ttzlz)n2=0<_>n (l,,tulz>n> (5'4)
= <mi [li + 5., — Ziztizlz - lit%zlzz + ] > . (5 . 4/)

Taking the hyperbolic tangent of (5-2) and expanding it up to order O(c%, ), we
have

C; -+ th (Z;—l thﬁltijlj)

= 5.5
1+ th G5 th=8,0,) 5-5)
z—1 z—1 1 z—1 1 z—=1 z—1 z—1
th[3 5 th™ (&, 1 =20 ti;l,+ 3 2kl — 2 ; 22 tigtatindilily +
J J J 7 m
(z—1)" terms (5-6)

Substituting (5-6) into (5-5) we have (up to O(c, %))

- z—1 1
i =C Z e’ D tilj—c (Z tiils)

—1 z- =1 z—1 z—
- 13 Z Z iilitad— —1“ Z 2 ilstonlytimbn+ <
37 i 3 7 m
jact (s hem=e)

3(z—1) (¢—2) terms (z—1) (—2) (—3) terms (5-7)
The square of (5-7) of up to O(c*, *) reads
z—1 z—1
li220i2+ 2Ci Z twlj+ Z t%jlj2+ Z L:‘ tljljtlklk‘f‘
J J J
(z—1) (z—2) terms (5-8)

In the paramagnetic state the configurational average is assumed to be independent
of the site. Then {#;{;>; ({ »; represents the average carried out at the site j),
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Random Mizxture of the Ising Magnets in a Magnetic Field 1059

tijlitiliy jee-- are given by

taglips=(22 22 1¥50:1 +‘Sig—"tgigj 0 ,1,,7*1,5,1'971'lgj>
9 95 2 2 % 2 ;

_ ¢ 1+5:0: 145,09,

tgigjlg,- .
J

= 71:{-2571g1‘ (tgiAPAZA + Z-giBZ"'BlB) ’ (5 ' 9>

g;
where
gj:ly —1 (A or B)y tllztzili’ tl.—lztABy “'9l1:lA.”

and

<tijljtiklk>j}c = Z 1;251(}1 (tgiAPAZA._I_ tginBZB>2 ’ (5 : 10)

k3

islstuditonln) jom =22 1+ ;”'g" (tyatala+t,n08ls) (5-11)

9:

1459,
L) =2 f?&gf (Goatald + thpPal5s")
7t

X (tgatala+ toptals) . (5-12)

Here we have used similar relations to (2-2) and (2-2') in non-matrix form.

Equations (5-7) and (5-8) form simultaneous equations for 7, and . We
solve I and P (I*2=P) using (5-7) and (5-8) up to O(c®) by iteration, where
(denoted by 1) is the matrix /; averaged at i+1, i+2, -+, and I (denoted by
1) is the matrix /;* averaged at i+1, 7+2, :--. The first approximation for [,
denoted by I, from (5-7) is

I=[1—-(z—1)tp]7c (5-13)
and the first approximation for 7 from (5-8), denoted by I, is given by
L=[1-(E-Dypl ¢+2-1D[1-(z—Dtp] ‘ctp
X[E—=(z—Dtp] e+ (z—1) (2—2)[1— (2 —Ditop] tylitilidp . (5-14)

Substituting (5-9) ~(5-14) into (5-7), we obtain the second approximation for I
exactly up to O(c®).

I=[1—(z—Ditp] " H{e— (z—1)cftp[1— (z—Dtp] e— (z—1)ctol,
—(z2—1) (=2 eltylituly —2(2—1) (2 = 2) {&GLtulidm
—5(2—1) (2—2) (2—=3) tilitanlilindnjint - (5-15)

In r.h.s. of (6:15), [; is understood as to be its first approximation, (5-13). Equa-
tion (5-4) with I and I, thus obtained ((5-14) and (5-15)), gives the average
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1060 S. Katsura

magnetization of the site model up to O{(c%), ie.,
{may=Tr'[mp (1 +tp)l —mpl,tpl —mplt.pl,+---]. (5-16)

The leading term, Tr' mp(l-+tp)[1— (2—1)tp] ‘¢ expressed the susceptibility
given in Ref. 1). When 2=2, (5-16) with (5-14) and (5-15) reproduces the
previous result (3:23) for the linear chain.

In (5-16) with (5-14) and (5-15), the products which are concerned with
terms contained in (5-9)~(5-12), are interpreted in the following way: Tor

example
b

{mp[1— (z—1)t,p] ' tp{&i ;12 tili D} nyny
= Z Z Z m"ﬂhp’ﬂxnx {[]‘ - (Z _1> tzp]—l} TyTg

Ny Mg Ty
2 2
X annzcngnztnznspnsnstnsmpn4n41n4n5tnsn4pnm‘Zn,n, . (5 : 17)
(1, my, 75, 2, ny=A, B; m and p are diagonal)

Next we consider the bond model on the infinite Bethe lattice. Using the
independence of the bond, we have simultaneous equations for I and % from (5-7)

and (5-8).
=c+(z—Dal —(z—1)al —c(z -1 yl—c(z—1) (z—2)zxT*
— (2= (z—2)3vlxl —4(z—1) (2—2) (z—3)2'[* (5-18)
and
P=c4+2c(z—Dal + (z—1Dyl+ (z—1) (2—2) 22, (5-19)

where x and y are defined in (4-3). The first approximation of I is obtained
from (5-18):

1

l=————¢. 5.20
—z—-D=x ( )

Substituting (5-20) into (5-19), we have the first approximation of z
P 1 — DL . (5-21)

—(z=1y (1 —~(z—Day

By using the first approximation of 7 and I, we obtain the second approximation

of I (up to O(c)):

= c & T @Dz 1w
lwri——(z~1)x 1—(2—1)x[1——(z—1)x_{( s
1 1—(z— 1)36 1) (s — 1
(1 —(x—1)z)f 1 (z—1)y TEmbEYe (1 A-(z—Dzy
1 1-(z—-D2’

FETD R - =Dy
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1 s 1 5
5 =D =2 (z~3)1(1_(z_1)x>3]. (5-22)

Hence the magnetization up to O(c*) is obtained from (5-4") to be

oy=A+2)T —(x+IE

_ A+xe { £
1—(z—D=x (z—-D[1—-G=Dx]

[1— =D+ (z—1) (z—3) 2>

1 20 xx_l o — 1) (2 —2) £
— =D =52t (D 2>]

e L 629
(=D G-zl [1- (-1y]

The case of 2 =2 reduces to the previous result of the linear chain, (4-6).

Equations (5-16) (with (5-14) and (5-15)) and (5-23) are seen to be valid
in the region where I =0(c) and Z=0(c?) from their derivation. They can
be said to be valid in the paramagnetic region until the coefficient of ¢* diverges.

The second derivative of the susceptibility with respect to the magnetic field,
0%/0H?, diverges at a line for which 1—(2—1)y=0. A phase where {(0)>=0
and {0°>0 (H=0) (I =0 and [*20) in the bond problem was regarded (defined
microscopically) as a glass-like phase by Matsubara and Sakata,” and its phase
boundary between the paramagnetic phase was given by p,th*’K,+p,th® K,=1
/(z—1). The present result, (5-23), characterizes the appearance of this phase
macroscopically as the divergence of the second derivative of the susceptibility.
The magnetization in the ferro-, the antiferromagnetic, and the glass-like regions
will be studied separately.

§ 6. An approximation to the bond model

The method of §3 can be generalized to any order of th C of an arbitrary
lattice by counting the number of necessary connected multiply bonded graphs for
any crystal lattices.®™ In the case of the bond model, the results are expressed
in terms of <{th K>, {th* K}, .-, (th™ K>. In the case where {th™ K} is well
approximated by {th K)™, the results can be simplified. In that case

{dog Z{s;}>=2Klog ch Ki;>+ Nlog C+Nlog 2
an

+term of O(N) of {3th K, ; ><{th K;;>---<{th K; ;>
+th® C 2 5th K, p<th Kii, > <{th Ky z,.,>
+ th4 C Z<th Ki”'2><th Ki2i3>' . <th Kinine1>

* Recently Pecalski and Oguchi® gave the high temperature expansion of the susceptibility
of the bond model of the square lattice.
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X {th Kj;,><th K; ;. >---<{th K; ;.. >}
+ e (6-1)

The coefficient of th® C, the summation » in { }, is simply given by > 2.,
<{th K>™, where £,, is the number of graphs which consist of 7 bonds and in
which the sum of the number of end points and that of odd junctions is 7.*®
The number £,, is the same as that of the corresponding regular system. Hence
(6-1) can be expressed as

{log Z{sy} >=Np(®.log ch K,+p; log ch K)
— Nz logi{ch [th™'(p, th K, +p; th K;) |} +1log Z(K, C),
K=th™'(p,th K,+p,th K,). (6-2)
Thus the logarithm of the partition function of the quenched bond model is ex-
pressed in terms of the corresponding regular system in this approximation.
In particular, the susceptibility and the magnetization-magnetic field characteris-
tic are obtained by the replacement of th K by {th K>=p,th K, p, th K; in the

corresponding expressions for the regular system, i.e., the susceptibility of the
infinite Bethe lattice:

BTy _ 1+p,th K, +peth K,

: —_— , 6-3)
Nm? 1—(2—1) (p,th K, +pgth K)

the magnetization-magnetic field characteristic of the linear chain:

_ - 172

,,M,:[1_|_, 1 <717";>ath]<;z pﬁthKﬁ>] (6-4)
Nm sh’C \1+4p,th K+ pgth K,

and the spontaneous magnetization of the square lattice:
M _ [1 _ (1= (path Ko+ p, th Kp)'Y ]”8 (6-5)
Nm 16 (p, th K, + pg th Kg)*

are obtained straightforwardly.

Since in £,, {th® K> and higher order averages do not appear but only {th K,
the susceptibility (6-3) is exact.” It is pointed out by Pekalski and Oguchi” that
the susceptibilities of the infinite Bethe lattice of the bond model are the same
for the quenched system and for the annealed system.’®?®

The approximation {th K)™~={th™ K> is well in the {erro-ferro mixture. The
worst case arises when J,=—J; and p,=p; In this case the most dominant

discrepancy between quenched and annealed systems arises,
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