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A method using projection operators developed in a previous paper [Can. J. Phys. 52 

(1974), 120] to obtain the specific heat and the susceptibility of the random mixture of 

magnets, is applied for the low·field expansion of the free energy and the magnetization. 

The quartic terms of the free energies of the linear chain and of the infinite Bethe lattice 

for the site and the bond problems are obtained. The exact solution of the infinite Bethe 

lattice is equivalent to the Bethe approximation of the ordinary lattices. A divergence of 

the quartic term of the free energy of the bond problem is discussed in connection with a 

phase transition relating to the glass-like phase. Transparent formal similarity (which serves as 

a check and an outlook) between the site and the bond problems is found, and a relation (which 

serves as an approximation) between the quenched and the annealed systems is discussed. 

§ 1. Introduction and conclusion 

In a previous paperv a method using projection operators to obtain thermo

dynamic and magnetic properties of the random mixture of the magnets (the site 

and the bond problems in the quenched Ising spin systems) was presented. The 

method was applied to the linear chain and to the infinite Bethe lattice (of which 

the exact solution is equivalent to the Bethe approximation) giving the free energy 

and the susceptibility at zero field. A remarkable distinction in the phase diagrams 

between the site and the bond problems was clarified. The method was also 

applied to the quenched classical Heisenberg model.") For the free energy and 

the magnetization at a finite magnetic field, a concentration expansion was carried 

out and anomalous behavior in the magnetization process of the dilute linear chain 

at low temperatures was explained.') 

In this paper the method of Ref. 1) is applied to the low-field expansion of 

the free energy and the magnetization of the site and the bond problems for the 

linear chain and for the infinite Bethe lattice, and the quartic terms with respect 

to the magnetic field is obtained. The divergence of the second derivative of the 

susceptibility (a2x/(JH2) of the bond problem characterizes the appearance of the 

glass-like phase introduced by Matsubara and Sakata.4l Transparent formal simi

larity between the site and the bond problems is found and it serves as a good 

check. An approximation for the bond model and a relation to the annealed system 
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1050 S. Katsura 

are discussed. 

§ 2. Expansion of the partition function of the quenched site model 

We consider a random mixture (site model) of two kinds of spins A and B, 

the magnetic moments of which are denoted by mA and mB, the concentrations 

PA and PB, and the nearest neighbor exchange energies JAA, JAB and JBB· The 

species A. and B are denoted by s1 = + 1, and -1, respectively. A configuration of 

spins of the whole crystal is denoted by {s1}. The Hamiltonian H of the system 

is given by 

(2·1) 

where 

(2·2) 

[ 
1+s1

] 

= [1+s1 1-s1][CA OJ 2 , 
2 2 0 CB l-si 

2 

(2·2') 

(2·3) 

We denote the partition function for the configuration { s1} by Z { s1}. The con

figurational average of log Z{s1} gives the negative of the free energy divided by 

kT of the quenched site system. 

Expressing log Z{s1} by the method of high temperature low field expansion, 

we have 

N 

log Z{sj} =log[ ~ II ch ci (1 + Ch th Ci) 
~<=±1 i 

NB 

X~ ch K11 (1 + CiiCi 1 th K 0 )], (2·4) 
(if) 

where N and Ns are the numbers of lattice points and bonds, respectively (Ns 

= N -1 for open linear chain and the finite Be the lattice). We carry out the 

multiplication, arrange terms in the order of th C, then the summation ~<~<} gives 
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Random J1.1ixture of the Ising Magnets in a Magnetic Field 1051 

log Z {s;} =I: log ch K; 1 +I; log ch C; + N log 2 
(ij) i 

x th K.. ···th K; . th C; +" th c. th K.. th K;; ···th K. . 
t2ts n"'n+l n+t ~ t1 t(!.z 2 s tmtm+l 

x th C;m., th Ch th K 1,ia th K 1,1.-··th K 1n1n., th C1n., +I; th C;, 

x th K;,;, · · ·th K;,;,., th C;,., th C 1, th K1,1, · · ·th Kimim., th C Jm., 

X th Ck, th Kk,k;··th Kknkn•l th ckn•l + ···}. (2·5) 

The coefficient of 0 ( th2n C) is given4al by summation of all graphs (connected and 

disconnected) in which the sum of the number of the end points and that of odd 

junctions is 2n. 

When we expand log{1 +.X}, the terms O(N), O(N) ··· cancel out. The 

configurational average of the terms of O(N) in log{1+X} gives the partition 

function of the quenched system. 

§ 3. Expansion of the order th4C for the linear chain 

We consider a linear chain 

of the quenched site model. The 

free energy and the susceptibility 

at zero field together with those 

of the infinite Bethe lattice were 

given previously.n In this sec

tion the term of O(th4 C) is 

calculated. The fourth term in 

r.h.s. of (2·5) is expressed as 

log{ } =log{1 +!20 +!22 (th2 C) 

+!J.(th4 C)+···}. (3·1) 

If the chain is open, then !20 = 0. 

If the chain is closed (ring), then 

SJo=thK12 thK.s···thK N-I,NthKNJ. 

We omit !20 since it does not 

contribute in the thermodynamic 

limit even in the ring. 

Each term in !22 is represen

ted by a chain of length n. Each 

term in !24 is represented by a 

pair of unlinked chains of length 

m and n. In the expansion 

log { } , the coefficient of th4 C 

is given by !24 -!2."/2. Pairs of 

f, X 2: o---+---0 

J J 

N X 2: o----o 
J J 

N X [ 

+ c-----o 

+ c-----o 

t=O 

+ o----=--o t=!=n-1 

t=2 

} m-o+l t=2 

t=2 

e = 1 

t=O 

+ o-----<> 

+ o---+---0 

+ 

Fig. 1. A term in <!?a'th4C). m=4, n=2. Single and 

double bonds contribute to x and y, respectively. 

Single and double circles contribute to thC and th'C, 

respectively. Unlinked graphs are canceled out by)he 

corresponding graph in !.?,. 
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1052 S. Katsura 

unlinked chains in !24 are canceled out by those in !2//2, and only pairs of linked 

.chains in -!22
2/2 contribute to log Z{s;J (see Fig. 1). 

N N-1 

SJ. (th2C) =I: I: th C; th Ki,i+l th Ki+l,i+2" · ·th Ki+m-!,i+m 
i=l m=l 

X th Ci+m. (N + 1=1) (3·2) 

Then 

Qi (th4C) =I: I: I: I: th C; th Ki,i+l" · ·th Ki+m-!,i+m th Ci+m 
i j m. n 

(3·3) 

N n-1 N-n-1 

=I: I: C:L: +I:) I: th C; th Ki,i+l. · ·th Ki+m-!,i+m th Ci+m 
i 71.=1 m=l m=n j 

(3·4) 

Let j = i + m -l and we change the summation index j to l. Then the contribution 

,of linked graphs in (3 · 3) is given by 

X th Ki+m-l,i+m-!+1". ·th Ki+m-l+n-!,i+m-l+n th ci+m-l+n. (3. 5) 

For the meaning of ~~, see (3 ·19). The terms for m + n> N do not contribute 

in the thermodynamic limit. 

We substitute (2 · 2) and (2 · 2') into a term in (3 · 5). Then the configurational 

average (denoted by< )) can be obtained by equating <C1+s;)/2)=PA, <(1-s;)/2) 

=PB, after the multiplication of S; at the same site is carried out (cf. [3.8] and 

[3.9] in Ref. 1)). The average of a term in (3 · 5) is given by 

2 m-l t t 2 
-[] ITAAAB r 

1 + S; 0 l f 1 + Si+k 0 l 
-(c, c, o l;'·JLL .. ,jl o 1_-;·""JJ 

1 + Si+m-l+k 0 

0 

2 

}[~ ~] 
2 
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Random .L11ixture of the Ising klagnets zn a 1\fagnetic Field 1053 

(3. 6) 

(3 ·7) 

(3. 8) 

where 

p = [PA 0], 
0 Ps 

(3·9) 

c=[CA O]=[thCA 0 ], 
0 c8 0 th Cs 

(3 ·10) 

(3 ·11) 

(3 ·12) 

Tr' A=Tr gA, u= [~ ~], 

tAA = th KAA , etc. 

Here we have used a lemma!) 

for f(x) which is regular at x=O. 

Using the orthogonal transformations 

uxu=A., vyv= p., (3 ·13) 

-1 [v11 ·V12] v=v = , 
V12 -v11 
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1054 

we have 

\vhere 

and 

S. Katsura 

X= [X1 0 ], 
0 x 2 

p=[Yr OJ, 
0 Y2 

2 2 2 

L:; L:; L:; jJh112chuhiuwci'vi' jV i i' 
i'=l j'=l k"=l 

Yr = _!_ {PAt~A + Pst~B ± [ (PAt~A- Pst~BY + 4jJ APst~BJl 12 }, 
Y2 2 

Uu={_!_[1+ PAtAA-PBtBB ]} 1
/

2 

Urz 2 - [(pAtAA-pBtBBY+4PAPst~]ll 2 ' 

Vn = {_!_ [1 ± PAt~A- PBt~B ]} 112 

Vrz 2 [ (pAt~A- Pst~B) + 4pApBt~] 1 1 2 • 

(3 ·14) 

(3 ·15) 

(3 ·16) 

(3 ·16') 

(3 ·17) 

(3 ·17') 

We substitute (3 ·14) into (3 · 5) and rearrange terms of which the configurational 

averages are equal, then L:;i gives simply X N, and L:;z~o is divided into three parts .. 

Then 

2 2 2 

(3·5) =NL:; L:; L;fijkgijk, (3 ·18) 
i=l j=l k=l 

where 

N -n-1 n-1 m-n n-1 

+ L:; [L:; xt- 1y /xk m-! + L:; x/y /xk m-n-! + L:; Xim-!y /xkn-!J}. (3 ·19) 
m=n l=O l=O l=O 

Carrying out the summation L;n:L;m:L;1 and taking the thermodynamic limit, we 

have 

1 Yi(.Xi+xk-xixk+1) +2xixk 

gijk=2 (1-xi) (1-xk) (1-yi) 
(3. 20) 

Substituting (3 · 20) and (3 ·15) into (3 ·18), and carrying out the summation 

L;i:L;i:L;k> we transform (3 ·18) in a simplified matrix form. Thus we have obtain

ed the free energy of the random mixture of Ising spins (quenched site model) 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/5

5
/4

/1
0
4
9
/1

9
1
3
1
9
5
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Random l'vfixture of the Ising 11.1agnets in a l'vfagnetic Field 1055 

up to order O(th" C). 

where 

( _:1:_ log z {si} 12) = Tr' {p [log ch KAA log ch KAe] p 
N log ch KeA log ch Kee 

+ 1;z[logchCA 0 J 1;z+ 1;zcz(l-x)-lx 112 
p 0 log ch Ce .P p p 

_l_ p 112 (1- x)- 1 [xc (1- y)- 1yc + c (1- y)- 1ycx 
2 

-xc (1- y)- 1ycx+ 2xc (1- y)- 1cx 

+ c (1- y)- 1yc] (l-x)- 1cp 112}, 

VP Ap--; tAB l ' 
1-pAtAAJ 

Hence the magnetization (per site) is gi,·en by 

(mu) = 8((1/N) log Z:(_si}/2) 

a (H/kT) 

= Tr' {p 112mc (1- x)- 1 (I+ x) p 112 - 2p112m (1- x)- 1 [xc (1- y)- 1cx 

(3. 21) 

(3. 22) 

+ xc (1-y)- 1ycx + xc (1- y)- 1c + c (l-y)-1yc] (l-x)-1cp112}. (3 · 23) 

Here we have used the identity 

OC 2 
- 3 

u(H/kT) -2m(c-c ), 

- 0- -cAcBcDc = 4mAcBcDc + 0 ( (H/kT)') a (H/kT) 

for A, B, D which do not contain H/kT, and 

m= [mA 0 J. 
0 me 

(3. 24) 

(3. 25) 

The explicit form of the first term, Tr' p 112mc(1-x) - 1(1 +x)p112 , tbe suscepti
bility term, is gi,·en in Ref. 1). 

In the case of the dilute magnetism (KAA=K,KA 8 =K88 =0, C,1 =C, C8 =0. 
PA=P) 

/ l_ log Z {si}) = P2 log ch K +log 2 + p log ch C + p th2 C- P th K \N 1-pthK 

_ P th4 c Pt1i~(2f!th_K =:P~th_z_ K + !2_ + 2p2 M If 
2 (1-pthKf(1-pth2 K) 

(3. 26) 
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1056 S. Katsura 

In the case KAB=O, all fijk other than~ 11 (=pACA 4 ) and f 222 (=pBCB4) vanish, 

and the free energy is given by simply the sum of those of A and B species with 

concentration PA and PB· 

_ _pA th4CpAt~A(1+2pAtAA-pit~A) +2PA2dA 

2 (1-PAtAAY (1- PAt~A) 

When P.~ =1, PB=O, we have 

I 1 ) th K 1 3 th2 K -th3K 
\ ~ logZ =log ch K+log 2+log chC+th2C ~ -~ th4 C- ··---
N 1-th K 2 (1-th K)3 

(3. 28) 

which agrees with the corresponding low field expansion of the regular linear chain 

and serves as a check. 

§ 4. Bond model 

Similar calculation is also carried out for the bond model of a mixture of 

a and {3 bonds, and S;j = ± 1 refer a and {3, respectively. The exchanges and 

concentrations of both species are denoted by Ja, Jp, Pa, Pa, respectively. Then 

(4·1) 

In the bond model the configurational average can be taken for each bond 

separately. For example, 

The averages of single and double bonds are given by 

Hence 

x=(th K)=Pa th Ka+Pa th Ka, 

y=(th2 K)=Pa th2 Ka+h th2 Ka. 

(4·2) 

(4·3) 
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Random 1\!Iixture of the Ising l'vfagnets zn a 1'vfagnetic Field 1057 

n-1 n+m N -n-1 m+n 

= th4 C L { (,E L + L ,E) xm+n-Ui} 
n m=1 L=O m=n l=O 

n-1 m-1 n N -n-1 n-1 m 

= th4 C L [,E (2 L +,E) + L (2 L +,E) J xm+n-2lyl . (4 ·4) 
n m=l L=O l=m m=n l=O l=n 

Each term in 2,E;"=(/ (and in 2,E;:~) is represented by a linked graph composed 

of a chain of m bonds and that of n bonds in which l bonds are doubled. Each 

term in .E;=m (or L~n) is represented by a graph composed of a chain of m bonds 

and that of n bonds in which m bonds (n bonds) are doubled. 

n-1 m-1 

( 4. 4) = th4 c .E {.E [2 .E xm+n- 21y 1 + (n- m + 1) xn-mym] 
n m=l l=O 

N -n-1 n-1 

+ L [2 L xm+n-2lyl + (m _ n + 1) Xm-nyn]}. ( 4. 4') 
m=n l=O 

Carrying out the summation LnLmLl and taking the thermodynamic limit, \Ve 

have 

\~log Z {sij}) = Palog ch Ka + hlog ch K# +log 2 

+log ch C + th2 C X · _ _!._ th4 c[ 2X
2j- 2 .:J:~ =X2y+ y] + · ··. (4· 5) 

1-x 2 (1-x)· (1-y) 

The magnetization is given by 

(4·6) 

Equation ( 4 · 6) agrees with the known resul ts.5),JZ) 

When p, c, x, y, of the corresponding expressions of the site model, in (3 · 23). 

are regarded as a scalar, the right-hand side of (3 · 23) is reduced to ( 4 · 6) multi

plied by p. This is a remarkable similarity between the site and the bond problems. 

§ 5. The Bethe lattice 

In this section the method and the results of the preceding sections are 

generalized to the infinite Bethe lattice, of which the exact solution is equivalent 

to the solution of the Bethe approximation of the ordinary lattice. 6 l~sl 

\V e consider the infinite Be the lattice in which the exchange energies and 

the magnetic moments are denoted by Jij ( = JAA, JBB or JAB) and mj ( = mA or 

mE). Then the magnetization <mio) at the site i is determined in terms of the 

effective field at the nearest neighbors of the i site, and the recurrence relation 

between effective fields is derived. sl. Jl 
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1058 

where 

S. Katsura 

z 

<mirJ)=<mi th[Ci+ L; th- 1ti 1l1]), 
j 

z-1 

Li=Ci+ L; th-1ti1l1 , 
j 

li=thLi, Li=miH*/kT (H*: effective field), 

(5 ·1) 

(5·2) 

and :E/ represents the summation for all nearest neighbors j of i, and :L:/- 1 that 

for which one of them is removed. 

Using (5 · 2), we have transformed (5 ·1) into 

< mirJ) = < mi th [ Li + th - 1ti,l,]) 

= / m. li_+ tizlz -) 
\ ' 1 + litizlz 

= <mi (li + ti,lz) L; (- t (liti,Zzt) 
n=O 

(5. 3) 

(5·4) 

(5. 4') 

Taking the hyperbolic tangent of (5 · 2) and expanding it up to order 0 (c 3, za), we 

have 

z. = ci + th C:L;;-1 th- 1ti1l 1) 

' 1+ci th (L;j- 1 th- 1tiil1) 

(z -1Y terms 

Substituting (5·6) into (5·5) we have (up to O(c3,l3)) 

z-1 z-1 z-1 

li=ci+ L; ti1l1 -c/ L; tiil1 -ci(L; ti 1l1) 2 

j j j 

j~k (j~le~m~j) 

3(z-1) (z-2) terms (z-1) (z-2) (z-3) terms 

The square of (5 · 7) of up to 0 (c 2 , Z2) reads 

z-1 z-1 

l/ = c/ + 2ci L; tiil1 + L; t~ 1 l/ + L; L; tiil1tiklk + · · · . 
j J j k 

(z -1) (z- 2) terms 

(5·5) 

(5 ·6) 

(5·7) 

(5. 8) 

In the paramagnetic state the configurational a\'erage is assumed to be independent 

of the site. Then (ti1l1) 1 ( ( ) 1 represents the average carried out at the site j), 
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Random lvfixture of the Ising lvfagnets zn a ]Magnetic Field 1059 

(5·9) 

where 

and 

(5·10) 

(5 ·11) 

(5·12) 

Here we have used similar relations to (2 · 2) and (2 · 2') m non-matrix form. 

Equations (5 · 7) and (5 · 8) form simultaneous equations for li and li2• We 

solve l and f (P~P) using (5 · 7) and (5 · 8) up to 0 (c3) by iteration, where l 
(denoted by l) is the matrix li averaged at i + 1, i + 2, · · ·, and f (denoted by 

.l2 ) is the matrix l/ averaged at i + 1, i + 2, · · ·. The first approximation for li, 

denoted by 1, from (5 · 7) is 

z = [1- (z-1)tpr 1c (5·13) 

and the first approximation for l/ from (5 · 8), denoted by l 2 , 1s given by 

1z = [1- (z -1) t 2p] - 1c2 + 2 (z -1) [1- (z -1) t2p] - 1ctp 

X [1- (z-1)tp]- 1c+ (z-1) (z-2) [1- (z-l)t 2pr 1(tijljtiklk)jk. (5·14) 

Substituting (5 · 9) ~ (5 ·14) into (5 · 7), we obtain the second approximation for 

exactly up to O(c3). 

1= [1- (z-1)tpr 1{c- (z-1)c2tp[1- (z-1)tp]- 1c- (z-1)ct2Z2 

- (z -1) (z- 2) c(tijljtiklk)- z (z -1) (z- 2) (t;jzjtiklk)jk 

(5 ·15) 

In r.h.s. of (5 ·15), li is understood as to be its first approximation, (5 ·13). Equa

tion (5 · 4) with l and 12 thus obtained ( (5 ·14) and (5 ·15)), gives the average 
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1060 S. Katsura 

magnetization of the site model up to 0 (c3), i.e., 

(nuJ) =Tr' [mp(l +tp) l-mpl2tpl-mplt2pl2 + ···]. (5·16) 

The leading term, Tr' mp(l+tp) [1- (z-1)tpr 1c expressed the susceptibility 

given in Ref. 1). When z = 2, (5 ·16) with (5 ·14) and (5 ·15) reproduces the 

previous result (3 · 23) for the linear chain. 

In (5 ·16) with (5 ·14) and (5 ·15), the products which are concerned with 

terms contained in (5 · 9) ~ (5 ·12), are interpreted in the following way: For 

example, 

{mp[l- (z-1) t 2p] - 1 C 2 tp(t~jl/tiklk)} n,n, 

= L: L: L: mn,n 1 Pn 1n1 { [1- (z -1) t2p ]-1} n 1n 2 

n 2 n 3 n, 

(5 ·17) 

(n~> n 2, n3, n4, n 5 =A, B; nl and p are diagonal) 

Next we consider the bond model on the infinite Bethe lattice. Using the 

independence of the bond, we have simultaneous equations for r and [2 from (5. 7) 

and (5·8). 

T =c+ (z-1)xl -c2 (z-1)xl -c(z-1)yf-c(z-1) (z-2)x2P 

- (z-1) (z-2)yfxl -Hz-1) (z-2) (z-3)x3P (5·18) 

and 

f=c 2 +2c(z-1)xl + (z-1)yl2 + (z-1) (z-2)x2P, (5·19) 

where X and y are defined in ( 4. 3). The first approximation of r is obtained 

from (5 ·18): 

- 1 
l=--~-c. 

1- (z-1)x 

Substituting (5 · 20) into (5 ·19), we have the first approximation of f 

f= __ 1 __ 1- Sz-=:1)x~c 2 • 
1- (z-1)y (1-(z-1)xY 

(5· 20) 

(5. 21) 

By using the first approximation of l and f, we obtain the second approximation 

ofT (up to O(c3)): 

-_ c c3 [ (z-1)x 
l- l:__(z-1)x-l-(z-i); -1~(;-_:::-1)x + (z- 1)y 

X ___ 1 __ - 1-(z-1)x2+ (z-1) (z-2)xz _1 
(1-(z-1)xY 1- (z-1)y (1-(z-1)xY 

+(z-1)(z-2)yx 1 __ 1-(z-1)xz 
(1-(z-1)x)3 1- (z-1)y 
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Random Mixture of the Ising Magnets in a Magnetic Field 1061_ 

+l:_(z-1) (z-2) (z-3)x3- -- ~ 1 - -]. (5·22) 
3 (1-(z-1)xY 

Hence the magnetization up to 0 (c3) is obtained from (5 · 4') to be 

(15)= (1+x) [- (x+y)lf 

= (1+x)c + {------~-------[1- (z-1)x+ (z-1) (z-3)x 2 

1- (z-1)x (z-1)[1- (z-1)x]4 

_1_ (z-IY (z-5) x 3 -_l (z-IY (z-2) x 4] 

3 3 

z[1- (z-1)x2] 2 } 3 

- (z-1)[1- (z-1)-x]4 [1.=-c;=-iYyJ c · 
(5·23) 

The case of z = 2 reduces to the previous result of the linear chain, ( 4 · 6). 

Equations (5·16) (with (5·14) and (5·15)) and (5·23) areseentobe valid 

in the region where [ =O(c) and l2 =0(c2 ) from their derivation. They can 

be said to be valid in the paramagnetic region until the coefficient of c3 diverges. 

The second derivative of the susceptibility with respect to the magnetic field, 

flx/oF, diverges at a line for which 1- (z-1)y=O. A phase where (15)=0 

and (15 2 )~0 (H=O) (l =0 and f~O) in the bond problem was regarded (defined 

microscopically) as a glass-like phase by Matsubara and Sakata,4l and its phase 

boundary between the paramagnetic phase was given by Pa th2Ka+Pn th2 Kn=1 

/ (z -1). The present result, (5 · 23), characterizes the appearance of this phase 

macroscopically as the divergence of the second derivative of the susceptibility. 

The magnetization in the ferro-, the antiferromagnetic, and the glass-like regions 

will be studied separately. 

§ 6. An approximation to the bond model 

The method of § 3 can be generalized to any order of th C of an arbitrary 

lattice by counting the number of necessary connected multiply bonded graphs for 

any crystal lattices. *l In the case of the bond model, the results are expressed 

in terms of (th K), (th2 K), ···, (thm K). In the case where (thm K) is well 

approximated by (th K)m, the results can be simplified. In that case 

(log Z{si} )=.L;(log ch Ki1)+Nlog C+Nlog 2 
(ij) 

+term of O(N) of {,L;(th Ki,i,)(th Ki,i)···(th Ki.i) 

+th" C .L;(th K;,i,)(th Ki,i,)···(th Ki.i_.) 

+ th4 C .L;<th Ki,i,)<th Ki,i,)···<th Ki.i_.) 

*l Recently P~calski and Oguchi'l gave the high temperature expansion of the susceptibility 

of the bond model of the square lattice. 
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1062 S. Katsura 

x (th Kj,j,)(th Kjd,)···(th Kj"j".)} 

+···. (6·1) 

The coefficient of thn C, the summation :E in { } , is simply given by :E.Qnm 

<th K)m, where .Qnm is the number of graphs which consist of m bonds and in 

which the sum of the number of end points and that of odd junctions is n. 4a) 

The number .Qnm is the same as that of the corresponding regular system. Hence 

( 6 · 1) can be expressed as 

(log Z{sij} )=NB(Pa log ch Ka+P8 log ch Kp) 

-NB log{ch [th-1 (Pa th Ka+P" th K")]} +log Z(K, C), 

K=th- 1 (Pa th K,+PP th Kp). (6·2) 

Thus the logarithm of the partition function of the quenched bond model is ex

pressed in terms of the corresponding regular system in this approximation. 

In particular, the susceptibility and the magnetization-magnetic field characteris

tic are obtained by the replacement of th K by ( th K) =Path Ka + p 13 th K 13 in the 

corresponding expressions for the regular system, i.e., the susceptibility of the 

infinite Bethe lattice: 

'!_'['X _ 1 +Path Ka + P.e th K.s 

Nm 2 1- (z-1) (PathKa+P,ethK,s) 
(6·3) 

the magnetization-magnetic field characteristic of the linear chain: 

M _ [1+ 1 .. ( 1-PathKa-P.ethK.s) 2
]-

112 

Nm sh2C 1+ Path Ka+ P.s th K.s 
(6·4) 

and the spontaneous magnetization of the square lattice: 

(6·5) 

are obtained straightforwardly. 

Since in .Q2, (th2 K) and higher order averages do not appear but only (th K), 

the susceptibility (6·3) is exact.ll It is pointed out by P~kalski and Oguchi91 that 

the susceptibilities of the infinite Bethe lattice of the bond model are the same 

for the quenched system and for the annealed system. 101 ' 111 

The approximation (th K)m=(thm K) is well in the ferro-ferro mixture. The 

worst case arises when Ja= -J13 and Pa=P13 • In this case the most dominant 

discrepancy between quenched and annealed systems anses. 
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