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Abstract

We study the asymptotic behavior of the solution of a Korteweg–de Vries equation with an additive noise whose amplitude ε

tends to zero. The noise is white in time and correlated in space and the initial state of the solution is a soliton solution of the
unperturbed Korteweg–de Vries equation. We prove that up to times of the order of 1/ε2, the solution decomposes into the sum
of a randomly modulated soliton, and a small remainder, and we derive the equations for the modulation parameters. We prove in
addition that the first order part of the remainder converges, as ε tends to zero, to a Gaussian process, which satisfies an additively
perturbed linear equation.
© 2006 Elsevier Masson SAS. All rights reserved.

Résumé

Nous étudions le comportement asymptotique de la solution d’une équation de Korteweg–de Vries avec un bruit additif dont
l’amplitude ε tend vers 0. Le bruit est blanc en temps et spatialement corrélé, la donnée initiale est un soliton de l’équation non
perturbée. Nous montrons que pour des temps inférieurs à 1/ε2, la solution se décompose en une onde solitaire aléatoirement
modulée et un reste petit. Nous obtenons les équations des paramètres de modulation. Nous montrons également la convergence
du terme d’ordre un dans le reste vers un processus gaussien centré vérifiant une équation linéaire bruitée.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The influence of random perturbations on the propagation of solitons, either in the nonlinear Schrödinger equation
or in the Korteweg–de Vries equation has been extensively studied in the physics literature; one of the method used is
the so called collective coordinate approach, which consists in assuming a priori that the main part of the solution is
given by a modulated soliton, and in finding then the modulation equations for the soliton parameters (see [3,11,17]).
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The inverse scattering method has also been widely used; it gives more precise results, but requires particular
perturbations [1,13,27,28]. See also [16,24,25] for numerical studies.

In [27], the special case of an additive perturbation which is a space independent white noise is considered. In this
case, using the Galilean invariance of the homogeneous Korteweg–de Vries equation, the author was able to write
explicitly the solution of the perturbed equation in terms of the solution of the homogeneous equation, that is the
soliton solution. It appears that this solution is given by the sum of a randomly modulated soliton and a Brownian
motion.

Our aim in the present article is to give a rigorous analysis of the validity of this kind of decomposition of the
solution for more general additive perturbations, which are still white noise in time, but may also depend on the space
variable. The analysis will be performed in the limit where the amplitude of the noise tends to zero. The equation we
consider may be written in Itô form as

du + (
∂3
xu + ∂x

(
u2))dt = ε dW, (1.1)

where u is a random process defined on (t, x) ∈ R
+ × R, and the process W(t, x) may be written as W(t, x) = φ ∂B

∂x
,

φ being a linear bounded operator on L2(R) and B(t, x) a two parameters Brownian motion on R
+ × R. Considering

a complete orthonormal system (ei)i∈N in L2(R), we may alternatively write W as

W(t, x) =
∑
i∈N

βi(t)φei(x), (1.2)

(βi)i∈N being an independent family of real valued Brownian motions. Hence, the correlation function of the
process W is

E
(
W(t, x)W(s, y)

) = c(x, y)(s ∧ t), x, y ∈ R, s, t > 0,

where

c(x, y) =
∫
R

K(x, z)K(y, z)dz,

and K here stands for the kernel of φ, that is for any u ∈ L2(R),

(φu)(x) =
∫
R

K(x, y)u(y)dy.

We will be led to assume some spatial smoothness for the correlation function of the process W . We indeed need
enough smoothness on the solution of (1.1) we consider to be able to use the evolution of the Hamiltonian and higher
order conserved quantities of the homogeneous KdV equation (see e.g. [26]). This may be translated in terms of the
operator φ: if we want W to be a process (in the time variable) with values almost surely in a Hilbert space H , then
we need φ to be a Hilbert–Schmidt operator from L2(R) with values into H ; this is also sufficient, i.e. if this is the
case, then the series in (1.2) converges in L2(Ω;H). We recall that φ is a Hilbert–Schmidt operator form L2(R) into
the Hilbert space H – denoted φ ∈ L2(L

2(R);H) – if and only if the norm

‖φ‖L2(L
2;H) = tr(φ∗φ) =

∑
i∈N

|φei |2H (1.3)

is finite, and that this norm does not depend on the complete orthonormal system under consideration. We will mainly
deal with solutions living in the usual Sobolev space H 1(R) of square integrable functions of the space variable x,
having their first order derivative in L2(R). Because the Airy equation – the homogeneous linear equation associated
with (1.1) – generates a unitary operator, we will then be led to assume that W lies in H 1(R), i.e. φ ∈ L2(L

2(R);H 1).
In terms of the kernel K, this amounts to require that K ∈ L2(R × R) and ∂xK ∈ L2(R × R). Note that H 1(R) is a
natural space for the homogeneous KdV equation, and allows to use the Hamiltonian, which we recall is defined for
u ∈ H 1(R) by

H(u) = 1

2

∫
(∂xu)2 dx − 1

3

∫
u3 dx. (1.4)
R R
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We recall also that if ε = 0, any time continuous solution of (1.1) with values in H 1(R) satisfies H(u(t)) = H(u(0))

for all t .
For ε > 0 the existence and uniqueness of path-wise solutions for Eq. (1.1) supplemented with an initial condition

u(0) = u0 ∈ H 1(R) has been studied in [5] (see also [7] and [8] for existence and uniqueness of less regular solutions
in the case of rough spatial correlations). We recall hereafter the precise result (see [5], Theorem 3.1).

Theorem 1.1. Let u0 ∈ H 1(R) and assume that φ ∈ L2(L
2(R);H 1(R)); then there exists a solution u of (1.1), a.s.

continuous in time with values in H 1(R), defined for all t > 0 and with u(0) = u0. Moreover, for any T > 0 such a
solution is unique among those having paths a.s. in some space XT ⊂ C([0, T ];H 1(R)).

Consider now the homogeneous Korteweg–de Vries equation

∂tu + ∂3
xu + ∂x

(
u2) = 0. (1.5)

It is well known that this equation possesses solitary wave (soliton) solutions, propagating with a constant velocity
c > 0, with the expression uc,x0(t, x) = ϕc(x − ct + x0), x0 ∈ R, and with

ϕc(x) = 3c

2 cosh2(
√

c x/2)
(1.6)

satisfying

ϕ′′
c − cϕc + ϕ2

c = 0. (1.7)

A large literature has been devoted to Eq. (1.5), and especially to solutions of the form (1.6). The most precise
results have been obtained with the use of the inverse scattering transform (see [2] or [21] for a review). It is known
for example that any sufficiently localized and smooth solution of (1.5) will resolve, as time goes to infinity, into a
finite sum of soliton solutions, (1.6), with different velocities, entirely determined by the initial state. If the method
gives precise results, however, it does not work for arbitrary perturbations of Eq. (1.5). If e.g. the nonlinear term ∂x(u

2)

is replaced by a more general term ∂xf (u), then the inverse scattering method does not apply in general, even though
solutions of the form (1.6) still exist for a wide range of functions f . Stability properties of such solutions (1.6) for
those generalizations of Eq. (1.5) have also been the object of several studies, starting with the work of Benjamin [4]
on orbital stability, and improving recently with the work of Pego and Weinstein [23] or Martel and Merle [18] dealing
with asymptotic stability. Note that another conserved quantity for Eq. (1.5) is given by

m(u) = 1

2

∫
R

u2(x)dx, (1.8)

i.e. we have m(u(t)) = m(u(0)) for any solution u ∈ C(R;H 1) of (1.5), and that Eq. (1.7) may be written as H ′(ϕc)+
cm′(ϕc) = 0. The proof of orbital stability is based on the use of the functional

Qc(u) = H(u) + cm(u), u ∈ H 1(R), (1.9)

as a Lyapunov functional. It uses the fact that the set {ϕc(· − s), s ∈ R}, that is the orbit of ϕc, is a set of local minima
of Qc restricted to the manifold {u ∈ H 1(R),m(u) = m(ϕc)}. Indeed, the linearized operator

Lc = −∂2
x + c − 2ϕc (1.10)

is not a positive operator on H 1(R), but it is when restricted to the subspace of H 1 of functions orthogonal in L2(R)

to both ϕc and ∂xϕc (see [4] or [14]). Now, the operator arising in the linearization of Eq. (1.5) is ∂xLc. This operator
has no unstable eigenvalue – see [22] – but it has a two dimensional generalized null-space spanned by ∂cϕc and ∂xϕc .
Indeed, it is easily checked that

∂xLc∂cϕc = −∂xϕc and ∂xLc∂xϕc = 0.

The asymptotic stability is then obtained via the use of modulations of the solitary wave ϕc in both the phase pa-
rameter x0, and the velocity c, in order to get rid of these two secular modes (see [18] and [23]). It is then proved
e.g. in [18] that a solution of (1.5) (or some of its generalizations), initially close in H 1(R) to a solitary wave of the
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form (1.6), will converge weakly in H 1(R) as time goes to infinity to another solitary wave of the form (1.6), but
where the velocity c and the phase x0 have been shifted.

Our aim here is to investigate the influence of random perturbations of the form given in Eq. (1.1) on the propagation
of solitary waves of the form (1.6). Consider indeed the solution uε(t, x) of Eq. (1.1), given by Theorem 1.1, and with
uε(0, x) = ϕc0(x) where c0 > 0 is fixed. We may expect that, if ε is small, the main part of the solution uε(t, x) is a
solitary wave, randomly modulated in its velocity and phase. We will prove in Section 3 that this is true for time less
than C/ε2 where C is a constant. Note that this order of time C/ε2 for the persistence of the soliton is natural and was
numerically observed in [10] and [24].

Our next purpose – achieved in Sections 4 to 6 – is to investigate more precisely the behavior at order one in ε of
the remaining term in the preceding decomposition, as ε goes to zero. More precisely, the preceding decomposition
says that the solution uε(t, x) is written as

uε(t, x) = ϕcε(t)

(
x − xε(t)

) + εηε
(
x − xε(t)

)
,

where cε(t) and xε(t) are the modulation parameters – these are random processes, and more precisely semi-
martingales. Then, in the spirit of [12], Chapter 7, we show that the process ηε converges as ε goes to zero, in
probability, to a centered Gaussian process which satisfies an additively driven linear equation, with a conservative
deterministic part. Moreover, xε and cε can be developed up to order one in ε, and we get{

dxε = c0 dt + εy dt + εB1 dt + ε dB2 + o(ε),

dcε = ε dB1 + o(ε),

where B1 and B2 are time changed Brownian motions, and y is a centered Gaussian process. Let us mention that the
parameters cε and xε have been numerically computed in [10], and that our results agree with those computations. All
these results are precisely stated and discussed in Section 2.

We end the introduction with a few notations. In all the paper, (·, ·) will denote the inner product in L2(R), or
sometimes the duality product between the usual Sobolev space Hm(R), m ∈ N, of functions having m derivatives in
L2(R), and its dual space H−m(R).

If A and B are Banach spaces, L(A;B) will stand for the space of linear bounded operators from A into B , and
Lm

2 will be an abbreviation for L2(L
2(R);Hm(R)), the space of Hilbert–Schmidt operators from L2(R) into Hm(R),

endowed with the norm defined as in (1.3), with H = Hm(R).
In all the paper, (ej )j∈N is a fixed complete orthonormal system of L2(R).
For a sequence γ = (γn)n∈N of real positive numbers, with limn→+∞ γn = +∞, we denote by Xγ the space

Xγ =
{
u ∈ L2(R),

∑

∈N

γ
(u, e
)
2 = |u|2Xγ

< +∞
}
. (1.11)

Note that Xγ is compactly embedded in L2(R). The definition of Xγ a priori depends on the basis (ej )j∈N, but this
will not cause any trouble, since this basis is from now on fixed.

Also, for x0 ∈ R, we denote Tx0 the translation operator defined for ϕ ∈ C(R) by (Tx0ϕ)(x) = ϕ(x + x0).
Finally, we assume from now on that a stochastic basis (Ω,F ,P, (Ft )t�0, (W̃ (t))t�0) is given, i.e. (Ω,F ,P) is a

probability space, (Ft )t�0 is a filtration and (W̃ (t))t�0 is a cylindrical Wiener process associated with this filtration.
We then consider an operator φ with φ ∈ L1

2 and we define

W = φW̃ . (1.12)

More restrictive assumptions will be required concerning φ in Theorem 2.6, and they are stated there.
The paper is organized as follows. Section 2 is devoted to the statement and discussion of the results. In Section 3,

we prove Theorem 2.1, i.e. we explain how we can define the modulation parameters. We also estimate the exit time,
i.e the time up to which the modulation procedure is available. In Section 4, we give the equations for the modulation
parameters and start to estimate these parameters. Section 5 is devoted to estimates on the remainder term. These
estimates will allow us to pass to the limit and conclude the proof of Theorem 2.6 in Section 6. Finally, in Section 7,
we collect the proofs of a few technical estimates which will be used in Section 6.
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2. Statement of the results

Let c0 > 0 be fixed, and consider for ε > 0 the solution uε(t, x) of Eq. (1.1), with uε(0, x) = ϕc0(x), given by
Theorem 1.1. The next theorem says that uε may be decomposed as the sum of a modulated solitary wave, and a
remaining part with small H 1 norm, for t less than some stopping time τ ε which goes to infinity in probability as ε

goes to zero. We shall then show that this remaining part is of order one with respect to ε.
More precisely, we will write

uε(t, x) = ϕcε(t)

(
x − xε(t)

) + εηε
(
t, x − xε(t)

)
(2.1)

for some semi-martingale processes cε(t), xε(t) with values in R
+∗ and R respectively, and ηε with values in H 1(R).

In order to keep |cε(t) − c0|, and |εηε|H 1 small, we will require the orthogonality conditions∫
R

ηε(t, x)ϕc0(x)dx = (ηε, ϕc0) = 0, a.s., t � τ ε, (2.2)

and ∫
R

ηε(t, x)∂xϕc0(x)dx = (ηε, ∂xϕc0) = 0, a.s., t � τ ε. (2.3)

The precise statement is the following result, proved in Section 3.

Theorem 2.1. Assume φ ∈ L1
2 and let c0 > 0 be fixed. For ε > 0, let uε(t, x), as defined above, be the solution of (1.1)

with u(0, x) = ϕc0(x). Then there exists α0 > 0 such that, for each α, 0 < α � α0, there is a stopping time τ ε
α > 0

a.s. and there are semi-martingale processes cε(t) and xε(t), defined a.s. for t � τ ε
α , with values respectively in R

+∗
and R, so that if we set εηε(t) = uε(t, · + xε(t)) − ϕcε(t), then (2.2) and (2.3) hold. Moreover, a.s. for t � τ ε

α ,∣∣εηε(t)
∣∣
H 1(R)

� α (2.4)

and ∣∣cε(t) − c0
∣∣ � α. (2.5)

In addition, there is a constant C > 0, such that for any T > 0 and any α � α0, there is a ε0 > 0, with, for each ε < ε0,

P(τ ε
α � T ) � C

α4
ε2T ‖φ‖L1

2
. (2.6)

Remark 2.2. The processes cε(t) and xε(t), and therefore ηε(t), depend a priori on α. However, we did not reflect
this dependence in the notations, since we will see that

cε
α1

(t) = cε
α2

(t), a.s. for t � τ ε
α1

∧ τ ε
α2

and the same is true for xε(t), with obvious notations.

Remark 2.3. Estimate (2.6) implies that for any α � α0, τ ε
α goes to infinity in probability as ε goes to zero; this would

have also been the case however if we had simply written

uε(t, x) = ϕc0(x − c0t) + εη̃ε(t, x − c0t)

and defined τ̃ ε
α as

τ̃ ε
α = inf

{
t ∈ R

+,
∣∣uε(t, x + c0t) − ϕc0

∣∣
H 1 � α

}
.

Indeed, it is not difficult to prove, using the same arguments as in [6], Section 3.3, that for any T > 0, uε(t, · + c0t)

converges almost surely to ϕc0 in C([0, T ];H 1(R)) as ε goes to zero. However, in this case, since the secular modes
are not eliminated, the remaining term εη̃ε remains small on a much shorter time interval. Indeed, keeping in mind the
case of a finite dimensional linear system with nonpositive spectrum and such that 0 is a degenerate double eigenvalue,
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we expect that this time interval is of order ε−2/3. On the other hand, (2.6) shows that with the use of the modulation,
εηε is small on a time interval of the order of ε−2. Moreover, it is not clear that we could prove a better estimate than

P(τ̃ ε
α � T ) � Cαε2T eLαT ‖φ‖L1

2
,

yielding a time of order ln(1/ε).

Remark 2.4. Note that there is no uniqueness of the “main part of the solution”, and accordingly of the modulation
parameters. We have to choose some specific condition on the remaining part, in addition with the fact that it has
to stay small as long as possible. This latter condition is in general ensured – in the case ε = 0 and perturbations
of the initial data – by choosing the modulation parameters in such a way that the secular modes associated with
the linearized operator around the initial solitary wave are eliminated (see [23]). The linearized operator around the
modulated solitary wave may also be used (see [18]). There is some choice. However, in the case of an additive
perturbation as given in (1.1), we cannot expect to be able to predict the asymptotic behavior of the solution as time
goes to infinity (note that some energy is continuously injected in the system in that case). Hence, in order to minimize
the computations, we choose the simplest orthogonality conditions which ensure that the remaining part stays small
as long as possible, i.e. we require that this remaining part is orthogonal in L2(R) to both ϕc0 and ∂xϕc0 .

Remark 2.5. As was mentioned in Remark 2.4, we are not able to predict the asymptotic behavior in time of the
solution of (1.1). This is the reason why we do not make use of a monotonicity formula, as is done in [18] where
the H 1 asymptotic stability is proved for the KdV equation (see also [19], Lemma 3). Indeed, it does not seem
that the use of such a formula would simplify our proof of the exit time estimate, which is essentially based on the
coercivity of some Lyapunov functional under our orthogonality conditions. However, we hope to be able to use such
a monotonicity formula in future works, in particular in order to study the case of multi-soliton solutions (see [20] for
the deterministic case) or to study more precisely the asymptotic behavior in time of Eq. (2.7) below.

We now turn to analyze the behavior of ηε , and of the modulation parameters xε and cε as ε goes to zero.

Theorem 2.6. Let φ ∈ L2
2, and assume moreover that there is a sequence γ = (γn)n∈N of real positive numbers with

limn→∞ γn = +∞, such that φ is Hilbert–Schmidt from L2(R) into Xγ . Fix c0 > 0 and let ηε , xε , cε , for ε > 0 be
given by Theorem 2.1, with α � α0 fixed. Then for any T > 0, the process (ηε(t))t∈[0,T ] converges in probability, as ε

goes to zero, to a Gaussian process η satisfying the additive linear equation

dη = ∂xLc0η dt + |∂xϕc0 |−2
L2

(
η,Lc0∂

2
xϕc0

)
∂xϕc0 dt − |∂xϕc0 |−2

L2

(
(Tc0t φ)dW̃ , ∂xϕc0

)
∂xϕc0

− (ϕc0 , ∂cϕc0)
−1((Tc0tφ)dW̃ ,ϕc0

)
∂cϕc0 + (Tc0t φ)dW̃ (2.7)

and with η(0) = 0. Here Lc0 is the unbounded operator on L2(R), with domain D(Lc0) = H 2(R) defined by (1.10).
The convergence holds in probability in C([0, T ];Hs

loc) for any s < 1, and in L2(Ω;L∞(0, T ;H 1)) weak star.
The above process η satisfies for any T > 0 the estimate

E

(
sup
t�T

∣∣η(t)
∣∣2
H 1

)
� C(1 + T )‖φ‖2

L1
2

(2.8)

for some constant C > 0, depending only on c0.
Moreover, the modulation parameters may be written, for t � τ ε , as

dxε = cε dt + εyε dt + ε(zε,dW) (2.9)

and

dcε = εaε dt + ε(bε,dW) (2.10)

for some adapted processes yε , aε , with values in R, and predictable processes zε and bε with values in
L2(R) satisfying: as ε goes to zero, aε converges to 0 in probability in C(R+), while yε converges in prob-
ability to |∂xϕc0 |−2

L2 (η(t),Lc0∂
2
xϕc0) in C(R+), η being as above. On the other hand, φ∗zε converges in prob-

ability in C(R+;L2(R)) to −|∂xϕc0 |−2
L2 (Tc0tφ)∗∂xϕc0 and φ∗bε converges in probability in C(R+;L2(R)) to

(∂cϕc ,ϕc )−1(Tc tφ)∗ϕc .
0 0 0 0
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Remark 2.7. The estimate (2.8) seems to be optimal, as long as we deal with the energy space H 1(R). However it is
rather unsatisfactory, since it does not reflect the fact that we have got rid in some sense of the secular modes, and a
uniform estimate would be expected. It appears that such an estimate probably holds under additional “localization”
assumptions on φ, i.e. assuming e.g. that the process (W(t))t�0 lives in a space of functions with exponential decay
on the right. That will be the object of further studies.

Remark 2.8. Theorem 2.6 implies that at first order in ε, i.e. neglecting all the terms which are o(ε) as ε goes to zero,
the equations for the modulation parameters may formally be written as{

dxε = c0 dt + εy dt + εB1 dt + ε dB2,

dcε = ε dB1.

Here, y is the real valued centered Gaussian process given by

y = |∂xϕc0 |−2(η,Lc0∂
2
xϕc0

)
,

η being the solution of (2.7) with η(0) = 0, and (B1,B2) is a R
2-valued centered Gaussian martingale given by

B1(t) = (∂cϕc0, ϕc0)
−1

t∫
0

(
T−c0sϕc0,dW(s)

)
,

and

B2(t) = −|∂xϕc0 |−2
L2

t∫
0

(
T−c0s∂xϕc0,dW(s)

)
.

Note that

E
(
B2

1 (t)
) = (∂cϕc0 , ϕc0)

−2

t∫
0

|φ∗T−c0sϕc0 |2L2 ds

and

E
(
B2

2 (t)
) = |∂xϕc0 |−4

L2

t∫
0

|φ∗T−c0s∂xϕc0 |2L2 ds,

and that in the case where φ is nondegenerate – in the sense that the null-space of φ∗ is reduced to {0} – B1 and B2
are time changed Brownian motions. Due to the spatial correlation of the noise, i.e. to the presence of the operator φ,
B1 and B2 are not independent in general. Indeed, their correlation function is given by

E
(
B1(t)B2(s)

) = −(∂cϕc0, ϕc0)
−1|∂xϕc0 |−2

L2

t∧s∫
0

(φ∗T−c0σ ϕc0, φ
∗T−c0σ ∂xϕc0)dσ.

They would have been independent in the case of a space–time white noise – i.e. the case φ = id – which however
does not satisfy the assumptions of Theorems 2.1 and 2.6.

The next section is devoted to the proof of Theorem 2.1. We first prove with the use of an implicit function theorem
the existence of a stopping time τ ε

α , for α � α0, such that the decomposition (2.1) holds for t � τ ε
α , with xε and cε

semi-martingales and ηε satisfying (2.2) and (2.3). We then estimate |εηε(t ∧ τ ε
α)|H 1 in order to prove (2.6). For that

purpose, we make use of the Lyapunov functional Qc0 (see (1.9)), and in particular of the fact, mentioned in Section 1,
that Q′′

c0
(ϕc0) is a positive operator when restricted to the orthogonal of span{ϕc0, ∂xϕc0}.

In Section 4, we first derive the equation for ηε , by using the Itô and Itô–Wentzell formulae. We then deduce the
modulation equations, i.e. the equations for the parameters yε , zε , aε , bε arising in the expressions (2.9) and (2.10) of
cε and xε as semi-martingale processes. This allows us, at the end of Section 4, to estimate these parameters in terms
of |ηε|L2 .
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Coming back, in Section 5, to the equation for ηε , and making use of the latter bounds on the modulation para-
meters, several estimates on ηε are derived. The aim is of course to prove that the family composed with ηε and the
modulation parameters, for all ε > 0, is tight in some adequate function space. Actually, the technical part of the proof
of these estimates, which relies mainly on the application of the Itô formula to different functionals of ηε , is postponed
to the appendix, Section 7.

Finally, a compactness method is applied in Section 6 to get the existence of a limit and the limit equation.

3. Modulation and estimate on the exit time

The following lemma will be useful for the proof of Theorem 2.1. It simply follows from an application of the Itô
formula, and the same smoothing procedure as in [5].

Lemma 3.1. Let uε be the solution of (1.1) given by Theorem 1.1, with uε(0, x) = ϕc0(x) and assume that φ ∈ L1
2;

then for any stopping time τ we have

m
(
uε(τ )

) = m(ϕc0) + ε

τ∫
0

(
uε(s),dW(s)

) + ε2

2
τ‖φ‖2

L0
2
, a.s. (3.1)

and

H
(
uε(τ )

) = H(ϕc0) + ε

τ∫
0

(
∂xu

ε(s), ∂x dW(s)
) − ε

τ∫
0

((
uε(s)

)2
,dW(s)

)

+ ε2

2
τ‖φ‖2

L1
2
− ε2

∑
k∈N

τ∫
0

(
uε(s)φek,φek

)
ds a.s. (3.2)

We now turn to the proof of Theorem 2.1.

Proof of Theorem 2.1. Under the assumptions of Theorem 2.1, we denote, for α with 0 < α < c0/4, by Bϕc0
(2α) the

ball in H 1(R) of center ϕc0 and radius 2α. We then consider the mapping

I : (c0 − 2α, c0 + 2α) × (−2α,2α) × Bϕc0
(2α) → R × R,

(c, x0, u) �→ (I1,I2)

defined by

I1(c, x0, u) =
∫
R

(
u(x + x0) − ϕc(x)

)
ϕc0(x)dx

and

I2(c, x0, u) =
∫
R

(
u(x + x0) − ϕc(x)

)
∂xϕc0(x)dx.

Clearly, I is a C2 mapping of its arguments – note that ϕc(x) is an infinitely smooth function of both c and x.
Moreover I(c0,0, ϕc0) = 0, and it follows from (1.6) that

∂cI1(c0,0, ϕc0) = −(ϕc0 , ∂cϕc0) = − 3

4c0
|ϕc0 |2L2 < 0,

and

∂x I2(c0,0, ϕc ) = −|∂xϕc |2 2 < 0.
0 0 0 L
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Hence, we may apply, for α � α0 where α0 is sufficiently small, the implicit function theorem, to get the existence of
a C2 mapping (c(u), x(u)) defined for u ∈ Bϕc0

(2α), such that

I1
(
c(u), x(u),u

) = I2
(
c(u), x(u),u

) = 0.

Moreover, reducing again α if necessary, we may apply the implicit function theorem uniformly around the points
(c,0, u0) satisfying

I(c,0, u0) = 0, |c − c0| < α, and |u0 − ϕc0 |H 1 < α.

Applying this with u = uε(t), we get the existence of cε(t) and xε(t) such that (2.2) and (2.3) hold, with εη(t) =
uε(t, · + xε(t)) − ϕcε(t). Note that the H 1-valued process uε is a semi-martingale with values in H−2(R). Since the
functional I defined above is clearly a C2 functional of u on H−2(R), it follows that locally in time, the processes
xε and cε are given by a deterministic C2 function of uε ∈ H−2. The Itô formula then implies that cε and xε are
semi-martingale processes. Moreover, since we clearly have I(cε(t),0, uε(t, · + xε(t))) = 0, the existence of xε(t)

and cε(t) holds as long as∣∣cε(t) − c0
∣∣ < α and

∣∣uε
(
t, · + xε(t)

) − ϕc0

∣∣
H 1 < α.

Let us denote by τ̄ ε
α the stopping time

τ̄ ε
α = inf

{
t � 0,

∣∣cε(t) − c0
∣∣ � α or

∣∣uε
(
t, · + xε(t)

) − ϕc0

∣∣
H 1 � α

}
,

so that cε(t) and xε(t) are defined for t � τ̄ ε
α ; let us also denote by τ ε

β , for β > 0, the stopping time

τ ε
β = inf

{
t � 0,

∣∣cε(t) − c0
∣∣ � β or

∣∣uε
(
t, · + xε(t)

) − ϕcε(t)

∣∣
H 1 � β

}
.

Since, as long as
∣∣cε(t)− c0

∣∣ � α � α0, the inequality |ϕcε(t) −ϕc0 |H 1 � Cα holds, with a constant C depending only
on c0 and α0, it follows obviously that

τ ε
α � τ̄ ε

(C+1)α � τ ε
(C+1)2α

.

Hence, decreasing again α0, the processes xε(t) and cε(t) are defined for all t � τ ε
α0

, and satisfy for all t � τ ε
α , α � α0,

(2.4) and (2.5) in addition with (2.2) and (2.3).
Thus it remains only to prove the estimate (2.6). This is actually the most technical part of the proof. We will make

use of the functional Qc0 defined by (1.9). Note that Qc0 is a C2 functional of u ∈ H 1(R) and that Q′
c0

(ϕc0) = 0 by
(1.7). Moreover, it is well known (see e.g. [14]) that there is a constant ν > 0, depending only on c0, such that for any
v ∈ H 1(R) with (v,ϕc0) = (v, ∂xϕco) = 0, we have(

Q′′
c0

(ϕc0)v, v
)
� ν|v|2

H 1, (3.3)

where Q′′
c0

(ϕc0) = Lc0 ∈ L(H 1(R);H−1(R)). Now, we may write, almost surely for t � τ ε
α :

Qc0

(
uε

(
t, · + xε(t)

)) − Qc0(ϕcε(t))

= (
Q′

c0

(
ϕcε(t)

)
, εηε(t)

) + (
Q′′

c0
(ϕcε(t))εη

ε(t), εηε(t)
) + o

(∣∣εηε(t)
∣∣2
H 1

)
. (3.4)

Note that o(|εηε(t)|2
H 1) is uniform in ω, ε and t , since Q′

c0
(ϕc) and Q′′

c0
(ϕc) depend continuously on c, and since

|cε(t) − c0| � α and |uε(t, · + xε(t)) − ϕcε(t)|H 1 = |εηε(t)|H 1 � α for t � τ ε
α .

We then assume that α0 has been chosen small enough so that the last term in (3.4) is almost surely less than
ν
4 |εηε(t)|2

H 1 for all t � τ ε
α .

Note that there is a constant C, depending only on c0 and α0 such that the inequality∥∥Q′′
c0

(ϕcε(t)) − Q′′
c0

(ϕc0)
∥∥
L(H 1;H−1)

� 2|ϕcε(t) − ϕc0 |L2 � C
∣∣cε(t) − c0

∣∣
holds, for all t � τ ε

α , and thus(
Q′′

c0
(ϕcε )εηε, εηε

)
� ν|εηε|2

H 1 − C|cε − c0||εηε|2
H 1 .

On the other hand, since Q′
cε (ϕcε ) = 0 by (1.7),∣∣Q′

c (ϕcε )(εηε)
∣∣ = ∣∣((c0 − cε)ϕcε , εηε

)∣∣ � ν |εηε|2 1 + C|c0 − cε|2;

0 2 H
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it then follows from (3.4) that for all α � α0, and for all t � τ ε
α , we have a.s.

Qc0

(
uε

(
t, · + xε(t)

)) − Qc0(ϕcε ) � ν

4

∣∣εηε(t)
∣∣2
H 1 − C

∣∣cε(t) − c0
∣∣2 (3.5)

for a constant C depending only on α0 and c0.
We now make use of Lemma 3.1 to deduce from (3.5) that a.s. for all t , denoting for simplicity τ = τ ε

α ∧ t :∣∣εηε(τ )
∣∣2
H 1 � 4

ν

[
Qc0

(
uε

(
τ, · + xε(τ )

)) − Qc0(ϕcε(τ))
] + C

∣∣cε(τ ) − c0
∣∣2

� 4

ν

[
Qc0

(
uε(τ )

) − Qc0(ϕcε(τ))
] + C

∣∣cε(τ ) − c0
∣∣2

� 4

ν

[
Qc0(ϕc0) − Qc0(ϕcε(τ)) + ε

τ∫
0

(
∂xu

ε(s), ∂x dW(s)
)

− ε

τ∫
0

((
uε(s)

)2
,dW(s)

) + c0ε

τ∫
0

(
uε(s),dW(s)

) + ε2

2
τ‖φ‖2

L1
2

+ ε2‖φ‖2
L1

2

τ∫
0

∣∣uε(s)
∣∣
L2 ds + c0

2
ε2τ‖φ‖2

L0
2

]
+ C

∣∣cε(τ ) − c0
∣∣2

. (3.6)

We now estimate |cε(τ ) − c0|2. On the one hand, the orthogonality condition (ηε, ϕc0) = 0 implies∣∣uε(τ )
∣∣2
L2 = ∣∣uε

(
τ, · + xε(τ )

)∣∣2
L2 = ∣∣εηε(τ ) + ϕcε(τ)

∣∣2
L2

= ∣∣εηε(τ )
∣∣2
L2 + |ϕcε(τ)|2L2 + 2

(
εηε(τ ), ϕcε(τ) − ϕc0

)
and on the other hand, from Lemma 3.1

∣∣uε(τ )
∣∣2
L2 = |ϕc0 |2L2 + 2ε

τ∫
0

(
uε(s),dW(s)

) + ε2τ‖φ‖2
L0

2
.

It thus follows from the equality of the two terms that for some constants C and μ, depending only on c0 and α0,

μ
∣∣cε(τ ) − c0

∣∣ �
∣∣|ϕc0 |2L2 − |ϕcε(τ)|2L2

∣∣
�

∣∣εηε(τ )
∣∣2
L2 + 2

∣∣εηε(τ )
∣∣
H 1 |ϕcε(τ) − ϕc0 |L2 + 2ε

∣∣∣∣∣
τ∫

0

(
uε(s),dW(s)

)∣∣∣∣∣ + ε2τ‖φ‖2
L0

2

�
∣∣εηε(τ )

∣∣2
L2 + Cα

∣∣cε(τ ) − c0
∣∣ + 2ε

∣∣∣∣∣
τ∫

0

(
uε(s),dW(s)

)∣∣∣∣∣ + ε2τ‖φ‖2
L0

2
.

Hence, choosing again α0 sufficiently small, we get

∣∣cε(τ ) − c0
∣∣2 � C

[∣∣εηε(τ )
∣∣4
L2 + 4ε2

∣∣∣∣∣
τ∫

0

(
uε(s),dW(s)

)∣∣∣∣∣
2

+ ε4τ 2‖φ‖4
L0

2

]
. (3.7)

Inserting (3.7) in the right-hand side of (3.6), and using in addition that, because Q′
c0

(ϕc0) = 0,∣∣Qc0(ϕc0) − Qc0(ϕcε(τ))
∣∣ � C|ϕc0 − ϕcε(τ)|2H 1 � C

∣∣c0 − cε(τ )
∣∣2

for some constant C(c0, α0), we obtain
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∣∣εηε(τ )
∣∣2
H 1 � C

[∣∣εηε(τ )
∣∣4
L2 + 4ε2

∣∣∣∣∣
τ∫

0

(
uε(s),dW(s)

)∣∣∣∣∣
2

+ ε4τ 2‖φ‖4
L0

2
+ ε

τ∫
0

(
∂xu

ε(s), ∂x dW(s)
)

− ε

τ∫
0

((
uε(s)

)2
,dW(s)

) + c0ε

τ∫
0

(
uε(s),dW(s)

)
+ ε2

2
τ‖φ‖2

L1
2

+ ε2‖φ‖2
L1

2

τ∫
0

∣∣uε(s)
∣∣
L2 ds + c0

ε2

2
τ‖φ‖2

L0
2

]
. (3.8)

Again, the constant C in the right-hand side of (3.8) only depends on c0 and α0.
Let us now fix T > 0 and set

Ω
T,ε,α
1 = {

ω ∈ Ω, τε
α(ω) � T , and

∣∣εηε(τ ε
α)

∣∣
H 1 = α

}
and

Ω
T,ε,α
2 = {

ω ∈ Ω, τε
α(ω) � T , and

∣∣cε(τ ε
α) − c0

∣∣ = α
}

so that

P
(
τ ε
α(ω) � T

)
� P

(
Ω

T,ε,α
1

) + P
(
Ω

T,ε,α
2

)
.

Let α1 > 0 small enough so that Cα2
1 � 1/2, where C = C(α0, c0) is the constant appearing in the right-hand side

of (3.8). Multiplying both sides of (3.8) by 1
Ω

T,ε,α
1

, assuming α � α1 and taking the expectation with τ = τ ε
α ∧ T , we

easily get

α2

2
P
(
Ω

T,ε,α
1

)
� C

[
4ε2

E

∣∣∣∣∣
τ∫

0

(
uε(s),dW(s)

)
1

Ω
T,ε,α
1

∣∣∣∣∣
2

+ ε4T 2‖φ‖4
L0

2
P
(
Ω

T,ε,α
1

)

+ εE

( τ∫
0

(
∂xu

ε(s), ∂x dW(s)
)
1

Ω
T,ε,α
1

)
− εE

( τ∫
0

((
uε(s)

)2
,dW(s)

)
1

Ω
T,ε,α
1

)

+ c0εE

( τ∫
0

(
uε(s),dW(s)

)
1

Ω
T,ε,α
1

)
+ ε2

2
T ‖φ‖2

L1
2
P
(
Ω

T,ε,α
1

)

+ ε2‖φ‖2
L1

2
E

( τ∫
0

∣∣uε(s)
∣∣
L2 ds1

Ω
T,ε,α
1

)
+ c0

ε2

2
T ‖φ‖2

L0
2
P
(
Ω

T,ε,α
1

)]
.

Now, using the Cauchy–Schwarz inequality in the right-hand side above, together with the fact that |uε(s)|2
H 1 � C a.s.

for s ∈ [0, τ ε
α ∧ T ], where C only depends on c0 and α0, and the Bürkholder–Davis–Gundy inequality, we get

α2

2
P
(
Ω

T,ε,α
1

)
� C1

[
4ε2

(
E

( τ∫
0

(
uε(s),dW(s)

))4)1/2

+ ε

(
E

( τ∫
0

(
∂xu

ε(s), ∂x dW(s)
))2)1/2

+ ε

(
E

( τ∫
0

((
uε(s)

)2
,dW(s)

))2

)1/2

+ c0ε

(
E

( τ∫
0

(
uε(s),dW(s)

))2)1/2]
P
(
Ω

T,ε,α
1

)1/2

+ (
C2ε

4T 2‖φ‖4
L0

2
+ C3ε

2T ‖φ‖2
L1

2

)
P
(
Ω

T,ε,α
1

)
� C′

1ε
√

T ‖φ‖L1

(
1 + ε

√
T ‖φ‖L1

)
P
(
Ω

T,ε,α
1

)1/2 + C′
2ε

2T ‖φ‖2
1

(
1 + ε2T ‖φ‖2

1

)
P
(
Ω

T,ε,α
1

)

2 2 L2 L2
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and it follows, if we choose ε � ε0 with

C′
2ε

2
0T ‖φ‖2

L1
2

(
1 + ε2

0T ‖φ‖2
L1

2

)
� α2

4
, (3.9)

that

P
(
Ω

T,ε,α
1

)
� C

α4
ε2T ‖φ‖2

L1
2
. (3.10)

It remains to estimate P(Ω
T,ε,α
2 ). Coming back to (3.7) and using the same arguments as above, we easily get

α2
P
(
Ω

T,ε,α
2

)
� C

[
α4

P
(
Ω

T,ε,α
2

) + ε4T 2‖φ‖4
L0

2
P
(
Ω

T,ε,α
2

) + ε2T ‖φ‖2
L0

2
P
(
Ω

T,ε,α
2

)1/2];
therefore, if α � α1 and ε is small enough, we have

P
(
Ω

T,ε,α
2

)
� C

α4
ε4T 2‖φ‖4

L0
2
. (3.11)

(2.6) follows from (3.10) and (3.11), for α � α1 and ε small enough with respect to α and T .

4. Modulation equations

We now fix α in such a way that the conclusion of Theorem 2.1 holds, and we turn to derive the equations for the
modulation parameters xε and cε , and for ηε . These modulation equations will allow us to obtain estimates on these
parameters in the next section. As α is from now on fixed, we write τ ε for τ ε

α in all what follows.
We know from Theorem 2.1 that xε and cε are semi-martingale processes, adapted to the filtration generated by the

Wiener process (W(t))t�0. We may thus write a priori the equations for xε and cε in the form (2.9) and (2.10), where
yε and aε are real valued adapted processes with paths in L1(0, τ ε) a.s., and zε and bε are L2(R)-valued predictable
processes, with paths in L2(0, τ ε;L2(R)) a.s.

Lemma 4.1. With the above notations, ηε satisfies the equation

dηε = ∂xLc0η
ε dt + (yε∂xϕcε − aε∂cϕcε )dt + (cε − c0 + εyε)∂xη

ε dt − ε∂x

(
(ηε)2)dt

− 2∂x

(
(ϕcε − ϕc0)η

ε
)

dt + (∂xϕcε )(zε,dW) − (∂cϕcε )(bε,dW)

+ ε∂xη
ε(zε,dW) + (dW)

(
t, · + xε(t)

) + ε
∑

∈N

Txε (∂xφe
)(z
ε,φe
)dt

+ ε

2

(
∂2
xϕcε |φ∗zε|2

L2 − ∂2
c ϕcε |φ∗bε|2

L2

)
dt + 1

2
ε2∂2

xηε|φ∗zε|2
L2 dt. (4.1)

Proof. We first perform formal computations, after what we explain how they can be justified. We apply the Itô–
Wentzell formula to uε(t, x + xε(t)), using the fact that uε satisfies Eq. (1.1) and xε satisfies Eq. (2.9). We then
formally get

d
(
uε

(
t, x + xε(t)

)) = −∂3
xuε

(
t, x + xε(t)

)
dt − ∂x

((
uε

(
t, x + xε(t)

))2)dt + ε(dW)
(
t, x + xε(t)

)
+ ε(∂xu

ε)
(
t, x + xε(t)

)
yε(t)dt + cε(t)(∂xu

ε)
(
t, x + xε(t)

)
dt

+ ε(∂xu
ε)

(
t, x + xε(t)

)(
zε(t),dW(t)

) + ε2

2

(
∂2
xuε

)(
t, x + xε(t)

)∣∣φ∗zε(t)
∣∣2
L2 dt

+ ε2
∑

∈N

(∂xφe
)
(
x + xε(t)

)(
zε(t), φe


)
dt, (4.2)

where

(dW)
(
t, x + xε(t)

) =
∑

∈N

(φe
)
(
x + xε(t)

)
dβ
(t) =

∑

∈N

(Txε(t)φe
)(x)dβ
(t).

Using now the (standard) Itô formula and Eq. (2.10), we have
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d(ϕcε(t)) = ∂cϕcε(t) dcε(t) + ε2

2
∂2
c ϕcε(t)|φ∗bε|2

L2 dt

= ε∂cϕcε(t)a
ε(t)dt + ε∂cϕcε(t)

(
bε(t),dW(t)

) + ε2

2
∂2
c ϕcε(t)|φ∗bε|2

L2 dt. (4.3)

Replacing then in (4.2) uε(t, x + xε(t)) by ϕcε(t)(x) + εηε(t, x), using (4.3), (1.7) and (1.10), we deduce Eq. (4.1)
for ηε , where we have used

∂xLcεu = ∂xLc0u + (cε − c0)(∂xu) − 2∂x

(
(ϕcε − ϕc0)u

)
.

The above computations may be justified as follows: consider a sequence φn of linear operators in L4
2, converging

to φ in L1
2. It is not difficult to see that there is a unique global solution uε

n of (1.1), with uε
n(0) = ϕc0 , with paths a.s.

in C(R+;H 4(R)), and that uε
n converges to uε a.s. in C(R+;H 1) as n goes to infinity. Moreover, taking α smaller if

necessary, all the arguments in the proof of Theorem 2.1 apply uniformly in n, for n large enough. It means that we
may write, for α small enough, and for any n � n0(α),

uε
n

(
t, x + xε

n(t)
) = ϕcε

n(t)(x) + εηε
n(t, x)

with (ηε
n,ϕc0) = (ηε

n, ∂xϕc0) = 0, and this almost surely for t � τ ε not depending on n. All the above arguments are
justified for a fixed n, since all the terms arising in the equation for uε

n are continuous in both the t and x variables;
we then argue as above on uε

n instead of uε , and take the limit as n goes to infinity in the final equations. �
We now derive the equations for the modulation parameters yε , aε , zε and bε . We set for convenience in all what

follows

Zε

(t) =

(
(zε(t), φe
)

(bε(t), φe
)

)
, 
 ∈ N, and Y ε(t) =

(
yε(t)

aε(t)

)
. (4.4)

Lemma 4.2. The modulation parameters satisfy the system of equations

Aε(t)Zε

(t) = Fε


 (t), ∀
 ∈ N (4.5)

and

Aε(t)Y ε(t) = Gε(t), ∀t � τ ε, (4.6)

where Zε

 and Y ε are defined in (4.4), Aε is defined by

Aε(t) =
(

(∂xϕcε + ε∂xη
ε, ∂xϕc0) −(∂cϕcε , ∂xϕc0)

−(∂xϕcε , ϕc0) (∂cϕcε , ϕc0)

)
, (4.7)

Fε is given by

Fε

 (t) =

(−(Txε (φe
), ∂xϕc0)

(Txε (φe
), ϕc0)

)
(4.8)

and

Gε(t) =
(

Gε
1(t)

Gε
2(t)

)
,

with

Gε
1(t) = (

ηε,Lc0∂
2
xϕc0

) + (cε − c0)
(
ηε, ∂2

xϕc0

) + ε
(
∂x

(
(ηε)2), ∂xϕc0

) + 2
(
∂x

(
(ϕcε − ϕc0)η

ε
)
, ∂xϕc0

)
− ε

∑

∈N

(
Txε (∂xφe
), ∂xϕc0

)
(zε,φe
) − ε

2

(
∂2
xϕcε , ∂xϕc0

)|φ∗zε|2
L2 + ε

2

(
∂2
c ϕcε , ∂xϕc0

)|φ∗bε|2
L2

− 1

2
ε2(ηε, ∂3

xϕc0

)|φ∗zε|2
L2 (4.9)

and
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Gε
2(t) = −ε

(
∂x

(
(ηε)2), ϕc0

) − 2
(
∂x

(
(ϕcε − ϕc0)η

ε
)
, ϕc0

) + ε
∑

∈N

(
Txε (∂xφe
), ϕc0

)
(zε,φe
)

+ ε

2

(
∂2
xϕcε , ϕc0

)|φ∗zε|2
L2 − ε

2

(
∂2
c ϕcε , ϕc0

)|φ∗bε|2
L2 + 1

2
ε2(ηε, ∂2

xϕc0

)|φ∗zε|2
L2 . (4.10)

Proof. We take the L2 inner product of Eq. (4.1) with ϕc0 , and make use of the orthogonality conditions (2.2) and
(2.3) together with the fact that Lc0∂xϕc0 = 0, as can be seen easily from (1.7). This leads to

0 = d(ηε, ϕc0) = (dηε,ϕc0)

= (yε∂xϕcε − aε∂cϕcε , ϕc0)dt − ε
(
∂x

(
(ηε)2), ϕc0

)
dt − 2

(
∂x((ϕcε − ϕc0)η

ε), ϕc0

)
dt + (∂xϕcε , ϕc0)(z

ε,dW)

− (∂cϕcε , ϕc0)(b
ε,dW) + (

(dW)(t, · + xε),ϕc0

) + ε
∑

∈N

(
Txε (∂xφe
), ϕc0

)
(zε,φe
)dt

+ ε

2

(
∂2
xϕcε , ϕc0

)|φ∗zε|2
L2 dt − ε

2

(
∂2
c ϕcε , ϕc0

)|φ∗bε|2
L2 dt + 1

2
ε2(∂2

xηε,ϕc0

)|φ∗zε|2
L2 dt. (4.11)

In the same way, taking the inner product of (4.1) with ∂xϕc0 , and making use of (2.3), it comes out that

0 = d(ηε, ∂xϕc0) = (dηε, ∂xϕc0)

= −(
ηε,Lc0∂

2
xϕc0

)
dt + (yε∂xϕcε − aε∂cϕcε , ∂xϕc0)dt + (cε − c0 + εyε)(∂xη

ε, ∂xϕc0)dt

− ε
(
∂x

(
(ηε)2), ∂xϕc0

)
dt − 2

(
∂x

(
(ϕcε − ϕc0)η

ε
)
, ∂xϕc0

)
dt + (∂xϕcε , ∂xϕc0)(z

ε,dW)

− (∂cϕcε , ∂xϕc0)(b
ε,dW) + ε(∂xη

ε, ∂xϕc0)(z
ε,dW) + (

(dW)(t, · + xε), ∂xϕc0

)
+ ε

∑

∈N

(
Txε (∂xφe
), ∂xϕc0

)
(zε,φe
)dt + ε

2

(
∂2
xϕcε , ∂xϕc0

)|φ∗zε|2
L2 dt − ε

2

(
∂2
c ϕcε , ∂xϕc0

)|φ∗bε|2
L2 dt

+ 1

2
ε2(∂2

xηε, ∂xϕc0

)|φ∗zε|2
L2 dt. (4.12)

We may now write that both the drift and martingale part of the right-hand side in Eqs. (4.11) and (4.12) are
identically equal to zero. The identification of the martingale parts in both equations gives, for each 
 ∈ N the system
of equations{

(∂xϕcε , ∂xϕc0)(z
ε,φe
) − (∂cϕcε , ∂xϕc0)(b

ε,φe
) + (ε∂xη
ε, ∂xϕc0)(z

ε,φe
) = −(
Txε (φe
), ∂xϕc0

)
,

(∂cϕcε , ϕc0)(b
ε,φe
) − (∂xϕcε , ϕc0)(z

ε,φe
) = (Txε (φe
), ϕc0),

which is exactly (4.5). The identification of the drift parts gives (4.6). �
We deduce from the modulation equations given in Lemma 4.2 the following estimates for the modulation para-

meters.

Corollary 4.3. Under the assumptions of Theorem 2.1, there is a α1 > 0 such that for α � α1, there is a constant
C(c0, α) with∣∣φ∗zε(t)

∣∣
L2 + ∣∣φ∗bε(t)

∣∣
L2 � C(c0, α)‖φ‖L0

2
, for all t � τ ε. (4.13)

Moreover, there are constants C1 and C2, depending only on c0, α and ‖φ‖L1
2

such that∣∣aε(t)
∣∣ + ∣∣yε(t)

∣∣ � C1
∣∣ηε(t)

∣∣
L2 + εC2, a.s. for t � τ ε. (4.14)

Proof. Note that, almost surely for t � τ ε , Aε(t) = A0 + O(|cε − c0| + |εηε|H 1) with

A0 =
( |∂xϕc0 |2L2 0

0 (ϕc0 , ∂cϕc0)

)
,

and with O(|cε − c0|+ |εηε|H 1) uniform in ε, t and ω, as long as t � τ ε . Hence, choosing α � α1 smaller if necessary
(depending only on c0), it follows that setting

Ãε(t) = A0 + 1[0,τ ε)(t)
(
Aε(t) − A0

)
, (4.15)
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the matrix Ãε(t) is invertible, for all t , and for a.e. ω ∈ Ω ,∥∥(
Ãε(t)

)−1∥∥ � C(c0, α).

We deduce that for ε � ε0, t � τ ε , (4.5) may be solved by Zε

(t) = (Ãε(t))−1Fε


 (t), leading to the estimate∣∣(zε(t), φe


)∣∣ + ∣∣(bε(t), φe


)∣∣ � C(c0, α)
∣∣Fε


 (t)
∣∣ � C(c0, α)|φe
|L2 |ϕc0 |H 1 (4.16)

for all 
 ∈ N and all t � τ ε ; (4.13) follows from the Parseval theorem.
To prove the estimate on the drift part, we note that for α � α1, the estimate (4.13) easily leads to∣∣Gε

1(t)
∣∣ + ∣∣Gε

2(t)
∣∣ � C1

∣∣ηε(t)
∣∣
L2 + εC2, a.s. for t � τ ε,

where C1 and C2 are constants depending only on c0, α and ‖φ‖L1
2
. In view of (4.6), and the above arguments on Aε ,

(4.14) follows, with possibly different constants. �
Under the more restrictive assumptions of Theorem 2.6, we get the following estimates on zε and bε , which will

be useful for the tightness of the family.

Corollary 4.4. Under the assumptions of Theorem 2.6, and if α � α1, there is a constant C(c0, α) with

sup
t�τ ε

(∣∣φ∗zε(t)
∣∣
Xγ

+ ∣∣φ∗bε(t)
∣∣
Xγ

)
� C(c0, α)|ϕc0 |H 1‖φ‖L2(L

2;Xγ ). (4.17)

Proof. If γ = (γn)n∈N is a sequence of real positive numbers such that φ is Hilbert–Schmidt from L2(R) into Xγ ,
where Xγ is defined as in (1.11), then we may write using the Parseval identity and (4.16)

|φ∗zε|2Xγ
+ |φ∗bε|2Xγ

=
∑

∈N

γ
(φe
, z
ε)2 + γ
(φe
, b

ε)2 � C2(c0, α)|ϕc0 |2H 1

∑

∈N

γ
|φe
|2L2 .

Hence, (4.17) follows. �
5. Estimates on the remainder term, and tightness

In this section, we list some estimates on the remainder term ηε defined in the preceding sections. These estimates
will allow us to apply a compactness method, and pass to the limit as ε goes to zero. This will be done in Section 6.

Again, here, α � α0 is fixed. Moreover, we assume from now on that φ ∈ L2
2. We may write down Eq. (4.1) for ηε

in the equivalent form

dηε = ∂xLcεηε dt + (yε∂xϕcε − aε∂cϕcε )dt + ε(∂xη
ε)yε dt − ε∂x

(
(ηε)2)dt + ∂xϕcε (zε,dW)

− ∂cϕcε (bε,dW) + ε∂xη
ε(zε,dW) + (dW)(t, · + xε) + ε

∑

∈N

Txε (∂xφe
)(z
ε,φe
)dt

+ ε

2

(
∂2
xϕcε |φ∗zε|2

L2 − ∂2
c ϕcε |φ∗bε|2

L2

)
dt + 1

2
ε2∂2

xηε|φ∗zε|2
L2 dt. (5.1)

Some of the estimates listed in the present section are obtained with the use of Eq. (5.1), applying the Itô formula to
different functionals of ηε . The details of the proofs are rather technical, and are postponed to Appendix A.

Applying the Itô formula to |ηε|2
L2 , we first get the following estimate (see Appendix A for the proof).

Lemma 5.1. For any positive T , there is a constant C(T ) depending only on T , α, c0 and ‖φ‖L1
2

such that

E

(
sup

t∈[0,τ ε∧T ]

∣∣ηε(t)
∣∣2
L2

)
� C(T ). (5.2)

In the same way, applying the Itô formula to |∂xη
ε|2 2 , we obtain (see Appendix A)
L
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Lemma 5.2. For any positive T , there is a constant C(T ) depending only on T , α, c0 and ‖φ‖L2
2

such that

E

(
sup

t∈[0,τ ε∧T ]

∣∣ηε(t)
∣∣2
H 1

)
� C(T ). (5.3)

Remark 5.3. Some of the terms arising in the course of the proof of Lemma 5.2 need the use of auxiliary estimates, like
estimates on E(supt�τ ε∧T |ε∂2

xηε(t)|4
L2). These estimates are stated and proved in Appendix A, and are responsible

for the restriction on the regularity of φ, i.e. the fact that we require φ ∈ L2
2 and not only φ ∈ L1

2.

In order to proceed with the compactness method, we need estimates on the moduli of continuity. Note that the
family (ηε, yε, aε, zε, bε) = (ηε, Y ε,Zε) is a priori only defined for t � τ ε . We define it for t ∈ R

+ by simply setting
ηε(t) = ηε(τ ε) for t � τ ε and the same for Y ε and Zε .

The next estimate is a simple consequence of Lemma 5.2 and Eq. (5.1).

Lemma 5.4. For any positive T and any real number β with 0 � β < 1/2, there is a constant C(T ,β) depending only
on T ,β,α, c0 and ‖φ‖L2

2
such that

E
(∣∣ηε(t)

∣∣2
Cβ([0,T ];H−2(R))

)
� C(T ,β). (5.4)

The tightness of the laws of Zε in [C([0, T ];L2(R))]2 and of Y ε in [C([0, T ];R)]2 will be obtained thanks to
(4.17) and the following estimates.

Lemma 5.5. For any positive T and any real number β with 0 � β < 1/2, there is a constant C(T ,β) depending only
on T ,β,α, c0 and ‖φ‖L2

2
such that

E
(|φ∗zε|Cβ([0,T ];L2) + |φ∗bε|Cβ([0,T ];L2)

)
� C(T ,β) (5.5)

and

E
(|aε|Cβ([0,T ]) + |yε|Cβ([0,T ])

)
� C(T ,β). (5.6)

Proof of Lemma 5.5. Let T > 0 and β , with 0 � β < 1/2 be fixed. The integrated form of Eq. (2.10), together with
estimates (4.13), (4.14) and the definition of τ ε easily produce

E
(|cε|Cβ([0,T ∧τ ε])

)
� C(T ,β). (5.7)

In view of Eq. (2.9), and using again (4.13) and (4.14), it comes

E
(|xε|Cβ([0,T ∧τ ε])

)
� C(T ,β).

We then turn to Eq. (4.5) for

Zε

 =

(
(zε,φe
)

(bε,φe
)

)
and we estimate

E

(
sup

s,t�τ ε∧T

∣∣Fε

 (t) − Fε


 (s)
∣∣2

)
� CE

(
sup

s,t�τ ε∧T

|Txε(t)φe
 − Txε(s)φe
|2L2

)(|ϕc0 |2L2 + |∂xϕc0 |2L2

)
.

From Eq. (2.9) for xε and the Itô formula, if s < t ,

φe


(· + xε(t)
) − φe


(· + xε(s)
) =

t∫
s

(∂xφe
)
(· + xε(σ )

)
dxε(σ ) + 1

2
ε2

t∫
s

(∂2
xφe
)

(· + xε(σ )
)∣∣φ∗zε(σ )

∣∣2
L2 dσ

so that using Eq. (2.9), and estimates (4.13) and (4.14) again, one obtains

E

(
sup

ε

∣∣φe


(· + xε(t)
) − φe


(· + xε(s)
)∣∣2

L2

)
� C(α,β, c0)|t − s|2β |φe
|2H 2 (5.8)
s,t�τ ∧T
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from which

E

(
sup

s,t�τ ε∧T

∣∣Fε

 (t) − Fε


 (s)
∣∣2

)
� C(T ,α,β, c0)|t − s|2β |φe
|2H 2 (5.9)

follows. In the same way,

E

(
sup

s,t�T

∣∣(Ãε
)−1

(t) − (
Ãε

)−1
(s)

∣∣2
)

� E

(
sup

s,t�T

∣∣(Ãε
)−1

(t)
(
Ãε(t) − Ãε(s)

)(
Ãε

)−1
(s)

∣∣2
)

� CE

(
sup

s,t�τ ε∧T

∣∣Ãε(t) − Ãε(s)
∣∣2

)
� C(T ,α,β, c0)|t − s|2β

since (Ãε)−1 is uniformly bounded in t , ω, and ε for t � 0. This together with (4.5) and (5.9) imply (5.5).
The proof of (5.6) requires estimates on Gε(t) in Cβ([0, T ]). From (4.9),∣∣Gε

1(t) − Gε
1(s)

∣∣ � C
(
α, c0,‖φ‖L2

2

){∣∣ηε(t) − ηε(s)
∣∣
H−2 + ∣∣cε(t) − cε(s)

∣∣(1 + sup
t�τ ε

∣∣ηε(t)
∣∣
L2

)
+

∑

∈N

∣∣Txε(t)(∂xφe
) − Txε(s)(∂xφe
)
∣∣
L2

∣∣(zε(t), φe


)∣∣ + ∣∣φ∗zε(t) − φ∗zε(s)
∣∣
L2

+ ∣∣φ∗bε(t) − φ∗bε(s)
∣∣
L2 + ε

∣∣((ηε)2(t) − (ηε)2(s), ∂xϕc0

)∣∣}
and the last term is bounded above by

C
(

sup
t�τ ε

∣∣εηε(t)
∣∣
H 2

)∣∣∂2
xϕc0

∣∣
H 2

∣∣ηε(t) − ηε(s)
∣∣
H−2;

hence estimates (5.2), (5.4), (5.7), (5.8), (5.5) and Lemma A.2 together with the Cauchy–Schwarz inequality lead to

E

(
sup

s,t�τ ε∧T

∣∣Gε
1(t) − Gε

1(s)
∣∣) � C

(
T ,α,β, c0,‖φ‖L2

2

)|t − s|β.

Moreover, the same estimate holds with Gε
2 replacing Gε

1, and (5.6) follows, with the help of the above argument on
(Ãε)−1(t).

Setting now, for all t � 0,

cε(t) = c0 + ε

t∫
0

aε(s)ds + ε

t∫
0

(
bε(s), dW(s)

)
and

xε(t) =
t∫

0

cε(s)ds + ε

t∫
0

yε(s)ds + ε

t∫
0

(
zε(s),dW(s)

)
,

collecting all the lemmas in Section 5, and using in addition the well known identity

E
(∣∣W(t) − W(s)

∣∣2
H 2

) = |t − s|‖φ‖2
L2

2

together with the compactness of the embedding of H 2(R) into H 1
loc(R), we get the following corollary.

Corollary 5.6. For any T > 0 and any s with 0 � s < 1, the family (ηε, aε, yε,φ∗bε,φ∗zε, cε, xε,W)0<ε�ε0 is tight
in C([0, T ];Hs

loc(R)) × (C([0, T ]))2 × (C([0, T ];L2(R)))2 × (C([0, T ]))2 × C([0, T ];H 1
loc(R)).
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6. Passage to the limit and conclusion

We now end the proof of Theorem 2.6. Fix s < 1 and T > 0; let Xε = (ηε, aε, yε,φ∗bε,φ∗zε, cε, xε),
and consider a pair of sub-sequences (Xεkn ,Xεpn )n∈N of the family (Xε)0<ε�ε0 with limn→∞ εkn = 0 and
limn→∞ εpn = 0. We infer from the preceding section, Prokhorov and Skorokhod theorems that there is a sub-
sequence of (Xεkn ,Xεpn ,W)n∈N, still denoted (Xεkn ,Xεpn ,W)n∈N, a probability space (Ω̃, F̃ , P̃), and random
variables (X̃n

1 , X̃n
2 , W̃ n), n ∈ N and (X̃1, X̃2, W̃ ), with values in [C([0, T ];Hs

loc)× (C([0, T ]))2 × (C([0, T ];L2))2 ×
(C([0, T ]))2]2 × C([0, T ];H 1

loc) such that for any n ∈ N,

L
(
X̃n

1 , X̃n
2 , W̃ n

) = L
(
Xεkn ,Xεpn ,W

)
and such that for j = 1,2,

X̃n
j →X̃j as n→∞, P̃ a.s in C

([0, T ];Hs
loc

) × (
C

([0, T ]))2 × (
C

([0, T ];L2))2 × (
C

([0, T ]))2

and

W̃n→W̃ as n→∞, P̃ a.s in C
([0, T ];H 1

loc

)
.

We denote by (η̃n
j , ãn

j , ỹn
j , b̃n

j , z̃n
j , c̃

n
j , x̃n

j ) the components of X̃n
j and by (η̃j , ãj , ỹj , b̃j , z̃j , c̃j , x̃j ) those of X̃j , for

j = 1,2. We also define

F̃t = σ
{
X̃j (s), W̃j (s),0 � s � t, j = 1,2

}
and

F̃n
t = σ

{
X̃n

j (s), W̃ n
j (s),0 � s � t, j = 1,2

};
it is easily seen that W̃ and W̃n are Wiener processes associated respectively with (F̃t )t�0 and (F̃n

t )t�0, with covari-
ance operator φφ∗, and that we may thus write W̃n = φW̃n

c and W̃ = φW̃c where W̃n
c and W̃c are cylindrical Wiener

processes on the probability space (Ω̃, F̃ , P̃).
It is easily checked that, for j = 1,2, c̃n

j and x̃n
j satisfy respectively

c̃n
j (t) = c0 + εn

j

t∫
0

ãn
j (s)ds + εn

j

t∫
0

(
b̃n
j (s),dW̃n(s)

)
and

x̃n
j (t) =

t∫
0

c̃n
j (s)ds + εn

j

t∫
0

ỹn
j (s)ds + ε

t∫
0

(
z̃n
j (s),dW̃n(s)

)
,

where εn
j = εkn if j = 1 and εn

j = εpn if j = 2; taking the limit in C([0, T ])as n goes to infinity, we easily deduce

c̃j (t) = c0 a.s. for any t ∈ [0, T ] and j = 1,2 (6.1)

and

x̃j (t) =
t∫

0

c̃j (s)ds = c0t a.s. for any t ∈ [0, T ], j = 1,2. (6.2)

Moreover, setting for j = 1,2

τ̃ n
j = inf

{
t � T ,

∣∣c̃n
j − c0

∣∣ � α or
∣∣εn

j η̃n
j

∣∣
H 1 � α

}
,

then for j = 1,2, Theorem 2.1 implies

P̃
(
τ̃ n
j � T

) = P
(
τ

εn
j � T

)
� C(α, c0)

(
εn
j

)2
T ‖φ‖2

1
L2
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which goes to zero as n goes to infinity; hence, extracting again a sub-sequence if necessary, we have

τ̃ n
j →T a.s. as n→∞ for j = 1,2. (6.3)

Also, for j = 1,2 and t � τ̃ n
j , one may easily verify that η̃n

j satisfies the following equation:

dη̃n
j = ∂xLc0 η̃

n
j dt + (

ỹn
j ∂xϕc̃n

j
− ãn

j ∂cϕc̃n
j

)
dt + (

c̃n
j − c0 + εn

j ỹn
j

)
dt − εn

j ∂x

((
η̃n

j

)2)dt

− 2∂x

(
(ϕc̃n

j
− ϕc0)η̃

n
j

)
dt + εn

j

∑

∈N

Tx̃n
j
(∂xφe
)

(
z̃n
j , e


)
dt + εn

j

2

(
∂2
xϕc̃n

j

∣∣z̃n
j

∣∣2
L2 − ∂2

c ϕc̃n
j

∣∣b̃n
j

∣∣2
L2

)
dt

+ 1

2

(
εn
j

)2
∂2
x η̃n

j

∣∣z̃n
j

∣∣2
L2 dt + ψ

(
x̃n
j , c̃n

j , η̃n
j

)
dW̃n

c , (6.4)

where we have set, for v ∈ L2(R),

ψ
(
x̃n
j , c̃n

j , η̃n
j

)
v = (

z̃n
j , v

)
∂xϕc̃n

j
− (

b̃n
j , v

)
∂cϕc̃n

j
+ (

z̃n
j , v

)
εn
j ∂xη̃

n
j + Tx̃n

j
(φv).

Note that (1[0,τ̃ n
j )x̃

n
j )n∈N and (1[0,τ̃ n

j )c̃
n
j )n∈N are bounded sequences in Lp(Ω;C([0, T ])) for any p � 2, while

(εn
j η̃n

j )n∈N is a bounded sequence in L4(Ω;C([0, T ];H 2)) by Lemma A.2; this implies, for j = 1,2, that

1[0,τ̃ n
j )ψ(x̃n

j , c̃n
j , η̃n

j ), which converges to ψ̃j defined by

ψ̃j v = (z̃j , v)∂xϕc0 − (b̃j , v)∂cϕc0 + Tc0t (φv)

a.s. in C([0, T ];L0
2), also converges in L2(Ω;C([0, T ];L0

2)) by equi-integrability. Using this and taking the limit as
n goes to infinity in Eq. (6.4), we deduce that η̃j satisfies, for j = 1,2 and t � T ,

dη̃j = ∂xLc0 η̃j dt + (ỹj ∂xϕc0 − ãj ∂cϕc0)∂xη̃j dt + ∂xϕc0

(
z̃j ,dW̃c

) − ∂cϕc0

(
b̃j ,dW̃c

) + (Tc0t φ)dW̃c. (6.5)

Moreover, taking the limit in the equations for ỹn
j , ãn

j , b̃n
j , z̃n

j , which are the same as (4.5) and (4.6), we obtain

ỹj = |∂xϕc0 |−2
L2

(
η̃j ,Lc0∂

2
xϕc0

)
and ãj = 0, j = 1,2, (6.6)

and on the other hand{
(z̃j , e
) = −|∂xϕc0 |−2

L2

(
Tc0t (φe
), ∂xϕc0

)
,

(b̃j , e
) = (ϕc0, ∂cϕc0)
−1

(
Tc0t (φe
), ϕc0

)
.

(6.7)

Thus, η̃j satisfies the equivalent of Eq. (2.7). Moreover, we deduce from Lemma 5.2 that

E

(
sup

t∈[0,T ]

∣∣η̃n
j (t)

∣∣2
H 1

)
� C(T ),

where C(T ) is the constant appearing in Lemma 5.2. Therefore, η̃n
j tends to η̃j in L2(Ω;L∞(0, T ;H 1(R))) weak

star.
Now, it is not difficult to see that (2.7) has a unique solution with paths in L1(0, T ;H 1(R)), a.s. such that η(0) = 0.

We then make use of the following lemma, which was first applied by Gyöngy and Krylov in [15].

Lemma 6.1. Let Zn be a sequence of random elements in a Polish space E equipped with the Borel σ -algebra.
Then Zn converges in probability to an E-valued random element if and only if for every pair of sub-sequences
(Zϕ(n),Zψ(n)), there is a sub-sequence of (Zϕ(n),Zψ(n)) which converges in law to a random element supported on
the diagonal {(x, y) ∈ E × E, x = y}.

We deduce that, for any s < 1, the whole family ηε converges in probability in C([0, T ];Hs
loc(R)), and weakly in

L∞(0, T ;H 1(R)) to a process η satisfying Eq. (2.7) and η(0) = 0. In addition, aε converges to 0 and yε converges
to |∂xϕc0 |−2

L2 (η,Lc0∂
2
xϕc0) in probability in C([0, T ]) , while φ∗zε converges to −|∂xϕc0 |−2

L2 (Tc0tφ)∗∂xϕc0 and φ∗bε

converges to (ϕc0, ∂cϕc0)
−1(Tc0tφ)∗ϕc0 in probability in C([0, T ];L2). Those convergence also hold in L2(Ω) by

equi-integrability.



270 A. de Bouard, A. Debussche / Ann. I. H. Poincaré – AN 24 (2007) 251–278
To end the proof of Theorem 2.6, it only remains to prove estimate (2.8). Note that η has paths in C[0, T ];H 1(R))

a.s. We apply the Itô formula – the next computations may be justified with the help of the usual smoothing procedure,
see [5] – to the functional

(η,Lc0η) =
∫
R

|∂xη|2 dx + c0

∫
R

η2 dx − 2
∫
R

ϕc0η dx.

It follows

d(η,Lc0η) = 2(Lc0η, dη) +
∑
k∈N

(
Lc0ψ(t)ek,ψ(t)ek

)
dt, (6.8)

where the operator ψ(t) acting on L2(R) is defined as

ψ(t)ek = −|∂xϕc0 |−2
L2

(
Tc0t (φek), ∂xϕc0

)
∂xϕc0 − (ϕc0 , ∂cϕc0)

−1(Tc0t (φek), ϕc0

)
∂cϕc0 + Tc0t (φek).

It is easily checked, using (2.7), the self-adjointness of Lc0 and the fact that Lc0∂xϕc0 = 0 while Lc0∂cϕc0 = −ϕc0 ,
that

(dη,Lc0η) = (ϕc0 , ∂cϕc0)
−1((Tc0tφ)dW,ϕc0

)
(ϕc0, η) + (

(Tc0t φ)dW,Lc0η
)
. (6.9)

Since the above remarks also lead to∑
k∈N

(
Lc0ψ(t)ek,ψ(t)ek

) = (ϕc0 , ∂cϕc0)
−1

∑
k∈N

(
Tc0t (φek), ϕc0

)2 +
∑
k∈N

(
Lc0Tc0t (φek),Tc0t (φek)

)
� C‖φ‖2

L1
2

(6.10)

with a constant C only depending on c0, integrating (6.8), using (6.9) and taking the expectation yields:

E
(
Lc0η(t), η(t)

)
� E

(
Lc0η(0), η(0)

) + C‖φ‖2
L1

2
t � C‖φ‖2

L1
2
t (6.11)

since η(0) = 0. On the other hand, from (3.3),

E
(
Lc0η(t), η(t)

)
� νE

(∣∣η(t)
∣∣2
H 1

);
indeed, it is easily checked from (2.7) that (η,ϕc0) = (η, ∂xϕc0) = 0. We deduce

E
(∣∣η(t)

∣∣2
H 1

)
� C‖φ‖2

L1
2
t, ∀t � 0. (6.12)

Coming back to (6.9), integrating in time and using Cauchy–Schwarz’s and Doob’s inequalities, we get

E

(
sup
t�T

t∫
0

(
Lc0η(s),dη(s)

))
� (ϕc0, ∂cϕc0)

−1

{
E sup

t�T

[ t∫
0

(∂cϕc0,Lc0η)
(
ϕc0, (Tc0sφ)dW(s)

)]2}1/2

+
{

E sup
t�T

[ t∫
0

(
(Tc0sφ)dW(s),Lc0η(s)

)]2}1/2

� 2(ϕc0, ∂cϕc0)
−1

{∑
k∈N

T∫
0

E
(
ϕc0, η(s)

)2(Tc0s(φek), ϕc0

)2 ds

}1/2

+ 2

{∑
k∈N

T∫
0

E
(
Tc0s(φek),Lc0η

)2 ds

}1/2

� C‖φ‖2
L1

2

(
E

T∫
0

∣∣η(t)
∣∣2
H 1 dt

)1/2

with a constant C depending only on c0. We conclude thanks to (6.8), (6.10), (6.12) and another use of (3.3).
This ends the proof of Theorem 2.6.
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Appendix A

We begin with the proof of Lemma 5.1. As mentioned in Section 5, we use Eq. (5.1) and apply the Itô formula to
the functional |ηε(t)|2

L2 .

Proof of Lemma 5.1. Again, the computations below should be justified. However, this can be done in the same way
as it was described for the justification of the application of the Itô–Wentzell formula in Section 4.

Hence, a formal application of the Itô formula to |ηε(t)|2
L2 , where ηε satisfies Eq. (5.1), gives

d|ηε|2
L2 = 2(ηε,dηε) + tr

(
ψε(ψε)∗

)
dt

= 2(ηε, ∂xLcεηε)dt + 2(ηε, yε∂xϕcε − aε∂cϕcε )dt + 2(∂xϕcε , ηε)(zε,dW) − 2(∂cϕcε , ηε)(bε,dW)

+ 2
(
ηε, (dW)(· + xε)

) + 2ε
∑

∈N

(
Txε (∂xφe
), η

ε
)
(zε,φe
)dt + ε

(
∂2
xϕcε , ηε

)|φ∗zε|2
L2 dt

− ε
(
∂2
c ϕcε , ηε

)|φ∗bε|2
L2 dt − ε2|∂xη

ε|2
L2 |φ∗zε|2

L2 dt +
∑

∈N

|ψεe
|2L2 dt, (A.1)

where we have set

ψεe
 = ∂xϕcε (zε,φe
) − ∂cϕcε (bε,φe
) + ε∂xη
ε(zε,φe
) + Txε (φe
), (A.2)

and we have used (∂xη
ε, ηε) = 0.

Integration of (A.1) between 0 and τ = τ ε ∧ t , with ηε(0) = 0, and the use of (1.10) lead to the bound (after several
integrations by parts)

E
(∣∣ηε(t)

∣∣2
L2

)
� CE

τ∫
0

{|∂xϕcε |L∞
∣∣ηε(s)

∣∣2
L2 + ∣∣yε(s)

∣∣∣∣ηε(s)
∣∣
L2 |∂xϕcε |L2 + ∣∣aε(s)

∣∣∣∣ηε(s)
∣∣
L2 |∂cϕcε |L2

+ ε
∣∣ηε(s)

∣∣
L2‖∂xφ‖L0

2

∣∣φ∗zε(s)
∣∣
L2 + ε

∣∣∂2
xϕcε

∣∣
L2 |ηε(s)|L2

∣∣φ∗zε(s)
∣∣2
L2

+ ε
∣∣∂2

c ϕcε

∣∣
L2

∣∣ηε(s)
∣∣
L2

∣∣φ∗bε(s)
∣∣2
L2 + |∂xϕcε |2

L2

∣∣φ∗zε(s)
∣∣2
L2 + |∂cϕcε |2

L2

∣∣φ∗bε(s)
∣∣2
L2 + ‖φ‖2

L0
2

+ ε|∂x∂cϕcε |L2

∣∣ηε(s)
∣∣
L2

∣∣φ∗zε(s)
∣∣
L2

∣∣φ∗bε(s)
∣∣
L2

}
ds; (A.3)

the constant C appearing in the right-hand side above is an absolute constant.
Now, it follows easily from (A.3), (4.13), (4.14) and the fact that |∂xϕcε |L∞ , |∂xϕcε |H 1 and |∂cϕcε |H 1 are uniformly

bounded, for t ∈ [0, τ ε), by a constant depending only on c0 and α, that

E
(
1[0,τ ε)(t)

∣∣ηε(t)
∣∣2
L2

)
� C

(
c0, α,‖φ‖L1

2

) t∫
0

E
(
1 + 1[0,τ ε)(s)

∣∣ηε(s)
∣∣2
L2

)
ds

and thus

sup
t∈[0,T ]

E
(
1[0,τ ε)(t)

∣∣ηε(t)
∣∣2
L2

)
� C

(
c0, α,‖φ‖L1

2
, T

)
. (A.4)

We now come back to (A.1) to estimate the martingale part. We clearly have

E

(
sup

t∈[0,τ ε∧T ]

∣∣∣∣∣
t∫

0

(∂xϕcε , ηε)(zε,dW)

∣∣∣∣∣
)

� E

(
sup

t∈[0,τ ε∧T ]

∣∣∣∣∣
t∫

0

(∂xϕcε , ηε)(zε,dW)

∣∣∣∣∣
2)1/2

� C

{ T∫
0

E
(
1[0,τ ε)(s)|∂xϕcε |2L∞

∣∣ηε(s)
∣∣2
L2

∣∣φ∗zε(s)
∣∣2
L2 ds

)}1/2

� C
(
c0, α,‖φ‖L0

2

){ T∫
E

(
1[0,τ ε)(s)

∣∣ηε(s)
∣∣2
L2

)
ds

}1/2

(A.5)
0
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and in the same way,

E

(
sup

t∈[0,τ ε∧T ]

∣∣∣∣∣
t∫

0

(∂cϕcε , ηε)(bε,dW)

∣∣∣∣∣
)

� C
(
c0, α,‖φ‖L0

2

){ T∫
0

E
(
1[0,τ ε)(s)

∣∣ηε(s)
∣∣2
L2

)
ds

}1/2

. (A.6)

At last,

E

(
sup

t∈[0,τ ε∧T ]

∣∣∣∣∣
t∫

0

(
ηε(s), (dW)

(· + xε(s)
)∣∣∣∣∣

)
� E

(
sup

t∈[0,τ ε∧T ]

∣∣∣∣∣∑

∈N

t∫
0

(
ηε(s),Txε(t)(φe
)

)
dβ
(s)

∣∣∣∣∣
2)1/2

� C

(∑

∈N

E

τ ε∧T∫
0

∣∣ηε(s)
∣∣2
L2 |φe
|2L2 ds

)1/2

� C

( T∫
0

E
(
1[0,τ ε](s)

∣∣ηε(s)
∣∣2
L2

)
ds

)1/2

‖φ‖2
L0

2
. (A.7)

The conclusion of Lemma 5.1 follows then from (A.1), with the help of estimates (A.5), (A.6) and (A.7). �
We now turn to the proof of Lemma 5.2. In the course of the proof, we will need some additional estimates on ηε ,

which we state and prove now.

Lemma A.1. Let φ ∈ L1
2 and let ηε , satisfying Eq. (5.1), be given by Theorem 2.1. Then for any T > 0, there is a

constant C depending only on c0, α, ‖φ‖L1
2

and T such that

E

(
sup

t�τ ε∧T

∣∣ηε(t)
∣∣4
L2

)
� C

(
T , c0, α,‖φ‖L1

2

)
.

Proof. Again, the proof is performed by applying the Itô formula, this time to F(ηε) with F(u) = |u|4
L2 , and using the

same estimates as in the proof of Lemma 5.1, together with the martingale inequality given by Theorem 3.14 in [9].
We leave the details to the reader. �

The next lemma is the most technical to prove, and is also the reason why we need the regularity assumption
φ ∈ L2

2.

Lemma A.2. Assume now that φ ∈ L2
2 and let again ηε satisfying Eq. (5.1) be given by Theorem 2.1. Let T > 0, then

there is a constant C(T , c0, α,‖φ‖L2
2
) such that

E

(
sup

t�τ ε∧T

∣∣ε∂2
xηε(t)

∣∣4
L2

)
� C

(
T , c0, α,‖φ‖L2

2

)
. (A.8)

Proof. We will use the Itô formula again, but this time we will need an higher order invariant of the homogeneous
KdV equation (1.5). Namely, we make use of E(u) defined for u ∈ H 2(R) by

E(u) = 9

5

∫
R

(
∂2
xu

)2 dx − 3
∫
R

(∂xu)2udx + 1

4

∫
R

u4 dx. (A.9)

We first prove the estimate

E

(
sup

ε

∣∣ε∂2
xηε(t)

∣∣2
L2

)
� C

(
T , c0, α,‖φ‖L2

2

)
. (A.10)
t�τ ∧T
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Again, we proceed formally and a smoothing procedure is required to justify the following computations. Note that
for u,v ∈ H 2(R), we have

E ′(u) = 18

5
∂4
xu + 3(∂xu)2 + 6

(
∂2
xu

)
u + u3

and

E ′′(u)·v = 18

5
∂4
x v + 6u∂2

xv + 6(∂xu)(∂xv) + 6
(
∂2
xu

)
v + 3u2v,

and that since E(u) is an invariant for the KdV equation (1.5), we have, at least formally,(
E ′(u), ∂3

xu + ∂x

(
u2)) = 0.

Now, applying the Itô formula to E(uε), where uε is the solution of (1.1) with uε(0) = ϕc0 , and using the preceding
remarks leads to

dE(uε) = −ε
(
E ′(uε),dW

) + 1

2
tr
(
E ′′(uε)φφ∗)dt

= −18

5
ε
(
∂4
xuε,dW

) − 3ε
(
(∂xu

ε)2,dW
) − 6ε

(
uε∂2

xuε,dW
) − ε

(
(uε)3,dW

)
+ 1

2
ε2

∑

∈N

{
18

5

(
∂4
xφe
,φe


) + 6
(
uε∂2

xφe
,φe


) + 6
(
(∂xu

ε)(∂xφe
),φe


)
+ 6

((
∂2
xuε

)
φe
,φe


) + 3
(
(uε)2φe
,φe


)}
. (A.11)

Next, we integrate (A.11) between 0 and τ ∧ t with τ = τ ε ∧ τR and

τR = inf
{
t � 0,

∣∣uε(t)
∣∣
H 2 � R

}
. (A.12)

We then need to estimate the martingales. We first have, using integrations by parts and Doob’s inequality,

E

(
sup

t∈[0,τ∧T ]

( τ∧t∫
0

(
∂4
xuε,dW

))2)

� 4E

( τ∧t∫
0

∑

∈N

(
∂2
xuε, ∂2

xφe


)2 ds

)
� C

(
T ,‖φ‖L2

2

)
E

(
sup

t�τ∧T

∣∣∂2
xuε

∣∣2
L2

)
. (A.13)

In the same way, but using the martingale inequality of Theorem 3.14 in [9],

E

(
sup

t�τ∧T

τ∧t∫
0

(
(∂xu

ε)2,dW
))

� C
(
T ,‖φ‖L1

2

)
E

(
sup

t�τ∧T

|∂xu
ε|2

L2

)
(A.14)

and

E

(
sup

t�τ∧T

τ∧t∫
0

((
∂2
xuε

)
uε,dW

))
� C

(
T ,‖φ‖L1

2

)(
E

(
sup

t�τ∧T

∣∣∂2
xuε(t)

∣∣2
L2

))1/2(
E

(
sup

t�τ∧T

∣∣uε(t)
∣∣2
L2

))1/2
. (A.15)

Finally, using again Theorem 3.14 in [9]:

E

(
sup

t�τ∧T

τ∧t∫
0

(
(uε)3,dW

))
� 3‖φ‖L1

2
E

(( τ∧T∫
0

∣∣uε(s)
∣∣6
H 1 ds

)1/2)

� C
(
T ,‖φ‖L1

2

)
E

(
sup

t�τ∧T

∣∣uε(t)
∣∣3
H 1

)
. (A.16)
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The deterministic terms are easily estimated as follows:

E

(
sup

t�τ∧T

∑
k∈N

τ∧t∫
0

(
uε(s)∂2

x (φek),φek

)
ds

)
� E

( τ∧T∫
0

∑
k∈N

∣∣(uε(s)∂2
xφek,φek

)∣∣ds

)

� C‖φ‖2
L2

2
E

( τ∧T∫
0

∣∣uε(s)
∣∣
L2 ds

)

� C
(
T ,‖φ‖L2

2

)(
E

(
sup

t�τ∧T

∣∣uε(t)
∣∣2
L2

))1/2; (A.17)

the expression

E

( τ∧T∫
0

∑
k∈N

∣∣(∂xu
ε(s)∂x(φek),φek

)∣∣ds

)

is estimated in the same way, after an integration by parts, an the same is true for

E

( τ∧T∫
0

∑
k∈N

∣∣(∂2
xuε(s)φek,φek

)∣∣ds

)
.

Finally,

E

( τ∧T∫
0

∣∣((uε)2(s)φek,φek

)∣∣ds

)
� C

(
T ,‖φ‖L1

2

)
E

(
sup

t�τ∧T

∣∣uε(t)
∣∣2
L2

)
. (A.18)

Collecting (A.13)–(A.18), we deduce from (A.11) that

E

(
sup

t�τ∧T

E
(
uε(t)

))
� C

(
T ,‖φ‖2

L2
2

){
1 + E

(
sup

t�τ∧T

∣∣uε(t)
∣∣3
H 1

)
+

(
E

(
sup

t�τ∧T

∣∣∂2
xuε(t)

∣∣2
L2

))1/2[
1 +

(
E

(
sup

t�τ∧T

∣∣uε(t)
∣∣2
L2

))1/2]}
. (A.19)

On the other hand, the expression (A.9) for E(u) shows that there is a constant C > 0, such that for any u ∈ H 2(R),∣∣∂2
xu

∣∣2
L2 � 5

9
E(u) + C

(
1 + |u|4

H 1

)
(A.20)

and this together with (A.19) implies

E

(
sup

t�τ∧T

∣∣∂2
xuε(t)

∣∣2
L2

)
� 5

9
E

(
sup

t�τ∧T

E
(
uε(t)

)) + C
(

1 + E

(
sup

t�τ∧T

∣∣uε(t)
∣∣4
H 1

))
� 1

2
E

(
sup

t�τ∧T

|∂2
xuε(t)|2

L2

)
+ C

(
T ,‖φ‖L2

2

)(
1 + E

(
sup

t�τ∧T

∣∣uε(t)
∣∣4
H 1

))
. (A.21)

Next, we use the decomposition

uε(t) = ϕcε(t)

(
x − xε(t)

) + εηε
(
t, x − xε(t)

)
to deduce that

E

(
sup

t�τ∧T

∣∣ε∂2
xηε(t)

∣∣2
L2

)
� 2E

(
sup

t�τ∧T

∣∣∂2
xuε(t)

∣∣2
L2

)
+ 2E

(
sup

t�τ∧T

∣∣∂2
xϕcε(t)

∣∣2
L2

)
� 2E

(
sup

∣∣∂2
xuε(t)

∣∣2
L2

)
+ C(α, c0)
t�τ∧T
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and since on the other hand

E

(
sup

t�τ∧T

∣∣uε(t)
∣∣4
H 1

)
� C

(
E

(
sup

t�τ∧T

∣∣ϕcε(t)

∣∣4
H 1

)
+ E

(
sup

t�τ∧T

∣∣εηε(t)
∣∣4
H 1

))
� C(α, c0)

it follows from (A.21) that

E

(
sup

t�τ∧T

∣∣ε∂2
xηε(t)

∣∣2
L2

)
� C

(
T , c0, α,‖φ‖2

L2
2

);
recalling that τ = τ ε ∧ τR , (A.10) is obtained by letting R go to infinity.

We now prove (A.8). We apply again the Itô formula, this time to E2(uε). This gives, using Eq. (A.11):

d
(
E2(uε)

) = 2E(uε)dE(uε) +
∑

∈N

(ψ̃εe
)
2 dt (A.22)

with

ψ̃εe
 = −18

5
ε
(
∂4
xuε,φe


) − 3ε
(
(∂xu

ε)2, φe


) − 6ε
(
(∂2

xuε)uε,φe


) − ε
(
(uε)3, φe


)
.

We integrate again (A.22) between 0 and τ = τ ε ∧ τR , where τR is defined as in (A.12) and take the expectation. Next,
we estimate the martingales. By Theorem 3.14 in [9],

E

(
sup

t�τ∧T

36

5
ε

τ∧t∫
0

E
(
uε(s)

)(
∂4
xuε(s),dW(s)

))
� CεE

((∑
k∈N

τ∧T∫
0

E2(uε(s)
)(

∂2
xuε(s), ∂2

xφek

)2 ds

)1/2)

� Cε‖φ‖L2
2
E

(( τ∧T∫
0

E2(uε(s)
)∣∣∂2

xuε(s)
∣∣2
L2 ds

)1/2)
.

Now, since for u ∈ H 2(R),

E(u) � 9

5

∣∣∂2
xu

∣∣2
L2 + C

(
1 + |u|4

H 1

)
,

the preceding term is bounded above by

C‖φ‖L2
2

{
E

(( τ∧t∫
0

∣∣∂2
xuε(s)

∣∣6
L2 ds

)1/2)
+ E

(( τ∧T∫
0

∣∣∂2
xuε

∣∣2
L2

(
1 + ∣∣uε(s)

∣∣8
H 1

)
ds

)1/2)}

� C
(
T , c0, α,‖φ‖L2

2

){
1 + E

(
sup

t�τ∧T

∣∣∂2
xuε(t)

∣∣2
L2

)
+

(
E

(
sup

t�τ∧T

∣∣∂2
xuε(t)

∣∣4
L2

))3/4}
, (A.23)

where we have used the fact that

sup
t�τ∧T

∣∣uε(t)
∣∣
H 1 � C(c0, α). (A.24)

We prove in the same way that

E

(
sup

t�τ∧T

τ∧t∫
0

E
(
uε(s)

)((
∂xu

ε(s)
)2

,dW(s)
))

� C
(
T , c0, α,‖φ‖L1

2

)(
1 +

(
E

(
sup

t�τ∧T

∣∣∂2
xuε(t)

∣∣4
L2

))1/2)
(A.25)

and
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E

(
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t�τ∧T

τ∧t∫
0

E
(
uε(s)

)(
uε(s)∂2

xuε(s),dW(s)
))

� C
(
T , c0, α,‖φ‖L1

2

){
1 + E

(
sup

t�τ∧T

∣∣∂2
xuε(t)

∣∣2
L2

)
+

(
E

(
sup

t�τ∧T

∣∣∂2
xuε(t)

∣∣4
L2

))3/4}
. (A.26)

Lastly, with the same arguments

E

(
sup

t�τ∧T

τ∧t∫
0

E
(
uε(s)

)(
(uε)3(s),dW(s)

))
� C

(
T , c0, α,‖φ‖L1

2

)(
1 +

(
E

(
sup

t�τ∧T

∣∣∂2
xuε(t)

∣∣4
L2

))3/4)
. (A.27)

As for the deterministic integrals arising in (A.22),

E

(
sup

t�τ∧T

∑
k∈N

τ∧t∫
0

E
(
uε(s)

)(
∂4
xφek,φek

)
ds

)
� C‖φ‖2

L2
2
E

( τ∧T∫
0

∣∣E(
uε(s)

)∣∣ds

)
� C

(
T , c0, α,‖φ‖L2

2

)
(A.28)

by (A.10), and the same is true for

E

(
sup

t�τ∧T

∑
k∈N

τ∧t∫
0

E
(
uε(s)

)(
uε(s)∂2

xφek,φek

)
ds

)

since (A.24) holds. The terms

E

(
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∑
k∈N

τ∧t∫
0

E
(
uε(s)

)(
∂xu

ε(s)∂xφek,φek

)
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)

and

E

(
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t�τ∧T

∑
k∈N

τ∧t∫
0

E
(
uε(s)

)((
uε

)2
(s)φek,φek

)
ds

)

are estimated in the same way and

E

(
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∑
k∈N

τ∧t∫
0

E
(
uε(s)

)(
∂2
xuε(s)φek,φek

)
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)

� C
(
T ,‖φ‖L2

2

){
E

(
sup

t�τ∧T

∣∣∂2
xuε(t)

∣∣3
L2

)
+ E

(
sup

t�τ∧T

∣∣∂2
xuε(t)

∣∣
L2

∣∣uε(t)
∣∣4
H 1

)
+ 1

}
� C

(
T , c0, α,‖φ‖L2

2

){
1 +

(
E

(
sup

t�τ∧T

∣∣∂2
xuε(t)

∣∣4
L2

))3/4 + E

(
sup

t�τ∧T

∣∣∂2
xuε(t)

∣∣2
L2

)}
. (A.29)

Finally, the terms arising from the Itô correction in (A.22) are bounded above, arguing as before, by the right-hand
side of (A.29).

Collecting (A.23), (A.25)–(A.29) yields

E

(
sup

t�τ∧T

E2(uε(t)
))

� 1

2
E

(
sup

t�τ∧T

∣∣∂2
xuε(t)

∣∣4
L2

)
+ C

(
T , c0, α,‖φ‖L2

2

)(
1 + E

(
sup

t�τ∧T

∣∣∂2
xuε(t)

∣∣2
L2

))
.

We conclude thanks to the fact that for u ∈ H 2(R)∣∣∂2
xu

∣∣4
L2 � 50E2(u) + C

(
1 + |u|8 1

)
,

81 H
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that the same estimate is true for E(supt�τ∧T |∂2
xuε(t)|4

L2), and the lemma follows, after using again the decomposition

uε(t) = ϕcε(t)

(
x − xε(t)

) + εηε
(
t, x − xε(t)

)
and letting R go to infinity. �

We are now in position to prove Lemma 5.2.

Proof of Lemma 5.2. We apply the Itô formula to |∂xη
ε(t)|2

L2 where ηε satisfies Eq. (5.1). We get

d|∂xη
ε|2

L2 = −2
(
∂2
xηε,dηε

) +
∑

∈N

|∂xψ
εe
|2L2 dt

= −2
(
∂2
xηε, ∂xLcεηε

) − 2
(
∂2
xηε, yε∂xϕcε − aε∂cϕcε

)
dt + 2ε

(
∂2
xηε, ∂x(η

ε)2)dt

− 2
(
∂2
xηε, ∂xϕcε

)(
zε,dW

) + 2
(
∂2
xηε, ∂cϕcε

)
(bε,dW) − 2

(
∂2
xηε, (dW)(t, · + xε)

)
− 2ε

∑

∈N

(
∂2
xηε,Txε (∂xφe
)

)
(zε,φe
)dt − ε

(
∂2
xηε, ∂2

xϕcε

)|φ∗zε|2
L2 dt

+ ε
(
∂2
xηε, ∂2

c ϕcε

)|φ∗bε|2
L2 dt − ε2

∣∣∂2
xηε

∣∣2
L2 |φ∗zε|2

L2 dt +
∑

∈N

|∂xψ
εe
|2L2 dt, (A.30)

where ψε is defined as in (A.2), and

∂2
xLcε = −∂4

x + cε∂2
x − 2ϕcε∂2

x − 4(∂xϕcε )∂x − 2
(
∂2
xϕcε

)
.

Next, we integrate (A.30) between 0 and τ ε ∧ t , and take the expectation; using several integrations by parts, it is
not difficult to see that the resulting expression is bounded above by

CE

τ ε∧t∫
0

(|∂2
xϕcε |L∞

∣∣ηε(s)
∣∣2
H 1 + ∣∣yε(s)
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2
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2
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2
+ ε|∂xη
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)
ds.

Using then (4.13), (4.14) and the fact that |∂2
xϕcε |H 1 , |∂x∂cϕcε |H 1 and |∂x∂

2
c ϕcε |L2 are bounded uniformly for t � τ ε

by a constant depending only on c0 and α, we deduce that for t � T ,
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.

By Lemmas 5.1, A.1, A.2 and the Gronwall Lemma, we obtain

sup
t∈[0,T ]

E
(
1[0,τ ε](t)

∣∣ηε(t)
∣∣2
H 1

)
� C

(
T , c0, α,‖φ‖L2

2

)
.

The martingale part is estimated in the same way as in the proof of Lemma 5.1, using integrations by parts. �
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