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ABSTRACT

We present an algorithm for generating random networks with arbitrary degree

distribution and clustering (frequency of triadic closure). We use this algorithm to

generate networks with exponential, power law, and poisson degree distributions

with variable levels of clustering. Such networks may be used as models of social

networks and as a testable null hypothesis about network structure. Finally, we

explore the effects of clustering on the point of the phase transition where a giant

component forms in a random network, and on the size of the giant component.

Some analysis of these effects is presented.
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Chapter 1

Introduction

Many random network models have been proposed to replicate important aspects

of the topology of real-world networks [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14].

In particular, much attention has been paid to the degree distribution and the

clustering coefficient. A great deal of progress has been made on network models

which combine certain degree distributions with some level of clustering [15, 16,

13, 17, 18, 19]. It has been an open problem to combine these two topologies in the

most general way. Is it possible to have a network model which is flexible enough

to accommodate any combination of degree distribution and clustering? In this

article we propose such a model and demonstrate its effectiveness by generating

networks over a wide range of parameters.

Random network models have fallen in several broad categories. Some models

have focused on Monte Carlo techniques to reproduce a specific topology [1, 2, 20].

Other models have specific topologies built into them (e.g. regular lattices) in order

to explicate the so-called ”small-world” problem [8, 9]. Yet other models have

focused on plausible mechanisms for how networks form, such as a growth process

with preferential attachment [15, 10, 11]. In common with most mechanism-based

models, we produce our networks by growing them from one initial node. We find

that being able to construct a network one node at a time also offers sufficient

flexibility to combine arbitrary degree distributions and clustering.

Once we have a network model which can combine arbitrary degree distribu-

tions and clustering, it is of interest to explore the effects of these parameters on

the size of the giant component and the point of the phase transition where a

1
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giant component forms. This is true with regard to clustering in particular, as

so far models capable of interpolating between extremes of this parameter have

been lacking. In section 3 we explore the effects of clustering on the size of the

giant component and point of the phase transition. In section 5 we present some

analysis.

Throughout this article we will rely on the following definitions: The degree

distribution of a network describes how many neighbors a node in a network has.

The probability of a node having degree k in a network is described by the degree

distribution pk, where pk can take the form of any well defined discrete density

function over the positive integers. Examples frequently employed in the literature

are

• Poisson: pk = zke−z

k!
, k ≥ 0

• Power-law. For our experiments, we use power-laws with finite cuttoffs κ:

pk = k−γe−k/κ

Liγ(e−1/κ)
, k ≥ 1 where Lin(x) is the nth polylogarithm of x.

• Exponential: pk = (1 − e−1/λ)e−k/λ, k ≥ 0

• Empirical: The degree distribution is estimated from a network sample.

• Gaussian: The ordinary Gaussian must be modified to be positive and dis-

crete.

The clustering coefficient C describes the proportion of triads in a network out

of the total number of possible triads. The clustering coefficient is defined:

C =
3N∆

N3

where N∆ is the number of triads in the network and N3 is the number of connected

triples of nodes. Note that in every triad there are three connected triples.
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There is also a measure of local Clustering given by

Ci =
N∆(i)
(

δ(i)
2

)

where N∆(k) is the number of triads connected to node i, δ(i) is the degree of node

i, and
(

δ(i)
2

)

is the number of potential triads connected to a node of degree δ(i).

The average value of local clustering (i.e. ”Watts-Strogatz Clustering” [8]) is also

of interest:
∑

Ci

N

where N is the number of nodes in the network. This value is frequently close

to the clustering coefficient, and will be equal to the clustering coefficient if local

clustering is constant throughout the network.



Chapter 2

Random network model

Introducing clustering into a network with a specified degree distribution is a non-

trivial problem. Any method aspiring to introduce an arbitrary amount of clus-

tering into a network must interpolate between two extremely different topologies.

When clustering is 0%, the method must reproduce pure random networks with

specified degree distributions. When clustering is 100%, there is only one configu-

ration a network may have: each node must be connected to a small clique where

every node has the same degree, and all of a node’s neighbors are connected with

one another. This challenge is made all the more difficult by trying to make the

model networks general enough to accommodate any desired degree distribution.

The most obvious way of introducing triads is to simply define a rewiring rule

whereby links are swapped between nodes so as to introduce triads while leaving the

degree distribution the same. Such rewiring schemes quickly run into problems, as

it is impossible to define a rule such that the number of triads is strictly increasing

and the number of triads introduced does not max out. The problem is that when

links are ”swapped” among nodes, triads are not only created but can be destroyed.

For example, in our simulations we have found that such schemes are effective only

for introducing about 15% clustering into a poisson random network.

Rewiring algorithms have proven effective at the related challenge of adjusting

the average local clustering. Kim [12] has recently used rewiring algorithms to

introduce large amounts of local clustering into networks. Using a MC simulations

at zero-temperature (i.e. a triad is never destroyed in the rewiring process) and

a Hamiltonian of
∑

−Ck, Kim was able to modify various networks with diverse

4
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degree distributions to exhibit average local clustering (
∑

Ck/N) ranging from 0%

to 70%.

Newman [22] and Guillaume et al. [19] have had some success with another

approach. These authors define a bipartite network of individuals and affiliations.

Then they project the bipartite network onto a unipartite network of only nodes

and no affiliations by connecting two nodes if they share a common affiliation. The

distributions of affiliation size and the affiliation-degree distribution of the nodes

is chosen in such a way as to produce a desired level of clustering. Tuning the

degree distribution simultaneously has proven more challenging, however. While

the bipartite projection method may actually have the potential to generate pure

random networks with tunable degree distributions and clustering, so far it’s ef-

ficacy has only been shown for exponential and power-law random networks. It

remains an open problem to implement it for arbitrary degree distributions.

Our method works by growing networks. The algorithm first initializes all nodes

with a degree drawn i.i.d. from the desired degree distribution. Then the random

network is constructed by an iterative procedure similar to a branching process.

The premise is to start from a single node and then assign new connections entirely

at random under the constraint that a certain amount of clustering must exist. The

algorithm is described in detail in table 2.1, and is schematized in figure 2.1. Two

example networks are shown in figure 2.2.

Our model has similarities and differences with other models proposed in the

literature. Like the algorithm of Milo et al. [20], each node is assigned a unique

degree prior to any edges being formed between nodes. But like the model networks

of Barabasi [3], Dorogovtsev et al. [21] among others, the network is constructed

via a growth process. The first node is chosen at random, and subsequently nodes
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Figure 2.1: Overview of the network construction process. The first node (far

left) is chosen at random. Then neighbors for that node are chosen as described

in the text. Subsequently, neighbors are chosen for the new nodes, but now we

have new connections formed with nodes two steps away with probability Cinput.

Triadic connections are indicated with dotted lines. This process continues until

the waves die out, and a new component is formed, or all nodes are exhausted.

are added to the graph by attaching them to nodes which still have stubs that have

not been matched. When the new node forms its own connections, it first forms a

list of all nodes which are two steps away. Then with probability Cinput, that node

is selected as the next neighbor.

One complicated feature of this algorithm concerns the probability of selecting

a new neighbor from the stub list. In fact, new neighbors cannot be selected

uniformly at random from the stub list, as clustering implies a certain amount

of degree assortativity among the nodes in the network. For example, a node

connected to a degree k node has k−1 potential triads in common with that node,

and on average will have C(k−1) common triads. This implies that the node must

have on average a degree at least equal to C(k − 1).

Because triads are distributed uniformly throughout the network, the number
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Table 2.1: Detailed description of the clustering method.

1. Initialize all nodes with a degree drawn i.i.d. from the degree distribution

2. Form a list of ”stubs”– connections of nodes which have not yet been matched

with neighbors. Call this list StubList.

3. Pick a starting node, v0, uniformly at random from all nodes.

4. For each of v0’s stubs, choose a new neighbor by picking an element v1 from

the stublist with probability pv1|d(v0) as described in the text. If the new

neighbor is not

• the same node as v0

• already connected to v0

then form the connection. Otherwise, repeat the process until a valid neigh-

bor is found. Add all of the new neighbors from this process to a list called

NextWave.

5. Copy all elements of NextWave to a list called CurrentWave. Remove all

elements from NextWave. For all elements in CurrentWave:

This is continued in table 2.2.
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Table 2.2: Detailed description of the clustering method continued.

(a) Form a list of all nodes 2 steps away. If a node does not have any stubs

left in StubList, throw it out. Call this list PotentialTriads

(b) For all stubs which have not been assigned neighbors

i. Scan through PotentialTriads. With probability Cinput, connect

to node v3 ∈ StubList. Remove element v3 from PotentialTriads

regardless of whether it was selected. If it was selected, also remove

an instance of v3 from the StubList.

ii. If no neighbors were selected from PotentialTriads, select a new

neighbor by choosing from StubList as above. If the new neighbor

is not in CurrentWave, and if the new neighbor is not already in

NextWave, add them to NextWave.

Repeat the last step until NextWave is empty following an iteration. Then, if

StubList is empty, the process is complete– all connections have been formed.

Otherwise, start a new component by choosing a new starting node uniformly

at random from those not yet in the network.
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1.

Figure 2.2: Two examples of networks generated with the algorithm. Left: Ran-

dom network with power law degree distribution, κ = 15, γ = 2, C = 0.15. Right:

Random network with poisson degree distribution, z = 4, C = 0.40. [40] Note that

these are abstract representations of random networks. The spatial embedding of

the network does not have any meaning.
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of triads connected to a node of degree k is distributed binomial(
(

k
2

)

, C). As noted

above the number of common triads with a neighbor of degree k is distributed

binomial(k − 1, C). Let τij denote the number of triads node i has in common

with node j, and τji denote the number of triads j has in common with i. Of course

these two random variables should be equal. We can calculate the probability of

these two potential neighbors as having an equal number of common triads as:

pc
ij =

min{d(i),d(j)}
∑

x=0

p(τij = x)p(τji = x)

Let qj denote the probability of selecting node j from the stub list. Then the

correct probability for selecting node j as a neighbor is:

qij =
qjp

c
ij

∑

α pc
iα

which is just qj weighted by the probability of the two neighbors having a compat-

ible number of triads in common.

In order to sample from this distribution, we use Markov Chain Monte Carlo

techniques. For a large number of iterations we select a new node β from the

stub list, then with probability aαβ we accept this new neighbor, where α is the

currently selected node in the markov process, and

aij =
pc

iµ

pc
iα

If β is not accepted, we keep α for the next iteration. The final neighbor is the

node selected at the last iteration.

It is desirable that our algorithm selects networks as uniformly as possible from

the ensemble of all networks which realize a given degree distribution and clustering

coefficient. It is difficult to prove that our algorithm is truly unbiased in this

sense, though our networks do have many of the properties of an unbiased random
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network. The algorithm can be tuned to produce exactly the right proportion of

triads to triples in the limit of large graph size. Furthermore, the degree of the

nodes were chosen as i.i.d. random variables, so in the limit of large graph size, the

degree distribution is unbiased too. Triads are uniformly distributed throughout

the network as reflected by the fact that the local clustering is independent of

degree. Lastly, when this algorithm is used to produce networks with no clustering

at all, it produces networks with the same statistical properties as true random

graphs with a specified degree distribution. As shown in figure 2.3, the distribution

of component sizes for networks made with this algorithm is identical to true

random graphs with specified degree distribution without clustering.

It is worth noting that many real-world networks, particularly in the biological

realm, have local clustering which scales as 1/k [23]. Our model in contrast pro-

duces constant local clustering, though it may be possible to generalize our method

to create networks with any desired schedule of local clustering.
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Chapter 3

Results

We have explored the effects of clustering and degree distribution over a wide range

of parameters. Figures 2.2(right), 3.1, and 3.5 illustrate the effect of clustering on

the structure of a random networks with poisson degree distributions (z = 3) as

clustering is increased from 0 to 1.00. As C is increased, nodes tend to disaggregate

into smaller tightly connected clusters of nodes with similar degree. This has the

overall effect of decreasing the giant component size as clustering is increased. In

the limit as C goes to 1, we find that the network breaks down into many small

completely connected cliques with each node in a clique sharing a common degree.

Figure 3.6 shows the effects of clustering on the size of the giant component for a

poisson random network. Clustering varies from 0.05 to 0.90. The giant component

seems to undergo a phase transition at a critical level of clustering around C =

0.60. In the next section we will find that the critical clustering value is actually

C∗ = 0.618. At this point, nodes suddenly disaggregate into much smaller, tightly

inter-connected groups. Similar phase transitions have been observed throughout

the networks literature, particularly concerning the targeted deletion of links and

nodes in percolation phenomena [24]. This algorithm has similar disconnecting

results without modifying the degree distribution of the network.

Regarding power-law networks (see figure 3.7), we note the striking tendency

for moderate levels of clustering to limit the size of the giant component. Because

the number of potential triads connected to a node scales as k2, the high degree

vertices account for most of the clustering. In networks with highly skewed degree

distributions, the high-degree nodes must connect to one another in order to realize

13
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Figure 3.1: Random network on 1500 nodes, poisson degree distribution (z = 4),

C = 0.00. Compare with figures 2.2(right) and 3.5.
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Figure 3.2: Random network on 1500 nodes, poisson degree distribution (z = 4),

C = 0.30

the required number of triads. This has the effect of limiting the ability to act

as hubs for low-degree vertices, and consequently the network disconnects into

many small components. Large components can be preserved under much higher

clustering with distributions such as the poisson.

The phase transition also undergoes major changes with the introduction of

clustering, although this effect seems to depend sensitively on the degree distri-

bution. In figure 3.8 we see that the phase transition where a giant component

forms is not significantly affected by the introduction of clustering for networks

with power law degree distributions. In contrast to the poisson random networks,

there is no sharp phase transition between the regime with a giant component and

without. This bears some resemblance to percolation phenomena, where the phase

transition disappears for true power-laws and an exponent of 2. But in figure 5.1

we see that the point of the phase transition was dramatically shifted forward for

the poisson random network. It is somewhat surprising to observe the phase tran-
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Figure 3.3: Random network on 1500 nodes, poisson degree distribution (z = 4),

C = 0.40.
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Figure 3.4: Random network on 1500 nodes, poisson degree distribution (z = 4),

C = 0.60. The image is zoomed on several of the largest components.
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Figure 3.5: Random network on 1500 nodes, poisson degree distribution (z = 4),

C = 0.97
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random network, z = 3. Each point represents the average of 40 trials.
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sition being shifted forwards as our algorithm features the introduction of degree

assortativity into the network. Previous research has shown the tendency of degree

assortativity to shift the point of the phase transition backwards [25].



Chapter 4

Variations on the agorithm

We have proposed a very simple example of how network-growth, degree-assortativity

and preferential attachment can be combined to generate networks with desirable

properties. In fact, many features of this algorithm can be changed to give dif-

ferent and interesting results. It may be that some features of our algorithm are

sub-optimal. Variations on this algorithm may be more effective at generating net-

works with the desired properties (e.g. a desired level of clustering, see section 7).

There may be more effective ways to introduce degree assortativity, or to form a

list of nodes for preferential attachment. This paper is almost certainly not the

final word on this subject.

While the present algorithm was being designed, numerous similar growth al-

gorithms were tried. This section will outline some processes similar to what we

have focussed on this paper.

4.1 Methods for generating degree assortativity

In our initial network growth experiments, we did not introduce any degree-

assortativity at all. As mentioned above, degree assortativity plays an important

part in our ability to form triads to a network.

The response of the size of the giant component to the input clustering pa-

rameter Cinput was very different, and is shown in figure 4.1. The relationship is

approximately linear, and should be contrasted with the sharp decline in the size

of the giant component observed above at the phase transition C∗ (fig. 3.6).

Another variation on degree assortativity concerns the formulation of pc
ij as

22
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parameter Cinput. The network is Exponential(4), n = 20000

described in the text. This is not the only ”Probability of compatibility” we can

devise. An alternative is clear from the way our growth algorithm works.

Let depth refer to the distance of a node from the initial node in the current

component of a growing network. Let parents(i) denote the set of nodes at a lower

depth than node i which are connected to node i. |parents(i)| will be the number

of parents node i possesses. Let descendants(i) denote the set of nodes connected

to node i which are also at a strictly greater depth than node i. In practice, a

descendant of node i can never be connected to a parent of node i. This is because

the parents of node i have already had their free connections ”reserved” by the time

a descendant of node i is designating its own connections. Hence it is not most

likely (sometimes even impossible) for a descendant of node i to connect to Cδ(i)

of i’s neighbors. Rather the average number of triadic connections in common with

i will be C(δ(i) − |parents(i)|. The ”probability of compatibility” between nodes
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i and j then becomes:

pc
ij =

min{d(i)−|parents(i)|,d(j)−|parents(j)|}
∑

x=0

p(τij = x)p(τji = x)

This modified degree-assortativity was not used in the experiments reported

in this paper, but can be found in the clustering code released on the author’s

website [41].

4.2 Methods for generating lists of potential triads

There are various systems of preferential attachment which can be defined for

growth networks. So long as every connected triple in the network becomes a

triad with probability C, the input clustering parameter will correspond to the

output clustering. Therefore our preferential attachment rule should encourage the

creation of triads as uniformly as possible for all connected triples. Unfortunately,

a perfect way of accomplishing this has yet to be devised.

Sometimes the fate of two or more triples depends on the allocation of a single

connection. This occurs whenever there are two or more paths of length two to

a node which is represented in the list PotentialTriads. In these cases we have

achieved the best results by allowing such a node to have multiple occurances in

PotentialTriads and therefore to form a triad with probability greater than Cinput.

This method was in fact used for the experiments reported in this paper.

Another problem concerns nodes which are two steps away, but which never-

theless have no free connections; hence a triad could never be formed with that

node. We have had some success with a method which compensates for this prob-

lem. Every time such a node is encountered, a random node is chosen from the

ProspectiveTriads list, and is re-added to the list, such that it occurs with prob-
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ability greater than Cinput. This goes someway to compensating with new triads

for triads which never had a chance to exist.



Chapter 5

Phase transitions

It is a necessary condition for a giant component to exist that if we pick a node at

random, the average number of neighbors two steps away, s2, exceeds the number

of neighbors one step away, s1 [26]. This is intuitive, since if it were not the case,

the number of neighbors n steps away would decrease to zero on average, and the

component would be finite in the limit of large network size.We can use this to

approximate the point of the phase transition as clustering is varied in our random

networks. Formally, we will solve for the point where

s1 = s2 (5.1)

The necessary condition (5.1) will not quite be a sufficient condition in the presence

of clustering as described below. Thus, our solution will only be a lower bound on

the point of the phase transition, but in practice, this will serve as an excellent

approximation.

For the poisson degree distribution, the average number of nodes one step

away is equal to the parameter of the distribution z, so we have s1 = z. As is

well known [1], the number of edges emanating from a node if we pick an edge at

random and follow it to one of its ends is also z for the poisson degree distribution.

Thus, in the absence of clustering we would have simply s2 = s1z = z2, where s2

is the average number of nodes two steps away from a randomly chosen node.

In the presence of clustering, things become more complicated. Lets pick a

node uniformly at random in the network and call this node v0. A neighbor of this

node, v1 will have on average z connections not in common with v0. Furthermore,

there will be on average Cz triadic connections between v0 and v1 as each of those

26



27

connections has a probability C of being a triad. We can simply deduct the triadic

connections from s2, so that we have

s2 > z2 − Cz2 = z2(1 − C) (5.2)

There is not equality in equation 5.2 because there is an additional force limiting

the number of second neighbors: Once two neighbors of v0, say v1 and v′
1 share

a triadic connection, it becomes more likely that a node two steps away from v0,

say v2, is a common neighbor of both v1 and v′
1. In fact, such connections exist

with probability C. Then, the number of connections we should deduct from every

neighbor at distance two due to common connections of nodes at distance one is

equal to C times the average number of triadic connections at distance one, or in

other words z2C2. Thus, we have

s2 = z2 − Cz2 − C2z2 = z2(1 − C − C2)

We can use this to solve for the critical z∗C where a giant component forms given

a level of clustering C:

z = z2(1 − C − C2) (5.3)

The non-zero root of this equation is given by

z∗C =
1

1 − C − C2
(5.4)

Note that when C=0, we retrieve the well known result that a giant component

forms when z = 1 in the absence of clustering. Unfortunately, we can only say that

this is a lower bound for the phase transition due to that the nodes at distance

two are not identical to v0. The number of outgoing connections from such nodes

(to nodes not already counted) is less than z − C2z on average.
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Figure 5.1: The size of the giant component is shown vs. z, the parameter of the

poisson degree distribution, for four levels of clustering (C = 0.0, C = 0.15, C =

0.30, C = 0.40). The vertical lines indicate the point of the phase transition for

each level of clustering predicted by equation 5.4

In figure 5.1 we have plotted the size of the giant component versus the param-

eter z for several levels of clustering. The vertical lines correspond to the phase

transitions z∗C as given by (5.4). We find good agreement between theory and

simulation.

There is a singularity in (5.4) where 1−C−C2 = 0. At this point, C∗ = 0.618,

the giant component disappears regardless of the average degree z of the degree

distribution. C∗ represents the critical level of clustering that can coexist in a

network with a giant component.



Chapter 6

Finite size effects

During the execution of the algorithm, it occasionally happens that a node cannot

find a suitable neighbor due to the absence of a node left in the network which has

free stubs and the correct degree to satisfy the degree assortativity requirements.

This imperfection is due to the finite size of the network. In the limit of large size,

it would always be possible to find a scale such that every node can find just the

right profile of neighbors with the right degree. There is no perfect way to deal

with such discprepancies. For the simulations used in this article, we have simply

truncated the degree of that node so that it does not have to seek a new neighbor.

Even with networks of only 5000 nodes, the number of corrections made is quite

small.

Figures 6.1 and 6.2 show the effects of network size and clustering on the

amount of degree-corrections made by the algorithm. Figure 6.1 shows the effects

of clustering on the number of corrections made for two networks. Note that the

total number of ”stubs” in the network is equal to the average degree of the nodes

times the population size. The corrections made is shown as the proportional

reduction in the number of ”stubs”. Even at 90% clustering, the poisson random

network only undergoes less than 5% reduction in its ”stubs”.

Figure 6.2 shows the effects of network size on the number of corrections made.

As expected, the number of corrections drops with the number of nodes in the

network. For 7000 nodes and 80% clustering, a poisson random network undergoes

less than a 0.4% reduction in its ”stubs”.
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Chapter 7

Dependence of the clustering coefficient

on input parameter Cinput

We have demonstrated a random network model which can generate any desired

level of clustering for any degree distribution. Getting a desired level of clustering C

is not always as simple as setting the parameter Cinput = C. In general the ”input”

clustering will be very close to the ”output” clustering, though there are sometimes

systematic differences. Figure 7.1 shows the value of the clustering coefficient

achieved over a broad range of values of Cinput for a Poisson random network.

Although the C values do not always fall on the diagonal, they nevertheless cover

the full spectrum of C = 0 to C = 1.00 making it possible to achieve any desired

level of clustering.

It would be desirable for the input clustering to correspond exactly to the

output clustering. The causes of the discrepancy are not fully understood as of

the writing of this manuscript, but are probably related to innacurate degree-

assortativity and improperly allocated ”prospective triad” lists. Improving the

algorithm so that Cinput more closely corresponds to C would be worthy subject

for future research.
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The random network has a poisson degree distribution with z = 8. N = 2500.



Chapter 8

Implications for sociology

The statistical properties of large social networks have been neglected by most

social networks researchers in favor of the study of small networks which feature

complete information about nodes and ties. This has begun to change in recent

years as researchers from other disciplines have made great strides in the mathe-

matics of large random networks– discoveries with direct applications to social net-

works. Indeed these advances were largely stimulated by a sociological question,

the small-world problem, which was expertly investigated by Duncan Watts, an

applied mathematician-turned sociologist. Now the methods developed by math-

ematicians and physicists are returning home to sociology where they may find

new applications and facilitate our understanding of a broad range of large social

networks, everything from markets and supply chains to internet-dating commu-

nities [39].

The present work aims to be a part of this quickly growing literature on large,

complex social networks. From the very beginning of this literature– Duncan

Watt’s investigation of the small-world problem–transtivity of network connec-

tions has been a primary feature of interest. Duncan Watts explained how high

transitivity can co-exist with short average path length. This was accomplished

with a simple network model which featured random connections and transitivity

which was built into a specified lattice topology and a constant degree distribution.

Watts did not, however, have a network model which allowed him to smoothly in-

terpolate between various levels of clustering for any degree distribution. One

significant aspect of this research is that it allows sociologists to explore broad
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ranges of clustering with realistic degree distributions. The degree distribution

can even be taken directly from empirical data.

Another aim of this paper is to bring recognition to the multidude of mecha-

nisms for injecting desired topologies into large random networks. Indeed, social

networks researchers have been developing network models which feature transitiv-

ity for more than a decade [38]. In more recent years, exponential random network

models have gained a strong foothold in the discpline. Network growth models

have received less attention, and perhaps should receive more. Growth models are

very flexible in the range of topologies they can produce. They are also suggestive

of the mechanisms which produce the topologies we observe. For example, we have

demonstrated that network growth and degree-assortativity coupled with prefer-

ential attachment to neighbors-of-neighbors is alone capable of generating large

amounts of clustering.

Finally, a major contribution of this research to sociology is to clarify the re-

lationship between transitivity and the connectivity of social networks. We have

shown how increasing transitivity decreases the size of the giant component. Fur-

thermore, there is an upper bound to transitivity, beyond which a giant component

will not exist in a random network. It is unlikely that transtivity reaches such ex-

tremes in large social networks, as connectivity is an important feature to most of

its constituents.



Chapter 9

Discussion

We have presented a method for generating random networks which unite two

frequently modeled topological features– clustering and the degree distribution.

Random network models can serve several important purposes. First, they can

serve as a null hypothesis about the structure of a real-world network. Significant

deviations in the structure of the real-world network from a corresponding ran-

dom graph indicate that there are more forces at work shaping the network than

are being accounted for in the random graph model. These deviations can then

motivate further inquiry into the forces shaping real-world networks [1].

Secondly, real-world networks are very often of a scale that it is impossible

to map them entirely. Various network sampling techniques have been devised

to estimate features of the network topology in the absence of data on the entire

network [27, 28, 29]. Given reliable estimates about network topology, a random

network can then be generated which reproduces this topology. The random net-

work may be used as a stand-in for modeling various dynamic models on networks.
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Lastly, the family of random networks we have presented here enables the

exploration of a huge parameter space for models on networks. There are a growing

number of models which describe dynamic processes on networks. Examples are

models of diffusion processes, such as models of epidemics [30, 31, 32], models of

fads [33, 34], the spread of rumors [35, 36], and the migration of species among

connected habitats [37]. Other models explore interactions among nodes embedded

in a network. Examples include spin-glasses, kuramoto oscillators, and disordered

neural networks [12]. There are many applications for exploring the effects of

clustering and degree distributions on these and other models.
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