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Abstract

Large scale distributed systems, such as natural neuronal and artificial systems, have many
local interconnections, but often also have the ability to propagate information very fast over
relatively large distances. Mechanisms that enable such behaviour include very long physical
signalling paths, and possibly also saccades of synchronous behaviour that may propagate
across a network. This paper studies the modeling of such behaviours in neuronal networks,
and develops a related learning algorithm. This is done in the context of the random neural
network (RNN), a probabilistic model with a well developed mathematical theory, which was
inspired by the apparently stochastic spiking behaviour of certain natural neuronal systems.
Thus we develop an extension of the RNN to the case when synchronous interactions can
occur, leading to synchronous firing by large ensembles of cells. We also present an O(N3)
gradient descent learning algorithm for an N -cell recurrent network having both conventional
excitatory-inhibitory interactions and synchronous interactions. Finally, the model and its
learning algorithm are applied to a resource allocation problem which is NP -hard and requires
fast approximate decisions.

1 Introduction

Synchronised firing (SF) has been observed among cultured cortical neurons (Muramoto, Kobayashi,
Nakanishi, Matsuda, & Kuroda, 1988; Robinson et al., 1993) and it is believed that it serves a promi-
nent role in information processing functions of both sensory and motor systems (Konig & Engel,
1995). Temporal firing synchrony is a result of functional coupling which dynamically varies accord-
ing to the internal state of the neural system and the stimuli, and it appears both in homogeneous
and clustered neuronal networks (Segev, Shapira, Benveniste, & Ben-Jacob, 2001); it has been ob-
served that under special population density conditions a neuronal culture can self-organize into
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linked clusters (Segev, Benveniste, Shapira, & Ben-Jacob, 2003), to generate synchronous firing
activity similar to the one observed in homogeneous networks (Mann-Metzer & Yarom, 1999; Segev
et al., 2003). This behaviour may also be related to the correlation in connectivity, which is usually
measured in neuron cultures because it is difficult to identify the synaptic strength among neurons
and hence determine the characteristic node connectivity (Jia, Sano, Lai, & Chan, 2004). The
experimental observations of synchronised firing in cultured or sliced neuron cell ensembles may be
bursts of firing resulting from the non-linear dynamics of the neuronal interactions. Thus in this
paper we develop a mathematical model of a spiked random network which can exhibit synchronised
firing between cells, where one cell may trigger firing in another one, and cascades of such triggered
firings can occur. Our model describes the triggering of firing between two cells and triggered firing
by cascades of cells, including feedback loops in the cascades, so that lengthy bursts of firing can
also be modelled. Thus the present model could be used to mimic the spike bursts which have been
experimentally observed.

In this paper we discuss an extension of the random neural network model (RNN) which incor-
porates the usual excitatory and inhibitory interactions between cells, but also offers the possibility
that cells synchronously act together on other cells, triggering successive firing instants in other
cells.

The spiked random neural network model was introduced in (Gelenbe, 1989a, 1989b, 1990a,
1990b) and shown to have a “product form” solution, which implies that the joint stationary
probability distribution of the excitation state of all the cells in the network is the product of the
stationary marginal probabilities of each cell. The RNN has been used to study oscillations in
cortico-thalamic circuits in (Gelenbe & Cramer, 1998). Its gradient descent learning algorithm was
derived in (Gelenbe, 1993b), and in (Gelenbe, Mao, & Li, 1999, 2004) it is shown that the RNN
can be used to approximate continuous and bounded functions. A generalisation of the RNN to
represent multiple classes of signals was introduced in (Gelenbe & Fourneau, 1999), and applied
in (Atalay, Gelenbe, & Yalabik, 1992; Gelenbe & Hussain, 2002) to the reproduction and learning
of image textures. The RNN has been applied to several other image processing problems such
as image fusion (Bakircioglu, Gelenbe, & Koçak, 1998), image and video compression (Cramer &
Gelenbe, 2000; Cramer, Gelenbe, & Bakircioglu, 1996; Gelenbe, Cramer, Sungur, & Gelenbe, 1996),
and the detection of tumors in brain images (Gelenbe, Feng, & Krishnan, 1996) and also to the
detection of unusual signals inside periodic sequences (Gelenbe, Harmanci, & Krolik, 1998), as well
as in a variety of pattern recognition problems (Abdelbaki, Gelenbe, & Kocak, 2005; Gelenbe &
Kocak, 2000, 2004). It has also been used in several papers to obtain approximate solutions of
NP -hard problems (Aguilar & Gelenbe, 1997; Gelenbe, 1992; Gelenbe, Ghanwani, & Srinivasan,
1997; Gelenbe, Koubi, & Pekergin, 1994). A model similar to the RNN has also been suggested
for genetic algorithms (Gelenbe, 1997). The RNN has also been applied to control the routing of
packets in computer networks (Gelenbe, Lent, & Nunez, 2004; Gelenbe, Lent, & Xu, 2001). Other
related models can be found in (Gelenbe, 2007, 2008).

In addition to introducing the learning algorithm for the RNN with synchronised interactions,
and showing that it is of computational complexity O(N3) for an N -cell network, in this paper we
also present how the network can be used as a decision making device for an NP -hard resource
allocation problem. The approach here differs from previous work in this area in that we use the
learning algorithm to train the network on a large number of “similar instances” of the optimisation
problem at hand, and then we use it on problem instances that it has not encountered before. The
evaluation that we also present in this paper shows that this approach can be very effective: the
trained network decides about the resource allocation very quickly, and furthermore it solves it
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quite accurately as will be discussed in detail in Section 5.

2 The model

The RNN model with synchronised interactions is a network of N cells which have independent
and exponentially distributed firing times with firing rates r1, ... , rN ≥ 0. The internal state of a
neuron i, is the non-negative variable ki(t). We say that the neuron is excited if ki(t) ≥ 1, and that
it is quiescent or idle if ki(t) = 0. A neuron may fire if it is excited and when i fires at time t, right
after t we have ki(t

+) = ki(t)− 1. The following events can occur at time t:

• A cell i receives an excitatory spike from the outside world; this increases the internal state of
the receiving neuron by 1. Excitatory spikes arrive to cell i from the outside world according
to a Poisson process of rate Λ(i).

• A cell i receives an inhibitory spike from the outside world at time t; if ki(t) > 0, this
decreases the value of the internal state of the receiving neuron by 1 and has no effect if
ki(t) = 0. Inhibitory spikes arrive to cell i from the outside world according to a Poisson
process of rate λ(i).

• Cell i fires at time t, if ki(t) > 0 and the probability of this event is ri∆t + o(∆t) so that the
cell’s firing rate ri is exponentially distributed. If this happens ki(t

+) = ki(t)−1. The resulting
spike will go to cell j as an excitatory spike with probability p+(i, j) or as an inhibitory spike
with probability p−(i, j), or the spike departs the network going to the outside world with
probability d(i), or it creates a synchronous interaction together with cell j to affect some
third cell m, with probability Q(i, j, m).

• An excitatory or inhibitory spike arriving to a neuron j from another neuron i is treated by
j exactly the same way as if such spikes arrive from the outside world.

• If at time t a spike from i reaches m to provoke a second order effect on j then the following
happen: of course ki(t

+) = ki(t) − 1, but also km(t+) = km(t) − 1 and kj(t
+) = kj(t) + 1 if

km(t) > 0. However if km(t) = 0 then ki(t
+) = ki(t)− 1.

Thus synchronous interactions take the form of a joint excitation by cells i,m on j, and can only
occur if both cell i and m are excited. Note also that:

d(i) = 1−
N∑

j=1

[
p+(i, j) + p−(i, j) +

N∑
m=1

Q(i, j,m)

]
, (1)

where Q(i, j,m) is the probability that when i fires, then if j is excited it will also fire immedi-
ately, with an excitatory spike being sent to cell m. This synchronous behaviour can be extended
to an arbitrary number of cells, when we have a sequence of cells j1, ... , jn+1, jn+2 such that
Q(ji, ji+1, ji+2) = 1 for 1 ≤ i ≤ n. In this case, if cells j1 and j2 are excited, then eventually all the
cells j1, ... , jn+1, jn+2 will fire. Thus the generalised RNN model we have described can be used to
model some quite general forms of synchronised firing.
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3 Steady-state solution

Let the state of the network be k(t) = [k1(t), k2(t), ..., kN(t)]. With the previous the system state
is a continuous time Markov chain, and the probability distribution of the system state {k(t) : t ≥ 0}
satisfies a set of Chapman-Kolmogorov equations. Let us use the following vectors to denote specific
values of the network state, where all of these vectors’ values must be non-negative:

k = [k1, ..., kN ]

k+
i = [k1, ..., ki + 1, ..., kN ]

k−i = [k1, ..., ki − 1, ..., kN ]

k+−
ij = [k1, ..., ki + 1, ..., kj − 1, ..., kN ]

k++
ij = [k1, ..., ki + 1, ..., kj + 1, ..., kN ]

k++−
ijm = [k1, ..., ki + 1, ..., kj + 1, ..., km − 1, ..., kN ]

If the steady-state distribution π(k) = lim
t→∞

P [k(t) = k] exists, it satisfy the Chapman-Kolmogorov

equations given in steady-state:

π (k)
N∑

i=1

[
Λ(i) + (λ(i) + ri)1{ki>0}

]
=

N∑
i=1

{
π

(
k+

i

)
rid(i) + π

(
k−i

)
Λ(i)1{ki>0} + π

(
k+

i

)
λ(i)

+
N∑

j=1

[
π

(
k+−

ij

)
rip

+(i, j)1{kj>0} +
N∑

m=1

π
(
k+

i

)
riQ(i, j, m)1{kj=0}

+ π
(
k++

ij

)
rip

−(i, j) + π
(
k+

i

)
rip

−(i, j)1{kj=0}

+
N∑

m=1

π
(
k++−

ijm

)
riQ(i, j,m)1{km>0}

]}
(2)

where 1{Y } is equal to 1 if Y is true and 0 otherwise.
The following is an application of a result earlier shown in (Gelenbe, 1993a).

Theorem: Let λ−(i) and λ+(i), i = 1, ...N be given by the following system of equations

λ−(i) = λ(i) +
N∑

j=1

rjqj[p
−(j, i) +

N∑
m=1

Q(j, i, m)] (3)

λ+(i) =
N∑

j=1

rjqjp
+(j, i) +

N∑
j=1

N∑
m=1

qjqmrjQ(j,m, i) + Λ(i) (4)
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where
qi = λ+(i)/

(
ri + λ−(i)

)
(5)

If a unique non-negative solution {λ−(i), λ+(i)} exists for the non-linear system of equations (3),
(4), (5) such that qi < 1 ∀i ,then:

π (k) =
N∏

i=1

(1− qi) qki
i (6)

Thus whenever a solution can be found to equations (3), (4), (5) such that all the qi < 1, then
the network’s steady-state has the simple product form (6). The condition qi < 1 can be viewed as
a “stability condition” that guarantees that the excitation level of each neuron remains finite with
probability one. Note also, that the average excitation level of neuron i in steady-state is qi/(1−qi).

We will now introduce a notation which is similar to the one used in (Gelenbe, 1993b), where we
replace the firing rates ri and the probabilities p+(i, j), p−(i, j) and Q(i, j, l) by “weights”, which
in this model represent the rates at which the cells or neurons interact. Let:

w+(i, j) = rip
+(i, j), (7)

w−(i, j) = rip
−(i, j), (8)

and
w(i, j, l) = riQ(i, j, l) (9)

As a result we can write:

ri =

N∑
j=1

[
w+(i, j) + w−(i, j) +

∑N
m=1 w(i, j,m)

]

1− d(i)
(10)

The denominator of qi can be written as:

D(i) = ri +
N∑

j=1

qj[w
−(j, i) +

N∑
m=1

w(j, i, m)] + λ(i) (11)

while its numerator becomes:

N(i) =
N∑

j=1

qjw
+(j, i) +

N∑
j=1

N∑
m=1

qjqmw(j, m, i) + Λ(i) (12)

so that qi = N(i)/D(i). The results summarised in this section will now be used to design an
efficient learning algorithm for this network with second order effects.
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4 Gradient descent learning of computational complexity
O(N 3)

Gradient descent based algorithms in neural networks are used to select the “weights” of the network
so that, if the network is presented with a given input X, the network’s output is a very good match
for a desired output vector y. In our case, the “input vector” X will be the vector of the external
excitatory and inhibitory arrival rates (Λ(1), ... , Λ(n)) and (λ(1), ... , λ(N)). The output vector
on the other hand will correspond to the steady-state values of the network, for instance a vector
of the values taken by the N probabilities (q1, ... , qN) which result from applying the input vector
to the network. The gradient descent algorithm is usually provided with a set of input and output
vectors which are used to adjust the network weights so that the difference between the given and
obtained outputs is minimised over the set of input vectors.

Now consider a set of K input-output pairs (X,Y), with inputs given by X = [X1,X2, ...,XK ]T ,

and Xk = [Λk, λk]
T .

The vectors Λk = [Λk(1), ..., Λk(N)] and λk = [λk(1), ..., λk(N)] are obviously the external arrival
rates of customers and signals entering the N neurons respectively. The K desired outputs are
Y =[y

1
, ..., y

K
]T with y

k
= [yk1, ..., ykN ] where yki ∈ [0, 1] are the desired outputs of the ith neuron

for the kth training set.

A learning algorithm computes values of the network weights so as to find a local minimum of
a cost or error function such as:

E =
1

2

K∑

k=1

Ek =
1

2

K∑

k=1

N∑
i=1

ci (fi (qik)− yik)
2 , ci ≥ 0 (13)

where fi (qik) is a differentiable function of qi associated with neuron i. If for some reason we want
a particular neuron i not to be considered as an output then we can set ci = 0. Note that more
general forms of Ek can be selected without significant changes in the algorithm we will consider,
as long as Ek is non-negative, differentiable in all of the qi, and has at least one minimum for the
set of all parameter values w+(i, j), w−(i, j) ≥ 0 and w(i, j, l) ≥ 0.

4.1 Restricting the optimisation to w(i, j, l) = w−(i, j)a(j, l)

In general we can select the w(i, j, l) in an arbitrary manner as long as w(i, j, l) ≥ 0, and w+(i, j),
w−(i, j) ≥ 0. However, we see that w(i, j, l) in fact acts as an inhibitory term from i to j, followed
by an excitatory term from j to l. Thus we propose to simplify the computation involved in seeking
a minimum of the cost function (13) by writing:

w(i, j, l) = w−(i, j)a(j, l), for all 1 ≤ i, j, l ≤ N, (14)

where a(j, l) ≥ 0.

We will therefore design a gradient descent algorithm to obtain the unknown parameters of the
network i.e. the matrices W+ = {w+(i, j)} ,W− = {w−(i, j)} and A = {a(i, j)} for i, j = 1, ..., N in
order to minimize the cost function.
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In the sequel we will use the generic term w(u, v) to represent either w(u, v) = w+ (u, v) or
w(u, v) = w− (u, v) or w(u, v) = a (u, v). The weights are updated using the gradient descent rule
so that for the k − th input-output pair, the n− th computational step is:

wk,n+1(u, v) = wk,n(u, v)− η
∂Ek

∂w(u, v)
|w(u,v)=wn(u,v), X=Xk, y=y

k
(15)

where n denotes the update step, η > 0 is known as “the learning rate” and the partial derivative
of the cost function is computed with the n− th updated values of the weights. Clearly:

∂Ek

∂w(u, v)
=

N∑
i=1

ci (fi (qik)− yik)
∂fi(qi)

∂qi

∂qi

∂w(u, v)

∣∣∣∣ w(u, v) = wk−1(u, v), qi = qik−1
(16)

By taking the derivative of qi = N(i)/D(i) with respect to the generic variable w(u, v) one obtains
after some calculations each of the terms of interest. Writing the vector q = [q1, q2, ... , qN ] and
using the N ×N matrix:

W =
1

D(j)
·
{

w+(i, j)− qjw
−(i, j) +

N∑
m=1

qmw−(i,m)a(m, j)

+a(i, j)
N∑

m=1

qmw−(m, i)− qjw
−(i, j)

N∑
m=1

a(j, m)

}
i, j = 1, 2, ..., N (17)

we obtain:
∂q

∂w+(u, v)
=

∂q

∂w+(u, v)
W+ γ+(u, v) (18)

∂q

∂w−(u, v)
=

∂q

∂w−(u, v)
W+ γ−(u, v) (19)

∂q

∂a(u, v)
=

∂q

∂a(u, v)
W+ γ∗(u, v) (20)

where we have used:
γ+(u, v) = [γ+

1 (u, v), γ+
2 (u, v), ..., γ+

N(u, v)], (21)

γ−(u, v) = [γ−1 (u, v), γ−2 (u, v), ..., γ−N(u, v)], (22)

and
γ∗(u, v) = [γ∗1(u, v), γ∗2(u, v), ..., γ∗N(u, v)], (23)

which are given by:

γ+
i (u, v) =

1

D(i)
·





qu − qu/(1− d(i)) u = i, v = i
−qu/(1− d(i)) u = i, v 6= i
qu u 6= i, v = i
0 u 6= i, v 6= i

(24)
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γ−i (u, v) =
1

D(i)
·





quqv[a(v, i)− 1−∑N
m=1 a(v, m)]− qu[1 +

∑N
m=1 a(v,m)](1− d(i))−1 v = i, u = i

quqv[a(v, i)− 1−∑N
m=1 a(v, m)] v = i, u 6= i

quqva(v, i)− qu[1 +
∑N

m=1 a(v,m)](1− d(i))−1 v 6= i, u = i
quqva(v, i) v 6= i, u 6= i

(25)

γ∗i (u, v) =
1

D(i)
·





−qiw
−(i, u)(1− d(i))−1 v = i, u = i

−qiw
−(i, u)(1− d(i))−1 + qu

∑N
j=1qjw

−(j, u) v = i, u 6= i

−qiw
−(i, u)(1− d(i))−1 − qu

∑N
j=1qjw

−(j, u) v 6= i, u = i
−qiw

−(i, u)(1− d(i))−1 v 6= i, u 6= i

(26)

Notice that (18) - (20) can also be written as:

∂q

∂w+(u, v)
= γ+(u, v) (I−W)−1 (27)

∂q

∂w−(u, v)
= γ−(u, v) (I−W)−1 (28)

∂q

∂a(u, v)
= γ∗(u, v) (I−W)−1 (29)

where I is the N ×N identity matrix. We now summarise the steps of the learning algorithm:

1. Initialize the matrices W+, W− and A and choose a value for η. The larger the value of η,
the greater the change in the weight update in one step.

2. Set the input values for Xk = [Λk, λk]
T and y

k
for a particular k.

3. Solve the system of the N non-linear equations (3)-(5) based on the above values.

4. Solve the three systems of the N linear equations (27), (28) and (29) using the values of
qik obtained. The complexity of solving these systems is O(N3), because of the matrix inver-
sion operation or O(mN2) if an m-step relaxation method is adopted.

5. Using the results from Steps 3 and 4, update the matrices W+ = {w+(i, j)}, W− = {w−(i, j)}
and A = {a(i, j)} using (15) and (16). If during some update a particular parameter does not
satisfy the constraint that they must be non-negative, then either the particular update can
be repeated with a smaller value of η or the particular parameter can be set to the closest
values within the constraints.

5 Fast optimisation in a resource allocation problem

When a limited set of resources need to be allocated simultaneously to a set of needs, one either
formulates an optimisation problem which is then solved using specific and often time consuming
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algorithms, or one resorts to some heuristic technique. When the problem needs to be solved
rapidly, with limited computational resources, and preferably in real time, then heuristic solutions
are the approach of choice. Thus the application presented in this section uses the RNN with
synchronised interactions to compute a fast approximate decision for a resource allocation which
arises in emergency management, for a problem whose exact solution would require an impractically
large computation time.

The approach taken is to train the RNN with the learning algorithm derived in this paper,
using numerous instances of the optimisation problem, with exact solutions which are obtained
off-line. The trained RNN is then evaluated by testing it with randomly generated instances of the
optimisation problem. This evaluation shows (a) that the RNN with triggered interactions generally
provides better (lower cost) solutions than one where the triggered interactions are not allowed, and
(b) that this approach yields results which are quite close to the optimum values.

In the emergency problem considered, NL incidents occur simultaneously at different locations
with Ij people injured at incident j. NU emergency units or ambulances (say) are spatially dis-
tributed before the time of the incident with unit i being able to collect ci > 0 injured and having
response time to incident j given by Tij > 0. We assume that one unit can only be allocated to one
incident, and that the initial locations of the units and the locations of incidents are fixed. If the
capacity of the ambulances is sufficient to collect all the injured, then our goal is not only to collect
the injured, but also to minimize the average response time of the ambulances.

Let us introduce the binary decision variables xij:

xij =

{
1 if unit i is allocated to incident j
0 if unit i is not allocated to incident j

(30)

The optimization problem is then:

min f(x) =

NU∑
i=1

NL∑
j=1

Tijxij (31)

subject to
NL∑
j=1

xij = 1 ∀i (32)

NU∑
i=1

cixij ≥ Ij ∀j (33)

xijε{0, 1} ∀i, j (34)

The constraint (32) indicates that an emergency unit must be allocated to exactly one incident,
while (33) expresses the fact that the total capacity of the units allocated to an incident must be
at least equal to the number of people injured there. The above problem is known to be NP-hard.

To map the problem to a supervised learning context, we have to select parameters Ij that
represent the inputs to the decision problem, while the outputs are the xij. Because Ij ≥ 0 ∀j,
in the RNN they will be represented by the parameters Λ(j) of the input neurons. The output
variables are represented by the use of two neurons, a “positive” neuron and a “negative” neuron.
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Figure 1: Second neural network architecture

If xij = 1 then the excitation level of the corresponding “positive” output neuron is high (close to
1) while the excitation level of the “negative” output neuron is low (close to 0). If xij = 0 then the
excitation level of the corresponding neurons are antisymmetric to the first case.

We will evaluate two distinct neural network architectures, both of which contain an input and
an output layer with the output layer having Nout = 2 ∗ NU ∗ NL neurons. The input layer in the
first case contains NL neurons while in the second case a “positive” and a “negative” neuron for
each input are used. The key difference between the two architectures is that the first one is fully
connected in terms of the W+ and W− weight matrices, while in the second, each neuron excites
output neurons of the same type and inhibits output neurons of the opposite type. Figure 1 presents
the second architecture showing the excitation/inhibition weights of a “positive” neuron.

The synchronised firing weights A are selected in four different ways:

A1 All the weights of the A matrix are used in learning.

A2 To deal with constraint (32) the synchronized weights corresponding to a decision variable
xij, a(ij, im) i = 1, ..., NU , j, m = 1, ..., NL are high when the neurons are of different type
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and low if they are of the same type. The other synchronized weights are kept to zeros i.e.
a(ij, lm) = 0 i, l = 1, ..., NU l 6= i, j,m = 1, ..., NL.

A3 Same as approach A2 but a(ij, lm) 6= 0 i, l = 1, ..., NU l 6= i, j, m = 1, ..., NL so these weight
must be learned as well.

A4 The synchronized weights are all zero i.e. A = 0

In the learning procedure, the weights are updated after processing each input pattern (i.e. an
instance of the decision problem), where a pattern consists of input values and the corresponding
output decision variables obtained from an “exact” solution of this instance of the decision problem.
The patterns are presented to the network at random and after all patterns are processed the whole
procedure is repeated until convergence.

5.1 Evaluating the RNN as a decision tool

We have first generated at random 200 training instances for different numbers of emergency units
and for the locations of incidents. The remaining parameters have been chosen at random with
TijεR and ciεZ being uniformly distributed in the intervals 0− 1 and 1− 4, respectively. For each
of the training patterns the IjεZ are also uniformly distributed in the interval 0.5 ∗ ct/NL, ct/NL

where ct =
∑

i(ci) is the total capacity of all the emergency units.

We have performed experiments with the following numbers of emergency units and incidents:
NU = 5, 10, 15, 20 and NL = 3, 5. Among the test cases considered, we only chose those whose
required capacity was within the total available capacity of the ambulances. The optimum solution
in each case was then obtained accurately by solving the combinatorial optimization problem in
Matlab using function bintprog.

Testing after training was performed using a distinct but similarly generated set of 200 test cases
so that the training and testing were disjoint, but with the same probability distributions for all
parameters. Eight different network architectures were used:

Case 1 Network Architecture 1 with approach A1

Case 2 Network Architecture 1 with approach A2

Case 3 Network Architecture 1 with approach A3

Case 4 Network Architecture 1 with approach A4

Case 5 Network Architecture 2 with approach A1

Case 6 Network Architecture 2 with approach A2

Case 7 Network Architecture 2 with approach A3

Case 8 Network Architecture 2 with approach A4

and the results were evaluated on the basis of the following metrics:
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• The percentage of instances that were solved so that all of the injured were evacuated; the
results are shown in Figure 2

• The percentage of people collected averaged over all the instances, summarised in Figure 3

• The metric which evaluates the closeness to optimality of the solution, given by the average of
the ratio fNN(x)/fopt(x), taken over all of the solutions where the ambulances assigned cover
the casualties, which is summarised in Figure 4

Based on these results we can say that:

• Cases 1, 2, 3, 4 are equally effective, and clearly better than the other cases, in obtaining the
highest percentage of solutions where all casualties are evacuated, and collecting the highest
percentage of injured, except for the set of instances with NU = 20 and NL = 3.

• With respect to the ratio fNN(x)/fopt(x), Cases 5, 6, 7, 8 (using the second architecture) are
within a few percent of the optimum, while all results obtained are basically within 10% of
the optimum.

Thus the first architecture is better at finding a greater proportion of solutions where all casualties
are evacuated, while the second is better at getting close to the optimum. In addition, among the
cases studied the most successful are those when all the synchronised interaction weights are used
(cases 1,5).

6 Conclusions

In this paper we have developed a model of spiked neural networks with synchronised firing and
then derived a gradient descent learning algorithm for the recurrent network. We have shown that
the learning algorithm is of complexity O(N3) for an N -node network, and then applied it to solve
a class of optimisation problems that arise in emergency management.

The practical application that we consider is that of dispatching a set of vehicles or “emergency
units” to a given set of locations which need these units, with knowledge of the number of “victims”
at each location, the capacity of each emergency unit to treat victims, and knowledge of the time it
takes the units to reach the locations where they are needed. The purpose is to evacuate as many
victims as possible in the smallest possible time. We first formulate this problem in mathematical
terms, and train the RNN based on instances of the problem for which the optimal solution is
known. The performance of the trained RNN is then tested based on a set of randomly chosen
instances. Our results show that the RNN will in this manner provide quasi-optimal solutions.
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Figure 2: Percentage of solutions in which all casualties are evacuated; these solutions are called
“feasible” in the graphs, for want of a better term
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