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Abstract. Pseudo-random numbers are often required for simulations
performed on parallel computers. The requirements for parallel random
number generators are more stringent than those for sequential random
number generators. As well as passing the usual sequential tests on each
processor, a parallel random number generator must give different, in-
dependent sequences on each processor. We consider the requirements
for a good parallel random number generator, and discuss generators for
the uniform and normal distributions. We also describe a new class of
generators for the normal distribution (based on a proposal by Wallace).
These generators can give very fast vector or parallel implementations.
Implementations of uniform and normal generators on vector and vec-
tor/parallel computers are discussed.

1 Introduction

Pseudo-random numbers have been used in Monte Carlo calculations since the
earliest days of digital computers [32]. In this paper we are concerned here with
random number generators (RNGs) on fast, modern computers – typically ei-
ther vector processors or parallel computers using vector or pipelined RISC pro-
cessors. What we say about vector processors often applies to pipelined RISC
processors with a memory hierarchy (the vector registers of a vector processor
corresponding to the first-level cache of a RISC processor).

With the increasing speed of vector processors and parallel computers, con-
siderable attention must be paid to the quality of random number generators. A
program running on a supercomputer might use 108 random numbers per second
over a period of many hours or even months in the case of QCD calculations,
so 1014 random numbers might contribute to the result. Small correlations or
other deficiencies in the random number generator could easily lead to spurious
effects and invalidate the results of the computation.

Applications require random numbers with various distributions (uniform,
normal, exponential, binomial, Poisson, etc.) but the algorithms used to gen-
erate these random numbers usually require a good uniform random number
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generator – see for example [2,5,14,24,34,39]. In this paper we consider the gen-
eration of uniformly and normally distributed numbers.

Pseudo-random numbers generated in a deterministic fashion on a digital
computer can not be truly random. What is required is that finite segments of
the sequence behave in a manner indistinguishable from a truly random sequence.
In practice, this means that they pass all statistical tests which are relevant to
the problem at hand. Since the problems to which a library routine will be
applied are not known in advance, random number generators in subroutine
libraries should pass a number of stringent statistical tests (and not fail any)
before being released for general use.

A sequence u0, u1, · · · depending on a finite state must eventually be periodic,
i.e. there is a positive integer p such that un+p = un for all sufficiently large n.
The minimal such p is called the period.

Following are some of the more important requirements for a good uniform
pseudo-random number generator and its implementation in a subroutine library
(the modifications for a normal generator are obvious) –

• Uniformity. The sequence of random numbers should pass statistical tests
for uniformity of distribution. In one dimension this is easy to achieve. Most
generators in common use are provably uniform (apart from discretisation
due to the finite wordlength) when considered over their full period.
• Independence. Subsequences of the full sequence u0, u1, · · · should be inde-

pendent. For example, members of the even subsequence u0, u2, u4, · · · should
be independent of their odd neighbours u1, u3, · · ·. Thus, the sequence of
pairs (u2n, u2n+1) should be uniformly distributed in the unit square. More
generally, random numbers are often used to sample a d-dimensional space,
so the sequence of d-tuples (udn, udn+1, . . . , udn+d−1) should be uniformly
distributed in the d-dimensional cube [0, 1]d for all “reasonable” values of d
(certainly for all d ≤ 6).
• Long Period. As mentioned above, a simulation might use 1014 random num-

bers. In such a case the period pmust exceed 1014. For many generators there
are strong correlations between u0, u1, · · · and um, um+1, · · ·, where m = p/2
(and similarly for other simple fractions of the period). Thus, in practice the
period should be much larger than the number of random numbers which
will ever be used.
• Repeatability. For testing and development it is useful to be able to repeat

a run with exactly the same sequence of random numbers as was used in
an earlier run [22]. This is usually easy if the sequence is restarted from the
beginning (u0). It may not be so easy if the sequence is to be restarted from
some other value, say um for a large integer m, because this requires saving
the state information associated with the random number generator.
• Portability. Again, for testing and development purposes, it is useful to be

able to generate exactly the same sequence of random numbers on two differ-
ent machines, possibly with different wordlengths. In practice it will be ex-
pensive to simulate a long wordlength on a machine with a short wordlength,
but the converse should be easy – a machine with a long wordlength (say
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w = 64) should be able to simulate a machine with a smaller wordlength
without loss of efficiency.
• Disjoint Subsequences. If a simulation is to be run on a machine with several

processors, or if a large simulation is to be performed on several indepen-
dent machines, it is essential to ensure that the sequences of random numbers
used by each processor are disjoint. Two methods of subdivision are com-
monly used. Suppose, for example, that we require 4 disjoint subsequences
for a machine with 4 processors. One processor could use the subsequence
(u0, u4, u8, · · ·), another the subsequence (u1, u5, u9, · · ·), etc. This partition-
ing method is sometimes called “decimation” or “leapfrog” [11]. For efficiency
each processor should be able to “skip over” the terms which it does not re-
quire. Alternatively, processor j could use the subsequence (umj , umj+1, · · ·),
where the indices m0,m1,m2,m3 are sufficiently widely separated that the
(finite) subsequences do not overlap. This requires some efficient method of
generating um for large m without generating all the intermediate values
u1, . . . , um−1.
• Efficiency. It should be possible to implement the method efficiently so that

only a few arithmetic operations are required to generate each random num-
ber and all vector/parallel capabilities of the machine are used. To minimise
subroutine call overheads, the random number routine should return an ar-
ray of (optionally) several numbers at a time.

Several recent reviews [4,6,11,16,22,24,28,33] of uniform random number gen-
erators are available. The most important conclusion regarding uniform genera-
tors is that good ones may exist, but are hard to find [33]. Linear congruential
generators with a “short” period (less than say 248) are certainly to be avoided.
Generalised (or “lagged”) Fibonacci generators using the “exclusive or” oper-
ation are also to be avoided; other generalised Fibonacci generators may be
satisfactory if the lags are sufficiently large (if they use the operation of addition
then the lags should probably be at least 1000). See, for example, [12, Table 2].
Our recommendation, implemented as RANU4 on Fujitsu VP2200 and VPP300
vector/parallel processors, is a generalised Fibonacci generator with very large
lags, e.g. (79500, 132049) (see [21]), and careful initialisation which avoids any
initial atypical behaviour and ensures disjoint sequences on parallel processors.
For further details see [6].

In the interests of conserving space, we refer the reader to the reviews cited
above for uniform generators, and concentrate our attention on the less often
considered, but still important, case of normal random number generation on
vector/parallel processors. “Classical” generators are considered in §2, and an
interesting new class of “Wallace” generators [40] is considered in §3.

We do not attempt to cover the important topic of testing random number
generators intended for use on vector/parallel computers. A good, recent sur-
vey of this topic is [12]. The user should always remember that a deterministic
sequence of pseudo-random numbers can not truly be random; all that testing
can do is inspire confidence that a generator is indistinguishable from random
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in a particular application [37,38]. In practice, testing is essential to cull bad
generators, but can not provide any guarantees.

2 Normal RNGs based on Uniform RNGs

In this section we consider some “classical” methods for generating normally
distributed pseudo-random numbers. The methods all assume a good source of
uniform random numbers which is transformed in some manner to a sequence
of normally distributed random numbers. The transformation is not necessarily
one to one.

The most well-known and widely used methods for generating normally dis-
tributed random variables on sequential machines [2,5,14,20,24,26] involve the
use of different approximations on different intervals, and/or the use of “re-
jection” methods [14,24], so they often do not vectorise well. Simple, “old-
fashioned” methods may be preferable. In §2.1 we describe two such methods,
and in §§2.2–2.3 we consider their efficient implementation on vector processors,
and give the results of implementations on a Fujitsu VP2200/10. In §§2.4–2.5 we
consider some other methods which are popular on serial machines, and show
that they are unlikely to be competitive on vector processors.

2.1 Some Normal Generators

Assume that a good uniform random number generator which returns uniformly
distributed numbers in the interval [0, 1) is available, and that we wish to sample
the normal distribution with mean µ and variance σ2. We can generate two
independent, normally distributed numbers x, y by the following old algorithm
due to Box and Muller [31] (Algorithm B1):

1. Generate independent uniform numbers u, v ∈ [0, 1).
2. Set r ← σ

√−2 ln(1− u).
3. Set x← r sin(2πv) + µ and y ← r cos(2πv) + µ.

The proof that the algorithm is correct is similar to the proof of correctness
of the Polar method given in Knuth [24].

Algorithm B1 is a reasonable choice on a vector processor if vectorised square
root, logarithm and trigonometric function routines are available. Each normally
distributed number requires 1 uniformly distributed number, 0.5 square roots,
0.5 logarithms, and 1 sin or cos evaluation. Vectorised implementations of the
Box-Muller method are discussed in §2.2.

A variation of Algorithm B1 is the Polarmethod of Box, Muller and Marsaglia
described in Knuth [24, Algorithm P]:

1. Generate independent uniform numbers x, y ∈ [−1, 1).
2. Set s← x2 + y2.
3. If s ∈ (0, 1) then go to step 4 else go to step 1 (i.e. reject x and y).
4. Set r ← σ

√−2 ln(s)/s, and return rx + µ and ry + µ.
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It is easy to see that, at step 4, (x, y) is uniformly distributed in the unit
circle, so s is uniformly distributed in [0, 1).

A proof that the values returned by Algorithm P are independent, nor-
mally distributed random numbers (with mean µ and variance σ2) is given in
Knuth [24]. On average, step 1 is executed 4/π times, so each normally dis-
tributed number requires 4/π � 1.27 uniform random numbers, 0.5 divisions, 0.5
square roots, and 0.5 logarithms. Compared to Algorithm B1, we have avoided
the sin and cos computation at the expense of more uniform random numbers,
0.5 divisions, and the cost of implementing the acceptance/rejection process.
This can be done using a vector gather. Vectorised implementations of the Polar
method are discussed in §2.3.

2.2 Vectorised Implementation of the Box-Muller Method

We have implemented the Box-Muller method (Algorithm B1 above) and several
refinements (B2, B3) on a Fujitsu VP2200/10 vector processor at the Australian
National University. The implementations all return double-precision real results,
and in cases where approximations to sin, cos, sqrt and/or ln have been made,
the absolute error is considerably less than 10−10. Thus, statistical tests using
less than about 1020 random numbers should not be able to detect any bias
due to the approximations. The calling sequences allow for an array of random
numbers to be returned. This permits vectorisation and amortises the cost of a
subroutine call over the cost of generating many random numbers.

Our method B2 is the same as B1, except that we replace calls to the library
sin and cos by an inline computation, using a fast, but sufficiently accurate,
approximation (for details see [7]).

Times, in machine cycles per normally distributed number, for methods B1,
B2 (and other methods described below) are given in Table 1. In all cases the
generalised Fibonacci random number generator RANU4 (described in [6]) was
used to generate the required uniform random numbers, and a large number of
random numbers were generated, so that vector lengths were long. RANU4 gen-
erates a uniformly distributed random number in 2.2 cycles on the VP2200/10.
(The cycle time of the VP2200/10 at ANU is 3.2 nsec, and two multiplies and
two adds can be performed per clock cycle, so the peak speed is 1.25 Gflop.)

The Table gives the total times and also the estimated times for the four
main components:

1. ln computation (actually 0.5 times the cost of one ln computation since the
times are per normal random number generated).

2. sqrt computation (actually 0.5 times).
3. sin or cos computation.
4. other, including uniform random number generation.

The results for method B1 show that the sin/cos and ln computations are
the most expensive (65% of the total time). Method B2 is successful in reducing
the sin/cos time from 33% of the total to 19%.
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Table 1. Cycles per normal random number

component B1 B2 B3 P1 P2 R1

ln 13.1 13.1 7.1 13.1 7.1 0.3
sqrt 8.8 8.8 1.0 8.8 1.0 0.0

sin/cos 13.8 6.6 6.6 0.0 0.0 0.0
other 5.9 5.6 11.6 11.9 13.8 35.1

total 41.6 34.1 26.3 33.8 21.9 35.4

In Method B2, the computation of
√− ln(1− u) consumes 64% of the time.

An obvious way to reduce this time is to use a fast approximation to the function

f(u) =
√
− ln(1 − u),

just as we used a fast approximation to sin and cos to speed up method B1.
However, this is difficult to accomplish with sufficient accuracy, because the
function f(u) is badly behaved at both endpoints of the unit interval. Method B3
overcomes this difficulty in the following way.

1. We approximate the function

g(u) = u−1/2f(u) =

√
− ln(1− u)

u
,

rather than f(u). Using the Taylor series for ln(1 − u), we see that g(u) =
1 + u/4 + · · · is well-behaved near u = 0.

2. The approximation to g(u) is only used in the interval 0 ≤ u ≤ τ , where
τ < 1 is suitably chosen. For τ < u < 1 we use the slow but accurate library
ln and sqrt routines.

3. We make a change of variable of the form v = (αu + β)/(γu + δ), where
α, . . . , δ are chosen to map [0, τ ] to [−1, 1], and the remaining degrees of
freedom are used to move the singularities of the function h(v) = g(u) as far
away as possible from the region of interest (which is −1 ≤ v ≤ 1). To be
more precise, let ρ be a positive parameter. Then we can choose

τ = 1−
(

ρ

ρ+ 2

)2

,

v = (ρ+ 1)
(

(ρ+ 2)u− 2
2(ρ+ 1)− (ρ+ 2)u

)
,

and the singularities of h(v) are at ±(ρ+ 1).

For simplicity, we choose ρ = 1, which experiment shows is close to optimal
on the VP2200/10. Then τ = 8/9, v = (6u− 4)/(4− 3u), and h(v) has singular-
ities at v = ±2, corresponding to the singularities of g(u) at u = 1 and u =∞.
A polynomial of the form h0 + h1v + · · · + h15v

15 can be used to approximate
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h(v) with absolute error less than 2 × 10−11 on [−1, 1]. About 30 terms would
be needed if we attempted to approximate g(u) to the same accuracy by a poly-
nomial on [0, τ ]. We use polynomial approximations which are close to minimax
approximations. These may easily be obtained by truncating Chebyshev series,
as described in [10].

It appears that this approach requires the computation of a square root, since
we really want f(u) = u1/2g(u), not g(u). However, a trick allows this square
root computation to be avoided, at the expense of an additional uniform random
number generation (which is cheap) and a few arithmetic operations. Recall that
u is a uniformly distributed random variable on [0, 1). We generate two indepen-
dent uniform variables, say u1 and u2, and let u ← max(u1, u2)2. It is easy to
see that u is in fact uniformly distributed on [0, 1). However, u1/2 = max(u1, u2)
can be computed without calling the library sqrt routine. To summarise, a non-
vectorised version of method B3 is:

1. Generate independent uniform numbers u1, u2, u3 ∈ [0, 1).
2. Set m← max(u1, u2) and u← m2.
3. If u > 8/9 then

3.1. set r ← σ
√− ln(1− u) using library routines, else

3.2. set v ← (6u− 4)/(4− 3u), evaluate h(v) as described above, and
set r ← σmh(v).

4. Evaluate s← sin(2πu3 − π) and c← cos(2πu3 − π) as in [7].
5. Return µ + cr

√
2 and µ + sr

√
2, which are independent, normal

random numbers with mean µ and standard deviation σ.

Vectorisation of method B3 is straightforward, and can take advantage of
the “list vector” technique on the VP2200. The idea is to gather those u > 8/9
into a contiguous array, call the vectorised library routines to compute an array
of

√− ln(1− u) values, and scatter these back. The gather and scatter opera-
tions introduce some overhead, as can be seen from the row labelled “other” in
the Table. Nevertheless, on the VP2200, method B3 is about 23% faster than
method B2, and about 37% faster than the straightforward method B1. These
ratios could be different on machines with more (or less) efficient implementa-
tions of scatter and gather.

Petersen [35] gives times for normal and uniform random number generators
on a NEC SX-3. His implementation normalen of the Box-Muller method takes
55.5 nsec per normally distributed number, i.e. it is 2.4 times faster than our
method B1, and 1.51 times faster than our method B3. The model of SX-3 used
by Petersen has an effective peak speed of 2.75 Gflop, which is 2.2 times the peak
speed of the VP2200/10. Considering the relative speeds of the two machines
and the fact that the SX-3 has a hardware square root function, our results are
encouraging.

2.3 Vectorised Implementation of the Polar Method

The times given in Table 1 for methods B1–B3 can be used to predict the best
possible performance of the Polar method (§2.1). The Polar method avoids the
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computation of sin and cos, so could gain up to 6.6 cycles per normal ran-
dom number over method B3. However, we would expect the gain to be less
than this because of the overhead of a vector gather caused by use of a rejec-
tion method. A straightforward vectorised implementation of the Polar method,
called method P1, was written to test this prediction. The results are shown in
Table 1. 13.8 cycles are saved by avoiding the sin and cos function evaluations,
but the overhead increases by 6.0 cycles, giving an overall saving of 7.8 cycles or
19%. Thus, method P1 is about the same speed as method B2, but not as fast
as method B3.

Encouraged by our success in avoiding most ln and sqrt computations in the
Box-Muller method (see method B3), we considered a similar idea to speed up
the Polar method. Step 4 of the Polar method (§2.1) involves the computation
of

√−2 ln(s)/s, where 0 < s < 1. The function has a singularity at s = 0, but
we can approximate it quite well on an interval such as [1/9, 1], using a method
similar to that used to approximate the function g(u) of §2.2.

Inspection of the proof in Knuth [24] shows that step 4 of the Polar method
can be replaced by

4a. Set r ← σ
√−2 ln(u)/s,

and return rx + µ and ry + µ

where u is any uniformly distributed variable in (0, 1], provided u is independent
of arctan(y/x). In particular, we can take u = 1−s. Thus, omitting the constant
factor σ

√
2, we need to evaluate

√− ln(1− s)/s, but this is just g(s), and we
can use exactly the same approximation as in §2.2. This gives us method P2. To
summarise, a non-vectorised version of method P2 is:

1. Generate independent uniform numbers x, y ∈ [−1, 1).
2. Compute s← x2 + y2.
3. If s ≥ 1 then go to step 1 (i.e. reject x and y) else go to step 4.
4. If s > 8/9 then

4.1. set r ← σ
√− ln(1− s)/s using library routines, else

4.2. set v ← (6s−4)/(4−3s), evaluate h(v) as described in §2.2, and
set r ← σh(v).

5. Return xr
√

2 + µ and yr
√

2 + µ, which are independent, normal
random numbers with mean µ and standard deviation σ.

To vectorise steps 1-3, we simply generate vectors of xj and yj values, com-
pute sj = x2

j + y2
j , and compress by omitting any triple (xj , yj , sj) for which

sj ≥ 1. This means that we can not predict in advance how many normal ran-
dom numbers will be generated, but this problem is easily handled by introducing
a level of buffering.

The second-last column of Table 1 gives results for method P2. There is a
saving of 11.9 cycles or 35% compared to method P1, and the method is 17%
faster than the fastest version of the Box-Muller method (method B3). The
cost of logarithm and square root computations is only 37% of the total, the
remainder being the cost of generating uniform random numbers (about 13%)
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and the cost of the rejection step and other overheads (about 50%). On the
VP2200/10 we can generate more than 14 million normally distributed random
numbers per second.

2.4 The Ratio Method

The Polar method is one of the simplest of a class of rejection methods for gener-
ating random samples from the normal (and other) distributions. Other examples
are given in [2,5,14,24]. It is possible to implement some of these methods in a
manner similar to our implementation of method P2. For example, a popular
method is the Ratio Method of Kinderman and Monahan [23] (also described
in [24], and improved in [26]). In its simplest form, the Ratio Method is given
by Algorithm R:

1. Generate independent uniform numbers u, v ∈ [0, 1).
2. Set x←√

8/e(v − 1
2 )/(1− u).

3. If −x2 ln(1−u) > 4 then go to step 1 (i.e. reject x) else go to step 4.
4. Return σx+ µ.

Algorithm R returns a normally distributed random number using on average
8/
√
πe � 2.74 uniform random numbers and 1.37 logarithm evaluations. For

the proof of correctness, and various refinements which reduce the number of
logarithm evaluations, see [23,24,26]. The idea of the proof is that x is normally
distributed if the point (u, v) lies inside a certain closed curve C which in turn is
inside the rectangle [0, 1]× [−√

2/e,+
√

2/e]. Step 3 rejects (u, v) if it is outside
C.

The function ln(1− u) occurring at step 3 has a singularity at u = 1, but it
can be evaluated using a polynomial or rational approximation on some interval
[0, τ ], where τ < 1, in much the same way as the function g(u) of §2.2.

The refinements added by Kinderman and Monahan [23] and Leva [26] avoid
most of the logarithm evaluations. The following step is added:

2.5. If P1(u, v) then go to step 4
else if P2(u, v) then go to step 1
else go to step 3.

Here P1(u, v) and P2(u, v) are easily-computed conditions. Geometrically, P1

corresponds to a region R1 which lies inside C, and P2 corresponds to a region
R2 which encloses C, but R1 and R2 have almost the same area. Step 3 is only
executed if (u, v) lies in the borderline region R2\R1.

Step 2.5 can be vectorised, but at the expense of several vector scatter/gather
operations. Thus, the saving in logarithm evaluations is partly cancelled out by
an increase in overheads. The last column (R1) of Table 1 gives the times for
our implementation on the VP2200. As expected, the time for the logarithm
computation is now negligible, and the overheads dominate. In percentage terms
the times are:
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1% logarithm computation (using the library routine),
17% uniform random number computation,
23% scatter and gather to handle borderline region,
59% step 2.5 and other overheads.

Although disappointing, the result for the Ratio method is not surprising, be-
cause the computations and overheads are similar to those for method P2 (though
with less logarithm computations), but only half as many normal random num-
bers are produced. Thus, we would expect the Ratio method to be slightly better
than half as fast as method P2, and this is what Table 1 shows.

2.5 Other Methods

On serial machines our old algorithm GRAND [5] is competitive with the Ratio
method. In fact, GRAND is the fastest of the methods compared by Leva [26].
GRAND is based on an idea of Von Neumann and Forsythe for generating sam-
ples from a distribution with density function c exp(−h(x)), where 0 ≤ h(x) ≤ 1:

1. Generate a uniform random number x ∈ [0, 1), and set u0 ← h(x).
2. Generate independent uniform random numbers u1, u2, . . . ∈ [0, 1)

until the first k > 0 such that uk−1 < uk.
3. If k is odd then return x,

else reject x and go to step 1.

A proof of correctness is given in Knuth [24].

It is hard to see how to implement GRAND efficiently on a vector processor.
There are two problems –

1. k is not bounded, even though its expected value is small. Thus, a sequence
of gather operations seems to be required. The result would be similar to
Petersen’s implementation [35] of a generator for the Poisson distribution
(much slower than his implementation for the normal distribution).

2. Because of the restriction 0 ≤ h(x) ≤ 1, the area under the normal curve
exp(−x2/2)/

√
2π has to be split into different regions from which samples

are drawn with probabilities proportional to their areas. This complicates
the implementation of the rejection step.

For these reasons we would expect a vectorised implementation of GRAND to
be even slower than our implementation of the Ratio method. Similar comments
apply to other rejection methods which use an iterative rejection process and/or
several different regions.

3 Vectorisation of Wallace’s Normal RNG

Recently Wallace [40] proposed a new class of pseudo-random generators for
normal variates. These generators do not require a stream of uniform pseudo-
random numbers (except for initialisation) or the evaluation of elementary func-
tions such as log, sqrt, sin or cos (needed by the Box-Muller and Polar methods).



Number Generation and Simulation on Vector and Parallel Computers 11

The crucial observation is that, if x is an n-vector of normally distributed random
numbers, and A is an n×n orthogonal matrix, then y = Ax is another n-vector
of normally distributed numbers. Thus, given a pool of nN normally distributed
numbers, we can generate another pool of nN normally distributed numbers by
performing N matrix-vector multiplications. The inner loops are very suitable
for implementation on vector processors. The vector lengths are proportional to
N , and the number of arithmetic operations per normally distributed number is
proportional to n. Typically we choose n to be small, say 2 ≤ n ≤ 4, and N to
be large.

Wallace implemented variants of his new method on a scalar RISC worksta-
tion, and found that its speed was comparable to that of a fast uniform generator,
and much faster than the “classical” methods considered in §2. The same per-
formance relative to a fast uniform generator is achievable on a vector processor,
although some care has to be taken with the implementation (see §3.6).

In §3.1 we describe Wallace’s new methods in more detail. Some statistical
questions are considered in §§3.2–3.5. Aspects of implementation on a vector
processor are discussed in §3.6, and details of an implementation on the VP2200
and VPP300 are given in §3.7.

3.1 Wallace’s Normal Generators

The idea of Wallace’s new generators is to keep a pool of nN normally dis-
tributed pseudo-random variates. As numbers in the pool are used, new normally
distributed variates are generated by forming appropriate combinations of the
numbers which have been used. On a vector processor N can be large and the
whole pool can be regenerated with only a small number of vector operations1.

The idea just outlined is the same as that of the generalised Fibonacci gen-
erators for uniformly distributed numbers – a pool of random numbers is trans-
formed in an appropriate way to generate a new pool. As Wallace [40] observes,
we can regard the uniform, normal and exponential distributions as maximum-
entropy distributions subject to the constraints:

0 ≤ x ≤ 1 (uniform)
E(x2) = 1 (normal)
E(x) = 1, x ≥ 0 (exponential).

We want to combine n ≥ 2 numbers in the pool so as to satisfy the relevant
constraint, but to conserve no other statistically relevant information. To simplify
notation, suppose that n = 2 (there is no problem in generalising to n > 2).
Given two numbers x, y in the pool, we could satisfy the “uniform” constraint
by forming

x′ ← (x + y) mod 1,

and this gives the family of generalised Fibonacci generators [6].

1 The process of regenerating the pool will be called a “pass”.
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We could satisfy the “normal” constraint by forming
(
x′

y′

)
← A

(
x
y

)
,

where A is an orthogonal matrix, for example

A =
1√
2

(
1 1
−1 1

)

or

A =
1
5

(
4 3
−3 4

)
.

Note that this generates two new pseudo-random normal variates x′ and y′ from
x and y, and the constraint

x′2 + y′2 = x2 + y2

is satisfied because A is orthogonal.
Suppose the pool of previously generated pseudo-random numbers contains

x0, . . . , xN−1 and y0, . . . , yN−1. Let α, . . . , δ be integer constants. These con-
stants might be fixed throughout, or they might be varied (using a subsidiary
uniform random number generator) each time the pool is regenerated.

One variant of Wallace’s method generates 2N new pseudo-random numbers
x′0, . . . , x

′
N−1 and y′0, . . . , y

′
N−1 using the recurrence

(
x′j
y′j

)
= A

(
xαj+γ mod N

yβj+δ mod N

)
(1)

for j = 0, 1, . . . , N − 1. The vectors x′ and y′ can then overwrite x and y, and
be used as the next pool of 2N pseudo-random numbers. To avoid the copying
overhead, a double-buffering scheme can be used.

3.2 Desirable Constraints

In order that all numbers in the old pool (x, y) are used to generate the new
pool (x′, y′), it is essential that the indices

αj + γ mod N

and
βj + δ mod N

give permutations of {0, 1, . . . , N − 1} as j runs through {0, 1, . . . , N − 1}. A
necessary and sufficient condition for this is that

GCD(α,N) = GCD(β,N) = 1 . (2)

For example, if N is a power of 2, then any odd α and β may be chosen.
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The orthogonal matrix A must be chosen so each of its rows has at least
two nonzero elements, to avoid repetition of the same pseudo-random numbers.
Also, these nonzeros should not be too small.

For implementation on a vector processor it would be efficient to take α =
β = 1 so vector operations have unit strides. However, statistical considerations
indicate that unit strides should be avoided. To see why, suppose α = 1. Thus,
from (1),

x′j = a0,0xj+γ mod N + a0,1yβj+δ mod N ,

where |a0,0| is not very small. The sequence (zj) of random numbers returned
to the user is

x0, . . . , xN−1, y0, . . . , yN−1,
x′0, . . . , x

′
N−1, y

′
0, . . . , y

′
N−1, . . .

so we see that zn is strongly correlated with zn+λ for λ = 2N − γ.
Wallace [40] suggests a “vector” scheme where α = β = 1 but γ and δ vary at

each pass. This is certainly an improvement over keeping γ and δ fixed. However,
there will still be correlations over segments of length O(N) in the output, and
these correlations can be detected by suitable statistical tests. Thus, we do not
recommend the scheme for a library routine, although it would be satisfactory
in many applications.

We recommend that α and β should be different, greater than 1, and that γ
and δ should be selected randomly at each pass to reduce any residual correla-
tions.

For similar reasons, it is desirable to use a different orthogonal matrix A
at each pass. Wallace suggests randomly selecting from two predefined 4 × 4
matrices, but there is no reason to limit the choice to two2. We prefer to choose
“random” 2 × 2 orthogonal matrices with rotation angles not too close to a
multiple of π/2.

3.3 The Sum of Squares

As Wallace points out, an obvious defect of the schemes described in §§3.1–3.2
is that the sum of squares of the numbers in the pool is fixed (apart from the
effect of rounding errors). For independent random normal variates the sum of
squares should have the chi-squared distribution χ2

ν , where ν = nN is the pool
size.

To overcome this defect, Wallace suggests that one pseudo-random number
from each pool should not be returned to the user, but should be used to ap-
proximate a random sample S from the χ2

ν distribution. A scaling factor can
be introduced to ensure that the sum of squares of the ν values in the pool (of
which ν − 1 are returned to the user) is S. This only involves scaling the matrix
A, so the inner loops are essentially unchanged.
2 Caution: if a finite set of predefined matrices is used, the matrices should be multi-
plicatively independent over GL(n, R). (If n = 2, this means that the rotation angles
(mod 2π) should be independent over the integers.) In particular, no matrix should
be the inverse of any other matrix in the set.
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There are several good approximations to the χ2
ν distribution for large ν. For

example,

2χ2
ν �

(
x+
√

2ν − 1
)2
, (3)

where x is N(0, 1). More accurate approximations are known [1], but (3) should
be adequate if ν is large.

3.4 Restarting

Unlike the case of generalised Fibonacci uniform random number generators [8],
there is no well-developed theory to tell us what the period of the output se-
quence of pseudo-random normal numbers is. Since the size of the state-space is
at least 22wN , where w is the number of bits in a floating-point fraction and 2N
is the pool size (assuming the worst case n = 2), we would expect the period to
be at least of order 2wN (see Knuth [24]), but it is difficult to guarantee this.
One solution is to restart after say 1000N numbers have been generated, using a
good uniform random number generator with guaranteed long period combined
with the Box-Muller method to refill the pool.

3.5 Discarding Some Numbers

Because each pool of pseudo-random numbers is, strictly speaking, determined
by the previous pool, it is desirable not to return all the generated numbers to
the user3. If f ≥ 1 is a constant parameter4, we can return a fraction 1/f of the
generated numbers to the user and “discard” the remaining fraction (1− 1/f).
The discarded numbers are retained internally and used to generate the next
pool. There is a tradeoff between independence of the numbers generated and
the time required to generate each number which is returned to the user. Our
tests (described in §3.7) indicate that f ≥ 3 is satisfactory.

3.6 Vectorised Implementation

If the recurrence (1) is implemented in the obvious way, the inner loop will involve
index computations modulo N . It is possible to avoid these computations. Thus
2N pseudo-random numbers can be generated by α+ β − 1 iterations of a loop
of the form

do j = low, high
xp(j) = A00*x(alpha*j + jx) + A01*y(beta*j + jy)
yp(j) = A10*x(alpha*j + jx) + A11*y(beta*j + jy)
enddo

3 Similar remarks apply to some uniform pseudo-random number generators [24,27].
4 We shall call f the “throw-away” factor.
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where low, high, jx, and jy are integers which are constant within the loop
but vary between iterations of the loop. Thus, the loop vectorises. To generate
each pseudo-random number requires one load (non-unit stride), one floating-
point add, two floating-point multiplies, one store, and of order

α+ β

N

startup costs. The average cost should is only a few machine cycles per random
number if N is large and α+ β is small.

On a vector processor with interleaved memory banks, it is desirable for the
strides α and β to be odd so that the maximum possible memory bandwidth can
be achieved. For statistical reasons we want α and β to be distinct and greater
than 1 (see §3.2). For example, we could choose

α = 3, β = 5,

provided GCD(αβ,N) = 1 (true if N is a power of 2). Since α+ β − 1 = 7, the
average vector length in vector operations is about N/7.

Counting operations in the inner loop above, we see that generation of each
pseudo-randomN(0, 1) number requires about two floating-point multiplications
and one floating-point addition, plus one (non-unit stride) load and one (unit-
stride) store. To transform the N(0, 1) numbers to N(µ, σ2) numbers with given
mean and variance requires an additional multiply and add (plus a unit-stride
load and store) 5. Thus, if f is the throw-away factor (see §3.5), each pseudo-
random N(µ, σ2) number returned to the user requires about 2f + 1 multiplies
and f + 1 additions, plus f + 1 loads and f + 1 stores.

If performance is limited by the multiply pipelines, it might be desirable to
reduce the number of multiplications in the inner loop by using fast Givens trans-
formations (i.e. diagonal scaling). The scaling could be undone when the results
were copied to the caller’s buffer. To avoid problems of over/underflow, explicit
scaling could be performed occasionally (e.g. once every 50-th pass through the
pool should be sufficient).

The implementation described in §3.7 does not include fast Givens transfor-
mations or any particular optimisations for the case µ = 0, σ = 1.

3.7 RANN4

We have implemented the method described in §§3.5–3.6 in Fortran on the
VP2200 and VPP300. The current implementation is called RANN4. The imple-
mentation uses RANU4 [6] to generate uniform pseudo-random numbers for initial-
isation and generation of the parameters α, . . . , δ (see (1)) and pseudo-random
orthogonal matrices (see below). Some desirable properties of the uniform ran-
dom number generator are inherited by RANN4. For example, the processor id is
appended to the seed, so it is certain that different pseudo-random sequences

5 Obviously some optimisations are possible if it is known that µ = 0 and σ = 1.
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will be generated on different processors, even if the user calls the generator with
the same seed on several processors of the VPP300.

The user provides RANN4 with a work area which must be preserved between
calls. RANN4 chooses a pool size of 2N , where N ≥ 256 is the largest power of 2
possible so that the pool fits within part (about half) of the work area. The
remainder of the work area is used for the uniform generator and to preserve es-
sential information between calls. RANN4 returns an array of normally distributed
pseudo-random numbers on each call. The size of this array, and the mean and
variance of the normal distribution, can vary from call to call.

The parameters α, . . . , δ (see (1)) are chosen in a pseudo-random manner,
once for each pool, with α ∈ {3, 5} and β ∈ {7, 11}. The parameters γ and δ are
chosen uniformly from {0, 1, . . . , N − 1}. The orthogonal matrix A is chosen in
a pseudo-random manner as

A =
(

cos θ sin θ
− sin θ cos θ

)
,

where π/6 ≤ |θ| ≤ π/3 or 2π/3 ≤ θ ≤ 5π/6. The constraints on θ ensure that
min(| sin θ|, | cos θ|) ≥ 1/2. We do not need to compute trigonometric functions:
a uniform generator is used to select t = tan(θ/2) in the appropriate range, and
then sin θ and cos θ are obtained using a few arithmetic operations. The matrix A
is fixed in each inner loop (though not in each complete pass) so multiplications
by cos θ and sin θ are fast.

For safety we adopt the conservative choice of throw-away factor f = 3
(see §3.5), although in most applications the choice f = 2 (or even f = 1) is
satisfactory and significantly faster.

Because of our use of RANU4 to generate the parameters α, . . . , δ etc, it is most
unlikely that the period of the sequence returned by RANN4 will be shorter than
the period of the uniformly distributed sequence generated by RANU4. Thus,
it was not considered necessary to restart the generator as described in §3.4.
However, our implementation monitors the sum of squares and corrects for any
“drift” caused by accumulation of rounding errors.

On the VP2200/10, the time per normally distributed number is approxi-
mately (6.8f + 3.2) nsec, i.e. (1.8f + 1.0) cycles. With our choice of f = 3 this
is 23.6 nsec or 6.4 cycles. The fastest version, with f = 1, takes 10 nsec or 2.8
cycles. For comparison, the fastest method of those considered in [7] (the Polar
method) takes 21.9 cycles. Thus, we have obtained a speedup by a factor of
about 3.2 in the case f = 3.

Times on a single processor of the VPP300 are typically faster by a factor of
about two, which is to be expected since the peak speed of a processor on the
VPP300 is 2.285 GFlop (versus 1.25 Gflop on the VP2200/10). On the VPP300
with P processors, the time per normally distributed number is 11.4/P nsec if
f = 3 and 5.4/P nsec if f = 1.

Various statistical tests were performed on RANN4 with several values of the
throw-away factor f . For example:
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– If (x, y) is a pair of pseudo-random numbers with (supposed) normal N(0, 1)
distributions, then u = exp(−(x2 + y2)/2) should be uniform in [0, 1], and
v = artan(x/y) should be uniform in [−π/2,+π/2]. Thus, standard tests for
uniform pseudo-random numbers can be applied. For example, we generated
batches of (up to) 107 pairs of numbers, transformed them to (u, v) pairs,
and tested uniformity of u (and similarly for v) by counting the number of
values occurring in 1, 000 equal size bins and computing the χ2

999 statistic.
This test was repeated several times with different initial seeds etc. The χ2

values were not significantly large or small for any f ≥ 1.
– We generated a batch of up to 107 pseudo-random numbers, computed the

sample mean, second and fourth moments, repeated a number of times, and
compare the observed and expected distributions of sample moments. The
observed moments were not significantly large or small for any f ≥ 3. The
fourth moment was sometimes significantly small (at the 5% confidence level)
for f = 1.

A possible explanation for the behaviour of the fourth moment when f = 1
is as follows. Let the maximum absolute value of numbers in the pool at one
pass be M , and at the following pass be M ′. By considering the effect of the
orthogonal transformations applied to pairs of numbers in the pool, we see that
(assuming n = 2),

M/
√

2 ≤M ′ ≤
√

2M .

Thus, there is a correlation in the size of outliers at successive passes. The
correlation for the subset of values returned to the user is reduced (although not
completely eliminated) by choosing f > 1.

4 Summary and Conclusions for Normal RNG

We showed that both the Box-Muller and Polar methods for normally distributed
random numbers vectorise well, and that it is possible to avoid and/or speed up
the evaluation of the functions (sin, cos, ln, sqrt) which appear necessary. On
the VP2200/10 our best implementation of the Polar method takes 21.9 machine
cycles per normal random number, slightly faster than our best implementation
of the Box-Muller method (26.3 cycles).

We considered the vectorisation of some other popular methods for generat-
ing normally distributed random numbers, and showed why such methods are
unlikely to be faster than the Polar method on a vector processor.

We showed that normal pseudo-random number generators based on Wal-
lace’s ideas vectorise well, and that their speed on a vector processor is close to
that of the generalised Fibonacci uniform generators, i.e. only a small number
of machine cycles per random number.

Because Wallace’s methods are new, there is little knowledge of their sta-
tistical properties. However, a careful implementation should have satisfactory
statistical properties provided distinct non-unit strides α, β satisfying (2) are
used, the sums of squares are varied as described in §3.3, and the throw-away
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factor f is chosen appropriately. The pool size should be fairly large (subject to
storage constraints), both for statistical reasons and to improve performance of
the inner loops. Wallace uses 4×4 orthogonal transformations, but a satisfactory
generator is possible with 2× 2 orthogonal transformations.

It may appear that we have concentrated on vector rather than parallel im-
plementations. If this is true, it is because vectorisation is the more interesting
and challenging topic. Parallelisation of random number generators is in a tech-
nical sense “easy” since no communication is required after the initialisation on
different processors. However, care has to be taken with this initialisation to
ensure independence (see §1), and testing of parallel RNGs should not ignore
this important requirement.
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