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Abstract—In this paper, we present a fully digital differential
chaos based random number generator. The output of the digital
circuit is proved to be chaotic by calculating the output time
series maximum Lyapunov exponent. We introduce a new post
processing technique to improve the distribution and statistical
properties of the generated data. The post-processed output
passes the NIST Sp. 800-22 statistical tests. The system is written
in Verilog VHDL and realized on Xilinx Virtex

R© FPGA. The
generator can fit into a very small area and have a maximum
throughput of 2.1 Gb/s.

I. INTRODUCTION

Chaos is a nonlinear deterministic system that expresses ran-

dom behavior. Many analog chaos generators have been intro-

duced ranges from using discrete elements and Op-amps [1], to

completely MOS based [2]–[4], to fully integrated [5], and dig-

itally based chaotic generators [6]. Implementation for multi-

scroll chaos was also introduced [7]. Chaos generators find

applications in chaotic based digital communication systems

[8], cryptography [9], and random number generation [10].

Analog chaotic generators are sensitive to the operating

conditions, process variations, and temperature. In addition,

the initial conditions cannot be set precisely in analog gen-

erators. Analog circuit implementation typically requires a

large on-chip area for the state capacitor realization. According

to [11] tolerances in practical chaos implementations decrease

the quality of the output (Entropy). Many theoretically useful

properties of RNG such as, efficiency, repeatability, portabil-

ity [12], cannot be achieved using analog circuit realizations.

In this paper we propose an area efficient high speed digital

differential chaos based random number generator generator,

where the initial conditions and the states are stored in registers

rather than capacitors. The system is characterized by wide

noise margins and high reliability. The introduced generator

is based on the chaos system given in [1], which is described

as,

−
...
X = Ẍ +BẊ +X (1)

where the nonlinear element is defined as,
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Ẋ
)
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α, Ẋ ≥ 1

0, Ẋ < 1
(2)

The system is written in Verilog VHDL and realized on

Xilinx Virtex R© 4 FPGA. While the used FPGA is not the

latest generation, our circuit fits into a very small area and the

output can reach a throughput of 2.1 Gb/s. The digital output

is proved to be chaotic by calculating the Maximum Lyapunov

Exponent (MLE), and showing a better chaotic behavior than

the original differential equation. A new post processing

technique is also introduced to improve the distribution and

the statistical properties of the generated data, and the output

was analyzed using the NIST Sp. 800-22 statistical tests [13].

II. DIGITAL CHAOTIC DIFFERENTIAL EQUATION

Differential based chaotic generator can be digitally imple-

mented by realizing the numerical solution of its differential

equations. The system given in equation (1) was solved using

three different numerical methods, Runge-Kutta fourth order,

mid-point, and Euler techniques. The generated time series

is proved to be chaotic by calculating its MLE for all three

systems. Although Runge-Kutta fourth order and mid-point

solutions are considered to be more accurate than Euler, the

last technique adds an extra nonlinearity to the chaotic system,

which appears from the calculated Lyapunov exponent, which

saturates at 0.203, 0.276, and 0.377 for Runge-Kutta fourth

order, mid-point, and Euler techniques respectively. Euler

technique is used to implement the digital system. Let Y = Ẋ
and Z = Ẍ , the numerical solution for equation (1) is

evaluated as,

Xt+h = Xt + hYt (3a)

Yt+h = Yt + hZt (3b)

Zt+h = Zt − h (Zt + Yt B (Yt) +Xt) (3c)

where t expresses the time and h is the time step. These equa-

tions can be realized using a simple register transfer module,

where the state variables X , Y and Z are implemented as

registers, rather than capacitors in the analog realizations. Each

of the three equations is realized as a combinational logic unit.

Fig. 1 shows the schematic of the digital implementation of the

chaos generator. Such digital implementation can be thought of

as a nonlinear extension of the linear feed-back shift registers.
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Fig. 1. The schematic of the digital implementation of the chaos generator. The arrows are used to donate to shift in wires. CSA and CLA are Carry Save
Adder and Carry Lookahead Adder respectively. m = Y B (Y ) and n = Z + Y B (Y ) +X .

In the native form of the equations (3a), (3b) and (3c),

there are four required multiplication operations. Eliminating

such multiplications will reduce the system’s area significantly.

Since the system will be chaotic for intervals of h and α, so

they are selected such that, h = 2−a and α = 2b, where

a and b are positive integers. This will transform the area-

consuming multiplication operations into simple shifts. Since

equation (3c) is the bottleneck of the digital generator pipeline,

fast Carry-Look-Ahead adder (CLA) and carry save adder

(CSA) were used in its implementation. However, normal

carry-propagate adders were used within equations (3a) and

(3b) for area saving.

The outputs of the chaotic generator are within intervals

of bounded maximums and minimums. Therefore, fixed-point

numbers representation is an excellent selection for the system

realization. Such selection will reduce the circuit area and

delay significantly. A 16-bits fixed-point representation is used

to describe the numbers in the system which adds an extra

nonlinearity and improves the chaotic behavior. The most

significant bit is used for the sign, the following three bits

for the integer part, and the rest of the bits for the fraction

part. The nonlinear element is simply realized by an enable

line and an array of AND gates as shown in Fig. 1. The enable

line will be active in case of Y ≥ 1, neutralizing the AND

gates and passes a shifted version of Y . In the other case

the enable will be reset, which passes zeros through the gates

array. The enable Boolean equation is given by,

Enable = y (15)
′

· (y (14) + y (13) + y (12)) (4)

III. RANDOM NUMBER GENERATION

Chaos circuit realizations are considered to be one of

the main techniques to create random number generators

(RNG) [10], [14], beside jittered oscillator sampling [15],

amplification of a noise source [16], and Quantum based

RNGs [17]. According to [10] chaos generators suffers from

a short term predictability. In general, post-processing tech-

niques are used to improve the statistical properties of gener-

ated random sequences, but in return these techniques reduce

the throughput of the generator [14]. We introduce a new post-

processing technique to improve the chaos generator output to

meet the RNG statistical requirements. The proposed post-

processing performance is compared to previously known

systems, Von Neumann technique, and bit-counting [14]. Also,

the output of the introduced RNG is tested using the standard

NIST Sp. 800-22 random tests package [13].

Based on chaos generator properties and statistical obser-

vations, we introduce a new post-processing technique. This

technique steps is described as,

Step 1: According to [10] chaos generators suffers from a

short term predictability. We found that discarding the highest

significant bits and keeping only the lowest ones removes the

short term predictability.

Step 2: Based on statistical observations, it was found that

the distribution of the odd and even numbers, and so the

ones and zeros, are not balanced. The output distribution was

balanced by simply discarding the lowest significant bit.

Step 3: The experimental results show that attaching the

three outputs of the generator in one sequence improves both

of the throughput and the statistical properties of the output.

In general our post-processing is based on discarding the

group of bits with statistical defects, specially the highest

significant bits for chaotic systems. The exact number of bits

to keep is selected according to the experimental results. This

selection is made such that bits from 1 to 3 from each variable

are attached together forming the final output, with symbols

range from 0 to 511.

IV. EXPERIMENTAL RESULTS

The chaos generator and the RNG were written in Verilog

VHDL and realized on Xilinx Virtex R© 4 XC4VSX35 FPGA.

Table I shows the details FPGA area utilization, maximum

frequency and maximum throughput of both of the chaos

generator and the RNG. This table shows that purposed

generator fits into an extremely small area, and reaches a

maximum throughput of 2.1 Gb/sec.

TABLE I
AREA UTILIZATION, MAXIMUM FREQUENCY AND THROUGHPUT OF THE

SYSTEM REALIZATION ON THE XILINX VIRTEX
R© 4 XC4VSX35 FPGA.

THE CIRCUITS WERE SYNTHESIZED USING XILINX ISE R© 11, WITH

OPTIMIZED FOR TIME OPTION SELECTED.

Slices Slices FF LUTs Freq. Throughput

(15,360) (30,720) (30,720) (MHz) (Mb/s)

Chaos 154 65 243 128.3 2052
RNG 136 57 233 131.1 1180



A. Chaotic Behavior

Fig. 2 shows the attractor of the digitally generator output as

captured from the oscilloscope, which show a perfect chaotic

behavior. While the visual inspection shows a chaotic phasor

trajectory diagram, it is not a sufficient proof for chaos. The

generated time series is proved to be chaotic by calculating

its MLE for the digitally created time series. The calculation

is made using the software provided in [18]. The numeri-

cally calculated exponent saturates at a value of 0.391 after

250,000 iterations. The positive value of the exponent proves

the chaotic behavior of the generated data. The calculated

exponent shows an improvement over the numerical solution,

due to the nonlinearity added to the system by the fixed-point

digital implementation, as shown in Fig. 3.

(a) X-Y (b) X-Z (c) Y-Z

Fig. 2. Snapshots of the attractor projections, captured using TekTronix
TM

MSO 414 mixed signal oscilloscope.

B. Post-processing

The proposed post-processing improves the symbols dis-

tribution compared to the original chaos output, as shown in

Fig. 4. This figure shows the symbols histogram changes from

a Gaussian-like before applying the post processing to almost a

uniform distribution after the proposed technique applied. The

figure also shows that the post-processing technique balances

the zeros-ones ratio. The calculations are made on an 11

million symbols dataset.

The proposed post-processing improves the frequency re-

sponse of the circuit output. Fig. 5 shows the spectrum digital

output of the circuit before and after post processing. The

figure shows that the post processing spreads the power over

the spectrum to be more likely as white noise. The spectrum of
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Fig. 3. The MLE plotted versus number of iterations for the digitally
generated time series and the Euler numerical simulation.
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Fig. 4. Histogram of the symbols (on the left) and the distribution of zeros and
ones (on the right) are plotted for, (a) the original generated data without post-
processing for x variable, and (b) after applying the post-processing step 3.

the fs/2 range shows slit deformation at the higher frequency

due to the zero order hold effect of the digital to analog con-

verter used for adapting the output for the spectrum analyzer.

Fig. 6(a) and Fig. 6(b) shows a sample of the circuit digital

output versus time before and after applying post-processing.

It clearly appears from these figures that the applied post-

processing decreases the predictability of the output. Also the

post-processing increases the power of the higher frequency

components. Fig. 6(c) shows X-Z attractor projections after

applying step 2 of the post-processing, which is uniformly

distributed over square shape attractor.

Statistical Test: We use the NIST Sp. 800-22 random tests

package [13] to demonstrate the statistical improvement intro-

duced by applying the purposed post-processing. The system

output passes all the 15 Sp. 800-22 tests with a success rate

of 100%. Table shows the results of the NIST Sp. 800-22 sta-

tistical test result. The results are given for the original output

and different post processing techniques. Bit-counting post-

processing, Von Numman, and our purposed post-processing

(a) (b)

(c)

Fig. 5. Snapshot for the spectrum, using TekTronix
TM

RSA 6120 real-
time spectrum analyzer, (a) chaos generator output up to 4.5MHz, (b) post-
processed RNG output up to 4.5MHz, and (c) post-processed RNG output up
to 40MHz (fs/2).



Fig. 6. Sample of the circuit output, captured using TekTronix
TM

MSO 414
mixed signal oscilloscope, for, (a) the original generated data of variable x
for time interval of 1µSec, (b) the original generated data of variable x after
applying the post-processing for the same interval, and (c) X-Z attractor
projections after applying step 2 of the post-processing.

are all compared. The table shows the proportion Value (PP) as

a fraction of one, and the validity of the P-Values distribution,

the P-Value of the P-values (PV). According to [13] the PV

is vialed for values greater than 0.0001. For the final output

the minimum PV was 0.066 and the maximum was 0.91. The

NIST results verify that bit-counting and Von Numman show

improvement over the original data but are not sufficient to

pass all the tests for our system. The proposed post-processing

successfully passes all of the tests.

TABLE II
THE PROPORTION VALUE (PP), AND THE VALIDITY OF THE P-VALUES

DISTRIBUTION (PV) OF THE NIST SP. 800-22 TEST SHOWING RESULTS

FOR (A) NO POST-PROCESSING IS USED, (B) BIT-COUNTING TECHNIQUE

(EACH FOUR BIT IS COUNTED TOGETHER), (C) VON NEUMANN

POST-PROCESSING, AND (D) PROPOSED POST-PROCESSING. THE

THROUGHPUT AS BITS PER CYCLE IS GIVEN FOR EACH CASE.

(a) (b) (c) (d)
PV PP PV PP PV PP PV PP

Frequency × 0.5 X 0.5 X 0.9 X 1
B. Frequency × 0.3 × 0.3 X 0.9 X 1
C. Sums × 0.4 X 0.4 X 0.9 X 1
Runs × 0.3 X 0.8 X 0.9 X 1
Longest Run × 0.2 X 0.8 X 1 X 1
Rank × 0 × 0 X 1 X 1
FFT X 1 X 1 X 0.9 X 1
N. O. Temp. X 1 X 1 X 1 X 1
O. Temp. × 0 × 0 × 0 X 1
Universal × 0 × 0 × 0 X 1
App. Entropy × 0 × 0 × 0 X 1
R. Excur. × 0 × 0 × 0 X 1
R. Excur. V. × 0 × 0 × 0 X 1
Serial × 0 × 0 × 0.1 X 1
L. Complexity X 0.9 X 1 X 1 X 1

TP [bits/cycle] 16 4 3.36 9

V. CONCLUSION

In this paper a fully digital, area efficient high speed

chaos based random number generator has been introduced.

The output of the digital circuit is proved to be chaotic by

calculating the output time series MLE, which shows a better

chaotic response than the original differential equations. The

technique described in this paper can be applied to other more

complicated analog generators. A new post processing tech-

nique is introduced to improve the distribution and statistical

properties of the generated data. The post-processed output

passes successfully the NIST Sp. 800-22 statistical tests. The

generator was realized using Verilog HDL, and implemented

on Xilinx Virtex R© 4 FPGA.
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