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Abstract In this paper, we have compared the perfor-

mances of different cellular automata based random number

generators to emphasize on the quality of randomness with a

focus on cost effectiveness for concerned fault coverage.

This research includes the study of maximum length cellular

automata random number generator and proposed equal

length cellular automata random number generator. It is

found from the experimental results that resulting sequences

have significant improvement in terms of randomness quality

and associated fault coverage in their generation procedures.

The different complexities associated considered here for

generation of random numbers, are: space complexity, time

complexity, design complexity and searching complexity.

Keywords Pattern generator � Pseudo-random number

generator (PRNG) � Cellular automata (CA) � Maximum

length cellular automata (MaxCA) � Equal length cellular

automata (ELCA) � Prohibited pattern set (PPS)

1 Introduction

Random numbers [1, 2] have been considered as important

for research works varying from Computer Science to

Mathematics. It is reported that the values of random

numbers are homogeneously distributed over a well defined

interval and it is unfeasible to predict the next values for a

random pattern.

‘Seed’ has been used as a specification of an initial number

for generation of a random pattern. Random number genera-

tors (RNGs) are classified into several groups based on the

difference in generation procedures of random numbers.

Pseudo-random number and true-random number are most

commonly used in scientific works. Classification of RNGs is

entirely based upon the selection method for ‘seed’.

Random numbers or random-patterns [1, 2] obtained

with an execution of a computer program is based on a

particular recursive algorithm. Deterministic way for

selection of ‘seed’ has referred the pattern generation

procedure as ‘Pseudo’ [3].

Sophisticated method of generating high quality pseudo-

random numbers has been established with the uses of CA

[4]. CA is a dynamic mathematical model to represent the

dynamic behavior of any system. A typical structure of

3-cell null boundary CA is represented in Fig. 1.

Quality of randomness generated by a RNG is verified

with Diehard tests. Diehard statistical test suit has been

developed by George Marsaglia [5].

Rest of the paper is organized as follows: related works

are described in Sect. 2; background has been described in

Sect. 3; proposed work is presented in Sect. 4; Experi-

mental observations and result analysis are shown in

Sect. 5 and Conclusion is presented in Sect. 6.

2 Related works

Research works have been established to generate good

quality random numbers [3, 4, 6]. Important efforts have
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also been established to generate pseudo-random numbers

using CA [7–13]. It has been already established that the

maximum degree of randomness is found in maximum

length cellular automata (MaxCA) based PRNG [3, 6–9].

Random patterns are achieved based on the following

recursive Eq. 1.

Xnþ1 ¼ P1Xn þ P2 modNð Þ ð1Þ

Here ‘P1’, ‘P2’ are prime numbers; ‘N’ is range for random

numbers; ‘Xn’ is calculated recursively using the base

value ‘X0’; ‘X0’ is termed as seed and it is a prime number;

if ‘X0’ (seed) is same all time or selected in any deter-

ministic way, then it yields pseudo-random number [1].

CA has been successfully used as a PRNG. It is reported

that with the increased number of cells, maximum amount

of randomness is found in resulting maximum length cycle.

In MaxCA, prohibited pattern set (PPS) is excluded from

the cycle. It has been observed that in the generation pro-

cess of pseudo-random pattern using MaxCA, only a large

cycle is responsible for yielding the pseudo random

patterns.

Dissimilar degrees of randomness in their generated

patterns are found for different PRNGs. Besides there exist

some real issues to select one of them as a cost effective

RNG. The recursive algorithm based RNG is much more

deterministic in the process of ‘seed’ selection. In MaxCA,

the generation procedure of PPS free random pattern is

complex. In this methodology, it is mandatory to keep track

of PPS in maximum length cycle and to exclude this por-

tion in resulting maximum length cycle [7–14]. The asso-

ciated cost should be increased for generation of pseudo-

random patterns using a single cycle with larger numbers

of states. All the cost associated with the generation pro-

cess of random numbers; i.e., time, design and searching

costs are having higher values as the complexity is directly

proportional to the number of states used in CA generated

cycle(s). So, it is convenient to reduce the cycle length

without affecting the randomness quality of the generated

random patterns for reducing these associated costs.

Therefore, an alternative easy to implement generation

methodology of random numbers would be much more

beneficial which will optimize these types of flaws. In our

proposed methodology, we have proposed a system that

will be dealing with the flaws of the MaxCA but still is

capable to generate patterns that are having the same

quality of randomness as compared to MaxCA. Thus the

proposed methodology should be more cost effective in

terms of design complexity, time complexity and searching

complexity [15–17]. The detailed discussion of the pro-

posed methodology is following Sect. 4.

3 Background

A cost effective random sampling process with CA, has

been introduced for Digital Forensic investigations [18].

Equal length cellular automata (ELCA) based pseudo-

random pattern generator (PRPG) has been proposed in a

cost effective manner utilizing the concept of random

pattern generation. Exhibition of high degree randomness

has been demonstrated in the field of randomness quality

testing. Comparative studies among different RNGs have

also been included to demonstrate the effectiveness of

proposed ELCA PRNG. Some well known random number

generators, e.g., recursive pseudo-random number genera-

tor (RPRNG), atmospheric noise based true-random num-

ber generator (TRNG), Monte-Carlo (MC) pseudo-random

number generator and MaxCA random number generator

random number generator have been compared here with

proposed ELCA.

A small data set generated by these different RNGs has

been collected to visualize the randomness quality of the

corresponding RNGs. The randomness quality graph is

followed in Fig. 2.

Results obtained in Diehard tests for different RNGs

have been further reported in Fig. 3.

Different degree of randomness of the corresponding

RNGs for a small data set is presented in Fig. 3. It is found

from Fig. 3 that the Recursive PRNG is having the least

degree of randomness where as MaxCA PRNG and ELCA

PRNG shares almost equal degree of randomness among

themselves and both of them are having the maximum

degree of randomness compared to all other RNGs.

In practice, MaxCA based random number generator

produces the random pattern of integer using the cycle

which might contain some of the restricted configurations.

In this scenario, the PPS is excluded form that MaxCA

cycle. Assume that there exist some an n-numbers of pro-

hibited patterns in maximum length cycle. Let the PPS is

{RC0,…, RCn}. For the exclusion purpose of these patterns

Fig. 1 Typical structure of

3-cell null boundary CA
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from concerned cycle, the minimum length of arc (Arcmin)

between the prohibited pattern RC0 and RCn should be

measured so that we utilize the remaining cycle arc i.e.,

effective arc (Earc) for random number generation, which is

typically free from PPS. This scenario is described in

Fig. 4 [19].

Figure 4 is based on the facts that there exists total

n-number of restricted configurations with the following

set: PPS = {RC0,…..,RCn}. The procedure to measure

Arcmin and Earc is described in Fig. 4 [19].

Definition 1 The minimum length of arc (Arcmin) is the

minimum distance between the first and last prohibited

pattern in an n-cell MaxCA cycle [19].

Definition 2 The effective arc (Earc) is the remaining arc

length of an n-cell MaxCA cycle which excludes Arcmin

from the corresponding CA cycle of states and it is

responsible for generating pseudo random patterns of

integers [19].

Resulting sequences for all those above mentioned

pattern generators have significant improvement in terms

of randomness quality. Emphasis on cost effectiveness

generation of pseudo-random pattern has further been

focused in Sect. 4.

4 Proposed work

Cost effective and simpler design methodology for the

generation of random integer patterns has been reported

here. The cost efficiency in proposed PRNG refers to the

space, time, searching and design complexity for any

involved algorithm. In the cost optimization generation

methodology for universal pseudo-random pattern, ELCA

has been proposed over the existing MaxCA random pat-

tern generator.

In the proposed methodology, ELCA based approach has

been proposed to achieve high degree of randomization in

terms of better cost optimization with respect to all the

concerning complexities mentioned earlier. Projected

methodology is very much convenient for hardware imple-

mentation. The quality of randomness of the generated pat-

tern by proposed methodology is compared through Diehard

test with some other recognized RNGs. The conclusion is

made about the quality of randomness of any data set based

on the number of Diehard test passed.

In our work, instead of opting for MaxCA, we propose for

decomposition of an n-cell CA intomore relevant sub-cycles

Fig. 2 Randomness quality

graph for five different RNGs

Fig. 3 Diehard performance graph

Fig. 4 Typical cycle structure to deal with the problem of PPS
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such that our concerning complexities cost are reduced as

well as the fault coverage is more flexible than of previously

established MaxCA. The proposed PRNG system design is

described in Fig. 5.

A mathematical approach has been proposed to achieve

the same amount of randomization in less cost with respect

to various complexities and hardware implementation,

according to the flowchart of the proposed system as

mentioned in Fig. 5.

The resulting ELCAs are capable of generating random

patterns as equivalent to the randomness quality achieved

from MaxCA. The following Algorithm 1 [15, 16] has been

used for decomposition of an n-cell CA.

Algorithm 1:

PPS_Free_ELCA_Generation

Input: CA size (n), PPS Set

Output: m-length ELCAs excluding PPS

Step 1: Start

Step 2: Initialize the number of n-cell CA to generate random

patterns using n-cell CA

Step 3: Initialize balanced CA rule to all the cells for generation of

ELCA

Step 4: Decompose the cell number (n) into equal numbers

(m) such that 2 m*(2n - m) (i.e., ‘m’ number of ELCA) for n C 1

and m = 1,2,3…… (n - 1)

Step 5: Check each prohibited pattern whether belongs to a single

smaller cycle CA or not

Step 6: Repeat Step 3 and Step 4 until each prohibited pattern

belongs to some ELCAs

Step 7: Allow m-length cycles of n-cell CA after excluding all the

PPS containing ELCA

Step 8: Stop

In proposed methodology, our primary concern is to

exclude PPS. Prohibited pattern implies a bit configuration

for which any circuit shows non-computability. Therefore

it has been taken care of that the occurrence of every

prohibited pattern must be enclosed in some of the smaller

sub-cycles, such that by eliminating all those smaller

cycles, the remaining cycles are allowed to generate ran-

dom patterns. Thus, this methodology implies a better-cost

effectiveness approach. Our proposed methodology thus

simplifies design complexity and empowers the searching

complexity. The terminology design complexity refers to

implementation procedure for generation of random pattern

and empowering searching complexity means zero over-

heads for keeping track for PPS in random pattern gener-

ation. In comparison with n-cell MaxCA, more number of

smaller cycles instead of one maximum length cycle should

be used.

In contrast with an n-cell MaxCA, ELCA has been

introduced as an alternative PRNG. Consider, CA size = n;

Then; 2n ¼ 2n�1 þ 2n�1

¼ 2 � ð2n�1Þ i:e:; two number of equal length cyclesð Þ

¼ 4 � ð2n�2Þ

¼ 22 � ð2n�2Þ i:e:; four number of equal length cyclesð Þ

¼ 2m � 2n�mð Þ ði:e:; 2mnumber of equal length cyclesÞ

for n� 1

and m ¼ 1; 2; 3. . .. . .: n� 1ð Þ

So we have 2n ¼ 2m � 2ðn�mÞ
. . . ð2Þ

Thus ‘m’ is always less than ‘n’ [19].

Example 1 Consider a case where CA size’n’ is 5.

So, 25 = 22*2(5 - 2)
= 4*24 (i.e., total four numbers of

equal length cycles of size eight), or = 23*2(5 - 3)
= 8*22

(i.e., total eight numbers of equal length cycles of size four).

Consider that there exist five numbers of prohibited

patterns. In our proposed design methodology, in worst

Fig. 5 Flowchart of proposed ELCA based random pattern generat-

ing system
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case all prohibited patterns are in five different cycles. So,

remaining 8 - 5 = 3 cycles are allowed to generate

pseudo-random patterns.

Each prohibited pattern is excluded from the cycle as

per the procedure for generating random patterns in Max-

CA. In our procedure, PPS are totally removed as we are

having more number of cycles for generation of random

sequences. In proposed methodology, the cycles containing

prohibited patterns are removed completely from the gen-

eration of pseudo random numbers.

Example 2 An n-cell CA for n = 5 might be decomposed

into some equal length smaller cycles instead of one

maximum length cycle. In our illustrated example it is

Fig. 6 a MaxCA Cycle for

n = 5 for\90, 90, 90, 90,150[.

b Proposed 4 ELCA of cycle

size 8 for

\153,153,153,153,153[.

c Proposed 8 ELCA of cycle

size 4 for\60, 60,195,102,153[
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decomposed into four smaller cycles of length 8 (Refer

Fig. 6b); or, it is decomposed into eight smaller cycles of

length 4 (Refer Fig. 6c). Pattern generation in this scenario

is followed as referred in Fig. 6. Maximum length cycle is

shown in Fig. 6a; Fig. 6a is based on null boundary 5 cell

CA having rules in specified sequence\90, 90, 90, 90,

150[. The synthesis of this example in Fig. 6b, c ELCA

are achieved for a combination of balanced CA rules such

as ‘‘60’’, ‘‘102’’, ‘‘153’’, ‘‘195’’ for CA size n = 5.

Characteristics of CA rules for generating ELCA has

revealed the fact that all CA rules are balanced in nature

and initiate a pair of necessary and sufficient conditions as

reported below:

Necessary Condition for ELCA Higher bits partition

(HbP) and lower bits partition(LbP) in binary representation

for the CA rule, is balanced, i.e., HbP and LbP both individ-

ually contains two numbers of 0’s and two numbers of 1’s.

Sufficient Condition for ELCA 8 bit binary representa-

tion for theCA rule, is balanced, i.e., the binary representation

contains four numbers of 0’s and four numbers of 1’s.

Upon illustration of the above stated conditions, let

consider a balanced rule ‘‘51’’. Rule ‘‘51’’ are represented

in 8 bit binary format as presented in Fig. 7. Binary rep-

resentation for rule ‘‘51’’ is shown in Fig. 7. Here HbP

(Higher bits partition) and LbP (lower bits partition) sec-

tion show that they are individually balanced and rule ‘‘51’’

itself is balanced.

In our research, we have found that CA rules for ELCA

generation procedure are balanced in nature. The set of

balanced CA rules for generation of ELCA as discussed in

earlier example, are: ‘‘51’’, ‘‘60’’, ‘‘102’’, ‘‘153’’, ‘‘195’’

and ‘‘204’’. A study of these rules reveals following

information as presented in Table 1. Combinatorial logic of

Table 1 has been visualized with reference to Fig. 1. Here

current state is denoted by ‘(t)’ and next state is denoted by

‘(t ? 1)’. Information of the CA rules for ELCA genera-

tion procedure is presented in Table 1.

Corollary 1 All the balanced CA rules, whose HbP and

LbP positions are not balanced, are not responsible for

generating ELCA.

Proof From the binary equivalent of thse CA rule as

reported in Table 1, it is found that all the rules are having

equal numbers of 0’s and 1’s. in its HbP and LbP position.

There exist a total two numbers of 0’s and two numbers of

1’s in binary format at HbP and LbP positions for every

rule. That indicates that all the rules are balanced at their

HbP and LbP position. So an unbalanced situation at HbP

and LbP position never satisfy the necessity and sufficiency

conditions. Hence no rule with unbalanced condition at

HbP and LbP position is bound to generate ELCA. h

Theorem 1 Space complexity is at least same for pro-

posed methodology with respect to MaxCA.

Proof Space complexity increases with the increased

number of cells in a CA. Increased numbers of CA cells

require more hardware component for implementation.

The space complexity for a p-cell MaxCA is O (n) V

n = 2p

The space complexity for ELCA is O (m).

From Eq. 2 we have 2n = 2 m*(2n-m). That is the same

number of CA states are generated in ELCA. Hence
P

O

(mi) = O (n) in case of space complexities. Here ‘‘i’’

Fig. 7 Binary representation of

rule ‘‘51’’

Table 1 ELCA rule information

Serial

no.

CA

rule

Binary equivalent

of CA rule

Combinatorial binary logic

for next state = i(t ? 1)

1 51 00110011 NOT i(t)

2 204 11001100 i (t)

3 60 00111100 i - 1(t) XOR i(t)

4 195 11000011 i - 1(t) XNOR i(t)

5 102 01100110 i(t) XOR i ? 1(t)

6 153 10011001 i(t) XNOR i ? 1(t)

Table 2 Comparison of fault

coverage procedures
MaxCA ELCA

CA size (n) 5 5

Earc 7 N/A

Arcmin 24 N/A
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denote number of equal length cycle that has been

decomposed from a MaxCA using Eq. 2.

That is the memory space to process a fixed length of an

n-cell CA is always same. h

Consider that there exists 5 numbers of prohibited pat-

terns in an n-cell CA. Now to generate random patterns,

MaxCA methodology needs to calculate Arcmin and Earc.

For our proposed methodology, in worst case all of the PPS

will fall into five different ELCA. So in worst case sce-

nario, there should remain (8 - 5 = 3) number of ELCA

of size 4, those are PPS free ELCA for generating random

patterns.

Theorem 2 Design cost of proposed system is less than

MaxCA.

Proof Proposed methodology is allowed only to generate

randompatterns from smaller cycles that do not contain PPS.

The PPS exclusion feature from the main cycle, which is

responsible for generating random patterns, improves the

design complexities. The logic behind this simplicity is that

the proposed methodology simply discards the equal length

cycles contains prohibited patterns. So there is no need to

keep track of Arcmin length in the cycle. Concept of Arcmin

and Earc is only applicable for MaxCA based design only.

For MaxCA, let the time taken for calculating Arcmin

and Earc are Tarc and TE respectively. So the pattern

generation time is T = Tarc ? TE. For ELCA, there is no

Fig. 8 a MaxCA cycle

structure with PPS. b ELCA

cycle structure with PPS

Degree of Randomness
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0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72
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Fig. 9 Randomness quality graph for different CA-PRNGs
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concept of calculating Tarc and TE. All the PPS containing

smaller cycles are discarded from pattern generation

process. So the time taken for pattern generation TELCA

is equal to execution time for remaining prohibited patterns

free smaller length cycle only. Thus TELCA is free from the

overhead of calculation of Tarc and TE. Hence its design

complexity is simpler compared to MaxCA.

Hence the assumption is true. h

Theorem 3 Time complexity is less in proposed meth-

odology with respect to MaxCA.

Proof In the proposed methodology random pattern is

only allowed to generate from equal length CA which are

smaller in size. Furthermore those equal length cycles are

free of PPS. So execution times for those smaller cycles are

much less with respect to MaxCA. The time complexity of

an n-length CA is O (n). But in our proposed methodology,

the MaxCA is decomposed into several smaller equal

length cycles, which results the decrease of time com-

plexity into O (m). It is earlier described in Eq. 2. Here this

‘‘m’’ is smaller than ‘‘n’’. Hence the time complexity of

equal length is less than the time complexity of MaxCA.

The time complexity of MaxCA is O (n) V n = 2p for a

p-cell CA.

The time complexity of ELCA is O (m) V m = 2q for a

q-cell CA

From Eq. 2, we have m\ n, thus we have, O (m)\O

(n).

Hence the time complexity of ELCA is lesser with

respect to MaxCA. h

Theorem 4 Proposed methodology is at least equal to the

maximum length scheme in quality of randomness.

Proof The quality of randomness in an n-length CA

increases with the number of cell (n). More the number of

states in a cycle, better the quality of randomness in gen-

erated patterns are achieved, as there exist lesser chances of

repetition of the generated pattern. High numbers of states

are available with higher numbers of ‘‘n’’ to reduce the

chances of any possible repetition. This is truly presented

in the Diehard test result in Table 4. It has also been

reported in Table 4 that MaxCA and proposed methodol-

ogy are having the same degree of randomness. Both of

mechanism have scored a total number of 10 and 14

respective Diehard test passes for CA size n = 23 and 64

respectively. Hence the assumption is true. h

Table 3 Performance result through Diehard for different n-values in MaxCA based RNG

Diehard test number Name of the test MaxCA

n = 8

MaxCA

n = 10

MaxCA

n = 23

MaxCA

n = 64

1 Birthday spacings Fail Fail Pass Pass

2 Overlapping permutations Fail Fail Pass Pass

3 Ranks of 31 9 31 and 32 9 32 matrices Fail Fail Pass Pass

4 Ranks of 6 9 8 matrices Fail Fail Pass Pass

5 The Bitstream test Fail Fail Fail Fail

6 Monkey tests OPSO,OQSO,DNA Fail Fail Fail Pass

7 Count the 1’s in a stream of bytes Fail Fail Pass Pass

8 Count the 1’s in specific bytes Fail Fail Fail Pass

9 Parking lot test Fail Fail Pass Pass

10 Minimum distance test Fail Fail Pass Pass

11 The 3Dspheres test Fail Fail Pass Pass

12 The squeeze test Fail Fail Fail Pass

13 Overlapping sums test Fail Fail Fail Pass

14 Runs test Fail Fail Pass Pass

15 The craps test Fail Fail Pass Pass

Total number of Diehard test passes 0 0 10 14

Diehard Tests

0

5

10

15

n=8 n=10 n=23 n=64

No. of Cells in Max Length CA

No. of 

Diehard 

Tests 

Passed

Randomness Quality

Fig. 10 Randomness quality for MaxCA
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5 Experimental observations & result analysis

PPS containing arc in random pattern generating cycle is

excluded from the cycle as per the procedure for generating

the maximum random pattern in MaxCA (Refer Fig. 4). On

the other hand, the PPS containing cycles are totally

removed to generate the random sequences. There is no

overhead to calculate Earc and Arcmin in proposed ELCA

methodology. Table 2 compares the procedures of MaxCA

(Refer Fig. 8a) and ELCA based random pattern

generators.

Figure 8 is based on an arbitrarily drawn scenario where

total number of prohibited patterns is 5 and let an arbitrary

PPS is {5, 3, 11, 12, 16}. In worst case scenario, every

single prohibited pattern is found in five independent cycle

as illustrated in Fig. 8b. Comparison result between Max-

CA and ELCA on this given set of PPS have been enlisted

in Table 2.

Advantages of our proposed methodology over MaxCA

for fault coverage in random pattern generation, is reported

in Table 2. In proposed ELCA, the cycles containing any

prohibited pattern is excluded from generating random

patterns.

Data sets generated by these different RNGs have been

collected to visualize the randomness quality of the cor-

responding RNGs. The randomness quality graph is shown

in Fig. 9. Figure 9 is based on MaxCA for\90, 90, 90, 90,

90, 150[ and ELCA for\153, 153, 153, 153, 153, 153[.

Table 4 Performance result

through Diehard for different

CA-PRNGs

Diehard test number Name of the test MaxCA ELCA

n = 23 n = 64 n = 23 N = 64

1 Birthday spacings Pass Pass Pass Pass

2 Overlapping permutations Pass Pass Pass Pass

3 Ranks of 31 9 31 and 32 9 32 matrices Pass Pass Pass Pass

4 Ranks of 6 9 8 matrices Pass Pass Pass Pass

5 The bitstream test Fail Fail Fail Fail

6 Monkey tests OPSO,OQSO,DNA Fail Pass Fail Pass

7 Count the 1’s in a stream of bytes Pass Pass Pass Pass

8 Count the 1’s in specific bytes Fail Pass Fail Pass

9 Parking lot test Pass Pass Pass Pass

10 Minimum distance test Pass Pass Pass Pass

11 The 3Dspheres test Pass Pass Pass Pass

12 The squeeze test Fail Pass Fail Pass

13 Overlapping sums test Fail Pass Fail Pass

14 Runs test Pass Pass Pass Pass

15 The craps test Pass Pass Pass Pass

Total number of Diehard test passes 10 14 10 14

Table 5 Complexity comparison between MaxCA and proposed methodology

Name of the complexity MaxCA ELCA Remarks

Space O(n) O(n) Not changed

Time O (n)
P

O (mi) where ‘‘i’’ denotes

no. of ELCA

Improved, as ‘m’ is less than ‘n’ by Eq. 2

Design Requirements

for calculation of Arcmin

N/A Improved, as there is no need to calculate Arcmin

Searching Requirements

for calculation of Earc

N/A Improved, as there is no need to calculate Earc

Fig. 11 Diehard performance graph
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Different degrees of randomness of the corresponding

RNGs are represented in Fig. 3. The graph shows that the

Recursive PRNG is having the least degree of randomness

where as Max-Length CA PRNG and ELCA PRNG shares

almost equal degree of randomness among themselves and

both of them are having the maximum degree of random-

ness compared to all other RNGs.

‘P value’ is generated in Diehard test and it is uniform

[0, 1) for a condition where the input file is contained with

truly independent random bits [5]. Degree of randomness

achieved by MaxCA random number generators in Diehard

tests are reported in Table 3.

Table 3 and Fig. 10 have emphasized that the degree of

randomness achieved in MaxCA for different cell sizes in

terms of the totalnumber of Diehard tests passes. Degree of

randomness is graphically represented in Fig. 10.

Increased degree of randomness for MaxCA PRNG with

the increase of values of ‘n’ has been reported in Table 3

and Fig. 10.

The results obtained from Table 4 and Fig. 11 ensures

that the proposed random number generator is enriched

with maximum degree of randomization with a reference to

the number of Diehard test passes. This result is similar to

the result achieved for MaxCA based RNG. The various

complexities of these two CA based methodologies are

presented in Table 5. Table 5 has been reported based on

the information as reported in Table 2.

Space complexity has been reported in Table 5 and it is

same for both procedures as total length of an n-cell CA is

same for both the cases, but there are some changes in

other complexities. Other complexities have been

improved in case of our proposed methodology. The pro-

posed methodology is allowed only to generate random

patterns from smaller cycles that exclude PPS. PPS

exclusion feature from the main cycle, improves the design

and searching complexities.

6 Conclusion

Quality of randomness achieved from the various samples

of random data sets has been verified by Diehard tests. The

number of passes shows the quality of randomness

achieved by particular method. Experimental result shows

that the randomness achieved from the random data sets

produced through ELCA is having the maximum ran-

domness and this degree of randomness is same as com-

pared to MaxCA. Hence this methodology is suitable for

generating random sequences as the cost associated is

much cheaper in terms of time complexity and hardware

implementation. The ELCA uses only the sub cycle which

consists of lesser number of states than of MaxCA. Thus

time complexity has been reduced. The time complexity of

this proposed methodology maintains a linear time com-

plexity with increased number of cells in the CA. It is also

convenient that ELCA based PRNG is more flexible as PPS

is completely excluded from random pattern generating

cycle.
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